High Fidelity Neutronics Model for Lead-cooled Fast Reactor (LFR)

Contact: Hansol Park, [email protected]

Model link: LFR Single Assembly Griffin Model

This VTB model provides a high fidelity neutronics model for a representative example of a lead-cooled fast reactor with an annular MOX (UPuO) fuel. Its design is based on an early iteration of an LFR-prototype assembly provided by Westinghouse Electric Company, LLC (Grasso et al., 2019). The original purpose of this model is to characterize the impact of various sources of uncertainties, such as theoretical and experimental uncertainties, instrumentation uncertainties, manufacturing tolerances, correlation uncertainties, and the method and simulation uncertainties, on peak cladding, fuel and coolant temperatures in the system. For this purpose, high fidelity neutronics (fine mesh heterogeneous transport - Griffin) and thermalhydraulics (computational fluid dynamics - NekRS) calculations were performed to compute hot channel factors (HCFs) (Shemon et al., 2021). A 3D heterogeneous single assembly steady-state problem was used since a full core model is seldom used for the HCF evaluation. In this VTB model, only the neutronics standlone model is explained.

First, the LFR model is described, followed by the cross section generation procedure using MC2-3 (Lee et al., 2018). Then, the Griffin standalone calculation setting with the discontinuous finite element method (DFEM) discrete ordinate (SN) scheme with the Coarse Mesh Finite Difference (CMFD) acceleration is explained and the results are discussed.

Description of LFR design

The key parameters of the LFR design are listed in Table 1. The power output is 950 MWth (~450 MWe) for the whole core and the nominal power of an inner core fuel assembly is 3.7 MWth. The fuel assembly pitch is 16.3 cm with a 4 mm lead-filled gap between assemblies and 3.5 cm thick duct wall as shown on the right in Figure 1. Each assembly contains 127 cladded fuel pins arranged in a triangular lattice with pitch 1.33 cm within a hexagonal wrapper (duct). Each fuel pin has a cold fuel inner/outer diameter of 4.00/8.55 mm respectively, a fuel-cladding gap of 0.175 mm and a cladding outer diameter of 10.7 mm with a cladding thickness of 0.90 mm, depicted in Figure 2. The center hole and gap are filled with helium. To minimize the flow speed and consequently mitigate corrosion issues, a relatively wide lattice (P/D=1.24) design is adopted. Grid spacers are planned to maintain pin spacing, rather than the wire wrap used in conventional SFR designs.

The active fuel region in the middle is located between upper and lower thermal insulators, gas plenum, bundle grid and pins plug, and inlet and outlet wrappers. Bundle grid and pins plug, inlet and outlet wrappers, and lower core plate are radially homogenized while radially heterogeneous fine-meshes were used in the other five axial regions. The annular fuel shape in Figure 2 is explicitly modeled for the active fuel region and materials inside the cladding are radially homogenized for the four axial regions of thermal insulators and gas plenum.

Table 1: Key parameters of Lead-Cooled Fast Reactor (LFR) model

ParameterValueUnit
Thermal power
Active core height
Number of fuel pins per assembly
Gap thickness
Duct thickness
Fuel pin diameter
Fuel pin pitch
P/D
Cladding thickness
Fuel pellet outer diameter
Fuel pellet inner diameter
Reynolds number
Prandtl number
Peclet number

Figure 1: Axial and radial geometry of the LFR single assembly model

Figure 2: LFR annular fuel pin geometry

Cross Section Generation using MC2-3

It is worth explaining the procedure to generate cross sections using MC2-3 for this model. MC2-3 is the cross section generation module in Griffin. The axial leakage effect needs to be considered using the MC2-3/TWODANT two-step procedure for the generation of both homogeneous cross sections for non-fuel axial regions and heterogeneous region-wise cross sections for the fuel axial region. At this point of time, the MC2-3/TWODANT procedure is not fully available in Griffin due to a licensing issue with TWODANT. Thus, MC2-3 was used externally, not via Griffin, in this work. Once the feature is available in Griffin, the description below will be updated.

First step

The first step is to generate a 1041-group rzmflx, which is the flux solution file of a TWODANT (Alcouffe et al., 1984) SN calculation. It contains zone-wise Legendre moments of the angular flux solution up to a specified order. In this problem, a pseudo one-dimensional (1D) slab problem is solved using TWODANT by assigning the reflective boundary condition on the left and right boundaries in the x-y geometry. TWODANT is called inside MC2-3 when its executable path is specified by the c_twodantexe input parameter in the library block of an MC2-3 input with l_twodant=T. If TWODANT is not available, PARTISN (Alcouffe et al., 2009) can be used alternatively since it creates a rzmflx file. c_twodant_group=BG means that the TWODANT transport calculation is performed using a group structure specified in c_group_structure. c_geometry_type=mixture means that homogeneous materials cooresponding to axial regions are used to generate macroscopic cross sections (in the 1041-group structure in this example) to be used in the TWODANT transport calculation.

&library
     c_mcclibdir  ="$lib/lib.mcc.new"
     c_pwlibdir   ="$lib/lib.pw.200.new","."
     c_twodantexe ="/software/MCC3/twodant.x"
/
&control
     c_group_structure       =ANL1041
     i_number_region         =10
     c_geometry_type         =mixture
     i_scattering_order      =3
     l_twodant               =T
     c_twodant_group         =BG
/
&output
     l_edit_flux = T
/
(lfr/heterogeneous_single_assembly_3D/cross_section/Step1/LFR_InnerFuel_HOM_1041g_TWODANT.mcc3.sh)

Volume-homogenized compositions representing different axial regions are specified in the material block. In each composition, a list of isotopes needs to be specified. Each line for an isotope should have four entries: an MC2-ID such as FE54_7, a user-defined name to be included in the ISOTXS file, for example, FE54_IG, an atomic number density (#/cm barn), and a temperature in Kelvin. (In this step, temperature does not need to be very accurate.) The full list of MC2-IDs is available in (Lee et al., 2018). For the user-defined name, _IG is, for example, a suffix to indicate the name of the axial zone for the upper thermal insulator and differentiate the same isotope in different regions. In this first step, since the resulting ISOTXS file is only used for the TWODANT calculation, any suffix is allowed as long as the same isotope in different compositions can be differentiated by its name. This is needed because cross sections of all isotopes are contained in a single ISOTXS file where composition IDs are not present. This suffix needs to be set carefully in the second step as explained later.

&material
t_composition(:, 1)=  
! IA=Lower Core Plate (AISI 316, DS4-Wrapper, Pb)
FE54_7   FE54_IA   2.3571E-03   600.0
FE56_7   FE56_IA   3.7002E-02   600.0
FE57_7   FE57_IA   8.5453E-04   600.0
FE58_7   FE58_IA   1.1372E-04   600.0
NI58_7   NI58_IA   4.9645E-03   600.0
NI60_7   NI60_IA   1.9123E-03   600.0
NI61_7   NI61_IA   8.3135E-05   600.0
NI62_7   NI62_IA   2.6501E-04   600.0
NI64_7   NI64_IA   6.7529E-05   600.0
CR50_7   CR50_IA   4.6700E-04   600.0
CR52_7   CR52_IA   9.0056E-03   600.0
CR53_7   CR53_IA   1.0212E-03   600.0
CR54_7   CR54_IA   2.5419E-04   600.0
MN55_7   MN55_IA   6.8040E-04   600.0
MO92_7   MO92_IA   1.2088E-04   600.0
MO94_7   MO94_IA   7.5345E-05   600.0
MO95_7   MO95_IA   1.2968E-04   600.0
MO96_7   MO96_IA   1.3587E-04   600.0
MO97_7   MO97_IA   7.7789E-05   600.0
MO98_7   MO98_IA   1.9655E-04   600.0
MO1007   MO100IA   7.8441E-05   600.0
SI28_7   SI28_IA   6.3469E-04   600.0
SI29_7   SI29_IA   3.2228E-05   600.0
SI30_7   SI30_IA   2.1245E-05   600.0
C____7   C____IA   1.4140E-04   600.0
P31__7   P31__IA   2.9631E-05   600.0
S32__7   S32__IA   1.5017E-05   600.0
S33__7   S33__IA   1.2022E-07   600.0
S34__7   S34__IA   6.7864E-07   600.0
S36__7   S36__IA   3.1638E-09   600.0
TI46_7   TI46_IA   4.3921E-06   600.0
TI47_7   TI47_IA   3.9608E-06   600.0
TI48_7   TI48_IA   3.9246E-05   600.0
TI49_7   TI49_IA   2.8801E-06   600.0
TI50_7   TI50_IA   2.7577E-06   600.0
V____7   V____IA   3.7518E-06   600.0
ZR90_7   ZR90_IA   1.0779E-06   600.0
ZR91_7   ZR91_IA   2.3507E-07   600.0
ZR92_7   ZR92_IA   3.5931E-07   600.0
ZR94_7   ZR94_IA   3.6413E-07   600.0
ZR96_7   ZR96_IA   5.8663E-08   600.0
W182_7   W182_IA   2.7550E-07   600.0
W183_7   W183_IA   1.4877E-07   600.0
W184_7   W184_IA   3.1979E-07   600.0
W186_7   W186_IA   2.9556E-07   600.0
CU63_7   CU63_IA   2.0804E-06   600.0
CU65_7   CU65_IA   9.2725E-07   600.0
CO59_7   CO59_IA   3.2430E-06   600.0
CA40_7   CA40_IA   4.6229E-06   600.0
CA42_7   CA42_IA   3.0854E-08   600.0
CA43_7   CA43_IA   6.4378E-09   600.0
CA44_7   CA44_IA   9.9476E-08   600.0
CA46_7   CA46_IA   1.9075E-10   600.0
CA48_7   CA48_IA   8.9176E-09   600.0
NB93_7   NB93_IA   1.0286E-06   600.0
N14__7   N14__IA   6.7973E-06   600.0
N15__7   N15__IA   2.5106E-08   600.0
AL27_7   AL27_IA   3.5417E-06   600.0
TA1817   TA181IA   5.2812E-07   600.0
B10__7   B10__IA   7.0367E-07   600.0
B11__7   B11__IA   2.8324E-06   600.0
PB2047   PB204IA   1.1702E-04   600.0
PB2067   PB206IA   2.0144E-03   600.0
PB2077   PB207IA   1.8472E-03   600.0
PB2087   PB208IA   4.3799E-03   600.0

t_composition(:, 2)= 
! IB=Inlet Wrapper (DS4-Wrapper, Pb)
FE54_7   FE54_IB   2.6147E-04   600.0
FE56_7   FE56_IB   4.1044E-03   600.0
FE57_7   FE57_IB   9.4790E-05   600.0
FE58_7   FE58_IB   1.2615E-05   600.0
NI58_7   NI58_IB   6.8720E-04   600.0
NI60_7   NI60_IB   2.6471E-04   600.0
NI61_7   NI61_IB   1.1508E-05   600.0
NI62_7   NI62_IB   3.6683E-05   600.0
NI64_7   NI64_IB   9.3475E-06   600.0
CR50_7   CR50_IB   4.6316E-05   600.0
CR52_7   CR52_IB   8.9315E-04   600.0
CR53_7   CR53_IB   1.0128E-04   600.0
CR54_7   CR54_IB   2.5210E-05   600.0
MN55_7   MN55_IB   1.0437E-04   600.0
MO92_7   MO92_IB   8.8679E-06   600.0
MO94_7   MO94_IB   5.5275E-06   600.0
MO95_7   MO95_IB   9.5133E-06   600.0
MO96_7   MO96_IB   9.9675E-06   600.0
MO97_7   MO97_IB   5.7068E-06   600.0
MO98_7   MO98_IB   1.4419E-05   600.0
MO1007   MO100IB   5.7546E-06   600.0
SI28_7   SI28_IB   1.0670E-04   600.0
SI29_7   SI29_IB   5.4179E-06   600.0
SI30_7   SI30_IB   3.5715E-06   600.0
C____7   C____IB   2.8642E-05   600.0
P31__7   P31__IB   5.5534E-06   600.0
S32__7   S32__IB   1.6977E-06   600.0
S33__7   S33__IB   1.3592E-08   600.0
S34__7   S34__IB   7.6723E-08   600.0
S36__7   S36__IB   3.5768E-10   600.0
TI46_7   TI46_IB   2.6352E-06   600.0
TI47_7   TI47_IB   2.3765E-06   600.0
TI48_7   TI48_IB   2.3548E-05   600.0
TI49_7   TI49_IB   1.7281E-06   600.0
TI50_7   TI50_IB   1.6546E-06   600.0
V____7   V____IB   2.2511E-06   600.0
ZR90_7   ZR90_IB   6.4675E-07   600.0
ZR91_7   ZR91_IB   1.4104E-07   600.0
ZR92_7   ZR92_IB   2.1558E-07   600.0
ZR94_7   ZR94_IB   2.1848E-07   600.0
ZR96_7   ZR96_IB   3.5198E-08   600.0
W182_7   W182_IB   1.6530E-07   600.0
W183_7   W183_IB   8.9261E-08   600.0
W184_7   W184_IB   1.9187E-07   600.0
W186_7   W186_IB   1.7734E-07   600.0
CU63_7   CU63_IB   1.2482E-06   600.0
CU65_7   CU65_IB   5.5635E-07   600.0
CO59_7   CO59_IB   1.9458E-06   600.0
CA40_7   CA40_IB   2.7737E-06   600.0
CA42_7   CA42_IB   1.8512E-08   600.0
CA43_7   CA43_IB   3.8627E-09   600.0
CA44_7   CA44_IB   5.9686E-08   600.0
CA46_7   CA46_IB   1.1445E-10   600.0
CA48_7   CA48_IB   5.3506E-09   600.0
NB93_7   NB93_IB   6.1715E-07   600.0
N14__7   N14__IB   4.0784E-06   600.0
N15__7   N15__IB   1.5064E-08   600.0
AL27_7   AL27_IB   2.1250E-06   600.0
TA1817   TA181IB   3.1687E-07   600.0
B10__7   B10__IB   4.2220E-07   600.0
B11__7   B11__IB   1.6994E-06   600.0
PB2047   PB204IB   3.8856E-04   600.0
PB2067   PB206IB   6.6887E-03   600.0
PB2077   PB207IB   6.1336E-03   600.0
PB2087   PB208IB   1.4543E-02   600.0

t_composition(:, 3)=  
! IC=Lower Bundle Grid and Pins Plug (DS4-Wrapper, DS4-Clad, Pb)
FE54_7   FE54_IC   1.2517E-03   600.0
FE56_7   FE56_IC   1.9649E-02   600.0
FE57_7   FE57_IC   4.5378E-04   600.0
FE58_7   FE58_IC   6.0390E-05   600.0
NI58_7   NI58_IC   3.2898E-03   600.0
NI60_7   NI60_IC   1.2672E-03   600.0
NI61_7   NI61_IC   5.5090E-05   600.0
NI62_7   NI62_IC   1.7561E-04   600.0
NI64_7   NI64_IC   4.4748E-05   600.0
CR50_7   CR50_IC   2.2172E-04   600.0
CR52_7   CR52_IC   4.2757E-03   600.0
CR53_7   CR53_IC   4.8483E-04   600.0
CR54_7   CR54_IC   1.2068E-04   600.0
MN55_7   MN55_IC   4.9962E-04   600.0
MO92_7   MO92_IC   4.2453E-05   600.0
MO94_7   MO94_IC   2.6461E-05   600.0
MO95_7   MO95_IC   4.5542E-05   600.0
MO96_7   MO96_IC   4.7716E-05   600.0
MO97_7   MO97_IC   2.7320E-05   600.0
MO98_7   MO98_IC   6.9028E-05   600.0
MO1007   MO100IC   2.7548E-05   600.0
SI28_7   SI28_IC   5.1079E-04   600.0
SI29_7   SI29_IC   2.5937E-05   600.0
SI30_7   SI30_IC   1.7098E-05   600.0
C____7   C____IC   1.3712E-04   600.0
P31__7   P31__IC   2.6585E-05   600.0
S32__7   S32__IC   8.1275E-06   600.0
S33__7   S33__IC   6.5068E-08   600.0
S34__7   S34__IC   3.6729E-07   600.0
S36__7   S36__IC   1.7123E-09   600.0
TI46_7   TI46_IC   1.2615E-05   600.0
TI47_7   TI47_IC   1.1377E-05   600.0
TI48_7   TI48_IC   1.1273E-04   600.0
TI49_7   TI49_IC   8.2727E-06   600.0
TI50_7   TI50_IC   7.9210E-06   600.0
V____7   V____IC   1.0776E-05   600.0
ZR90_7   ZR90_IC   3.0962E-06   600.0
ZR91_7   ZR91_IC   6.7520E-07   600.0
ZR92_7   ZR92_IC   1.0321E-06   600.0
ZR94_7   ZR94_IC   1.0459E-06   600.0
ZR96_7   ZR96_IC   1.6850E-07   600.0
W182_7   W182_IC   7.9132E-07   600.0
W183_7   W183_IC   4.2731E-07   600.0
W184_7   W184_IC   9.1853E-07   600.0
W186_7   W186_IC   8.4895E-07   600.0
CU63_7   CU63_IC   5.9755E-06   600.0
CU65_7   CU65_IC   2.6634E-06   600.0
CO59_7   CO59_IC   9.3151E-06   600.0
CA40_7   CA40_IC   1.3278E-05   600.0
CA42_7   CA42_IC   8.8623E-08   600.0
CA43_7   CA43_IC   1.8492E-08   600.0
CA44_7   CA44_IC   2.8573E-07   600.0
CA46_7   CA46_IC   5.4790E-10   600.0
CA48_7   CA48_IC   2.5614E-08   600.0
NB93_7   NB93_IC   2.9544E-06   600.0
N14__7   N14__IC   1.9524E-05   600.0
N15__7   N15__IC   7.2114E-08   600.0
AL27_7   AL27_IC   1.0173E-05   600.0
TA1817   TA181IC   1.5169E-06   600.0
B10__7   B10__IC   2.0212E-06   600.0
B11__7   B11__IC   8.1355E-06   600.0
PB2047   PB204IC   2.5702E-04   600.0
PB2067   PB206IC   4.4244E-03   600.0
PB2077   PB207IC   4.0572E-03   600.0
PB2087   PB208IC   9.6199E-03   600.0

t_composition(:, 4)=  
! ID=Lower Gas Plenum (tube) (DS4-Wrapper, DS4-Clad, Helium, Pb)
FE54_7   FE54_ID   9.7769E-04   600.0
FE56_7   FE56_ID   1.5348E-02   600.0
FE57_7   FE57_ID   3.5445E-04   600.0
FE58_7   FE58_ID   4.7170E-05   600.0
NI58_7   NI58_ID   2.5696E-03   600.0
NI60_7   NI60_ID   9.8982E-04   600.0
NI61_7   NI61_ID   4.3031E-05   600.0
NI62_7   NI62_ID   1.3717E-04   600.0
NI64_7   NI64_ID   3.4953E-05   600.0
CR50_7   CR50_ID   1.7319E-04   600.0
CR52_7   CR52_ID   3.3398E-03   600.0
CR53_7   CR53_ID   3.7870E-04   600.0
CR54_7   CR54_ID   9.4267E-05   600.0
MN55_7   MN55_ID   3.9025E-04   600.0
MO92_7   MO92_ID   3.3160E-05   600.0
MO94_7   MO94_ID   2.0669E-05   600.0
MO95_7   MO95_ID   3.5573E-05   600.0
MO96_7   MO96_ID   3.7271E-05   600.0
MO97_7   MO97_ID   2.1339E-05   600.0
MO98_7   MO98_ID   5.3918E-05   600.0
MO1007   MO100ID   2.1518E-05   600.0
SI28_7   SI28_ID   3.9897E-04   600.0
SI29_7   SI29_ID   2.0259E-05   600.0
SI30_7   SI30_ID   1.3355E-05   600.0
C____7   C____ID   1.0710E-04   600.0
P31__7   P31__ID   2.0766E-05   600.0
S32__7   S32__ID   6.3484E-06   600.0
S33__7   S33__ID   5.0824E-08   600.0
S34__7   S34__ID   2.8689E-07   600.0
S36__7   S36__ID   1.3375E-09   600.0
TI46_7   TI46_ID   9.8539E-06   600.0
TI47_7   TI47_ID   8.8864E-06   600.0
TI48_7   TI48_ID   8.8052E-05   600.0
TI49_7   TI49_ID   6.4618E-06   600.0
TI50_7   TI50_ID   6.1870E-06   600.0
V____7   V____ID   8.4174E-06   600.0
ZR90_7   ZR90_ID   2.4184E-06   600.0
ZR91_7   ZR91_ID   5.2739E-07   600.0
ZR92_7   ZR92_ID   8.0613E-07   600.0
ZR94_7   ZR94_ID   8.1694E-07   600.0
ZR96_7   ZR96_ID   1.3161E-07   600.0
W182_7   W182_ID   6.1810E-07   600.0
W183_7   W183_ID   3.3377E-07   600.0
W184_7   W184_ID   7.1746E-07   600.0
W186_7   W186_ID   6.6311E-07   600.0
CU63_7   CU63_ID   4.6675E-06   600.0
CU65_7   CU65_ID   2.0804E-06   600.0
CO59_7   CO59_ID   7.2760E-06   600.0
CA40_7   CA40_ID   1.0372E-05   600.0
CA42_7   CA42_ID   6.9223E-08   600.0
CA43_7   CA43_ID   1.4444E-08   600.0
CA44_7   CA44_ID   2.2318E-07   600.0
CA46_7   CA46_ID   4.2796E-10   600.0
CA48_7   CA48_ID   2.0007E-08   600.0
NB93_7   NB93_ID   2.3077E-06   600.0
N14__7   N14__ID   1.5250E-05   600.0
N15__7   N15__ID   5.6328E-08   600.0
AL27_7   AL27_ID   7.9461E-06   600.0
TA1817   TA181ID   1.1849E-06   600.0
B10__7   B10__ID   1.5787E-06   600.0
B11__7   B11__ID   6.3546E-06   600.0
HE4__7   HE4__ID   6.8773E-06   600.0
PB2047   PB204ID   1.7712E-04   600.0
PB2067   PB206ID   3.0489E-03   600.0
PB2077   PB207ID   2.7959E-03   600.0
PB2087   PB208ID   6.6292E-03   600.0

