PorousFlowDictator

Holds information on the PorousFlow variable names

The PorousFlowDictator provides information about the valid PorousFlow variables, as well as the number of fluid components and fluid phases to other PorousFlow objects in a simulation.

commentnote

This must be present in all simulations!

Input Parameters

  • number_fluid_componentsThe number of fluid components in the simulation

    C++ Type:unsigned int

    Controllable:No

    Description:The number of fluid components in the simulation

  • number_fluid_phasesThe number of fluid phases in the simulation

    C++ Type:unsigned int

    Controllable:No

    Description:The number of fluid phases in the simulation

  • porous_flow_varsList of primary variables that are used in the PorousFlow simulation. Jacobian entries involving derivatives wrt these variables will be computed. In single-phase models you will just have one (eg 'pressure'), in two-phase models you will have two (eg 'p_water p_gas', or 'p_water s_water'), etc.

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:List of primary variables that are used in the PorousFlow simulation. Jacobian entries involving derivatives wrt these variables will be computed. In single-phase models you will just have one (eg 'pressure'), in two-phase models you will have two (eg 'p_water p_gas', or 'p_water s_water'), etc.

Required Parameters

  • aqueous_phase_number0The fluid phase number of the aqueous phase in which the equilibrium and kinetic chemical reactions occur

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The fluid phase number of the aqueous phase in which the equilibrium and kinetic chemical reactions occur

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.

  • number_aqueous_equilibrium0The number of secondary species in the aqueous-equilibrium reaction system. (Leave as zero if the simulation does not involve chemistry)

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The number of secondary species in the aqueous-equilibrium reaction system. (Leave as zero if the simulation does not involve chemistry)

  • number_aqueous_kinetic0The number of secondary species in the aqueous-kinetic reaction system involved in precipitation and dissolution. (Leave as zero if the simulation does not involve chemistry)

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The number of secondary species in the aqueous-kinetic reaction system involved in precipitation and dissolution. (Leave as zero if the simulation does not involve chemistry)

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

    Default:0

    C++ Type:int

    Controllable:No

    Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

Input Files