PorousFlowThermalConductivityIdeal

This Material calculates rock-fluid combined thermal conductivity by using a weighted sum. Thermal conductivity = dry_thermal_conductivity + S^exponent * (wet_thermal_conductivity - dry_thermal_conductivity), where S is the aqueous saturation

Input Parameters

  • PorousFlowDictatorThe UserObject that holds the list of PorousFlow variable names

    C++ Type:UserObjectName

    Options:

    Description:The UserObject that holds the list of PorousFlow variable names

  • dry_thermal_conductivityThe thermal conductivity of the rock matrix when the aqueous saturation is zero

    C++ Type:libMesh::TensorValue

    Options:

    Description:The thermal conductivity of the rock matrix when the aqueous saturation is zero

Required Parameters

  • at_nodesFalseEvaluate Material properties at nodes instead of quadpoints

    Default:False

    C++ Type:bool

    Options:

    Description:Evaluate Material properties at nodes instead of quadpoints

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Options:

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.

  • exponent1Exponent on saturation. Thermal conductivity = dry_thermal_conductivity + S^exponent * (wet_thermal_conductivity - dry_thermal_conductivity), where S is the aqueous saturation

    Default:1

    C++ Type:double

    Options:

    Description:Exponent on saturation. Thermal conductivity = dry_thermal_conductivity + S^exponent * (wet_thermal_conductivity - dry_thermal_conductivity), where S is the aqueous saturation

  • wet_thermal_conductivityThe thermal conductivity of the rock matrix when the aqueous saturation is unity. This defaults to dry_thermal_conductivity.

    C++ Type:libMesh::TensorValue

    Options:

    Description:The thermal conductivity of the rock matrix when the aqueous saturation is unity. This defaults to dry_thermal_conductivity.

  • aqueous_phase_number0The phase number of the aqueous phase. In simulations without fluids, this parameter and the exponent parameter will not be used: only the dry_thermal_conductivity will be used.

    Default:0

    C++ Type:unsigned int

    Options:

    Description:The phase number of the aqueous phase. In simulations without fluids, this parameter and the exponent parameter will not be used: only the dry_thermal_conductivity will be used.

  • boundaryThe list of boundary IDs from the mesh where this boundary condition applies

    C++ Type:std::vector

    Options:

    Description:The list of boundary IDs from the mesh where this boundary condition applies

  • blockThe list of block ids (SubdomainID) that this object will be applied

    C++ Type:std::vector

    Options:

    Description:The list of block ids (SubdomainID) that this object will be applied

Optional Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector

    Options:

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector

    Options:

    Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Options:

    Description:Set the enabled status of the MooseObject.

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Options:

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector

    Options:

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Options:

    Description:The seed for the master random number generator

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Options:

    Description:Determines whether this object is calculated using an implicit or explicit form

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Options:NONE ELEMENT SUBDOMAIN

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

Advanced Parameters

Input Files