t_composition(:, 5)=  
! IE=Lower thermal insulator (DS4-Wrapper, DS4-Clad, Helium, Pb, YSZ)
FE54_7   FE54_IE   7.5276E-04   600.0
FE56_7   FE56_IE   1.1817E-02   600.0
FE57_7   FE57_IE   2.7290E-04   600.0
FE58_7   FE58_IE   3.6318E-05   600.0
NI58_7   NI58_IE   1.9785E-03   600.0
NI60_7   NI60_IE   7.6209E-04   600.0
NI61_7   NI61_IE   3.3131E-05   600.0
NI62_7   NI62_IE   1.0561E-04   600.0
NI64_7   NI64_IE   2.6911E-05   600.0
CR50_7   CR50_IE   1.3334E-04   600.0
CR52_7   CR52_IE   2.5714E-03   600.0
CR53_7   CR53_IE   2.9157E-04   600.0
CR54_7   CR54_IE   7.2579E-05   600.0
MN55_7   MN55_IE   3.0047E-04   600.0
MO92_7   MO92_IE   2.5531E-05   600.0
MO94_7   MO94_IE   1.5914E-05   600.0
MO95_7   MO95_IE   2.7389E-05   600.0
MO96_7   MO96_IE   2.8696E-05   600.0
MO97_7   MO97_IE   1.6430E-05   600.0
MO98_7   MO98_IE   4.1513E-05   600.0
MO1007   MO100IE   1.6567E-05   600.0
SI28_7   SI28_IE   3.0718E-04   600.0
SI29_7   SI29_IE   1.5598E-05   600.0
SI30_7   SI30_IE   1.0282E-05   600.0
C____7   C____IE   8.2461E-05   600.0
P31__7   P31__IE   1.5988E-05   600.0
S32__7   S32__IE   4.8878E-06   600.0
S33__7   S33__IE   3.9131E-08   600.0
S34__7   S34__IE   2.2089E-07   600.0
S36__7   S36__IE   1.0298E-09   600.0
TI46_7   TI46_IE   7.5868E-06   600.0
TI47_7   TI47_IE   6.8419E-06   600.0
TI48_7   TI48_IE   6.7794E-05   600.0
TI49_7   TI49_IE   4.9751E-06   600.0
TI50_7   TI50_IE   4.7636E-06   600.0
V____7   V____IE   6.4809E-06   600.0
ZR90_7   ZR90_IE   3.8368E-03   600.0
ZR91_7   ZR91_IE   8.3671E-04   600.0
ZR92_7   ZR92_IE   1.2789E-03   600.0
ZR94_7   ZR94_IE   1.2961E-03   600.0
ZR96_7   ZR96_IE   2.0880E-04   600.0
W182_7   W182_IE   4.7589E-07   600.0
W183_7   W183_IE   2.5698E-07   600.0
W184_7   W184_IE   5.5240E-07   600.0
W186_7   W186_IE   5.1055E-07   600.0
CU63_7   CU63_IE   3.5936E-06   600.0
CU65_7   CU65_IE   1.6017E-06   600.0
CO59_7   CO59_IE   5.6020E-06   600.0
CA40_7   CA40_IE   7.9856E-06   600.0
CA42_7   CA42_IE   5.3297E-08   600.0
CA43_7   CA43_IE   1.1121E-08   600.0
CA44_7   CA44_IE   1.7184E-07   600.0
CA46_7   CA46_IE   3.2950E-10   600.0
CA48_7   CA48_IE   1.5404E-08   600.0
NB93_7   NB93_IE   1.7768E-06   600.0
N14__7   N14__IE   1.1742E-05   600.0
N15__7   N15__IE   4.3369E-08   600.0
AL27_7   AL27_IE   6.1180E-06   600.0
TA1817   TA181IE   9.1226E-07   600.0
B10__7   B10__IE   1.2155E-06   600.0
B11__7   B11__IE   4.8926E-06   600.0
HE4__7   HE4__IE   8.2368E-07   600.0
PB2047   PB204IE   1.7712E-04   600.0
PB2067   PB206IE   3.0489E-03   600.0
PB2077   PB207IE   2.7959E-03   600.0
PB2087   PB208IE   6.6292E-03   600.0
Y89__7   Y89__IE   1.2963E-03   600.0
O16__7   O16__IE   1.6852E-02   600.0
                     
t_composition(:, 6)=  
! IF=Active Fuel (DS4-Wrapper, DS4-Clad, Helium, Pb, UPuO)
FE54_7   FE54_FWR   2.6274E-04   900.0
FE56_7   FE56_FWR   4.1245E-03   900.0
FE57_7   FE57_FWR   9.5253E-05   900.0
FE58_7   FE58_FWR   1.2676E-05   900.0
NI58_7   NI58_FWR   6.9056E-04   900.0
NI60_7   NI60_FWR   2.6600E-04   900.0
NI61_7   NI61_FWR   1.1564E-05   900.0
NI62_7   NI62_FWR   3.6863E-05   900.0
NI64_7   NI64_FWR   9.3932E-06   900.0
CR50_7   CR50_FWR   4.6542E-05   900.0
CR52_7   CR52_FWR   8.9752E-04   900.0
CR53_7   CR53_FWR   1.0177E-04   900.0
CR54_7   CR54_FWR   2.5333E-05   900.0
MN55_7   MN55_FWR   1.0488E-04   900.0
MO92_7   MO92_FWR   8.9112E-06   900.0
MO94_7   MO94_FWR   5.5545E-06   900.0
MO95_7   MO95_FWR   9.5598E-06   900.0
MO96_7   MO96_FWR   1.0016E-05   900.0
MO97_7   MO97_FWR   5.7347E-06   900.0
MO98_7   MO98_FWR   1.4490E-05   900.0
MO1007   MO100FWR   5.7827E-06   900.0
SI28_7   SI28_FWR   1.0722E-04   900.0
SI29_7   SI29_FWR   5.4443E-06   900.0
SI30_7   SI30_FWR   3.5889E-06   900.0
C____7   C____FWR   2.8782E-05   900.0
P31__7   P31__FWR   5.5805E-06   900.0
S32__7   S32__FWR   1.7060E-06   900.0
S33__7   S33__FWR   1.3658E-08   900.0
S34__7   S34__FWR   7.7098E-08   900.0
S36__7   S36__FWR   3.5943E-10   900.0
TI46_7   TI46_FWR   2.6481E-06   900.0
TI47_7   TI47_FWR   2.3881E-06   900.0
TI48_7   TI48_FWR   2.3663E-05   900.0
TI49_7   TI49_FWR   1.7365E-06   900.0
TI50_7   TI50_FWR   1.6627E-06   900.0
V____7   V____FWR   2.2621E-06   900.0
ZR90_7   ZR90_FWR   6.4991E-07   900.0
ZR91_7   ZR91_FWR   1.4173E-07   900.0
ZR92_7   ZR92_FWR   2.1664E-07   900.0
ZR94_7   ZR94_FWR   2.1954E-07   900.0
ZR96_7   ZR96_FWR   3.5369E-08   900.0
W182_7   W182_FWR   1.6611E-07   900.0
W183_7   W183_FWR   8.9697E-08   900.0
W184_7   W184_FWR   1.9281E-07   900.0
W186_7   W186_FWR   1.7820E-07   900.0
CU63_7   CU63_FWR   1.2543E-06   900.0
CU65_7   CU65_FWR   5.5907E-07   900.0
CO59_7   CO59_FWR   1.9553E-06   900.0
CA40_7   CA40_FWR   2.7873E-06   900.0
CA42_7   CA42_FWR   1.8603E-08   900.0
CA43_7   CA43_FWR   3.8816E-09   900.0
CA44_7   CA44_FWR   5.9977E-08   900.0
CA46_7   CA46_FWR   1.1501E-10   900.0
CA48_7   CA48_FWR   5.3767E-09   900.0
NB93_7   NB93_FWR   6.2016E-07   900.0
N14__7   N14__FWR   4.0983E-06   900.0
N15__7   N15__FWR   1.5137E-08   900.0
AL27_7   AL27_FWR   2.1354E-06   900.0
TA1817   TA181FWR   3.1842E-07   900.0
B10__7   B10__FWR   4.2426E-07   900.0
B11__7   B11__FWR   1.7077E-06   900.0
FE54_7   FE54_FCD   4.9002E-04   900.0
FE56_7   FE56_FCD   7.6922E-03   900.0
FE57_7   FE57_FCD   1.7765E-04   900.0
FE58_7   FE58_FCD   2.3641E-05   900.0
NI58_7   NI58_FCD   1.2879E-03   900.0
NI60_7   NI60_FCD   4.9609E-04   900.0
NI61_7   NI61_FCD   2.1567E-05   900.0
NI62_7   NI62_FCD   6.8749E-05   900.0
NI64_7   NI64_FCD   1.7518E-05   900.0
CR50_7   CR50_FCD   8.6801E-05   900.0
CR52_7   CR52_FCD   1.6739E-03   900.0
CR53_7   CR53_FCD   1.8980E-04   900.0
CR54_7   CR54_FCD   4.7246E-05   900.0
MN55_7   MN55_FCD   1.9559E-04   900.0
MO92_7   MO92_FCD   1.6619E-05   900.0
MO94_7   MO94_FCD   1.0359E-05   900.0
MO95_7   MO95_FCD   1.7829E-05   900.0
MO96_7   MO96_FCD   1.8680E-05   900.0
MO97_7   MO97_FCD   1.0695E-05   900.0
MO98_7   MO98_FCD   2.7023E-05   900.0
MO1007   MO100FCD   1.0785E-05   900.0
SI28_7   SI28_FCD   1.9996E-04   900.0
SI29_7   SI29_FCD   1.0154E-05   900.0
SI30_7   SI30_FCD   6.6934E-06   900.0
C____7   C____FCD   5.3678E-05   900.0
P31__7   P31__FCD   1.0408E-05   900.0
S32__7   S32__FCD   3.1818E-06   900.0
S33__7   S33__FCD   2.5473E-08   900.0
S34__7   S34__FCD   1.4379E-07   900.0
S36__7   S36__FCD   6.7034E-10   900.0
TI46_7   TI46_FCD   4.9387E-06   900.0
TI47_7   TI47_FCD   4.4538E-06   900.0
TI48_7   TI48_FCD   4.4131E-05   900.0
TI49_7   TI49_FCD   3.2386E-06   900.0
TI50_7   TI50_FCD   3.1009E-06   900.0
V____7   V____FCD   4.2188E-06   900.0
ZR90_7   ZR90_FCD   1.2121E-06   900.0
ZR91_7   ZR91_FCD   2.6433E-07   900.0
ZR92_7   ZR92_FCD   4.0403E-07   900.0
ZR94_7   ZR94_FCD   4.0945E-07   900.0
ZR96_7   ZR96_FCD   6.5964E-08   900.0
W182_7   W182_FCD   3.0979E-07   900.0
W183_7   W183_FCD   1.6729E-07   900.0
W184_7   W184_FCD   3.5959E-07   900.0
W186_7   W186_FCD   3.3235E-07   900.0
CU63_7   CU63_FCD   2.3393E-06   900.0
CU65_7   CU65_FCD   1.0427E-06   900.0
CO59_7   CO59_FCD   3.6467E-06   900.0
CA40_7   CA40_FCD   5.1983E-06   900.0
CA42_7   CA42_FCD   3.4694E-08   900.0
CA43_7   CA43_FCD   7.2391E-09   900.0
CA44_7   CA44_FCD   1.1186E-07   900.0
CA46_7   CA46_FCD   2.1449E-10   900.0
CA48_7   CA48_FCD   1.0028E-08   900.0
NB93_7   NB93_FCD   1.1566E-06   900.0
N14__7   N14__FCD   7.6433E-06   900.0
N15__7   N15__FCD   2.8231E-08   900.0
AL27_7   AL27_FCD   3.9826E-06   900.0
TA1817   TA181FCD   5.9385E-07   900.0
B10__7   B10__FCD   7.9125E-07   900.0
B11__7   B11__FCD   3.1849E-06   900.0
PB2047   PB204FGP   1.8749E-05   900.0
PB2067   PB206FGP   3.2274E-04   900.0
PB2077   PB207FGP   2.9596E-04   900.0
PB2087   PB208FGP   7.0173E-04   900.0
PB2047   PB204FCO   1.5837E-04   900.0
PB2067   PB206FCO   2.7262E-03   900.0
PB2077   PB207FCO   2.4999E-03   900.0
PB2087   PB208FCO   5.9275E-03   900.0
HE4__7   HE4__FHE   2.4109E-06   1200.0
U234_7   U234_FFL   4.4048E-08   1200.0
U235_7   U235_FFL   1.0966E-05   1200.0
U238_7   U238_FFL   4.3201E-03   1200.0
PU2387   PU238FFL   3.0997E-06   1200.0
PU2397   PU239FFL   8.4988E-04   1200.0
PU2407   PU240FFL   3.2865E-04   1200.0
PU2417   PU241FFL   2.1555E-05   1200.0
PU2427   PU242FFL   3.0738E-05   1200.0
AM2417   AM241FFL   5.1971E-05   1200.0
O16__7   O16__FFL   1.1066E-02   1200.0

t_composition(:, 7)=  
! IG=Upper thermal insulator (DS4-Wrapper, DS4-Clad, Helium, Pb, YSZ)
FE54_7   FE54_IG   7.5276E-04   900.0
FE56_7   FE56_IG   1.1817E-02   900.0
FE57_7   FE57_IG   2.7290E-04   900.0
FE58_7   FE58_IG   3.6318E-05   900.0
NI58_7   NI58_IG   1.9785E-03   900.0
NI60_7   NI60_IG   7.6209E-04   900.0
NI61_7   NI61_IG   3.3131E-05   900.0
NI62_7   NI62_IG   1.0561E-04   900.0
NI64_7   NI64_IG   2.6911E-05   900.0
CR50_7   CR50_IG   1.3334E-04   900.0
CR52_7   CR52_IG   2.5714E-03   900.0
CR53_7   CR53_IG   2.9157E-04   900.0
CR54_7   CR54_IG   7.2579E-05   900.0
MN55_7   MN55_IG   3.0047E-04   900.0
MO92_7   MO92_IG   2.5531E-05   900.0
MO94_7   MO94_IG   1.5914E-05   900.0
MO95_7   MO95_IG   2.7389E-05   900.0
MO96_7   MO96_IG   2.8696E-05   900.0
MO97_7   MO97_IG   1.6430E-05   900.0
MO98_7   MO98_IG   4.1513E-05   900.0
MO1007   MO100IG   1.6567E-05   900.0
SI28_7   SI28_IG   3.0718E-04   900.0
SI29_7   SI29_IG   1.5598E-05   900.0
SI30_7   SI30_IG   1.0282E-05   900.0
C____7   C____IG   8.2461E-05   900.0
P31__7   P31__IG   1.5988E-05   900.0
S32__7   S32__IG   4.8878E-06   900.0
S33__7   S33__IG   3.9131E-08   900.0
S34__7   S34__IG   2.2089E-07   900.0
S36__7   S36__IG   1.0298E-09   900.0
TI46_7   TI46_IG   7.5868E-06   900.0
TI47_7   TI47_IG   6.8419E-06   900.0
TI48_7   TI48_IG   6.7794E-05   900.0
TI49_7   TI49_IG   4.9751E-06   900.0
TI50_7   TI50_IG   4.7636E-06   900.0
V____7   V____IG   6.4809E-06   900.0
ZR90_7   ZR90_IG   3.8368E-03   900.0
ZR91_7   ZR91_IG   8.3671E-04   900.0
ZR92_7   ZR92_IG   1.2789E-03   900.0
ZR94_7   ZR94_IG   1.2961E-03   900.0
ZR96_7   ZR96_IG   2.0880E-04   900.0
W182_7   W182_IG   4.7589E-07   900.0
W183_7   W183_IG   2.5698E-07   900.0
W184_7   W184_IG   5.5240E-07   900.0
W186_7   W186_IG   5.1055E-07   900.0
CU63_7   CU63_IG   3.5936E-06   900.0
CU65_7   CU65_IG   1.6017E-06   900.0
CO59_7   CO59_IG   5.6020E-06   900.0
CA40_7   CA40_IG   7.9856E-06   900.0
CA42_7   CA42_IG   5.3297E-08   900.0
CA43_7   CA43_IG   1.1121E-08   900.0
CA44_7   CA44_IG   1.7184E-07   900.0
CA46_7   CA46_IG   3.2950E-10   900.0
CA48_7   CA48_IG   1.5404E-08   900.0
NB93_7   NB93_IG   1.7768E-06   900.0
N14__7   N14__IG   1.1742E-05   900.0
N15__7   N15__IG   4.3369E-08   900.0
AL27_7   AL27_IG   6.1180E-06   900.0
TA1817   TA181IG   9.1226E-07   900.0
B10__7   B10__IG   1.2155E-06   900.0
B11__7   B11__IG   4.8926E-06   900.0
HE4__7   HE4__IG   8.2368E-07   900.0
PB2047   PB204IG   1.7712E-04   900.0
PB2067   PB206IG   3.0489E-03   900.0
PB2077   PB207IG   2.7959E-03   900.0
PB2087   PB208IG   6.6292E-03   900.0
Y89__7   Y89__IG   1.2963E-03   900.0
O16__7   O16__IG   1.6852E-02   900.0

t_composition(:, 8)=  
! IH=Upper gas plenum (spring) (DS4-Wrapper, DS4-Clad, Helium, Pb)
FE54_7   FE54_IH   8.7383E-04   900.0
FE56_7   FE56_IH   1.3717E-02   900.0
FE57_7   FE57_IH   3.1679E-04   900.0
FE58_7   FE58_IH   4.2159E-05   900.0
NI58_7   NI58_IH   2.2967E-03   900.0
NI60_7   NI60_IH   8.8466E-04   900.0
NI61_7   NI61_IH   3.8459E-05   900.0
NI62_7   NI62_IH   1.2260E-04   900.0
NI64_7   NI64_IH   3.1240E-05   900.0
CR50_7   CR50_IH   1.5479E-04   900.0
CR52_7   CR52_IH   2.9850E-03   900.0
CR53_7   CR53_IH   3.3847E-04   900.0
CR54_7   CR54_IH   8.4252E-05   900.0
MN55_7   MN55_IH   3.4880E-04   900.0
MO92_7   MO92_IH   2.9637E-05   900.0
MO94_7   MO94_IH   1.8473E-05   900.0
MO95_7   MO95_IH   3.1794E-05   900.0
MO96_7   MO96_IH   3.3312E-05   900.0
MO97_7   MO97_IH   1.9072E-05   900.0
MO98_7   MO98_IH   4.8190E-05   900.0
MO1007   MO100IH   1.9232E-05   900.0
SI28_7   SI28_IH   3.5659E-04   900.0
SI29_7   SI29_IH   1.8107E-05   900.0
SI30_7   SI30_IH   1.1936E-05   900.0
C____7   C____IH   9.5723E-05   900.0
P31__7   P31__IH   1.8560E-05   900.0
S32__7   S32__IH   5.6739E-06   900.0
S33__7   S33__IH   4.5425E-08   900.0
S34__7   S34__IH   2.5641E-07   900.0
S36__7   S36__IH   1.1954E-09   900.0
TI46_7   TI46_IH   8.8071E-06   900.0
TI47_7   TI47_IH   7.9424E-06   900.0
TI48_7   TI48_IH   7.8698E-05   900.0
TI49_7   TI49_IH   5.7753E-06   900.0
TI50_7   TI50_IH   5.5298E-06   900.0
V____7   V____IH   7.5232E-06   900.0
ZR90_7   ZR90_IH   2.1615E-06   900.0
ZR91_7   ZR91_IH   4.7137E-07   900.0
ZR92_7   ZR92_IH   7.2049E-07   900.0
ZR94_7   ZR94_IH   7.3016E-07   900.0
ZR96_7   ZR96_IH   1.1763E-07   900.0
W182_7   W182_IH   5.5243E-07   900.0
W183_7   W183_IH   2.9831E-07   900.0
W184_7   W184_IH   6.4124E-07   900.0
W186_7   W186_IH   5.9267E-07   900.0
CU63_7   CU63_IH   4.1716E-06   900.0
CU65_7   CU65_IH   1.8593E-06   900.0
CO59_7   CO59_IH   6.5030E-06   900.0
CA40_7   CA40_IH   9.2699E-06   900.0
CA42_7   CA42_IH   6.1869E-08   900.0
CA43_7   CA43_IH   1.2909E-08   900.0
CA44_7   CA44_IH   1.9947E-07   900.0
CA46_7   CA46_IH   3.8250E-10   900.0
CA48_7   CA48_IH   1.7882E-08   900.0
NB93_7   NB93_IH   2.0625E-06   900.0
N14__7   N14__IH   1.3630E-05   900.0
N15__7   N15__IH   5.0344E-08   900.0
AL27_7   AL27_IH   7.1020E-06   900.0
TA1817   TA181IH   1.0590E-06   900.0
B10__7   B10__IH   1.4110E-06   900.0
B11__7   B11__IH   5.6795E-06   900.0
HE4__7   HE4__IH   7.6960E-06   900.0
PB2047   PB204IH   1.7712E-04   900.0
PB2067   PB206IH   3.0489E-03   900.0
PB2077   PB207IH   2.7959E-03   900.0
PB2087   PB208IH   6.6292E-03   900.0

t_composition(:, 9)= 
! II=Upper Bundle Grid and Pins Plug (DS4-Wrapper, DS4-Clad, Pb)
FE54_7   FE54_II   1.2517E-03   900.0
FE56_7   FE56_II   1.9649E-02   900.0
FE57_7   FE57_II   4.5378E-04   900.0
FE58_7   FE58_II   6.0390E-05   900.0
NI58_7   NI58_II   3.2898E-03   900.0
NI60_7   NI60_II   1.2672E-03   900.0
NI61_7   NI61_II   5.5090E-05   900.0
NI62_7   NI62_II   1.7561E-04   900.0
NI64_7   NI64_II   4.4748E-05   900.0
CR50_7   CR50_II   2.2172E-04   900.0
CR52_7   CR52_II   4.2757E-03   900.0
CR53_7   CR53_II   4.8483E-04   900.0
CR54_7   CR54_II   1.2068E-04   900.0
MN55_7   MN55_II   4.9962E-04   900.0
MO92_7   MO92_II   4.2453E-05   900.0
MO94_7   MO94_II   2.6461E-05   900.0
MO95_7   MO95_II   4.5542E-05   900.0
MO96_7   MO96_II   4.7716E-05   900.0
MO97_7   MO97_II   2.7320E-05   900.0
MO98_7   MO98_II   6.9028E-05   900.0
MO1007   MO100II   2.7548E-05   900.0
SI28_7   SI28_II   5.1079E-04   900.0
SI29_7   SI29_II   2.5937E-05   900.0
SI30_7   SI30_II   1.7098E-05   900.0
C____7   C____II   1.3712E-04   900.0
P31__7   P31__II   2.6585E-05   900.0
S32__7   S32__II   8.1275E-06   900.0
S33__7   S33__II   6.5068E-08   900.0
S34__7   S34__II   3.6729E-07   900.0
S36__7   S36__II   1.7123E-09   900.0
TI46_7   TI46_II   1.2615E-05   900.0
TI47_7   TI47_II   1.1377E-05   900.0
TI48_7   TI48_II   1.1273E-04   900.0
TI49_7   TI49_II   8.2727E-06   900.0
TI50_7   TI50_II   7.9210E-06   900.0
V____7   V____II   1.0776E-05   900.0
ZR90_7   ZR90_II   3.0962E-06   900.0
ZR91_7   ZR91_II   6.7520E-07   900.0
ZR92_7   ZR92_II   1.0321E-06   900.0
ZR94_7   ZR94_II   1.0459E-06   900.0
ZR96_7   ZR96_II   1.6850E-07   900.0
W182_7   W182_II   7.9132E-07   900.0
W183_7   W183_II   4.2731E-07   900.0
W184_7   W184_II   9.1853E-07   900.0
W186_7   W186_II   8.4895E-07   900.0
CU63_7   CU63_II   5.9755E-06   900.0
CU65_7   CU65_II   2.6634E-06   900.0
CO59_7   CO59_II   9.3151E-06   900.0
CA40_7   CA40_II   1.3278E-05   900.0
CA42_7   CA42_II   8.8623E-08   900.0
CA43_7   CA43_II   1.8492E-08   900.0
CA44_7   CA44_II   2.8573E-07   900.0
CA46_7   CA46_II   5.4790E-10   900.0
CA48_7   CA48_II   2.5614E-08   900.0
NB93_7   NB93_II   2.9544E-06   900.0
N14__7   N14__II   1.9524E-05   900.0
N15__7   N15__II   7.2114E-08   900.0
AL27_7   AL27_II   1.0173E-05   900.0
TA1817   TA181II   1.5169E-06   900.0
B10__7   B10__II   2.0212E-06   900.0
B11__7   B11__II   8.1355E-06   900.0
PB2047   PB204II   2.5702E-04   900.0
PB2067   PB206II   4.4244E-03   900.0
PB2077   PB207II   4.0572E-03   900.0
PB2087   PB208II   9.6199E-03   900.0

