MaternHalfIntCovariance

Matern half-integer covariance function.

Overview

A special case of the Matern class of covariance functions, in which the hyperparameter takes on a half integer value. Substituting a positive integer for using the covariance function is given as

is a scaled distance based on the length factor , defined as

Hyperparameters

Table 1: Hyperparameters for Matern Covariance Function

VariableDomainDescription
Length factors corresponding to input parameters*
Signal variance*
Noise variance*

*See the Gaussian Process Trainer documentation for more in depth explanation of , , and hyperparameters.

Example Input File Syntax

[Covariance<<<{"href": "../../syntax/Covariance/index.html"}>>>]
  [covar]
    type = MaternHalfIntCovariance<<<{"description": "Matern half-integer covariance function.", "href": "MaternHalfIntCovariance.html"}>>>
    p<<<{"description": "Integer p to use for Matern Half Integer Covariance Kernel"}>>> = 2 #Define the exponential factor
    signal_variance<<<{"description": "Signal Variance ($\\sigma_f^2$) to use for kernel calculation."}>>> = 1 #Use a signal variance of 1 in the kernel
    noise_variance<<<{"description": "Noise Variance ($\\sigma_n^2$) to use for kernel calculation."}>>> = 1e-6 #A small amount of noise can help with numerical stability
    length_factor<<<{"description": "Length factors to use for Covariance Kernel"}>>> = '0.551133 0.551133' #Select a length factor for each parameter (k and q)
  []
[]
(moose/modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_Matern_half_int.i)

Input Parameters

  • length_factorLength factors to use for Covariance Kernel

    C++ Type:std::vector<double>

    Unit:(no unit assumed)

    Controllable:No

    Description:Length factors to use for Covariance Kernel

  • pInteger p to use for Matern Half Integer Covariance Kernel

    C++ Type:unsigned int

    Controllable:No

    Description:Integer p to use for Matern Half Integer Covariance Kernel

  • signal_varianceSignal Variance ($\sigma_f^2$) to use for kernel calculation.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Signal Variance ($\sigma_f^2$) to use for kernel calculation.

Required Parameters

  • covariance_functionsCovariance functions that this covariance function depends on.

    C++ Type:std::vector<UserObjectName>

    Controllable:No

    Description:Covariance functions that this covariance function depends on.

  • noise_variance0Noise Variance ($\sigma_n^2$) to use for kernel calculation.

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Noise Variance ($\sigma_n^2$) to use for kernel calculation.

  • num_outputs1The number of outputs expected for this covariance function.

    Default:1

    C++ Type:unsigned int

    Controllable:No

    Description:The number of outputs expected for this covariance function.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Set the enabled status of the MooseObject.

Advanced Parameters