t_composition(:, 10)= 
! IJ=Outlet Wrapper (DS4-Wrapper, Pb)
FE54_7   FE54_IJ   7.6045E-04   900.0
FE56_7   FE56_IJ   1.1937E-02   900.0
FE57_7   FE57_IJ   2.7569E-04   900.0
FE58_7   FE58_IJ   3.6689E-05   900.0
NI58_7   NI58_IJ   1.9987E-03   900.0
NI60_7   NI60_IJ   7.6988E-04   900.0
NI61_7   NI61_IJ   3.3469E-05   900.0
NI62_7   NI62_IJ   1.0669E-04   900.0
NI64_7   NI64_IJ   2.7186E-05   900.0
CR50_7   CR50_IJ   1.3471E-04   900.0
CR52_7   CR52_IJ   2.5977E-03   900.0
CR53_7   CR53_IJ   2.9456E-04   900.0
CR54_7   CR54_IJ   7.3321E-05   900.0
MN55_7   MN55_IJ   3.0354E-04   900.0
MO92_7   MO92_IJ   2.5792E-05   900.0
MO94_7   MO94_IJ   1.6076E-05   900.0
MO95_7   MO95_IJ   2.7669E-05   900.0
MO96_7   MO96_IJ   2.8990E-05   900.0
MO97_7   MO97_IJ   1.6598E-05   900.0
MO98_7   MO98_IJ   4.1938E-05   900.0
MO1007   MO100IJ   1.6737E-05   900.0
SI28_7   SI28_IJ   3.1032E-04   900.0
SI29_7   SI29_IJ   1.5757E-05   900.0
SI30_7   SI30_IJ   1.0387E-05   900.0
C____7   C____IJ   8.3303E-05   900.0
P31__7   P31__IJ   1.6152E-05   900.0
S32__7   S32__IJ   4.9378E-06   900.0
S33__7   S33__IJ   3.9531E-08   900.0
S34__7   S34__IJ   2.2314E-07   900.0
S36__7   S36__IJ   1.0403E-09   900.0
TI46_7   TI46_IJ   7.6644E-06   900.0
TI47_7   TI47_IJ   6.9119E-06   900.0
TI48_7   TI48_IJ   6.8487E-05   900.0
TI49_7   TI49_IJ   5.0260E-06   900.0
TI50_7   TI50_IJ   4.8123E-06   900.0
V____7   V____IJ   6.5471E-06   900.0
ZR90_7   ZR90_IJ   1.8810E-06   900.0
ZR91_7   ZR91_IJ   4.1021E-07   900.0
ZR92_7   ZR92_IJ   6.2701E-07   900.0
ZR94_7   ZR94_IJ   6.3542E-07   900.0
ZR96_7   ZR96_IJ   1.0237E-07   900.0
W182_7   W182_IJ   4.8076E-07   900.0
W183_7   W183_IJ   2.5961E-07   900.0
W184_7   W184_IJ   5.5804E-07   900.0
W186_7   W186_IJ   5.1577E-07   900.0
CU63_7   CU63_IJ   3.6304E-06   900.0
CU65_7   CU65_IJ   1.6181E-06   900.0
CO59_7   CO59_IJ   5.6593E-06   900.0
CA40_7   CA40_IJ   8.0672E-06   900.0
CA42_7   CA42_IJ   5.3842E-08   900.0
CA43_7   CA43_IJ   1.1234E-08   900.0
CA44_7   CA44_IJ   1.7359E-07   900.0
CA46_7   CA46_IJ   3.3287E-10   900.0
CA48_7   CA48_IJ   1.5562E-08   900.0
NB93_7   NB93_IJ   1.7949E-06   900.0
N14__7   N14__IJ   1.1862E-05   900.0
N15__7   N15__IJ   4.3812E-08   900.0
AL27_7   AL27_IJ   6.1805E-06   900.0
TA1817   TA181IJ   9.2159E-07   900.0
B10__7   B10__IJ   1.2279E-06   900.0
B11__7   B11__IJ   4.9426E-06   900.0
PB2047   PB204IJ   3.2241E-04   900.0
PB2067   PB206IJ   5.5500E-03   900.0
PB2077   PB207IJ   5.0894E-03   900.0
PB2087   PB208IJ   1.2067E-02   900.0
/
(lfr/heterogeneous_single_assembly_3D/cross_section/Step1/LFR_InnerFuel_HOM_1041g_TWODANT.mcc3.sh)

The twodant block is to generate a TWODANT input internally for calling TWODANT. niso and ngroup are filled by MC2-3, mt and nzone are the number of materials and coarse meshes, im and jm are the number of coarse meshes in the x and y directions, it and jt are the total number of fine meshes in the x and y directions, igeom=6 means x-y geometry, isn is the Sn order, and maxlcm and maxscm are the maximum memory size (in a unit of word = 2 bytes) of central small core memory and peripheral large core memory. xmesh and ymesh are x and y coordinates of coarse meshes, xints and yints are the number of fine meshes in each coarse x and y meshes, and zones are composition numbers in the material block assigned to each x and y coarse mesh.

Input parameters from isct to rmflux are solver options. Important ones are isct: Legendre order of scattering, ievt=1: calculation type=k-eff, ibl, ibr, ibt, ibb: boundary conditions for left, right, top and bottom (0/1/2/3=vacuum/reflective/periodic(only for top and bottom)/white), epsi: inner iteration convergence precision (default=0.0001), epso: outer iteration convergence precision (default=epsi), oitm: maximum number of outer iterations, iitm, iitl: maximum number of inner iterations per group at the first outer iteration and near fission source convergence.

The cross section set for the TWODANT calculation is the ISOTXS output file of the MC2-3 calculation in this first step. MC2-3 fills the matls option in the twodant block for the native TWODANT input with isotope names and atomic number densities taken from the material block. Thus, users do not need to take care of this part.

&twodant
     1

niso=,
ngroup=,
mt=10,nzone=10,
im=1, it=4,
jm=10, jt=71,
igeom=6,isn=12,maxlcm=195000000,maxscm=19000000,
t
xmesh=0.0 2.0,
ymesh=0.0 10.07 40.86 47.42 133.27 134.79 240.86 242.37 254.50 259.55 353.42,
xints=4,
yints=  2 6 1 17 1 21  1  2  1 19 , 
zones= 1 ;
       2  ;
       3  ;
       4  ;
       5  ;
       6  ;
       7  ;
       8  ;
       9  ;
       10  ;
t
lib=isotxs,balxs=0,
t
matls= 
assign=
t
isct=3,ievt=1,ibl=1,ibr=1,ibt=0,ibb=0,iquad=-2,
ith=0,fluxp=0,xsectp=0,fissrp=0,sourcp=0,angp=0,geomp=0,
influx=0,norm=1.000e+00,epsi=0.0010,epso=.000001,
oitm=20,iitm=35,iitl=30,insors=0,raflux=0,rmflux=1,
chi=,
t
rzmflx=1,
t
/
(lfr/heterogeneous_single_assembly_3D/cross_section/Step1/LFR_InnerFuel_HOM_1041g_TWODANT.mcc3.sh)

Figure 3 compares the TWODANT spectra of different axial regions. The spectrum is hardest at the fuel region and gets softer at lower or upper regions due to moderations. Figure 4 compares the TWODANT spectra with the infinite homogeneous medium ultrafine group (UFG: 2082-group) spectrum for each axial region. The infinite homogeneous medium spectrum is very similar to the TWODANT spectrum for the active fuel region. On the other hand, those two spectra are very different for thin lower and upper thermal insulator regions where neutrons quickly leak to their lower and upper regions without having a chance to be moderated enough, resulting in spectra similar to that of their adjacent source region which is the active fuel region. For information, just a fixed source slowing down problem is solved using the fission spectrum of U-238 as a fixed source to obtain an infinite homogeneous medium UFG spectrum of a composition which does not have any fissionable isotopes. For axial regions close to top and bottom boundaries, the TWODANT spectrum is softer than the infinite homogeneous medium spectrum since neutrons have been already moderated on the way to get their regions from the center fuel region and the amount of the moderation is stronger than that in the infinite homogeneous medium of the composition of the axial region of interest. This result indicates the need for considering the axial leakage effect via the TWODANT calculation for obtaining a weighting spectrum for condensation.

Figure 3: Comparison of TWODANT spectra of different axial regions

Figure 4: Comparison of zero-dimensional (0D) UFG and TWODANT spectra of different axial regions

Second step

The second step is to condense the UFG (2082-group) cross section to the broad group (BG) cross section using the TWODANT spectrum. For clarification, the TWODANT calculation in the first step is the 1041 group calculation. In this secton step, the 0D UFG calculation is performed for each mixture of non-fuel axial regions and the 1D UFG calculation is performed for the fuel axial region using MC2-3. Then, resulting UFG spectra are superimposed to 1041-group TWODANT spectra for condensation of UFG cross sections to the broad group structure specified in the c_group_structure of the &control block. Broad group cross sections for the activel fuel region and the other regions are prepared separately and merged at the last step.

For the fuel region, fine mesh-based region-wise cross sections need to be generated as the Griffin transport calculation is fine-mesh based. This can be achieved by setting up an MC2-3 input that employs a 1D heterogeneous tranport calculation using the collision probability method (CPM) whose model is shown in Figure 5. Hexagonal ring-wise cross sections are generated for fuel (7 sets) and one set of cross sections is generated for each of clad, duct, and lead for inner and outer regions of duct. The annular fuel and helium hole and gap are smeared and its homogenized material is used to build the model as microscopic cross sections of isotopes comprising them are not affected by such volume homogenization.

Figure 5: 1D R-geometry model for hexagonal ring-wise cross section generation (red: fuel + helium, blue: lead, gray: clad, cyan: duct)

Below shows the control block. c_group_structure is the broad group structure (target group structure). Specifying c_geometry_type=cylinder automatically sets the problem type as a 1D CPM transport problem. i_number_region means the number of different cross section regions. The self-shielding condition is calculated per cross section region and thus UFG cross sections are unique per cross section region. c_externalspectrum_ufg=rzmflx means to use the TWODANT spectrum in the condensation step after transport calculation. For this, the rzmflx file needs to be placed in the same folder where the MC2-3 input exists with the filename of rzmflx without extension.

&control
     c_group_structure       =ANL9
     i_number_region         =29
     c_geometry_type         =cylinder
     i_scattering_order      =3
     c_externalspectrum_ufg  =rzmflx
/
(lfr/heterogeneous_single_assembly_3D/cross_section/Step2/Fuel/LFR_127Pin_Fuel_1D_9g.mcc3.sh)

The most important part is l_spatial_homogenization=F in the control1d block. This is for region-wise cross section generation, not for assembly-homogenized one. To be more concrete, for each user-defined isotope name, its UFG microscopic cross sections are flux-volume averaged over regions where the isotope is present, not over the entire region, and condensed into a BG structure.

&control1d
     l_spatial_homogenization = F
/
(lfr/heterogeneous_single_assembly_3D/cross_section/Step2/Fuel/LFR_127Pin_Fuel_1D_9g.mcc3.sh)

For 1D geometry, there should be 29 cross section regions as indicated by i_number_region=29, which means that the number of elements of i_mesh (the number of fine-mesh in each cross section region), r_location (coordinates of each cross section region from center to periphery in a unit of determined to preserve each material volume), and i_composition (index of composition assigned to each cross section region) must be 29. Composition indices from 2 to 8 are fuel corresponding to hexagonal rings 1 to 7, 1 is lead inside the duct, 9 is clad, 10 is duct, and 11 is lead outside the duct, as shown in the material block. For 1D cylindrical and slab geometries, only the white boundary condition is used.

&geometry
     i_mesh     = 4 4 4 4 4
                  4 4 4 4 4
                  4 4 4 4 4
                  4 4 4 4 4
                  4 4 4 4 4
                  4 4 4 4
     r_location = 0.4495 0.5404 1.0541 1.1752 1.6104
                  1.6921 2.1694 2.2905 2.7696 2.8654
                  3.3589 3.4774 3.9659 4.0668 4.5650
                  4.6818 5.1737 5.2771 5.7773 5.8929
                  6.3865 6.4913 6.9925 7.1074 7.6018
                  7.7076 8.0553 8.4263 8.6193
     i_composition =  2  9  1  9
                      3  9  1  9
                      4  9  1  9
                      5  9  1  9
                      6  9  1  9
                      7  9  1  9
                      8  9  1 10  11
/
(lfr/heterogeneous_single_assembly_3D/cross_section/Step2/Fuel/LFR_127Pin_Fuel_1D_9g.mcc3.sh)

In the material block, 7 different materials are defined for the fuel regions of 7 hexagonal rings. Even though the composition is the same, different isotope names are assigned to the same isotope to generate cross sections separately. On the other hand, only a single material is defined for each of lead, clad and duct regions, which means that only the average values over multiple cross section regions are generated per material. i_externalspectrum(1)=6 means that the TWODANT spectrum of Zone 6 is superimposed to cross section region-wise spectrum for condensation. The index of i_externalspectrum, which is 1 here, is a special rule for a heterogeneous MC2-3 calculation that the superposition is applied to all cross section regions.

Suffices in all compositions need special attention since it is directly related to how the ISOTXS file will be converted to the ISOXML file. When the resulting ISOTXS file that contains all isotopes in all compositions without composition IDs is converted to the ISOXML file, the last single character in the user-defined name is used to differentiate compositions and store cross sections of different compositions in different library IDs. Library IDs are increasing in the alphabetical order of the last single character, from the starting value of . In this MC2-3 input, eleven compositions are differentiated by the characters from A to K and the library IDs of them in the ISOXML file to be converted in a later stage are from to . If a isotope name excluding the last single character is not the standard isotope name defined in ISOXML, the pre-fix pseudo_ is attached. Otherwise, the isotope name is used as is.

&material

i_externalspectrum(1) = 6    ! Active Fuel, use region 6 flux from MC2-3/TWODANT Calculation

!************************************
!Description	Composition #
!Coolant	1
!Fuel Ring 1	2
!Fuel Ring 2	3
!Fuel Ring 3	4
!Fuel Ring 4	5
!Fuel Ring 5	6
!Fuel Ring 6	7
!Fuel Ring 7	8
!Clad     	9
!Duct           10
!Gap Coolant	11
!************************************

t_composition(:,1)=   ! Pb Coolant in active fuel zone; density= 10.402 g/cc
PB2047   PB204A  4.2322E-04   808.0
PB2067   PB206A  7.2854E-03   808.0
PB2077   PB207A  6.6808E-03   808.0
PB2087   PB208A  1.5840E-02   808.0

t_composition(:,2)=   ! UPuO-He smeared mixture in active fuel zone ring 1; density= 7.289 g/cc
U234_7   U234B   1.2754E-07   1300.0
U235_7   U235B   3.1753E-05   1300.0
U238_7   U238B   1.2509E-02   1300.0
PU2387   PU238B  8.9755E-06   1300.0
PU2397   PU239B  2.4609E-03   1300.0
PU2407   PU240B  9.5162E-04   1300.0
PU2417   PU241B  6.2414E-05   1300.0
PU2427   PU242B  8.9004E-05   1300.0
AM2417   AM241B  1.5049E-04   1300.0
O16__7   O16B    3.2041E-02   1300.0
HE4__7   HE4B    6.9850E-06   1300.0

t_composition(:,3)=   ! UPuO-He smeared mixture in active fuel zone ring 2; density= 7.289 g/cc 
U234_7   U234C   1.2754E-07   1300.0
U235_7   U235C   3.1753E-05   1300.0
U238_7   U238C   1.2509E-02   1300.0
PU2387   PU238C  8.9755E-06   1300.0
PU2397   PU239C  2.4609E-03   1300.0
PU2407   PU240C  9.5162E-04   1300.0
PU2417   PU241C  6.2414E-05   1300.0
PU2427   PU242C  8.9004E-05   1300.0
AM2417   AM241C  1.5049E-04   1300.0
O16__7   O16C    3.2041E-02   1300.0
HE4__7   HE4C    6.9850E-06   1300.0

t_composition(:,4)=   ! UPuO-He smeared mixture in active fuel zone ring 3; density= 7.289 g/cc
U234_7   U234D   1.2754E-07   1300.0
U235_7   U235D   3.1753E-05   1300.0
U238_7   U238D   1.2509E-02   1300.0
PU2387   PU238D  8.9755E-06   1300.0
PU2397   PU239D  2.4609E-03   1300.0
PU2407   PU240D  9.5162E-04   1300.0
PU2417   PU241D  6.2414E-05   1300.0
PU2427   PU242D  8.9004E-05   1300.0
AM2417   AM241D  1.5049E-04   1300.0
O16__7   O16D    3.2041E-02   1300.0
HE4__7   HE4D    6.9850E-06   1300.0

t_composition(:,5)=   ! UPuO-He smeared mixture in active fuel zone ring 4; density= 7.289 g/cc 
U234_7   U234E   1.2754E-07   1300.0
U235_7   U235E   3.1753E-05   1300.0
U238_7   U238E   1.2509E-02   1300.0
PU2387   PU238E  8.9755E-06   1300.0
PU2397   PU239E  2.4609E-03   1300.0
PU2407   PU240E  9.5162E-04   1300.0
PU2417   PU241E  6.2414E-05   1300.0
PU2427   PU242E  8.9004E-05   1300.0
AM2417   AM241E  1.5049E-04   1300.0
O16__7   O16E    3.2041E-02   1300.0
HE4__7   HE4E    6.9850E-06   1300.0

t_composition(:,6)=   ! UPuO-He smeared mixture in active fuel zone ring 5; density= 7.289 g/cc
U234_7   U234F   1.2754E-07   1300.0
U235_7   U235F   3.1753E-05   1300.0
U238_7   U238F   1.2509E-02   1300.0
PU2387   PU238F  8.9755E-06   1300.0
PU2397   PU239F  2.4609E-03   1300.0
PU2407   PU240F  9.5162E-04   1300.0
PU2417   PU241F  6.2414E-05   1300.0
PU2427   PU242F  8.9004E-05   1300.0
AM2417   AM241F  1.5049E-04   1300.0
O16__7   O16F    3.2041E-02   1300.0
HE4__7   HE4F    6.9850E-06   1300.0

t_composition(:,7)=   ! UPuO-He smeared mixture in active fuel zone ring 6; density= 7.289 g/cc
U234_7   U234G   1.2754E-07   1300.0
U235_7   U235G   3.1753E-05   1300.0
U238_7   U238G   1.2509E-02   1300.0
PU2387   PU238G  8.9755E-06   1300.0
PU2397   PU239G  2.4609E-03   1300.0
PU2407   PU240G  9.5162E-04   1300.0
PU2417   PU241G  6.2414E-05   1300.0
PU2427   PU242G  8.9004E-05   1300.0
AM2417   AM241G  1.5049E-04   1300.0
O16__7   O16G    3.2041E-02   1300.0
HE4__7   HE4G    6.9850E-06   1300.0

t_composition(:,8)=   ! UPuO-He smeared mixture in active fuel zone ring 7; density= 7.289 g/cc
U234_7   U234H   1.2754E-07   1300.0
U235_7   U235H   3.1753E-05   1300.0
U238_7   U238H   1.2509E-02   1300.0
PU2387   PU238H  8.9755E-06   1300.0
PU2397   PU239H  2.4609E-03   1300.0
PU2407   PU240H  9.5162E-04   1300.0
PU2417   PU241H  6.2414E-05   1300.0
PU2427   PU242H  8.9004E-05   1300.0
AM2417   AM241H  1.5049E-04   1300.0
O16__7   O16H    3.2041E-02   1300.0
HE4__7   HE4H    6.9850E-06   1300.0

t_composition(:,9)=   ! DS4 Clad in active fuel zone; density= 7.734 g/cc
FE54_7   FE54I   3.1861E-03   843.0
FE56_7   FE56I   5.0014E-02   843.0
FE57_7   FE57I   1.1550E-03   843.0
FE58_7   FE58I   1.5372E-04   843.0
NI58_7   NI58I   8.3738E-03   843.0
NI60_7   NI60I   3.2256E-03   843.0
NI61_7   NI61I   1.4023E-04   843.0
NI62_7   NI62I   4.4700E-04   843.0
NI64_7   NI64I   1.1390E-04   843.0
CR50_7   CR50I   5.6437E-04   843.0
CR52_7   CR52I   1.0883E-02   843.0
CR53_7   CR53I   1.2341E-03   843.0
CR54_7   CR54I   3.0719E-04   843.0
MN55_7   MN55I   1.2717E-03   843.0
MO92_7   MO92I   1.0806E-04   843.0
MO94_7   MO94I   6.7355E-05   843.0
MO95_7   MO95I   1.1592E-04   843.0
MO96_7   MO96I   1.2146E-04   843.0
MO97_7   MO97I   6.9539E-05   843.0
MO98_7   MO98I   1.7571E-04   843.0
MO1007   MO100I  7.0122E-05   843.0
SI28_7   SI28I   1.3002E-03   843.0
SI29_7   SI29I   6.6019E-05   843.0
SI30_7   SI30I   4.3520E-05   843.0
C____7   CI      3.4901E-04   843.0
P31__7   P31I    6.7670E-05   843.0
S32__7   S32I    2.0688E-05   843.0
S33__7   S33I    1.6562E-07   843.0
S34__7   S34I    9.3490E-07   843.0
S36__7   S36I    4.3585E-09   843.0
TI46_7   TI46I   3.2111E-05   843.0
TI47_7   TI47I   2.8959E-05   843.0
TI48_7   TI48I   2.8694E-04   843.0
TI49_7   TI49I   2.1057E-05   843.0
TI50_7   TI50I   2.0162E-05   843.0
V____7   VI      2.7430E-05   843.0
ZR90_7   ZR90I   7.8809E-06   843.0
ZR91_7   ZR91I   1.7186E-06   843.0
ZR92_7   ZR92I   2.6270E-06   843.0
ZR94_7   ZR94I   2.6622E-06   843.0
ZR96_7   ZR96I   4.2889E-07   843.0
W182_7   W182I   2.0142E-06   843.0
W183_7   W183I   1.0877E-06   843.0
W184_7   W184I   2.3380E-06   843.0
W186_7   W186I   2.1609E-06   843.0
CU63_7   CU63I   1.5210E-05   843.0
CU65_7   CU65I   6.7793E-06   843.0
CO59_7   CO59I   2.3711E-05   843.0
CA40_7   CA40I   3.3799E-05   843.0
CA42_7   CA42I   2.2558E-07   843.0
CA43_7   CA43I   4.7068E-08   843.0
CA44_7   CA44I   7.2729E-07   843.0
CA46_7   CA46I   1.3946E-09   843.0
CA48_7   CA48I   6.5198E-08   843.0
NB93_7   NB93I   7.5201E-06   843.0
N14__7   N14I    4.9696E-05   843.0
N15__7   N15I    1.8356E-07   843.0
AL27_7   AL27I   2.5894E-05   843.0
TA1817   TA181I  3.8612E-06   843.0
B10__7   B10I    5.1447E-06   843.0
B11__7   B11I    2.0708E-05   843.0

t_composition(:,10)=  ! DS4 Duct (Wrapper) in active fuel zone; density= 7.750 g/cc  
FE54_7   FE54J   3.1925E-03   808.0
FE56_7   FE56J   5.0115E-02   808.0
FE57_7   FE57J   1.1574E-03   808.0
FE58_7   FE58J   1.5403E-04   808.0
NI58_7   NI58J   8.3908E-03   808.0
NI60_7   NI60J   3.2321E-03   808.0
NI61_7   NI61J   1.4051E-04   808.0
NI62_7   NI62J   4.4790E-04   808.0
NI64_7   NI64J   1.1413E-04   808.0
CR50_7   CR50J   5.6552E-04   808.0
CR52_7   CR52J   1.0905E-02   808.0
CR53_7   CR53J   1.2366E-03   808.0
CR54_7   CR54J   3.0781E-04   808.0
MN55_7   MN55J   1.2743E-03   808.0
MO92_7   MO92J   1.0828E-04   808.0
MO94_7   MO94J   6.7491E-05   808.0
MO95_7   MO95J   1.1616E-04   808.0
MO96_7   MO96J   1.2170E-04   808.0
MO97_7   MO97J   6.9680E-05   808.0
MO98_7   MO98J   1.7606E-04   808.0
MO1007   MO100J  7.0264E-05   808.0
SI28_7   SI28J   1.3028E-03   808.0
SI29_7   SI29J   6.6152E-05   808.0
SI30_7   SI30J   4.3608E-05   808.0
C____7   CJ      3.4972E-04   808.0
P31__7   P31J    6.7807E-05   808.0
S32__7   S32J    2.0730E-05   808.0
S33__7   S33J    1.6596E-07   808.0
S34__7   S34J    9.3679E-07   808.0
S36__7   S36J    4.3673E-09   808.0
TI46_7   TI46J   3.2176E-05   808.0
TI47_7   TI47J   2.9017E-05   808.0
TI48_7   TI48J   2.8752E-04   808.0
TI49_7   TI49J   2.1100E-05   808.0
TI50_7   TI50J   2.0203E-05   808.0
V____7   VJ      2.7486E-05   808.0
ZR90_7   ZR90J   7.8969E-06   808.0
ZR91_7   ZR91J   1.7221E-06   808.0
ZR92_7   ZR92J   2.6323E-06   808.0
ZR94_7   ZR94J   2.6676E-06   808.0
ZR96_7   ZR96J   4.2976E-07   808.0
W182_7   W182J   2.0183E-06   808.0
W183_7   W183J   1.0899E-06   808.0
W184_7   W184J   2.3427E-06   808.0
W186_7   W186J   2.1653E-06   808.0
CU63_7   CU63J   1.5241E-05   808.0
CU65_7   CU65J   6.7930E-06   808.0
CO59_7   CO59J   2.3759E-05   808.0
CA40_7   CA40J   3.3867E-05   808.0
CA42_7   CA42J   2.2604E-07   808.0
CA43_7   CA43J   4.7164E-08   808.0
CA44_7   CA44J   7.2877E-07   808.0
CA46_7   CA46J   1.3974E-09   808.0
CA48_7   CA48J   6.5330E-08   808.0
NB93_7   NB93J   7.5354E-06   808.0
N14__7   N14J    4.9797E-05   808.0
N15__7   N15J    1.8393E-07   808.0
AL27_7   AL27J   2.5947E-05   808.0
TA1817   TA181J  3.8690E-06   808.0
B10__7   B10J    5.1551E-06   808.0
B11__7   B11J    2.0750E-05   808.0

t_composition(:,11)=  ! Pb Coolant in interassembly gap; density= 10.402 g/cc
PB2047   PB204K  4.2322E-04   808.0
PB2067   PB206K  7.2854E-03   808.0
PB2077   PB207K  6.6808E-03   808.0
PB2087   PB208K  1.5840E-02   808.0

/
(lfr/heterogeneous_single_assembly_3D/cross_section/Step2/Fuel/LFR_127Pin_Fuel_1D_9g.mcc3.sh)

The superposition rule is depicted in Figure 6. The first two boxes represent First step to generate a TWODANT spectrum and the third up and low two boxes represent Second step for non-fuel and fuel regions, respectively. If c_geometry_type=mixture, the 0D UFG solution of mixture is adjusted by the ratio of the TWODANT spectrum to the 0D solution condensed to the TWODANT group structure. If the TWODANT group structure is UFG, just the TWODANT spectrum is used as a weighting function for condensation. If c_geometry_type is not mixture, each region-wise UFG solution is adjusted by the ratio of the TWODANT spectrum to the whole domain-averaged solution condensed to the TWODANT group structure. To simply state, the adjusted region-wise UFG solution is obtained by multiplying the spatial self-shielding factor obtained by the MC2-3 1D calculation to the TWODANT spectrum.

Figure 6: MC2-3 cross section generation procedure with the axial leakage effect considered using TWODANT

Without l_spatial_homogenization=F in an input, which is an easy mistake to make, one will end up using the assembly average cross section for each region in heterogeneous fine-mesh transport calculation. Figure 7 shows the relative difference of assembly average cross section to hexagonal ring-wise fuel cross section for U-238 capture. These differences are basically the same as the spatial self-shielding factor of each ring: the ratio of hexagonal ring-wise flux to assembly average flux. Since spectrum is softer for peripheral regions than for central regions, central region flux is lower than the assembly average flux at low energy and higher at high energy. Thus, a test showed that the use of assembly average cross section instead of region-wise cross section resulted in about +400 pcm error in k-effective due to underestimation of low energy capture and overestimation of high energy fission.

Figure 7: Relative difference of assembly average cross section to hexagonal ring-wise fuel cross section for U-238 capture

For the non-fuel region, the setting is almost similar to the first step input except c_externalspectrum_ufg=rzmflx instead of l_twodant=T in the control block and i_externalspectrum(composition #)=TWODANT zone # in the material block. For reminder, TWODANT zone #s are found in the zones= section in the &twodant block of the MC2-3 input in First step. In this input, nine compositions are differentiated by the character from A to J omitting F, resulting in library IDs from to in the ISOXML file to be converted.

#!/bin/bash
# ***************************************************************************************
# LFR 127-pin fuel assembly 
# Strategy: 
#          1) Homogenize each axial region of fuel assembly radially -> 1041g MCC3 infinite medium
#          2) Represent axial regions in TWODANT    -> 1041g RZMFLX
#          3) [Non-fuel regions] Collapse 1041g MCC3 infinite medium mixture with RZMFLX
#      **  4) [Fuel/Control] Collapse 1D MCC3 cylinder geometry with RZMFLX 
# ***************************************************************************************

lib=/software/MCC3
cp ../../Step1/LFR_InnerFuel_HOM_1041g_TWODANT.mcc3.sh.rzmflx rzmflx

cat > input << EOF
&library
     c_mcclibdir  ="$lib/lib.mcc.new"
     c_pwlibdir   ="$lib/lib.pw.200.new","."
/
&control
     c_group_structure       =ANL9
     i_number_region         =9
     c_geometry_type         =mixture
     i_scattering_order      =3
     c_externalspectrum_ufg  =rzmflx
/
&material

i_externalspectrum(1)=1
t_composition(:, 1)=
! A=Lower Core Plate (AISI 316, DS4-Wrapper, Pb)
FE54_7   FE54A   2.3571E-03   693.0
FE56_7   FE56A   3.7002E-02   693.0
FE57_7   FE57A   8.5453E-04   693.0
FE58_7   FE58A   1.1372E-04   693.0
NI58_7   NI58A   4.9645E-03   693.0
NI60_7   NI60A   1.9123E-03   693.0
NI61_7   NI61A   8.3135E-05   693.0
NI62_7   NI62A   2.6501E-04   693.0
NI64_7   NI64A   6.7529E-05   693.0
CR50_7   CR50A   4.6700E-04   693.0
CR52_7   CR52A   9.0056E-03   693.0
CR53_7   CR53A   1.0212E-03   693.0
CR54_7   CR54A   2.5419E-04   693.0
MN55_7   MN55A   6.8040E-04   693.0
MO92_7   MO92A   1.2088E-04   693.0
MO94_7   MO94A   7.5345E-05   693.0
MO95_7   MO95A   1.2968E-04   693.0
MO96_7   MO96A   1.3587E-04   693.0
MO97_7   MO97A   7.7789E-05   693.0
MO98_7   MO98A   1.9655E-04   693.0
MO1007   MO100A  7.8441E-05   693.0
SI28_7   SI28A   6.3469E-04   693.0
SI29_7   SI29A   3.2228E-05   693.0
SI30_7   SI30A   2.1245E-05   693.0
C____7   CA      1.4140E-04   693.0
P31__7   P31A    2.9631E-05   693.0
S32__7   S32A    1.5017E-05   693.0
S33__7   S33A    1.2022E-07   693.0
S34__7   S34A    6.7864E-07   693.0
S36__7   S36A    3.1638E-09   693.0
TI46_7   TI46A   4.3921E-06   693.0
TI47_7   TI47A   3.9608E-06   693.0
TI48_7   TI48A   3.9246E-05   693.0
TI49_7   TI49A   2.8801E-06   693.0
TI50_7   TI50A   2.7577E-06   693.0
V____7   VA      3.7518E-06   693.0
ZR90_7   ZR90A   1.0779E-06   693.0
ZR91_7   ZR91A   2.3507E-07   693.0
ZR92_7   ZR92A   3.5931E-07   693.0
ZR94_7   ZR94A   3.6413E-07   693.0
ZR96_7   ZR96A   5.8663E-08   693.0
W182_7   W182A   2.7550E-07   693.0
W183_7   W183A   1.4877E-07   693.0
W184_7   W184A   3.1979E-07   693.0
W186_7   W186A   2.9556E-07   693.0
CU63_7   CU63A   2.0804E-06   693.0
CU65_7   CU65A   9.2725E-07   693.0
CO59_7   CO59A   3.2430E-06   693.0
CA40_7   CA40A   4.6229E-06   693.0
CA42_7   CA42A   3.0854E-08   693.0
CA43_7   CA43A   6.4378E-09   693.0
CA44_7   CA44A   9.9476E-08   693.0
CA46_7   CA46A   1.9075E-10   693.0
CA48_7   CA48A   8.9176E-09   693.0
NB93_7   NB93A   1.0286E-06   693.0
N14__7   N14A    6.7973E-06   693.0
N15__7   N15A    2.5106E-08   693.0
AL27_7   AL27A   3.5417E-06   693.0
TA1817   TA181A  5.2812E-07   693.0
B10__7   B10A    7.0367E-07   693.0
B11__7   B11A    2.8324E-06   693.0
PB2047   PB204A  1.1702E-04   693.0
PB2067   PB206A  2.0144E-03   693.0
PB2077   PB207A  1.8472E-03   693.0
PB2087   PB208A  4.3799E-03   693.0

i_externalspectrum(2)=2
t_composition(:, 2)= 
! B=Inlet Wrapper (DS4-Wrapper, Pb)
FE54_7   FE54B   2.6147E-04   693.0
FE56_7   FE56B   4.1044E-03   693.0
FE57_7   FE57B   9.4790E-05   693.0
FE58_7   FE58B   1.2615E-05   693.0
NI58_7   NI58B   6.8720E-04   693.0
NI60_7   NI60B   2.6471E-04   693.0
NI61_7   NI61B   1.1508E-05   693.0
NI62_7   NI62B   3.6683E-05   693.0
NI64_7   NI64B   9.3475E-06   693.0
CR50_7   CR50B   4.6316E-05   693.0
CR52_7   CR52B   8.9315E-04   693.0
CR53_7   CR53B   1.0128E-04   693.0
CR54_7   CR54B   2.5210E-05   693.0
MN55_7   MN55B   1.0437E-04   693.0
MO92_7   MO92B   8.8679E-06   693.0
MO94_7   MO94B   5.5275E-06   693.0
MO95_7   MO95B   9.5133E-06   693.0
MO96_7   MO96B   9.9675E-06   693.0
MO97_7   MO97B   5.7068E-06   693.0
MO98_7   MO98B   1.4419E-05   693.0
MO1007   MO100B  5.7546E-06   693.0
SI28_7   SI28B   1.0670E-04   693.0
SI29_7   SI29B   5.4179E-06   693.0
SI30_7   SI30B   3.5715E-06   693.0
C____7   CB      2.8642E-05   693.0
P31__7   P31B    5.5534E-06   693.0
S32__7   S32B    1.6977E-06   693.0
S33__7   S33B    1.3592E-08   693.0
S34__7   S34B    7.6723E-08   693.0
S36__7   S36B    3.5768E-10   693.0
TI46_7   TI46B   2.6352E-06   693.0
TI47_7   TI47B   2.3765E-06   693.0
TI48_7   TI48B   2.3548E-05   693.0
TI49_7   TI49B   1.7281E-06   693.0
TI50_7   TI50B   1.6546E-06   693.0
V____7   VB      2.2511E-06   693.0
ZR90_7   ZR90B   6.4675E-07   693.0
ZR91_7   ZR91B   1.4104E-07   693.0
ZR92_7   ZR92B   2.1558E-07   693.0
ZR94_7   ZR94B   2.1848E-07   693.0
ZR96_7   ZR96B   3.5198E-08   693.0
W182_7   W182B   1.6530E-07   693.0
W183_7   W183B   8.9261E-08   693.0
W184_7   W184B   1.9187E-07   693.0
W186_7   W186B   1.7734E-07   693.0
CU63_7   CU63B   1.2482E-06   693.0
CU65_7   CU65B   5.5635E-07   693.0
CO59_7   CO59B   1.9458E-06   693.0
CA40_7   CA40B   2.7737E-06   693.0
CA42_7   CA42B   1.8512E-08   693.0
CA43_7   CA43B   3.8627E-09   693.0
CA44_7   CA44B   5.9686E-08   693.0
CA46_7   CA46B   1.1445E-10   693.0
CA48_7   CA48B   5.3506E-09   693.0
NB93_7   NB93B   6.1715E-07   693.0
N14__7   N14B    4.0784E-06   693.0
N15__7   N15B    1.5064E-08   693.0
AL27_7   AL27B   2.1250E-06   693.0
TA1817   TA181B  3.1687E-07   693.0
B10__7   B10B    4.2220E-07   693.0
B11__7   B11B    1.6994E-06   693.0
PB2047   PB204B  3.8856E-04   693.0
PB2067   PB206B  6.6887E-03   693.0
PB2077   PB207B  6.1336E-03   693.0
PB2087   PB208B  1.4543E-02   693.0

i_externalspectrum(3)=3
t_composition(:, 3)=  
! C=Lower Bundle Grid and Pins Plug (DS4-Wrapper, DS4-Clad, Pb)
FE54_7   FE54C   1.2517E-03   693.0
FE56_7   FE56C   1.9649E-02   693.0
FE57_7   FE57C   4.5378E-04   693.0
FE58_7   FE58C   6.0390E-05   693.0
NI58_7   NI58C   3.2898E-03   693.0
NI60_7   NI60C   1.2672E-03   693.0
NI61_7   NI61C   5.5090E-05   693.0
NI62_7   NI62C   1.7561E-04   693.0
NI64_7   NI64C   4.4748E-05   693.0
CR50_7   CR50C   2.2172E-04   693.0
CR52_7   CR52C   4.2757E-03   693.0
CR53_7   CR53C   4.8483E-04   693.0
CR54_7   CR54C   1.2068E-04   693.0
MN55_7   MN55C   4.9962E-04   693.0
MO92_7   MO92C   4.2453E-05   693.0
MO94_7   MO94C   2.6461E-05   693.0
MO95_7   MO95C   4.5542E-05   693.0
MO96_7   MO96C   4.7716E-05   693.0
MO97_7   MO97C   2.7320E-05   693.0
MO98_7   MO98C   6.9028E-05   693.0
MO1007   MO100C  2.7548E-05   693.0
SI28_7   SI28C   5.1079E-04   693.0
SI29_7   SI29C   2.5937E-05   693.0
SI30_7   SI30C   1.7098E-05   693.0
C____7   CC      1.3712E-04   693.0
P31__7   P31C    2.6585E-05   693.0
S32__7   S32C    8.1275E-06   693.0
S33__7   S33C    6.5068E-08   693.0
S34__7   S34C    3.6729E-07   693.0
S36__7   S36C    1.7123E-09   693.0
TI46_7   TI46C   1.2615E-05   693.0
TI47_7   TI47C   1.1377E-05   693.0
TI48_7   TI48C   1.1273E-04   693.0
TI49_7   TI49C   8.2727E-06   693.0
TI50_7   TI50C   7.9210E-06   693.0
V____7   VC      1.0776E-05   693.0
ZR90_7   ZR90C   3.0962E-06   693.0
ZR91_7   ZR91C   6.7520E-07   693.0
ZR92_7   ZR92C   1.0321E-06   693.0
ZR94_7   ZR94C   1.0459E-06   693.0
ZR96_7   ZR96C   1.6850E-07   693.0
W182_7   W182C   7.9132E-07   693.0
W183_7   W183C   4.2731E-07   693.0
W184_7   W184C   9.1853E-07   693.0
W186_7   W186C   8.4895E-07   693.0
CU63_7   CU63C   5.9755E-06   693.0
CU65_7   CU65C   2.6634E-06   693.0
CO59_7   CO59C   9.3151E-06   693.0
CA40_7   CA40C   1.3278E-05   693.0
CA42_7   CA42C   8.8623E-08   693.0
CA43_7   CA43C   1.8492E-08   693.0
CA44_7   CA44C   2.8573E-07   693.0
CA46_7   CA46C   5.4790E-10   693.0
CA48_7   CA48C   2.5614E-08   693.0
NB93_7   NB93C   2.9544E-06   693.0
N14__7   N14C    1.9524E-05   693.0
N15__7   N15C    7.2114E-08   693.0
AL27_7   AL27C   1.0173E-05   693.0
TA1817   TA181C  1.5169E-06   693.0
B10__7   B10C    2.0212E-06   693.0
B11__7   B11C    8.1355E-06   693.0
PB2047   PB204C  2.5702E-04   693.0
PB2067   PB206C  4.4244E-03   693.0
PB2077   PB207C  4.0572E-03   693.0
PB2087   PB208C  9.6199E-03   693.0

i_externalspectrum(4)=4
t_composition(:, 4)=  
! D=Lower Gas Plenum (tube) (DS4-Wrapper, DS4-Clad, Helium, Pb)
FE54_7   FE54D   9.7769E-04   693.0
FE56_7   FE56D   1.5348E-02   693.0
FE57_7   FE57D   3.5445E-04   693.0
FE58_7   FE58D   4.7170E-05   693.0
NI58_7   NI58D   2.5696E-03   693.0
NI60_7   NI60D   9.8982E-04   693.0
NI61_7   NI61D   4.3031E-05   693.0
NI62_7   NI62D   1.3717E-04   693.0
NI64_7   NI64D   3.4953E-05   693.0
CR50_7   CR50D   1.7319E-04   693.0
CR52_7   CR52D   3.3398E-03   693.0
CR53_7   CR53D   3.7870E-04   693.0
CR54_7   CR54D   9.4267E-05   693.0
MN55_7   MN55D   3.9025E-04   693.0
MO92_7   MO92D   3.3160E-05   693.0
MO94_7   MO94D   2.0669E-05   693.0
MO95_7   MO95D   3.5573E-05   693.0
MO96_7   MO96D   3.7271E-05   693.0
MO97_7   MO97D   2.1339E-05   693.0
MO98_7   MO98D   5.3918E-05   693.0
MO1007   MO100D  2.1518E-05   693.0
SI28_7   SI28D   3.9897E-04   693.0
SI29_7   SI29D   2.0259E-05   693.0
SI30_7   SI30D   1.3355E-05   693.0
C____7   CD      1.0710E-04   693.0
P31__7   P31D    2.0766E-05   693.0
S32__7   S32D    6.3484E-06   693.0
S33__7   S33D    5.0824E-08   693.0
S34__7   S34D    2.8689E-07   693.0
S36__7   S36D    1.3375E-09   693.0
TI46_7   TI46D   9.8539E-06   693.0
TI47_7   TI47D   8.8864E-06   693.0
TI48_7   TI48D   8.8052E-05   693.0
TI49_7   TI49D   6.4618E-06   693.0
TI50_7   TI50D   6.1870E-06   693.0
V____7   VD      8.4174E-06   693.0
ZR90_7   ZR90D   2.4184E-06   693.0
ZR91_7   ZR91D   5.2739E-07   693.0
ZR92_7   ZR92D   8.0613E-07   693.0
ZR94_7   ZR94D   8.1694E-07   693.0
ZR96_7   ZR96D   1.3161E-07   693.0
W182_7   W182D   6.1810E-07   693.0
W183_7   W183D   3.3377E-07   693.0
W184_7   W184D   7.1746E-07   693.0
W186_7   W186D   6.6311E-07   693.0
CU63_7   CU63D   4.6675E-06   693.0
CU65_7   CU65D   2.0804E-06   693.0
CO59_7   CO59D   7.2760E-06   693.0
CA40_7   CA40D   1.0372E-05   693.0
CA42_7   CA42D   6.9223E-08   693.0
CA43_7   CA43D   1.4444E-08   693.0
CA44_7   CA44D   2.2318E-07   693.0
CA46_7   CA46D   4.2796E-10   693.0
CA48_7   CA48D   2.0007E-08   693.0
NB93_7   NB93D   2.3077E-06   693.0
N14__7   N14D    1.5250E-05   693.0
N15__7   N15D    5.6328E-08   693.0
AL27_7   AL27D   7.9461E-06   693.0
TA1817   TA181D  1.1849E-06   693.0
B10__7   B10D    1.5787E-06   693.0
B11__7   B11D    6.3546E-06   693.0
HE4__7   HE4D    6.8773E-06   693.0
PB2047   PB204D  1.7712E-04   693.0
PB2067   PB206D  3.0489E-03   693.0
PB2077   PB207D  2.7959E-03   693.0
PB2087   PB208D  6.6292E-03   693.0

i_externalspectrum(5)=5
t_composition(:, 5)=  
! E=Lower thermal insulator (DS4-Wrapper, DS4-Clad, Helium, Pb, YSZ)
FE54_7   FE54E   7.5276E-04   693.0
FE56_7   FE56E   1.1817E-02   693.0
FE57_7   FE57E   2.7290E-04   693.0
FE58_7   FE58E   3.6318E-05   693.0
NI58_7   NI58E   1.9785E-03   693.0
NI60_7   NI60E   7.6209E-04   693.0
NI61_7   NI61E   3.3131E-05   693.0
NI62_7   NI62E   1.0561E-04   693.0
NI64_7   NI64E   2.6911E-05   693.0
CR50_7   CR50E   1.3334E-04   693.0
CR52_7   CR52E   2.5714E-03   693.0
CR53_7   CR53E   2.9157E-04   693.0
CR54_7   CR54E   7.2579E-05   693.0
MN55_7   MN55E   3.0047E-04   693.0
MO92_7   MO92E   2.5531E-05   693.0
MO94_7   MO94E   1.5914E-05   693.0
MO95_7   MO95E   2.7389E-05   693.0
MO96_7   MO96E   2.8696E-05   693.0
MO97_7   MO97E   1.6430E-05   693.0
MO98_7   MO98E   4.1513E-05   693.0
MO1007   MO100E  1.6567E-05   693.0
SI28_7   SI28E   3.0718E-04   693.0
SI29_7   SI29E   1.5598E-05   693.0
SI30_7   SI30E   1.0282E-05   693.0
C____7   CE      8.2461E-05   693.0
P31__7   P31E    1.5988E-05   693.0
S32__7   S32E    4.8878E-06   693.0
S33__7   S33E    3.9131E-08   693.0
S34__7   S34E    2.2089E-07   693.0
S36__7   S36E    1.0298E-09   693.0
TI46_7   TI46E   7.5868E-06   693.0
TI47_7   TI47E   6.8419E-06   693.0
TI48_7   TI48E   6.7794E-05   693.0
TI49_7   TI49E   4.9751E-06   693.0
TI50_7   TI50E   4.7636E-06   693.0
V____7   VE      6.4809E-06   693.0
ZR90_7   ZR90E   3.8368E-03   693.0
ZR91_7   ZR91E   8.3671E-04   693.0
ZR92_7   ZR92E   1.2789E-03   693.0
ZR94_7   ZR94E   1.2961E-03   693.0
ZR96_7   ZR96E   2.0880E-04   693.0
W182_7   W182E   4.7589E-07   693.0
W183_7   W183E   2.5698E-07   693.0
W184_7   W184E   5.5240E-07   693.0
W186_7   W186E   5.1055E-07   693.0
CU63_7   CU63E   3.5936E-06   693.0
CU65_7   CU65E   1.6017E-06   693.0
CO59_7   CO59E   5.6020E-06   693.0
CA40_7   CA40E   7.9856E-06   693.0
CA42_7   CA42E   5.3297E-08   693.0
CA43_7   CA43E   1.1121E-08   693.0
CA44_7   CA44E   1.7184E-07   693.0
CA46_7   CA46E   3.2950E-10   693.0
CA48_7   CA48E   1.5404E-08   693.0
NB93_7   NB93E   1.7768E-06   693.0
N14__7   N14E    1.1742E-05   693.0
N15__7   N15E    4.3369E-08   693.0
AL27_7   AL27E   6.1180E-06   693.0
TA1817   TA181E  9.1226E-07   693.0
B10__7   B10E    1.2155E-06   693.0
B11__7   B11E    4.8926E-06   693.0
HE4__7   HE4E    8.2368E-07   693.0
PB2047   PB204E  1.7712E-04   693.0
PB2067   PB206E  3.0489E-03   693.0
PB2077   PB207E  2.7959E-03   693.0
PB2087   PB208E  6.6292E-03   693.0
Y89__7   Y89E    1.2963E-03   693.0
O16__7   O16E    1.6852E-02   693.0

! Removed fuel since the 1D cross sections are collapsed with RZMFLX rather than the homogeneous ones
i_externalspectrum(6)=7    ! numbering is offset due to removal of composition 6
t_composition(:, 6)=  
! G=Upper thermal insulator (DS4-Wrapper, DS4-Clad, Helium, Pb, YSZ)
FE54_7   FE54G   7.5276E-04   923.0
FE56_7   FE56G   1.1817E-02   923.0
FE57_7   FE57G   2.7290E-04   923.0
FE58_7   FE58G   3.6318E-05   923.0
NI58_7   NI58G   1.9785E-03   923.0
NI60_7   NI60G   7.6209E-04   923.0
NI61_7   NI61G   3.3131E-05   923.0
NI62_7   NI62G   1.0561E-04   923.0
NI64_7   NI64G   2.6911E-05   923.0
CR50_7   CR50G   1.3334E-04   923.0
CR52_7   CR52G   2.5714E-03   923.0
CR53_7   CR53G   2.9157E-04   923.0
CR54_7   CR54G   7.2579E-05   923.0
MN55_7   MN55G   3.0047E-04   923.0
MO92_7   MO92G   2.5531E-05   923.0
MO94_7   MO94G   1.5914E-05   923.0
MO95_7   MO95G   2.7389E-05   923.0
MO96_7   MO96G   2.8696E-05   923.0
MO97_7   MO97G   1.6430E-05   923.0
MO98_7   MO98G   4.1513E-05   923.0
MO1007   MO100G  1.6567E-05   923.0
SI28_7   SI28G   3.0718E-04   923.0
SI29_7   SI29G   1.5598E-05   923.0
SI30_7   SI30G   1.0282E-05   923.0
C____7   CG      8.2461E-05   923.0
P31__7   P31G    1.5988E-05   923.0
S32__7   S32G    4.8878E-06   923.0
S33__7   S33G    3.9131E-08   923.0
S34__7   S34G    2.2089E-07   923.0
S36__7   S36G    1.0298E-09   923.0
TI46_7   TI46G   7.5868E-06   923.0
TI47_7   TI47G   6.8419E-06   923.0
TI48_7   TI48G   6.7794E-05   923.0
TI49_7   TI49G   4.9751E-06   923.0
TI50_7   TI50G   4.7636E-06   923.0
V____7   VG      6.4809E-06   923.0
ZR90_7   ZR90G   3.8368E-03   923.0
ZR91_7   ZR91G   8.3671E-04   923.0
ZR92_7   ZR92G   1.2789E-03   923.0
ZR94_7   ZR94G   1.2961E-03   923.0
ZR96_7   ZR96G   2.0880E-04   923.0
W182_7   W182G   4.7589E-07   923.0
W183_7   W183G   2.5698E-07   923.0
W184_7   W184G   5.5240E-07   923.0
W186_7   W186G   5.1055E-07   923.0
CU63_7   CU63G   3.5936E-06   923.0
CU65_7   CU65G   1.6017E-06   923.0
CO59_7   CO59G   5.6020E-06   923.0
CA40_7   CA40G   7.9856E-06   923.0
CA42_7   CA42G   5.3297E-08   923.0
CA43_7   CA43G   1.1121E-08   923.0
CA44_7   CA44G   1.7184E-07   923.0
CA46_7   CA46G   3.2950E-10   923.0
CA48_7   CA48G   1.5404E-08   923.0
NB93_7   NB93G   1.7768E-06   923.0
N14__7   N14G    1.1742E-05   923.0
N15__7   N15G    4.3369E-08   923.0
AL27_7   AL27G   6.1180E-06   923.0
TA1817   TA181G  9.1226E-07   923.0
B10__7   B10G    1.2155E-06   923.0
B11__7   B11G    4.8926E-06   923.0
HE4__7   HE4G    8.2368E-07   923.0
PB2047   PB204G  1.7712E-04   923.0
PB2067   PB206G  3.0489E-03   923.0
PB2077   PB207G  2.7959E-03   923.0
PB2087   PB208G  6.6292E-03   923.0
Y89__7   Y89G    1.2963E-03   923.0
O16__7   O16G    1.6852E-02   923.0

i_externalspectrum(7)=8
t_composition(:, 7)=  
! H=Upper gas plenum (spring) (DS4-Wrapper, DS4-Clad, Helium, Pb)
FE54_7   FE54H   8.7383E-04   923.0
FE56_7   FE56H   1.3717E-02   923.0
FE57_7   FE57H   3.1679E-04   923.0
FE58_7   FE58H   4.2159E-05   923.0
NI58_7   NI58H   2.2967E-03   923.0
NI60_7   NI60H   8.8466E-04   923.0
NI61_7   NI61H   3.8459E-05   923.0
NI62_7   NI62H   1.2260E-04   923.0
NI64_7   NI64H   3.1240E-05   923.0
CR50_7   CR50H   1.5479E-04   923.0
CR52_7   CR52H   2.9850E-03   923.0
CR53_7   CR53H   3.3847E-04   923.0
CR54_7   CR54H   8.4252E-05   923.0
MN55_7   MN55H   3.4880E-04   923.0
MO92_7   MO92H   2.9637E-05   923.0
MO94_7   MO94H   1.8473E-05   923.0
MO95_7   MO95H   3.1794E-05   923.0
MO96_7   MO96H   3.3312E-05   923.0
MO97_7   MO97H   1.9072E-05   923.0
MO98_7   MO98H   4.8190E-05   923.0
MO1007   MO100H  1.9232E-05   923.0
SI28_7   SI28H   3.5659E-04   923.0
SI29_7   SI29H   1.8107E-05   923.0
SI30_7   SI30H   1.1936E-05   923.0
C____7   CH      9.5723E-05   923.0
P31__7   P31H    1.8560E-05   923.0
S32__7   S32H    5.6739E-06   923.0
S33__7   S33H    4.5425E-08   923.0
S34__7   S34H    2.5641E-07   923.0
S36__7   S36H    1.1954E-09   923.0
TI46_7   TI46H   8.8071E-06   923.0
TI47_7   TI47H   7.9424E-06   923.0
TI48_7   TI48H   7.8698E-05   923.0
TI49_7   TI49H   5.7753E-06   923.0
TI50_7   TI50H   5.5298E-06   923.0
V____7   VH      7.5232E-06   923.0
ZR90_7   ZR90H   2.1615E-06   923.0
ZR91_7   ZR91H   4.7137E-07   923.0
ZR92_7   ZR92H   7.2049E-07   923.0
ZR94_7   ZR94H   7.3016E-07   923.0
ZR96_7   ZR96H   1.1763E-07   923.0
W182_7   W182H   5.5243E-07   923.0
W183_7   W183H   2.9831E-07   923.0
W184_7   W184H   6.4124E-07   923.0
W186_7   W186H   5.9267E-07   923.0
CU63_7   CU63H   4.1716E-06   923.0
CU65_7   CU65H   1.8593E-06   923.0
CO59_7   CO59H   6.5030E-06   923.0
CA40_7   CA40H   9.2699E-06   923.0
CA42_7   CA42H   6.1869E-08   923.0
CA43_7   CA43H   1.2909E-08   923.0
CA44_7   CA44H   1.9947E-07   923.0
CA46_7   CA46H   3.8250E-10   923.0
CA48_7   CA48H   1.7882E-08   923.0
NB93_7   NB93H   2.0625E-06   923.0
N14__7   N14H    1.3630E-05   923.0
N15__7   N15H    5.0344E-08   923.0
AL27_7   AL27H   7.1020E-06   923.0
TA1817   TA181H  1.0590E-06   923.0
B10__7   B10H    1.4110E-06   923.0
B11__7   B11H    5.6795E-06   923.0
HE4__7   HE4H    7.6960E-06   923.0
PB2047   PB204H  1.7712E-04   923.0
PB2067   PB206H  3.0489E-03   923.0
PB2077   PB207H  2.7959E-03   923.0
PB2087   PB208H  6.6292E-03   923.0

i_externalspectrum(8)=9
t_composition(:,8)= 
! I=Upper Bundle Grid and Pins Plug (DS4-Wrapper, DS4-Clad, Pb)
FE54_7   FE54I   1.2517E-03   923.0
FE56_7   FE56I   1.9649E-02   923.0
FE57_7   FE57I   4.5378E-04   923.0
FE58_7   FE58I   6.0390E-05   923.0
NI58_7   NI58I   3.2898E-03   923.0
NI60_7   NI60I   1.2672E-03   923.0
NI61_7   NI61I   5.5090E-05   923.0
NI62_7   NI62I   1.7561E-04   923.0
NI64_7   NI64I   4.4748E-05   923.0
CR50_7   CR50I   2.2172E-04   923.0
CR52_7   CR52I   4.2757E-03   923.0
CR53_7   CR53I   4.8483E-04   923.0
CR54_7   CR54I   1.2068E-04   923.0
MN55_7   MN55I   4.9962E-04   923.0
MO92_7   MO92I   4.2453E-05   923.0
MO94_7   MO94I   2.6461E-05   923.0
MO95_7   MO95I   4.5542E-05   923.0
MO96_7   MO96I   4.7716E-05   923.0
MO97_7   MO97I   2.7320E-05   923.0
MO98_7   MO98I   6.9028E-05   923.0
MO1007   MO100I  2.7548E-05   923.0
SI28_7   SI28I   5.1079E-04   923.0
SI29_7   SI29I   2.5937E-05   923.0
SI30_7   SI30I   1.7098E-05   923.0
C____7   CI      1.3712E-04   923.0
P31__7   P31I    2.6585E-05   923.0
S32__7   S32I    8.1275E-06   923.0
S33__7   S33I    6.5068E-08   923.0
S34__7   S34I    3.6729E-07   923.0
S36__7   S36I    1.7123E-09   923.0
TI46_7   TI46I   1.2615E-05   923.0
TI47_7   TI47I   1.1377E-05   923.0
TI48_7   TI48I   1.1273E-04   923.0
TI49_7   TI49I   8.2727E-06   923.0
TI50_7   TI50I   7.9210E-06   923.0
V____7   VI      1.0776E-05   923.0
ZR90_7   ZR90I   3.0962E-06   923.0
ZR91_7   ZR91I   6.7520E-07   923.0
ZR92_7   ZR92I   1.0321E-06   923.0
ZR94_7   ZR94I   1.0459E-06   923.0
ZR96_7   ZR96I   1.6850E-07   923.0
W182_7   W182I   7.9132E-07   923.0
W183_7   W183I   4.2731E-07   923.0
W184_7   W184I   9.1853E-07   923.0
W186_7   W186I   8.4895E-07   923.0
CU63_7   CU63I   5.9755E-06   923.0
CU65_7   CU65I   2.6634E-06   923.0
CO59_7   CO59I   9.3151E-06   923.0
CA40_7   CA40I   1.3278E-05   923.0
CA42_7   CA42I   8.8623E-08   923.0
CA43_7   CA43I   1.8492E-08   923.0
CA44_7   CA44I   2.8573E-07   923.0
CA46_7   CA46I   5.4790E-10   923.0
CA48_7   CA48I   2.5614E-08   923.0
NB93_7   NB93I   2.9544E-06   923.0
N14__7   N14I    1.9524E-05   923.0
N15__7   N15I    7.2114E-08   923.0
AL27_7   AL27I   1.0173E-05   923.0
TA1817   TA181I  1.5169E-06   923.0
B10__7   B10I    2.0212E-06   923.0
B11__7   B11I    8.1355E-06   923.0
PB2047   PB204I  2.5702E-04   923.0
PB2067   PB206I  4.4244E-03   923.0
PB2077   PB207I  4.0572E-03   923.0
PB2087   PB208I  9.6199E-03   923.0

i_externalspectrum(9)=10
t_composition(:, 9)= 
! J=Outlet Wrapper (DS4-Wrapper, Pb)
FE54_7   FE54J   7.6045E-04   923.0
FE56_7   FE56J   1.1937E-02   923.0
FE57_7   FE57J   2.7569E-04   923.0
FE58_7   FE58J   3.6689E-05   923.0
NI58_7   NI58J   1.9987E-03   923.0
NI60_7   NI60J   7.6988E-04   923.0
NI61_7   NI61J   3.3469E-05   923.0
NI62_7   NI62J   1.0669E-04   923.0
NI64_7   NI64J   2.7186E-05   923.0
CR50_7   CR50J   1.3471E-04   923.0
CR52_7   CR52J   2.5977E-03   923.0
CR53_7   CR53J   2.9456E-04   923.0
CR54_7   CR54J   7.3321E-05   923.0
MN55_7   MN55J   3.0354E-04   923.0
MO92_7   MO92J   2.5792E-05   923.0
MO94_7   MO94J   1.6076E-05   923.0
MO95_7   MO95J   2.7669E-05   923.0
MO96_7   MO96J   2.8990E-05   923.0
MO97_7   MO97J   1.6598E-05   923.0
MO98_7   MO98J   4.1938E-05   923.0
MO1007   MO100J  1.6737E-05   923.0
SI28_7   SI28J   3.1032E-04   923.0
SI29_7   SI29J   1.5757E-05   923.0
SI30_7   SI30J   1.0387E-05   923.0
C____7   CJ      8.3303E-05   923.0
P31__7   P31J    1.6152E-05   923.0
S32__7   S32J    4.9378E-06   923.0
S33__7   S33J    3.9531E-08   923.0
S34__7   S34J    2.2314E-07   923.0
S36__7   S36J    1.0403E-09   923.0
TI46_7   TI46J   7.6644E-06   923.0
TI47_7   TI47J   6.9119E-06   923.0
TI48_7   TI48J   6.8487E-05   923.0
TI49_7   TI49J   5.0260E-06   923.0
TI50_7   TI50J   4.8123E-06   923.0
V____7   VJ      6.5471E-06   923.0
ZR90_7   ZR90J   1.8810E-06   923.0
ZR91_7   ZR91J   4.1021E-07   923.0
ZR92_7   ZR92J   6.2701E-07   923.0
ZR94_7   ZR94J   6.3542E-07   923.0
ZR96_7   ZR96J   1.0237E-07   923.0
W182_7   W182J   4.8076E-07   923.0
W183_7   W183J   2.5961E-07   923.0
W184_7   W184J   5.5804E-07   923.0
W186_7   W186J   5.1577E-07   923.0
CU63_7   CU63J   3.6304E-06   923.0
CU65_7   CU65J   1.6181E-06   923.0
CO59_7   CO59J   5.6593E-06   923.0
CA40_7   CA40J   8.0672E-06   923.0
CA42_7   CA42J   5.3842E-08   923.0
CA43_7   CA43J   1.1234E-08   923.0
CA44_7   CA44J   1.7359E-07   923.0
CA46_7   CA46J   3.3287E-10   923.0
CA48_7   CA48J   1.5562E-08   923.0
NB93_7   NB93J   1.7949E-06   923.0
N14__7   N14J    1.1862E-05   923.0
N15__7   N15J    4.3812E-08   923.0
AL27_7   AL27J   6.1805E-06   923.0
TA1817   TA181J  9.2159E-07   923.0
B10__7   B10J    1.2279E-06   923.0
B11__7   B11J    4.9426E-06   923.0
PB2047   PB204J  3.2241E-04   923.0
PB2067   PB206J  5.5500E-03   923.0
PB2077   PB207J  5.0894E-03   923.0
PB2087   PB208J  1.2067E-02   923.0

/
EOF

################################################
# End of the MCC3 input file
################################################
# $lib/mcc3.x
~/codes/mcc3/src/mcc3.x

mv ISOTXS.merged          $0.ISOTXS
(lfr/heterogeneous_single_assembly_3D/cross_section/Step2/NonFuel/LFR_127Pin_NonFuel_9g.mcc3.sh)

Run scripts and merging ISOTXS files

The process to prepare the final isoxml file is described here. First, the TWODANT running script is run as


cd Step1
./LFR_InnerFuel_HOM_1041g_TWODANT.mcc3.sh

Once the LFR_InnerFuel_HOM_1041g_TWODANT.mcc3.sh.rzmflx file is created, two scripts need to be run as


cd ../Step2/Fuel
./LFR_127Pin_Fuel_1D_9g.mcc3.sh
cd ../NonFuel
./LFR_127Pin_NonFuel_9g.mcc3.sh
cd ../../

The order to run two scripts doesn't matter. Once the above two scripts are run, LFR_127Pin_Fuel_1D_9g.mcc3.sh.ISOTXS and LFR_127Pin_NonFuel_9g.mcc3.sh.ISOTXS files are created. The next step is to convert those two ISOTXS files to isoxml files by running


griffin-opt --isoxml-nisotxs ./Step2/Fuel/LFR_127Pin_Fuel_1D_9g.mcc3.sh.ISOTXS
griffin-opt --isoxml-nisotxs ./Step2/NonFuel/LFR_127Pin_NonFuel_9g.mcc3.sh.ISOTXS

, which creates LFR_127Pin_Fuel_1D_9g.mcc3.sh.xml and LFR_127Pin_NonFuel_9g.mcc3.sh.xml files in respective folders. Before merging these two files, library IDs in LFR_127Pin_Fuel_1D_9g.mcc3.sh.xml need to be manually shifted by the number of library IDs in LFR_127Pin_NonFuel_9g.mcc3.sh.xml. Without this manual change of the library ID, two xml files cannot be merged. Finally, two xml files are merged to produce the final xml file as


griffin-opt --isoxml-merge ./Step2/Fuel/LFR_127Pin_Fuel_1D_9g.mcc3.sh.xml ./Step2/NonFuel/LFR_127Pin_NonFuel_9g.mcc3.sh.xml > LFR_127Pin_9g.xml

In the final xml file, one will note that all the cross sections are tabulated at a single grid value of in the grid name of Tfuel. This is the default setting in the conversion of ISOTXS to ISOXML. This is obviously wrong, but not of a concern though, because this work does not account for multiphysics coupling and temperature interpolation is not involved. For a Multiphysics coupled calculation, this part needs to be treated correctly.

Griffin Model

This section decribes the input file for Griffin using the DFEM-SN solver with the CMFD acceleration.

Input parameters

Defining input parameters in advance is beneficial to make the input tractable because the same value can be used in multiple places. Radial and axial specifications of pin and assembly, block IDs and material IDs to be assigned to block IDs and the total power are defined as input parameters to be used in the main input later. It should be noted that Library IDs need to be consistent with those in the final xml file.

# Geometry Info.
# ==============================================================================
half_pinpitch = 0.0067123105    # m
fuel_r_o = 0.004318648          # m
fuel_r_i = 0.00202042           # m
clad_r_i = 0.004495             # m
clad_r_o = 0.0054037675         # m
duct_thickness = 0.003533       # m
asmgap_thickness = 0.0018375    # m
flat_to_flat = 0.153424         # m
half_asmpitch = ${fparse flat_to_flat / 2 + duct_thickness + asmgap_thickness}

# Below are axial coordinates in meter.
hA = 0.1007 # Lower Core Plate
hB = 0.4086 # Inlet Wrapper
hC = 0.4742 # Lower Bundle Grid and Lower Pins Plug
hD = 1.3327 # Lower Gas Plenum
hE = 1.3479 # Lower Thermal Insulator
hF = 2.4086 # Active Fuel Region
hG = 2.4237 # Upper Thermal Insulator
hH = 2.5450 # Upper Gas Plenum
hI = 2.5955 # Upper Bundle Grid and Upper Pins Plug
hJ = 3.5342 # Outlet Wrapper

# Below are heights of each axial zone in meter.
dhA = ${fparse hA - 0.0}
dhB = ${fparse hB - hA}
dhC = ${fparse hC - hB}
dhD = ${fparse hD - hC}
dhE = ${fparse hE - hD}
dhF = ${fparse hF - hE}
dhG = ${fparse hG - hF}
dhH = ${fparse hH - hG}
dhI = ${fparse hI - hH}
dhJ = ${fparse hJ - hI}

# Below are the numbers of axial meshes per axial zone.
num_axmeshA = 1
num_axmeshB = 3
num_axmeshC = 1
num_axmeshD = 9
num_axmeshE = 1
num_axmeshF = 20
num_axmeshG = 1
num_axmeshH = 2
num_axmeshI = 1
num_axmeshJ = 9

# ==============================================================================
# Library IDs
# ==============================================================================
lid_A = 1
lid_B = 2
lid_C = 3
lid_D = 4
lid_E = 5
lid_G = 6
lid_H = 7
lid_I = 8
lid_J = 9
lid_F_lead = 11
lid_F_fuel_R1 = 12
lid_F_fuel_R2 = 13
lid_F_fuel_R3 = 14
lid_F_fuel_R4 = 15
lid_F_fuel_R5 = 16
lid_F_fuel_R6 = 17
lid_F_fuel_R7 = 18
lid_F_clad = 19
lid_F_duct = 20
lid_F_leadgap = 21

# ==============================================================================
# Material IDs
# ==============================================================================
mid_A = 100 # lid_A
mid_B = 200 # lid_B
mid_C = 300 # lid_C

# lid_D
mid_D_lead = 410
mid_D_clad = 420
mid_D_duct = 430
mid_D_tubemix = 440 # Plenum tube + Helium mixture

# lid_E
mid_E_lead = 510
mid_E_clad = 520
mid_E_duct = 530
mid_E_yszmix = 540 # YSZ + Helium mixture

mid_F_lead = 620    # lid_F_lead
mid_F_helium = 610  # lid_fuel_R1
mid_F_fuel_R1 = 601 # lid_fuel_R1
mid_F_fuel_R2 = 602 # lid_fuel_R2
mid_F_fuel_R3 = 603 # lid_fuel_R3
mid_F_fuel_R4 = 604 # lid_fuel_R4
mid_F_fuel_R5 = 605 # lid_fuel_R5
mid_F_fuel_R6 = 606 # lid_fuel_R6
mid_F_fuel_R7 = 607 # lid_fuel_R7
mid_F_clad = 640    # lid_F_clad
mid_F_duct = 650    # lid_F_duct
mid_F_leadgap = 630 # lid_F_leadgap

# lid_G
mid_G_lead = 710
mid_G_clad = 720
mid_G_duct = 730
mid_G_yszmix = 740 # YSZ + Helium mixture

# lid_H
mid_H_lead = 810
mid_H_clad = 820
mid_H_duct = 830
mid_H_springmix = 840 # Spring + Helium mixture

mid_I = 900  # lid_I
mid_J = 1000 # lid_J

# ==============================================================================
# Block IDs
# ==============================================================================
bid_A = 100
bid_B = 200
bid_C = 300
bid_I = 900
bid_J = 1000
bid_Ac = 101
bid_Bc = 201
bid_Cc = 301
bid_Ic = 901
bid_Jc = 1001

bid_D_lead = 410
bid_D_clad = 420
bid_D_duct = 430
bid_D_tubemix = 440 # Plenum tube + Helium mixture
bid_D_tubemixc = 441 # Plenum tube + Helium mixture

bid_E_lead = 510
bid_E_clad = 520
bid_E_duct = 530
bid_E_yszmix = 540 # YSZ + Helium mixture
bid_E_yszmixc = 541 # YSZ + Helium mixture

bid_F_fuel_R1 = 601
bid_F_fuel_R2 = 602
bid_F_fuel_R3 = 603
bid_F_fuel_R4 = 604
bid_F_fuel_R5 = 605
bid_F_fuel_R6 = 606
bid_F_fuel_R7 = 607
bid_F_helium = 610
bid_F_heliumc = 611
bid_F_lead = 620
bid_F_leadgap = 630
bid_F_clad = 640
bid_F_duct = 650

bid_G_lead = 710
bid_G_clad = 720
bid_G_duct = 730
bid_G_yszmix = 740 # YSZ + Helium mixture
bid_G_yszmixc = 741 # YSZ + Helium mixture

bid_H_lead = 810
bid_H_clad = 820
bid_H_duct = 830
bid_H_springmix = 840 # Spring + Helium mixture
bid_H_springmixc = 841 # Spring + Helium mixture

# ==============================================================================
# Power
# ==============================================================================
totalpower = 3700000.0 # W
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

Mesh

The mesh system is built on-the-fly using the MOOSE reactor module (Shemon et al., 2022).

First, pins for each hexagonal ring are defined using PolygonConcentricCircleMeshGenerator. Since there are 7 rings, 7 pins are defined. They have different block IDs (bid_F_fuel_R1 to bid_F_fuel_R7) for fuel region so that different material IDs can be assigned later. Since generally different element types should have different block IDs, the innermost helium hole of a triangular element and the helium gap between fuel and cladding of a quadrilateral element need to have different block IDs (bid_F_heliumc and bid_F_helium). Through sensitivity study, carrying just one radial mesh for the annular fuel region was turned out to be enough.

[Mesh]
  [Pin1]
    type = PolygonConcentricCircleMeshGenerator
    num_sides = 6 # must be six to use hex pattern
    num_sectors_per_side = '2 2 2 2 2 2'
    polygon_size = ${half_pinpitch}
    ring_radii = '${fuel_r_i} ${fuel_r_o} ${clad_r_i} ${clad_r_o}'
    ring_intervals = '1 1 1 1'
    ring_block_ids = '${bid_F_heliumc} ${bid_F_fuel_R1} ${bid_F_helium} ${bid_F_clad}'
    background_intervals = 1
    background_block_ids = ${bid_F_lead}
    preserve_volumes = on
    quad_center_elements = false
  []
  [Pin2]
    type = PolygonConcentricCircleMeshGenerator
    num_sides = 6 # must be six to use hex pattern
    num_sectors_per_side = '2 2 2 2 2 2'
    polygon_size = ${half_pinpitch}
    ring_radii = '${fuel_r_i} ${fuel_r_o} ${clad_r_i} ${clad_r_o}'
    ring_intervals = '1 1 1 1'
    ring_block_ids = '${bid_F_heliumc} ${bid_F_fuel_R2} ${bid_F_helium} ${bid_F_clad}'
    background_intervals = 1
    background_block_ids = ${bid_F_lead}
    preserve_volumes = on
    quad_center_elements = false
  []
  [Pin3]
    type = PolygonConcentricCircleMeshGenerator
    num_sides = 6 # must be six to use hex pattern
    num_sectors_per_side = '2 2 2 2 2 2'
    polygon_size = ${half_pinpitch}
    ring_radii = '${fuel_r_i} ${fuel_r_o} ${clad_r_i} ${clad_r_o}'
    ring_intervals = '1 1 1 1'
    ring_block_ids = '${bid_F_heliumc} ${bid_F_fuel_R3} ${bid_F_helium} ${bid_F_clad}'
    background_intervals = 1
    background_block_ids = ${bid_F_lead}
    preserve_volumes = on
    quad_center_elements = false
  []
  [Pin4]
    type = PolygonConcentricCircleMeshGenerator
    num_sides = 6 # must be six to use hex pattern
    num_sectors_per_side = '2 2 2 2 2 2'
    polygon_size = ${half_pinpitch}
    ring_radii = '${fuel_r_i} ${fuel_r_o} ${clad_r_i} ${clad_r_o}'
    ring_intervals = '1 1 1 1'
    ring_block_ids = '${bid_F_heliumc} ${bid_F_fuel_R4} ${bid_F_helium} ${bid_F_clad}'
    background_intervals = 1
    background_block_ids = ${bid_F_lead}
    preserve_volumes = on
    quad_center_elements = false
  []
  [Pin5]
    type = PolygonConcentricCircleMeshGenerator
    num_sides = 6 # must be six to use hex pattern
    num_sectors_per_side = '2 2 2 2 2 2'
    polygon_size = ${half_pinpitch}
    ring_radii = '${fuel_r_i} ${fuel_r_o} ${clad_r_i} ${clad_r_o}'
    ring_intervals = '1 1 1 1'
    ring_block_ids = '${bid_F_heliumc} ${bid_F_fuel_R5} ${bid_F_helium} ${bid_F_clad}'
    background_intervals = 1
    background_block_ids = ${bid_F_lead}
    preserve_volumes = on
    quad_center_elements = false
  []
  [Pin6]
    type = PolygonConcentricCircleMeshGenerator
    num_sides = 6 # must be six to use hex pattern
    num_sectors_per_side = '2 2 2 2 2 2'
    polygon_size = ${half_pinpitch}
    ring_radii = '${fuel_r_i} ${fuel_r_o} ${clad_r_i} ${clad_r_o}'
    ring_intervals = '1 1 1 1'
    ring_block_ids = '${bid_F_heliumc} ${bid_F_fuel_R6} ${bid_F_helium} ${bid_F_clad}'
    background_intervals = 1
    background_block_ids = ${bid_F_lead}
    preserve_volumes = on
    quad_center_elements = false
  []
  [Pin7]
    type = PolygonConcentricCircleMeshGenerator
    num_sides = 6 # must be six to use hex pattern
    num_sectors_per_side = '2 2 2 2 2 2'
    polygon_size = ${half_pinpitch}
    ring_radii = '${fuel_r_i} ${fuel_r_o} ${clad_r_i} ${clad_r_o}'
    ring_intervals = '1 1 1 1'
    ring_block_ids = '${bid_F_heliumc} ${bid_F_fuel_R7} ${bid_F_helium} ${bid_F_clad}'
    background_intervals = 1
    background_block_ids = ${bid_F_lead}
    preserve_volumes = on
    quad_center_elements = false
  []
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

These pin types are used to build the assembly with duct using HexIDPatternedMeshGenerator. Each pin type represents fuel pins for each hexagonal ring. HexIDPatternedMeshGenerator is meant to assign some extra element integer ID, here pin_id, for differentiating pins. It should be noted that background_block_id needs to be different from background_block_ids for a pin in PolygonConcentricCircleMeshGenerator in order to properly generate pin_id, which is why bid_F_lead + 1 is used instead of bid_F_lead in background_block_id. Note that duct and assembly lead gap regions are built using duct_block_ids, duct_sizes and duct_intervals.

  # This assembles the 7 pins into an assembly with a duct
  [ASM]
    type = HexIDPatternedMeshGenerator
    inputs = 'Pin1 Pin2 Pin3 Pin4 Pin5 Pin6 Pin7'
    pattern_boundary = hexagon
    hexagon_size = ${half_asmpitch}
    background_intervals = 1
    background_block_id = '${fparse bid_F_lead + 1}' # To generate pin_ids correctly
    duct_sizes = '${fparse flat_to_flat/2} ${fparse flat_to_flat/2 + duct_thickness}'
    duct_intervals = '1 1'
    duct_block_ids = '${bid_F_duct} ${bid_F_leadgap}'
    duct_sizes_style = apothem
    external_boundary_id = 997
    assign_type = 'cell' # different pin_id for different pins
    pattern = '6 6 6 6 6 6 6;
              6 5 5 5 5 5 5 6;
             6 5 4 4 4 4 4 5 6;
            6 5 4 3 3 3 3 4 5 6;
           6 5 4 3 2 2 2 3 4 5 6;
          6 5 4 3 2 1 1 2 3 4 5 6;
         6 5 4 3 2 1 0 1 2 3 4 5 6;
          6 5 4 3 2 1 1 2 3 4 5 6;
           6 5 4 3 2 2 2 3 4 5 6;
            6 5 4 3 3 3 3 4 5 6;
             6 5 4 4 4 4 4 5 6;
              6 5 5 5 5 5 5 6;
               6 6 6 6 6 6 6'
    id_name = 'pin_id'
  []
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

Before extruding the 2D assembly geometry built above, an interface between the duct and the lead region is added.

  [interface_define]
    input = ASM
    type = SideSetsBetweenSubdomainsGenerator
    new_boundary = DuctLeadInterface
    paired_block = ${fparse bid_F_lead + 1}
    primary_block = ${bid_F_duct}
  []
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

The 2D assembly is now extruded to the z-direction and new block IDs are assigned.

  # This extrudes the 7-pin assembly axially and renames block IDs appropriately
  [extrude]
    type = AdvancedExtruderGenerator
    input = interface_define
    direction = '0 0 1'
    top_boundary = 998
    bottom_boundary = 999
    heights = '${dhA} ${dhB} ${dhC} ${dhD} ${dhE} ${dhF} ${dhG} ${dhH} ${dhI} ${dhJ}'
    num_layers = '${num_axmeshA} ${num_axmeshB} ${num_axmeshC} ${num_axmeshD} ${num_axmeshE} ${num_axmeshF} ${num_axmeshG} ${num_axmeshH} ${num_axmeshI} ${num_axmeshJ}'
    subdomain_swaps = '${bid_F_fuel_R1} ${bid_A}           ${bid_F_fuel_R2} ${bid_A}           ${bid_F_fuel_R3} ${bid_A}           ${bid_F_fuel_R4} ${bid_A}           ${bid_F_fuel_R5} ${bid_A}           ${bid_F_fuel_R6} ${bid_A}           ${bid_F_fuel_R7} ${bid_A}           ${bid_F_heliumc}  ${bid_Ac}           ${bid_F_helium}  ${bid_A}            ${bid_F_lead} ${bid_A}       ${fparse bid_F_lead + 1} ${bid_A}       ${bid_F_leadgap} ${bid_A}         ${bid_F_clad} ${bid_A}       ${bid_F_duct} ${bid_A};
                       ${bid_F_fuel_R1} ${bid_B}           ${bid_F_fuel_R2} ${bid_B}           ${bid_F_fuel_R3} ${bid_B}           ${bid_F_fuel_R4} ${bid_B}           ${bid_F_fuel_R5} ${bid_B}           ${bid_F_fuel_R6} ${bid_B}           ${bid_F_fuel_R7} ${bid_B}           ${bid_F_heliumc}  ${bid_Bc}           ${bid_F_helium}  ${bid_B}            ${bid_F_lead} ${bid_B}       ${fparse bid_F_lead + 1} ${bid_B}       ${bid_F_leadgap} ${bid_B}         ${bid_F_clad} ${bid_B}       ${bid_F_duct} ${bid_B};
                       ${bid_F_fuel_R1} ${bid_C}           ${bid_F_fuel_R2} ${bid_C}           ${bid_F_fuel_R3} ${bid_C}           ${bid_F_fuel_R4} ${bid_C}           ${bid_F_fuel_R5} ${bid_C}           ${bid_F_fuel_R6} ${bid_C}           ${bid_F_fuel_R7} ${bid_C}           ${bid_F_heliumc}  ${bid_Cc}           ${bid_F_helium}  ${bid_C}            ${bid_F_lead} ${bid_C}       ${fparse bid_F_lead + 1} ${bid_C}       ${bid_F_leadgap} ${bid_C}         ${bid_F_clad} ${bid_C}       ${bid_F_duct} ${bid_C};
                       ${bid_F_fuel_R1} ${bid_D_tubemix}   ${bid_F_fuel_R2} ${bid_D_tubemix}   ${bid_F_fuel_R3} ${bid_D_tubemix}   ${bid_F_fuel_R4} ${bid_D_tubemix}   ${bid_F_fuel_R5} ${bid_D_tubemix}   ${bid_F_fuel_R6} ${bid_D_tubemix}   ${bid_F_fuel_R7} ${bid_D_tubemix}   ${bid_F_heliumc}  ${bid_D_tubemixc}   ${bid_F_helium}  ${bid_D_tubemix}    ${bid_F_lead} ${bid_D_lead}  ${fparse bid_F_lead + 1} ${bid_D_lead}  ${bid_F_leadgap} ${bid_D_lead}    ${bid_F_clad} ${bid_D_clad}  ${bid_F_duct} ${bid_D_duct};
                       ${bid_F_fuel_R1} ${bid_E_yszmix}    ${bid_F_fuel_R2} ${bid_E_yszmix}    ${bid_F_fuel_R3} ${bid_E_yszmix}    ${bid_F_fuel_R4} ${bid_E_yszmix}    ${bid_F_fuel_R5} ${bid_E_yszmix}    ${bid_F_fuel_R6} ${bid_E_yszmix}    ${bid_F_fuel_R7} ${bid_E_yszmix}    ${bid_F_heliumc}  ${bid_E_yszmixc}    ${bid_F_helium}  ${bid_E_yszmix}     ${bid_F_lead} ${bid_E_lead}  ${fparse bid_F_lead + 1} ${bid_E_lead}  ${bid_F_leadgap} ${bid_E_lead}    ${bid_F_clad} ${bid_E_clad}  ${bid_F_duct} ${bid_E_duct};
                       ${bid_F_fuel_R1} ${bid_F_fuel_R1}   ${bid_F_fuel_R2} ${bid_F_fuel_R2}   ${bid_F_fuel_R3} ${bid_F_fuel_R3}   ${bid_F_fuel_R4} ${bid_F_fuel_R4}   ${bid_F_fuel_R5} ${bid_F_fuel_R5}   ${bid_F_fuel_R6} ${bid_F_fuel_R6}   ${bid_F_fuel_R7} ${bid_F_fuel_R7}   ${bid_F_heliumc}  ${bid_F_heliumc}    ${bid_F_helium}  ${bid_F_helium}     ${bid_F_lead} ${bid_F_lead}  ${fparse bid_F_lead + 1} ${bid_F_lead}  ${bid_F_leadgap} ${bid_F_leadgap} ${bid_F_clad} ${bid_F_clad}  ${bid_F_duct} ${bid_F_duct};
                       ${bid_F_fuel_R1} ${bid_G_yszmix}    ${bid_F_fuel_R2} ${bid_G_yszmix}    ${bid_F_fuel_R3} ${bid_G_yszmix}    ${bid_F_fuel_R4} ${bid_G_yszmix}    ${bid_F_fuel_R5} ${bid_G_yszmix}    ${bid_F_fuel_R6} ${bid_G_yszmix}    ${bid_F_fuel_R7} ${bid_G_yszmix}    ${bid_F_heliumc}  ${bid_G_yszmixc}    ${bid_F_helium}  ${bid_G_yszmix}     ${bid_F_lead} ${bid_G_lead}  ${fparse bid_F_lead + 1} ${bid_G_lead}  ${bid_F_leadgap} ${bid_G_lead}    ${bid_F_clad} ${bid_G_clad}  ${bid_F_duct} ${bid_G_duct};
                       ${bid_F_fuel_R1} ${bid_H_springmix} ${bid_F_fuel_R2} ${bid_H_springmix} ${bid_F_fuel_R3} ${bid_H_springmix} ${bid_F_fuel_R4} ${bid_H_springmix} ${bid_F_fuel_R5} ${bid_H_springmix} ${bid_F_fuel_R6} ${bid_H_springmix} ${bid_F_fuel_R7} ${bid_H_springmix} ${bid_F_heliumc}  ${bid_H_springmixc} ${bid_F_helium}  ${bid_H_springmix}  ${bid_F_lead} ${bid_H_lead}  ${fparse bid_F_lead + 1} ${bid_H_lead}  ${bid_F_leadgap} ${bid_H_lead}    ${bid_F_clad} ${bid_H_clad}  ${bid_F_duct} ${bid_H_duct};
                       ${bid_F_fuel_R1} ${bid_I}           ${bid_F_fuel_R2} ${bid_I}           ${bid_F_fuel_R3} ${bid_I}           ${bid_F_fuel_R4} ${bid_I}           ${bid_F_fuel_R5} ${bid_I}           ${bid_F_fuel_R6} ${bid_I}           ${bid_F_fuel_R7} ${bid_I}           ${bid_F_heliumc}  ${bid_Ic}           ${bid_F_helium}  ${bid_I}            ${bid_F_lead} ${bid_I}       ${fparse bid_F_lead + 1} ${bid_I}       ${bid_F_leadgap} ${bid_I}         ${bid_F_clad} ${bid_I}       ${bid_F_duct} ${bid_I};
                       ${bid_F_fuel_R1} ${bid_J}           ${bid_F_fuel_R2} ${bid_J}           ${bid_F_fuel_R3} ${bid_J}           ${bid_F_fuel_R4} ${bid_J}           ${bid_F_fuel_R5} ${bid_J}           ${bid_F_fuel_R6} ${bid_J}           ${bid_F_fuel_R7} ${bid_J}           ${bid_F_heliumc}  ${bid_Jc}           ${bid_F_helium}  ${bid_J}            ${bid_F_lead} ${bid_J}       ${fparse bid_F_lead + 1} ${bid_J}       ${bid_F_leadgap} ${bid_J}         ${bid_F_clad} ${bid_J}       ${bid_F_duct} ${bid_J}'
  []
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

Plane-wise ids are assigned to the extruded 3D mesh for the purpose of axial pin power tally. Since non-fuel regions have zero power while PlaneIDMeshGenerator needs to cover the whole domain, each of lower and upper non-fuel axial planes is assigned with a single plane_id and active fuel regions are assigned with different plane_ids in 20 axial meshes.

  # This assigns plane_id for the purpose of axial pin power tally
  [assign_planeid]
    type = PlaneIDMeshGenerator
    input = extrude
    plane_coordinates = '0.0 ${hE} ${hF} ${hJ}'
    num_ids_per_plane = '1 ${num_axmeshF} 1'
    plane_axis = 'z'
    id_name = 'plane_id'
  []
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

Sidesets are renamed with common sensical names.

  # This renames sidesets to common sensical names
  [rename_sidesets]
    type = RenameBoundaryGenerator
    input = assign_planeid
    old_boundary = '        DuctLeadInterface 998          999             997'
    new_boundary = 'DUCT_INNERSIDE    ASSEMBLY_TOP ASSEMBLY_BOTTOM ASSEMBLY_SIDE'
  []
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

Material IDs are assigned to block IDs. This part needs to be consistent with the specification in Materials.

  [assign]
    type = SubdomainExtraElementIDGenerator
    input = rename_sidesets
    extra_element_id_names = 'material_id'
    subdomains =        '${bid_A} ${bid_Ac} ${bid_B} ${bid_Bc} ${bid_C} ${bid_Cc} ${bid_D_lead} ${bid_D_clad} ${bid_D_duct} ${bid_D_tubemix} ${bid_D_tubemixc} ${bid_E_lead} ${bid_E_clad} ${bid_E_duct} ${bid_E_yszmix} ${bid_E_yszmixc} ${bid_F_fuel_R1} ${bid_F_fuel_R2} ${bid_F_fuel_R3} ${bid_F_fuel_R4} ${bid_F_fuel_R5} ${bid_F_fuel_R6} ${bid_F_fuel_R7} ${bid_F_heliumc} ${bid_F_helium} ${bid_F_lead} ${bid_F_leadgap} ${bid_F_clad} ${bid_F_duct} ${bid_G_lead} ${bid_G_clad} ${bid_G_duct} ${bid_G_yszmix} ${bid_G_yszmixc} ${bid_H_lead} ${bid_H_clad} ${bid_H_duct} ${bid_H_springmix} ${bid_H_springmixc} ${bid_I} ${bid_Ic} ${bid_J} ${bid_Jc}'
    extra_element_ids = '${mid_A} ${mid_A}  ${mid_B} ${mid_B}  ${mid_C} ${mid_C}  ${mid_D_lead} ${mid_D_clad} ${mid_D_duct} ${mid_D_tubemix} ${mid_D_tubemix}  ${mid_E_lead} ${mid_E_clad} ${mid_E_duct} ${mid_E_yszmix} ${mid_E_yszmix}  ${mid_F_fuel_R1} ${mid_F_fuel_R2} ${mid_F_fuel_R3} ${mid_F_fuel_R4} ${mid_F_fuel_R5} ${mid_F_fuel_R6} ${mid_F_fuel_R7} ${mid_F_helium}  ${mid_F_helium} ${mid_F_lead} ${mid_F_leadgap} ${mid_F_clad} ${mid_F_duct} ${mid_G_lead} ${mid_G_clad} ${mid_G_duct} ${mid_G_yszmix} ${mid_G_yszmix}  ${mid_H_lead} ${mid_H_clad} ${mid_H_duct} ${mid_H_springmix} ${mid_H_springmix}  ${mid_I} ${mid_I}  ${mid_J} ${mid_J}'
  []
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

A coarse mesh is generated for the CMFD acceleration. For better alignment of peripheral pin meshes near duct, only the peripheral pins have two radial meshes divided by the cladding outer radius while inner pins have one radial mesh. Azimuthal divisions are the same as the fine mesh. The duct mesh is also the same as the fine mesh, otherwise the CMFD solve didn't converge. The axial mesh is also the same as the fine mesh because the use of a coarser axial mesh increased the number of transport sweeps significantly.

  [PinIn_CM]
    type = PolygonConcentricCircleMeshGenerator
    num_sides = 6 # must be six to use hex pattern
    num_sectors_per_side = '2 2 2 2 2 2'
    polygon_size = ${half_pinpitch}
    background_intervals = '1'
    background_block_ids = '1'
    preserve_volumes = on
    quad_center_elements = false
  []

  [PinOut_CM]
    type = PolygonConcentricCircleMeshGenerator
    num_sides = 6 # must be six to use hex pattern
    num_sectors_per_side = '2 2 2 2 2 2'
    polygon_size = ${half_pinpitch}
    ring_radii = '${clad_r_o}'
    ring_intervals = '1'
    ring_block_ids = '2'
    background_intervals = '1'
    background_block_ids = '3'
    preserve_volumes = on
    quad_center_elements = false
  []

  # This assembles the 7 pins into an assembly with a duct
  [ASM_CM]
    type = PatternedHexMeshGenerator
    inputs = 'PinIn_CM PinOut_CM'
    pattern_boundary = hexagon
    background_intervals = '1'
    hexagon_size = ${half_asmpitch}
    duct_sizes = '${fparse flat_to_flat/2} ${fparse flat_to_flat/2 + duct_thickness}'
    duct_sizes_style = apothem
    duct_intervals = '1 1'
    background_block_id = '4'
    duct_block_ids = '5 6'
    external_boundary_id = 997
    pattern = '1 1 1 1 1 1 1;
              1 0 0 0 0 0 0 1;
             1 0 0 0 0 0 0 0 1;
            1 0 0 0 0 0 0 0 0 1;
           1 0 0 0 0 0 0 0 0 0 1;
          1 0 0 0 0 0 0 0 0 0 0 1;
         1 0 0 0 0 0 0 0 0 0 0 0 1;
          1 0 0 0 0 0 0 0 0 0 0 1;
           1 0 0 0 0 0 0 0 0 0 1;
            1 0 0 0 0 0 0 0 0 1;
             1 0 0 0 0 0 0 0 1;
              1 0 0 0 0 0 0 1;
               1 1 1 1 1 1 1'
  []
  [coarse_mesh]
    type = AdvancedExtruderGenerator
    input = ASM_CM
    heights = '${dhA} ${dhB} ${dhC} ${dhD} ${dhE} ${dhF} ${dhG} ${dhH} ${dhI} ${dhJ}'
    num_layers = '${num_axmeshA} ${num_axmeshB} ${num_axmeshC} ${num_axmeshD} ${num_axmeshE} ${num_axmeshF} ${num_axmeshG} ${num_axmeshH} ${num_axmeshI} ${num_axmeshJ}'
    direction = '0 0 1'
    top_boundary = 998
    bottom_boundary = 999
  []

  [cmesh]
    type = CoarseMeshExtraElementIDGenerator
    input = assign
    coarse_mesh = coarse_mesh
    extra_element_id_name = coarse_element_id
  []
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

Figure 8 shows the radial cross section view of the fine and coarse meshes. Note that the coarse mesh on the right is not a separate mesh that Griffin holds, but just a visual representation of coarse element IDs assigned to the fine mesh on the left.

Figure 8: Radial cross section view of (Left) fine mesh and (Right) coarse mesh

Transport systems

For the transport system, particle is neutron and equation_type is eigenvalue. The number of energy groups is 9 given by G and VacuumBoundary and ReflectingBoundary are sideset names renamed in [rename_sidesets]. Top and bottom surfaces are vacuum and lateral surfaces are reflective. In the sub-block of [sn], the DFEM-SN scheme is specified. Between monomial and L2-Lagrange families of basis functions supported for discontinuous elements, the L2Lagrange type is selected with the first order since it gives more accurate solution than monomial in general. The angular quadrature type (AQtype) is set to Gauss-Chebyshev for having a freedom to choose a different number of angles in the azimuthal direction and in the polar direction in 3D. The number of azimuthal angles (NAzmthl) and that of polar angles (NPolar) per octant are set to and , respectively, from a sensitivity study. The anisotropic scattering order (NA) is set to 1. using_array_variable=true and collapse_scattering=true are recommended options for performance reason in general.

[TransportSystems]
  particle = neutron
  equation_type = eigenvalue
  G = 9
  VacuumBoundary = 'ASSEMBLY_TOP ASSEMBLY_BOTTOM'
  ReflectingBoundary = 'ASSEMBLY_SIDE'
  [sn]
    scheme = DFEM-SN
    family = L2_LAGRANGE
    order = FIRST
    AQtype = Gauss-Chebyshev
    NPolar = 2
    NAzmthl = 3
    NA = 1
    using_array_variable = true
    collapse_scattering  = true
  []
[]
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

Executioner

The SweepUpdate executioner is used for the CMFD acceleration. SweepUpdate is a special Richardson executioner for performing source iteration with a transport sweeper. This source iteration can be accelerated by turning on cmfd_acceleration which invokes the CMFD solve where the low order diffusion equation is solved with a convection closure term to make the diffusion system and the transport system consistent. coarse_element_id is a name of the extra element integer ID assigned by CoarseMeshExtraElementIDGenerator in [Mesh]. If the CMFD solve does not converge, one can use different options for diffusion_eigen_solver_type which is the eigenvalue solver for CMFD. There are four options: power, arnoldi, krylovshur and newton. newton is the default which is recommended to stick with. If newton does not converge a solution, either krylovshur is the second option to go with, or cmfd_prec_type can be changed to lu from its default value of boomeramg for a small problem. Also one can try cmfd_closure_type=syw or cmfd_closure_type=pcmfd as different ways, but it is recommended to stick with its default value of traditional_cmfd.

richardson_rel_tol or richardson_abs_tol is the tolerance used to check the convergence of the Richardson iteration. If richardson_postprocessor is specified, its PostProcessor value is used as the convergence metric. Otherwise Griffin uses the L2 norm difference of the angular flux solution between successive Richardson iterations, which is added to richardson_postprocessor with the name of flux_error internally. richardson_rel_tol is the tolerance for the ratio of the richardson_postprocessor value of the current iteration to that of the first iteration. richardson_value is for the console output purpose to show the history of PostProcessor values over Richardson iterations. inner_solve_type is about the way to perform the inner solve of the Richardson iteration. There are three options: none, SI and GMRes. none is just a direct transport operator inversion per residual evaluation, while scattering source is updated together for SI and GMRes per residual evaluation. The latter two options involve more number of transport sweeps per residual evaluation than none, leading to the reduction of the number of residual evaluations and possibly the total run time. For GMRes, the scattering source effect is accounted for at once by performing the GMRes iterations and max_inner_its is the maximum number of GMRes iterations. For SI, the scattering source effect is accounted for by performing source iterations and max_inner_its is the maximum number of source iterations. The whole energy group is solved at once for enable_group_sweep=false (default) and a within-group linear system is solved group-by-group for enable_group_sweep=true with the scattering source being updated during the group sweep using the latest flux solution. max_thermal_its (the number of thermal iterations) is not relevant to this problem since there is no up-scattering for the fast reactor application.

[Executioner]
  type = SweepUpdate
  verbose = true

  richardson_rel_tol = 1e-4
  richardson_max_its = 500
  richardson_value = 'eigenvalue'
  inner_solve_type = SI
  max_inner_its = 7

  cmfd_acceleration = true
  coarse_element_id = coarse_element_id
[]
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

Flux normalization for producing the total power

The flux solution can be normalized for producing the total power using the [PowerDensity] block. power is the user-specified total power and power_density_variable is a required AuxVariable name for power density. Power is calculated using the kappaFission cross section in the cross section library which is the total recoverable energy per fission multiplied by the fission cross section and does not account for non-fission heating.

[PowerDensity]
  power = ${totalpower}
  power_density_variable = power_density
[]
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)
commentnote

Non-fission heating will be added in the [PowerDensity] block in the future.

Power output

To output pin-wise and axial mesh-wise power, ExtraIDIntegralVectorPostprocessor VectorPostprocessors is used using pin_id and plane_id generated by the mesh generators. ExtraIDIntegralVectorPostprocessor performs integration of variables given in variable over the unique combinations of extra element integer IDs given in id_name. In variable, volume, x_coord and y_coord are for locating a center of each cell of the hexagonal lattice. x_coord/volume and y_coord/volume are the (x, y) coordinate of a cell. It should be noted that there are 129 pin_ids while there are 127 fuel pins. Two extra pin_ids are assigned for the duct (pin_id=127) and the assembly gap (pin_id=128) regions which have zero power.

[AuxVariables]
  [volume]
    family = MONOMIAL
    order = CONSTANT
    initial_condition = 1
  []
  [x_coord]
    family = LAGRANGE
    order = FIRST
    [InitialCondition]
      type = FunctionIC
      function = x
    []
  []
  [y_coord]
    family = LAGRANGE
    order = FIRST
    [InitialCondition]
      type = FunctionIC
      function = y
    []
  []
[]

[VectorPostprocessors]
  [pin_powers]
    type = ExtraIDIntegralVectorPostprocessor
    variable = 'volume x_coord y_coord power_density'
    id_name = 'pin_id plane_id'
  []
[]

[Outputs]
  [console]
    type = Console
    outlier_variable_norms = false
  []
  [pgraph]
    type = PerfGraphOutput
    level = 2
  []
  csv = true
  execute_on = 'timestep_end'
[]
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

Materials

The [Materials] block is constructed using MicroNeutronicsMaterial. The main reason for using this material instead of MixedNeutronicsMaterial is that each library (library ID) in the library file is not generated for each material (material ID) in the Griffin transport calculation. Using MicroNeutronicsMaterial, different material IDs can be freely generated in the same library ID. For example, for Fuel_Ring1_Hole, two materials are defined with two different IDs of mid_F_helium and mid_F_fuel_R1 using isotopes in the same library ID of lid_F_fuel_R1. These two materials are present in three block IDs of bid_F_fuel_R1, bid_F_heliumc, and bid_F_helium. This specification needs to be consistent with the material assignment in Mesh. Note that materials must be assigned in Mesh to use MicroNeutronicsMaterial. Materials are separated by semicolons and a material name given before a material ID is not used in the code but for user information.

[GlobalParams]
  library_file = '../cross_section/LFR_127Pin_9g.xml'
  library_name = ISOTXS-neutron
  is_meter = true
  plus = true
  dbgmat = false
  grid_names = 'Tfuel'
  grid = '1'
  maximum_diffusion_coefficient = 1000
[]

[Compositions]
  [Fuel_Hole]
    type = IsotopeComposition
    isotope_densities = 'HE4 2.512611E-05'
    density_type = atomic
    composition_ids = ${mid_F_helium}
  []
  [Fuel_Ring]
    type = IsotopeComposition
    isotope_densities = 'U234  1.769055E-07
                         U235  4.404137E-05
                         U238  1.735054E-02
                         PU238 1.244939E-05
                         PU239 3.413306E-03
                         PU240 1.319941E-03
                         PU241 8.656869E-05
                         PU242 1.234538E-04
                         AM241 2.087265E-04
                         O16   4.444138E-02'
    density_type = atomic
    composition_ids = '${mid_F_fuel_R1} ${mid_F_fuel_R2} ${mid_F_fuel_R3} ${mid_F_fuel_R4} ${mid_F_fuel_R5} ${mid_F_fuel_R6} ${mid_F_fuel_R7}'
  []
  [Fuel_Clad]
    type = IsotopeComposition
    isotope_densities = 'FE54  3.185952E-03
                         FE56  5.001168E-02
                         FE57  1.154947E-03
                         FE58  1.537129E-04
                         NI58  8.373412E-03
                         NI60  3.225451E-03
                         NI61  1.402235E-04
                         NI62  4.469793E-04
                         NI64  1.138947E-04
                         CR50  5.643439E-04
                         CR52  1.088250E-02
                         CR53  1.234043E-03
                         CR54  3.071758E-04
                         MN55  1.271641E-03
                         MO92  1.080550E-04
                         MO94  6.735188E-05
                         MO95  1.159146E-04
                         MO96  1.214544E-04
                         MO97  6.953578E-05
                         MO98  1.757019E-04
                         MO100 7.011875E-05
                         SI28  1.300140E-03
                         SI29  6.601594E-05
                         SI30  4.351798E-05
                         C12   3.489938E-04
                         P31   6.766687E-05
                         S32   2.068704E-05
                         S33   1.656123E-07
                         S34   9.348567E-07
                         S36   4.358298E-09
                         TI46  3.210951E-05
                         TI47  2.895766E-05
                         TI48  2.869267E-04
                         TI49  2.105602E-05
                         TI50  2.016107E-05
                         V50   2.742873E-05
                         ZR90  7.880535E-06
                         ZR91  1.718520E-06
                         ZR92  2.626878E-06
                         ZR94  2.662077E-06
                         ZR96  4.288701E-07
                         W182  2.014107E-06
                         W183  1.087650E-06
                         W184  2.337892E-06
                         W186  2.160800E-06
                         CU63  1.520930E-05
                         CU65  6.778986E-06
                         CO59  2.370990E-05
                         CA40  3.379743E-05
                         CA42  2.255696E-07
                         CA43  4.706582E-08
                         CA44  7.272563E-07
                         CA46  1.394535E-09
                         CA48  6.519498E-08
                         NB93  7.519752E-06
                         N14   4.969370E-05
                         N15   1.835515E-07
                         AL27  2.589280E-05
                         TA181 3.861021E-06
                         B10   5.144462E-06
                         B11   2.070704E-05'
    density_type = atomic
    composition_ids = '${mid_F_clad} ${mid_D_clad} ${mid_E_clad} ${mid_G_clad} ${mid_H_clad}'
  []
  [Lead]
    type = IsotopeComposition
    isotope_densities = 'PB204 4.232323E-04
                         PB206 7.285612E-03
                         PB207 6.680995E-03
                         PB208 1.584046E-02'
    density_type = atomic
    composition_ids = '${mid_F_lead} ${mid_F_leadgap} ${mid_D_lead} ${mid_E_lead} ${mid_G_lead} ${mid_H_lead}'
  []
  [Duct]
    type = IsotopeComposition
    isotope_densities = 'FE54  3.192503E-03
                         FE56  5.011505E-02
                         FE57  1.157401E-03
                         FE58  1.540302E-04
                         NI58  8.390808E-03
                         NI60  3.232103E-03
                         NI61  1.405101E-04
                         NI62  4.479004E-04
                         NI64  1.141301E-04
                         CR50  5.655206E-04
                         CR52  1.090501E-02
                         CR53  1.236601E-03
                         CR54  3.078103E-04
                         MN55  1.274301E-03
                         MO92  1.082801E-04
                         MO94  6.749107E-05
                         MO95  1.161601E-04
                         MO96  1.217001E-04
                         MO97  6.968007E-05
                         MO98  1.760602E-04
                         MO100 7.026407E-05
                         SI28  1.302801E-03
                         SI29  6.615206E-05
                         SI30  4.360804E-05
                         C12   3.497203E-04
                         P31   6.780707E-05
                         S32   2.073002E-05
                         S33   1.659602E-07
                         S34   9.367909E-07
                         S36   4.367304E-09
                         TI46  3.217603E-05
                         TI47  2.901703E-05
                         TI48  2.875203E-04
                         TI49  2.110002E-05
                         TI50  2.020302E-05
                         V50   2.748603E-05
                         ZR90  7.896908E-06
                         ZR91  1.722102E-06
                         ZR92  2.632303E-06
                         ZR94  2.667603E-06
                         ZR96  4.297604E-07
                         W182  2.018302E-06
                         W183  1.089901E-06
                         W184  2.342702E-06
                         W186  2.165302E-06
                         CU63  1.524101E-05
                         CU65  6.793007E-06
                         CO59  2.375902E-05
                         CA40  3.386703E-05
                         CA42  2.260402E-07
                         CA43  4.716405E-08
                         CA44  7.287707E-07
                         CA46  1.397401E-09
                         CA48  6.533006E-08
                         NB93  7.535407E-06
                         N14   4.979705E-05
                         N15   1.839302E-07
                         AL27  2.594703E-05
                         TA181 3.869004E-06
                         B10   5.155105E-06
                         B11   2.075002E-05'
    density_type = atomic
    composition_ids = '${mid_F_duct} ${mid_D_duct} ${mid_E_duct} ${mid_G_duct} ${mid_H_duct}'
  []
  [LowerCorePlate]
    type = IsotopeComposition
    isotope_densities = 'FE54  2.357119E-03
                         FE56  3.700230E-02
                         FE57  8.545370E-04
                         FE58  1.137209E-04
                         NI58  4.964541E-03
                         NI60  1.912316E-03
                         NI61  8.313568E-05
                         NI62  2.650122E-04
                         NI64  6.752956E-05
                         CR50  4.670038E-04
                         CR52  9.005674E-03
                         CR53  1.021208E-03
                         CR54  2.541921E-04
                         MN55  6.804056E-04
                         MO92  1.208810E-04
                         MO94  7.534562E-05
                         MO95  1.296811E-04
                         MO96  1.358711E-04
                         MO97  7.778964E-05
                         MO98  1.965516E-04
                         MO100 7.844165E-05
                         SI28  6.346952E-04
                         SI29  3.222827E-05
                         SI30  2.124518E-05
                         C12   1.414012E-04
                         P31   2.963124E-05
                         S32   1.501712E-05
                         S33   1.202210E-07
                         S34   6.786456E-07
                         S36   3.163826E-09
                         TI46  4.392136E-06
                         TI47  3.960833E-06
                         TI48  3.924632E-05
                         TI49  2.880124E-06
                         TI50  2.757723E-06
                         V50   3.751831E-06
                         ZR90  1.077909E-06
                         ZR91  2.350719E-07
                         ZR92  3.593130E-07
                         ZR94  3.641330E-07
                         ZR96  5.866348E-08
                         W182  2.755023E-07
                         W183  1.487712E-07
                         W184  3.197926E-07
                         W186  2.955624E-07
                         CU63  2.080417E-06
                         CU65  9.272576E-07
                         CO59  3.243027E-06
                         CA40  4.622938E-06
                         CA42  3.085425E-08
                         CA43  6.437853E-09
                         CA44  9.947682E-08
                         CA46  1.907516E-10
                         CA48  8.917673E-09
                         NB93  1.028608E-06
                         N14   6.797356E-06
                         N15   2.510621E-08
                         AL27  3.541729E-06
                         TA181 5.281244E-07
                         B10   7.036758E-07
                         B11   2.832423E-06
                         PB204 1.170210E-04
                         PB206 2.014417E-03
                         PB207 1.847215E-03
                         PB208 4.379936E-03'
    density_type = atomic
    composition_ids = '${mid_A}'
  []
  [InletWrapper]
    type = IsotopeComposition
    isotope_densities = 'FE54  2.614802E-04
                         FE56  4.104560E-03
                         FE57  9.479369E-05
                         FE58  1.261549E-05
                         NI58  6.872268E-04
                         NI60  2.647203E-04
                         NI61  1.150845E-05
                         NI62  3.668443E-05
                         NI64  9.347864E-06
                         CR50  4.631781E-05
                         CR52  8.931848E-04
                         CR53  1.012839E-04
                         CR54  2.521098E-05
                         MN55  1.043741E-04
                         MO92  8.868246E-06
                         MO94  5.527715E-06
                         MO95  9.513671E-06
                         MO96  9.967888E-06
                         MO97  5.707022E-06
                         MO98  1.441956E-05
                         MO100 5.754824E-06
                         SI28  1.067042E-04
                         SI29  5.418111E-06
                         SI30  3.571639E-06
                         C12   2.864312E-05
                         P31   5.553616E-06
                         S32   1.697766E-06
                         S33   1.359253E-08
                         S34   7.672599E-08
                         S36   3.576939E-10
                         TI46  2.635303E-06
                         TI47  2.376593E-06
                         TI48  2.354892E-05
                         TI49  1.728167E-06
                         TI50  1.654664E-06
                         V50   2.251188E-06
                         ZR90  6.467752E-07
                         ZR91  1.410455E-07
                         ZR92  2.155884E-07
                         ZR94  2.184885E-07
                         ZR96  3.519937E-08
                         W182  1.653064E-07
                         W183  8.926448E-08
                         W184  1.918775E-07
                         W186  1.773469E-07
                         CU63  1.248249E-06
                         CU65  5.563717E-07
                         CO59  1.945876E-06
                         CA40  2.773808E-06
                         CA42  1.851272E-08
                         CA43  3.862851E-09
                         CA44  5.968833E-08
                         CA46  1.144545E-10
                         CA48  5.350809E-09
                         NB93  6.171741E-07
                         N14   4.078559E-06
                         N15   1.506459E-08
                         AL27  2.125083E-06
                         TA181 3.168823E-07
                         B10   4.222165E-07
                         B11   1.699466E-06
                         PB204 3.885751E-04
                         PB206 6.688961E-03
                         PB207 6.133839E-03
                         PB208 1.454357E-02'
    density_type = atomic
    composition_ids = '${mid_B}'
  []
  [LowerBundle]
    type = IsotopeComposition
    isotope_densities = 'FE54  1.251752E-03
                         FE56  1.964981E-02
                         FE57  4.537988E-04
                         FE58  6.039250E-05
                         NI58  3.289936E-03
                         NI60  1.267252E-03
                         NI61  5.509228E-05
                         NI62  1.756173E-04
                         NI64  4.474985E-05
                         CR50  2.217292E-04
                         CR52  4.275877E-03
                         CR53  4.848501E-04
                         CR54  1.206850E-04
                         MN55  4.996407E-04
                         MO92  4.245476E-05
                         MO94  2.646209E-05
                         MO95  4.554388E-05
                         MO96  4.771797E-05
                         MO97  2.732113E-05
                         MO98  6.903086E-05
                         MO100 2.754914E-05
                         SI28  5.108111E-04
                         SI29  2.593807E-05
                         SI30  1.709871E-05
                         C12   1.371257E-04
                         P31   2.658610E-05
                         S32   8.127836E-06
                         S33   6.507069E-08
                         S34   3.673052E-07
                         S36   1.712371E-09
                         TI46  1.261552E-05
                         TI47  1.137747E-05
                         TI48  1.127347E-04
                         TI49  8.273042E-06
                         TI50  7.921328E-06
                         V50   1.077645E-05
                         ZR90  3.096328E-06
                         ZR91  6.752279E-07
                         ZR92  1.032143E-06
                         ZR94  1.045943E-06
                         ZR96  1.685070E-07
                         W182  7.913527E-07
                         W183  4.273277E-07
                         W184  9.185680E-07
                         W186  8.489851E-07
                         CU63  5.975747E-06
                         CU65  2.663510E-06
                         CO59  9.315485E-06
                         CA40  1.327855E-05
                         CA42  8.862667E-08
                         CA43  1.849277E-08
                         CA44  2.857418E-07
                         CA46  5.479227E-10
                         CA48  2.561506E-08
                         NB93  2.954522E-06
                         N14   1.952481E-05
                         N15   7.211698E-08
                         AL27  1.017342E-05
                         TA181 1.516963E-06
                         B10   2.021284E-06
                         B11   8.135837E-06
                         PB204 2.570306E-04
                         PB206 4.424583E-03
                         PB207 4.057368E-03
                         PB208 9.620298E-03'
    density_type = atomic
    composition_ids = '${mid_C} ${mid_I}'
  []
  [TUBEMIX]
    type = IsotopeComposition
    isotope_densities = 'FE54  6.532669E-04
                         FE56  1.025499E-02
                         FE57  2.368260E-04
                         FE58  3.151812E-05
                         NI58  1.716934E-03
                         NI60  6.613685E-04
                         NI61  2.875159E-05
                         NI62  9.165281E-05
                         NI64  2.335454E-05
                         CR50  1.157225E-04
                         CR52  2.231534E-03
                         CR53  2.530392E-04
                         CR54  6.298624E-05
                         MN55  2.607607E-04
                         MO92  2.215631E-05
                         MO94  1.381068E-05
                         MO95  2.376862E-05
                         MO96  2.490384E-05
                         MO97  1.425877E-05
                         MO98  3.602700E-05
                         MO100 1.437779E-05
                         SI28  2.665818E-04
                         SI29  1.353663E-05
                         SI30  8.923334E-06
                         C12   7.156191E-05
                         P31   1.387470E-05
                         S32   4.241824E-06
                         S33   3.395960E-08
                         S34   1.916872E-07
                         S36   8.936736E-10
                         TI46  6.584079E-06
                         TI47  5.937654E-06
                         TI48  5.883443E-05
                         TI49  4.317539E-06
                         TI50  4.134003E-06
                         V50   5.624293E-06
                         ZR90  1.615914E-06
                         ZR91  3.523885E-07
                         ZR92  5.386347E-07
                         ZR94  5.458561E-07
                         ZR96  8.794009E-08
                         W182  4.130003E-07
                         W183  2.230133E-07
                         W184  4.793831E-07
                         W186  4.430761E-07
                         CU63  3.118706E-06
                         CU65  1.390070E-06
                         CO59  4.861645E-06
                         CA40  6.930147E-06
                         CA42  4.625299E-08
                         CA43  9.650875E-09
                         CA44  1.491290E-07
                         CA46  2.859556E-10
                         CA48  1.336860E-08
                         NB93  1.541900E-06
                         N14   1.018998E-05
                         N15   3.763731E-08
                         AL27  5.309332E-06
                         TA181 7.916938E-07
                         B10   1.054905E-06
                         B11   4.245925E-06
                         HE4   1.990687E-05'
    density_type = atomic
    composition_ids = '${mid_D_tubemix}'
  []
  [YSZMIX]
    type = IsotopeComposition
    isotope_densities = 'ZR90 1.110556E-02
                         ZR91 2.421721E-03
                         ZR92 3.701685E-03
                         ZR94 3.751388E-03
                         ZR96 6.043603E-04
                         Y89  3.753788E-03
                         O16  4.880044E-02
                         HE4  2.388520E-06'
    density_type = atomic
    composition_ids = '${mid_E_yszmix} ${mid_G_yszmix}'
  []
  [SPRINGMIX]
    type = IsotopeComposition
    isotope_densities = 'FE54  3.504949E-04
                         FE56  5.501991E-03
                         FE57  1.270690E-04
                         FE58  1.691020E-05
                         NI58  9.211855E-04
                         NI60  3.548352E-04
                         NI61  1.542610E-05
                         NI62  4.917349E-05
                         NI64  1.252989E-05
                         CR50  6.208541E-05
                         CR52  1.197285E-03
                         CR53  1.357596E-04
                         CR54  3.379340E-05
                         MN55  1.398999E-04
                         MO92  1.188684E-05
                         MO94  7.409526E-06
                         MO95  1.275291E-05
                         MO96  1.336095E-05
                         MO97  7.649844E-06
                         MO98  1.932937E-05
                         MO100 7.713948E-06
                         SI28  1.430302E-04
                         SI29  7.262616E-06
                         SI30  4.787540E-06
                         C12   3.839473E-05
                         P31   7.444329E-06
                         S32   2.275762E-06
                         S33   1.822029E-08
                         S34   1.028473E-07
                         S36   4.794741E-10
                         TI46  3.532451E-06
                         TI47  3.185626E-06
                         TI48  3.156524E-05
                         TI49  2.316465E-06
                         TI50  2.217958E-06
                         V50   3.017514E-06
                         ZR90  8.669616E-07
                         ZR91  1.890634E-07
                         ZR92  2.889905E-07
                         ZR94  2.928608E-07
                         ZR96  4.718135E-08
                         W182  2.215757E-07
                         W183  1.196485E-07
                         W184  2.571983E-07
                         W186  2.377169E-07
                         CU63  1.673219E-06
                         CU65  7.457830E-07
                         CO59  2.608385E-06
                         CA40  3.718164E-06
                         CA42  2.481576E-08
                         CA43  5.177868E-09
                         CA44  8.000768E-08
                         CA46  1.534209E-10
                         CA48  7.172310E-09
                         NB93  8.272788E-07
                         N14   5.466988E-06
                         N15   2.019243E-08
                         AL27  2.848602E-06
                         TA181 4.247602E-07
                         B10   5.659602E-07
                         B11   2.278062E-06
                         HE4   2.228358E-05'
    density_type = atomic
    composition_ids = '${mid_H_springmix}'
  []
  [OutletWrapper]
    type = IsotopeComposition
    isotope_densities = 'FE54  7.604462E-04
                         FE56  1.193694E-02
                         FE57  2.756886E-04
                         FE58  3.668882E-05
                         NI58  1.998690E-03
                         NI60  7.698761E-04
                         NI61  3.346883E-05
                         NI62  1.066895E-04
                         NI64  2.718586E-05
                         CR50  1.347093E-04
                         CR52  2.597687E-03
                         CR53  2.945585E-04
                         CR54  7.332063E-05
                         MN55  3.035385E-04
                         MO92  2.579187E-05
                         MO94  1.607592E-05
                         MO95  2.766886E-05
                         MO96  2.898985E-05
                         MO97  1.659792E-05
                         MO98  4.193779E-05
                         MO100 1.673692E-05
                         SI28  3.103184E-04
                         SI29  1.575692E-05
                         SI30  1.038695E-05
                         C12   8.330258E-05
                         P31   1.615192E-05
                         S32   4.937775E-06
                         S33   3.953080E-08
                         S34   2.231389E-07
                         S36   1.040295E-09
                         TI46  7.664362E-06
                         TI47  6.911865E-06
                         TI48  6.848666E-05
                         TI49  5.025975E-06
                         TI50  4.812276E-06
                         V50   6.547067E-06
                         ZR90  1.880991E-06
                         ZR91  4.102079E-07
                         ZR92  6.270069E-07
                         ZR94  6.354168E-07
                         ZR96  1.023695E-07
                         W182  4.807576E-07
                         W183  2.596087E-07
                         W184  5.580372E-07
                         W186  5.157674E-07
                         CU63  3.630382E-06
                         CU65  1.618092E-06
                         CO59  5.659272E-06
                         CA40  8.067160E-06
                         CA42  5.384173E-08
                         CA43  1.123394E-08
                         CA44  1.735891E-07
                         CA46  3.328683E-10
                         CA48  1.556192E-08
                         NB93  1.794891E-06
                         N14   1.186194E-05
                         N15   4.381178E-08
                         AL27  6.180469E-06
                         TA181 9.215854E-07
                         B10   1.227894E-06
                         B11   4.942575E-06
                         PB204 3.224084E-04
                         PB206 5.549972E-03
                         PB207 5.089375E-03
                         PB208 1.206694E-02'
    density_type = atomic
    composition_ids = '${mid_J}'
  []
[]

[Materials]
  [Fuel_Ring1_Hole]
    type = MicroNeutronicsMaterial
    block = '${bid_F_fuel_R1} ${bid_F_heliumc} ${bid_F_helium}'
    library_id = '${lid_F_fuel_R1}'
  []
  [Fuel_Ring2]
    type = MicroNeutronicsMaterial
    block = '${bid_F_fuel_R2}'
    library_id = '${lid_F_fuel_R2}'
  []
  [Fuel_Ring3]
    type = MicroNeutronicsMaterial
    block = '${bid_F_fuel_R3}'
    library_id = '${lid_F_fuel_R3}'
  []
  [Fuel_Ring4]
    type = MicroNeutronicsMaterial
    block = '${bid_F_fuel_R4}'
    library_id = '${lid_F_fuel_R4}'
  []
  [Fuel_Ring5]
    type = MicroNeutronicsMaterial
    block = '${bid_F_fuel_R5}'
    library_id = '${lid_F_fuel_R5}'
  []
  [Fuel_Ring6]
    type = MicroNeutronicsMaterial
    block = '${bid_F_fuel_R6}'
    library_id = '${lid_F_fuel_R6}'
  []
  [Fuel_Ring7]
    type = MicroNeutronicsMaterial
    block = '${bid_F_fuel_R7}'
    library_id = '${lid_F_fuel_R7}'
  []
  [Fuel_Clad]
    type = MicroNeutronicsMaterial
    block = '${bid_F_clad}'
    library_id = '${lid_F_clad}'
  []
  [Fuel_Lead]
    type = MicroNeutronicsMaterial
    block = '${bid_F_lead}'
    library_id = '${lid_F_lead}'
  []
  [Fuel_LeadGap]
    type = MicroNeutronicsMaterial
    block = '${bid_F_leadgap}'
    library_id = '${lid_F_leadgap}'
  []
  [Fuel_Duct]
    type = MicroNeutronicsMaterial
    block = '${bid_F_duct}'
    library_id = '${lid_F_duct}'
  []
  [LowerCorePlate]
    type = MicroNeutronicsMaterial
    block = '${bid_A} ${bid_Ac}'
    library_id = '${lid_A}'
  []
  [InletWrapper]
    type = MicroNeutronicsMaterial
    block = '${bid_B} ${bid_Bc}'
    library_id = '${lid_B}'
  []
  [LowerBundle]
    type = MicroNeutronicsMaterial
    block = '${bid_C} ${bid_Cc}'
    library_id = '${lid_C}'
  []
  [LowerGasPlenum]
    type = MicroNeutronicsMaterial
    block = '${bid_D_lead} ${bid_D_clad} ${bid_D_duct} ${bid_D_tubemix} ${bid_D_tubemixc}'
    library_id = '${lid_D}'
  []
  [LowerInsulator]
    type = MicroNeutronicsMaterial
    block = '${bid_E_lead} ${bid_E_clad} ${bid_E_duct} ${bid_E_yszmix} ${bid_E_yszmixc}'
    library_id = '${lid_E}'
  []
  [UpperInsulator]
    type = MicroNeutronicsMaterial
    block = '${bid_G_lead} ${bid_G_clad} ${bid_G_duct} ${bid_G_yszmix} ${bid_G_yszmixc}'
    library_id = '${lid_G}'
  []
  [UpperGasPlenum]
    type = MicroNeutronicsMaterial
    block = '${bid_H_lead} ${bid_H_clad} ${bid_H_duct} ${bid_H_springmix} ${bid_H_springmixc}'
    library_id = '${lid_H}'
  []
  [UpperBundle]
    type = MicroNeutronicsMaterial
    block = '${bid_I} ${bid_Ic}'
    library_id = '${lid_I}'
  []
  [OutletWrapper]
    type = MicroNeutronicsMaterial
    block = '${bid_J} ${bid_Jc}'
    library_id = '${lid_J}'
  []
[]
(lfr/heterogeneous_single_assembly_3D/neutronics_standalone/neutronics.i)

In [GlobalParams], is_meter=true is to indicate that the mesh is in a unit of meter and plus=true to indicate that absorption, fission, and kappa fission cross sections are to be evaluated. grid_names is the grid name in <Tabulation> of a library and grid is its associated grid index of the target cross section table in the library. Since the grid name is the same and there is only one grid point of in all the libraries, they are specified in [GlobalParams]. Again, the value means nothing but is just a dummay value in this work.

Results

The k-effective result of MCNP is and that of Griffin is which is pcm off. Pin power results are also in a good agreement with a root-mean-square error of and a maximum error of . Figure 9 shows the axial power distribution of each of 127 pins normalized to have the unity average value for the whole axial and radial meshes. They are very similar to each other since fuel pins are identical and the mean free path of neutron is much larger than the pin pitch. The axial power distribution is slightly top skewed because of slighly harder spectrum at the upper part of the fuel region caused by stronger leakage to the top than to the bottom. Harder spectrum causes more fission in a fast spectrum. Figure 10 compares the axial power distribution of MCNP at the center pin with that of Griffin and shows the relative error of the Griffin result. The Griffin result matches well in error. Errors are similar for other pins.

Figure 9: MCNP axial power distribution for each of 127 pins

Figure 10: Comparison of MCNP and Griffin axial power distributions of the center pin and the relative error (%) of the Griffin result

Figure 11, Figure 12, and Figure 13 show radial power density profiles of Griffin at the middle, lowest and highest axial meshes of the fuel region. At the lowest and highest axial meshes, inner pins have lower power, peripheral pins have higher power, and the corner pins have the highest power, with difference between the highest and smallest power. At the middle axial mesh, center pins have relatively higher power than they do at lower and upper axial meshes and peripheral pins have relatively lower power than they do at lower and upper axial meshes, resulting in flatter radial profile with difference between the highest and smallest power.

Figure 11: Radial power density profile at the middle axial mesh of the fuel region

Figure 12: Radial power density profile at the lowest axial mesh of the fuel region

Figure 13: Radial power density profile at the highest axial mesh of the fuel region

Figure 14 compares performance of calculations with and without CMFD using different input options using 144 processors in the Sawtooth HPC cluster of Idaho National Laboratory. The top left plot shows the total number of Richardson iterations until convergence with the relative tolerance of . The legend applies to the other three plots, too. The top right plot shows the total computing wall time (minutes). The bottom left plot shows the average computing time (seconds) of transport sweeps per Richardson iteration. The bottom right plot shows the average computing time (seconds) of CMFD solves per Richardson iteration. inner_solve_types of GMRes and SI with enable_group_sweep=true and false, and inner_solve_type=none were tested and a pure transport sweeps without the CMFD acceleration was also tested.

First of all, from the top left plot, the GMRes inner solve type is very effective, immediately dropping the number of Richardson iterations from to . Then, the number of Richardson iterations does not decrease much over increasing maximum number of inner iterations, which means the small number of inner iterations is sufficient for GMRes. Meanwhile, SI is not immediately effective, but needs larger number of inner iterations to drop the number of Richardson iterations to the similar level with GMRes. The number of Richardson iterations of SI becomes smaller than that of GMRes at the maximum number of inner iterations of to . Meanwhile, the total computing time of SI becomes smaller than that of GMRes at the maximum number of inner iterations of to mainly because of the smaller computing time of transport sweeps per Richardson iteration for SI. Turning enable_group_sweep on always degrades the performance because of larger transport sweeping time with almost no effect of decreasing the number of Richardson iterations. The best performance is observed with SI without group sweeping at the maximum number of inner iterations of (almost similar between to ). It should be noted that the CMFD acceleration shows an excellent performance of 10 times speed-up in total time (6.5 minutes with CMFD vs. 65 minutes without CMFD). inner_solve_type=none with the CMFD acceleration shows almost the same performance as SI with the maximum number of inner iterations of . It should be noted that this performance characteristics is specific to this problem and calculation settings (fine and coarse meshes, etc.) and would be different for different problems.

Figure 14: Performance comparison of calculations with and without CMFD using different input options

Future works

Future works include the following.

  • The cross section data will be generated in a single Griffin input. The MC2-3/TWODANT procedure will be replaced by a native Griffin procedure and the development is under progress.

  • A multiphysics coupled calculation with the computational fluid dynamics code NekRS (Fischer et al., 2022) through the Cardinal (Novak et al., 2022) interface and the MOOSE heat conduction module will be performed .

Run command

Griffin can be run using the following command. The additional command line argument -pc_hypre_boomeramg_agg_nl is for the speed-up of the calculation. Detailed information can be found in HYPRE/BoomerAMG.


mpirun -np 144 griffin-opt -i neutronics.i -pc_hypre_boomeramg_agg_nl 4

References

  1. R. E. Alcouffe, R.S. Baker, J.A. Dahl, S.A. Turner, and R. Ward. PARTISN: A Time-Dependent, Parallel Neutral Particle Transport Code System. Technical Report LA-UR-08-07258, Los Alamos National Laboratory, 2009.[BibTeX]
  2. R.E. Alcouffe, F.W. Brinkley, D.R. Marr, and R.D. O'Dell. User’s Guide for TWODANT: A Code Package for Two-Dimensional, Diffusion-Accelerated, Neutral-Particle Transport. Technical Report LA-10049-M, Los Alamos National Laboratory, 1984.[BibTeX]
  3. Paul Fischer, Stefan Kerkemeier, Misun Min, Yu-Hsiang Lan, Malachi Phillips, Thilina Rathnayake, Elia Merzari, Ananias Tomboulides, Ali Karakus, Noel Chalmers, and Tim Warburton. NekRS, a GPU-accelerated spectral element Navier–Stokes solver. Parallel Computing, 114:102982, 2022.[BibTeX]
  4. G Grasso, A Levinsky, F Franceschini, and P Ferroni. A MOX-fuel core configuration for the Westinghouse Lead Fast Reactor. In Proceedings of International Congress on Advances in Nuclear Power Plants. France, 2019.[BibTeX]
  5. Chang Ho Lee, Yeon Sang Jung, and Won Sik Yang. MC2-3: Multigroup Cross Section Generation Code for Fast Reactor Analysis. Technical Report ANL/NE-11/41 Rev.3, Argonne National Laboratory, 2018.[BibTeX]
  6. A.J. Novak, D. Andrs, P. Shriwise, J. Fang, H. Yuan, D. Shaver, E. Merzari, P.K. Romano, and R.C. Martineau. Coupled Monte Carlo and thermal-fluid modeling of high temperature gas reactors using Cardinal. Annals of Nuclear Energy, 177:109310, 2022.[BibTeX]
  7. Emily Shemon, Yinbin Miao, Shikhar Kumar, Kun Mo, Yeon Sang Jung, Aaron Oaks, Guillaume Giudicelli, Logan Harbour, and Roy Stogner. MOOSE Reactor Module Meshing Enhancements to Support Reactor Analysis. Technical Report ANL/NSE-22/65, Argonne National Laboratory and Idaho National Laboratory, 2022.[BibTeX]
  8. Emily Shemon, Yiqi Yu, Hansol Park, and Colin Brennan. Assessment of Fast Reactor Hot Channel Factor Calculation Capability in Griffin and NekRS. Technical Report ANL/NSE-21/42, Argonne National Laboratory, Lemont, IL, 2021.[BibTeX]