- PorousFlowDictatorThe UserObject that holds the list of PorousFlow variable namesC++ Type:UserObjectName Controllable:No Description:The UserObject that holds the list of PorousFlow variable names 
- gravityGravitational acceleration vector downwards (m/s^2)C++ Type:libMesh::VectorValue<double> Unit:(no unit assumed) Controllable:No Description:Gravitational acceleration vector downwards (m/s^2) 
- variableThe name of the variable that this residual object operates onC++ Type:NonlinearVariableName Unit:(no unit assumed) Controllable:No Description:The name of the variable that this residual object operates on 
PorousFlowAdvectiveFlux
Fully-upwinded advective flux of the component given by fluid_component
This Kernel implements the weak form of  where all parameters are defined in the nomenclature.
A fully-upwinded version is implemented, where the mobility of the upstream nodes is used.
See upwinding for details. Other Kernels implement Kuzmin-Turek TVD stabilization.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be appliedC++ Type:std::vector<SubdomainName> Controllable:No Description:The list of blocks (ids or names) that this object will be applied 
- displacementsThe displacementsC++ Type:std::vector<VariableName> Unit:(no unit assumed) Controllable:No Description:The displacements 
- fallback_schemequickquick: use nodal mobility without preserving mass. harmonic: use a harmonic mean of nodal mobilities and preserve fluid massDefault:quick C++ Type:MooseEnum Options:quick, harmonic Controllable:No Description:quick: use nodal mobility without preserving mass. harmonic: use a harmonic mean of nodal mobilities and preserve fluid mass 
- fluid_component0The index corresponding to the fluid component for this kernelDefault:0 C++ Type:unsigned int Controllable:No Description:The index corresponding to the fluid component for this kernel 
- full_upwind_threshold5If, for each timestep, the number of upwind-downwind swaps in an element is less than this quantity, then full upwinding is used for that element. Otherwise the fallback scheme is employed.Default:5 C++ Type:unsigned int Controllable:No Description:If, for each timestep, the number of upwind-downwind swaps in an element is less than this quantity, then full upwinding is used for that element. Otherwise the fallback scheme is employed. 
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)Default:False C++ Type:bool Controllable:No Description:Whether this object is only doing assembly to matrices (no vectors) 
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contributionC++ Type:std::vector<TagName> Controllable:No Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution 
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fillC++ Type:std::vector<TagName> Controllable:No Description:The extra tags for the matrices this Kernel should fill 
- extra_vector_tagsThe extra tags for the vectors this Kernel should fillC++ Type:std::vector<TagName> Controllable:No Description:The extra tags for the vectors this Kernel should fill 
- matrix_tagssystemThe tag for the matrices this Kernel should fillDefault:system C++ Type:MultiMooseEnum Options:nontime, system Controllable:No Description:The tag for the matrices this Kernel should fill 
- vector_tagsnontimeThe tag for the vectors this Kernel should fillDefault:nontime C++ Type:MultiMooseEnum Options:nontime, time Controllable:No Description:The tag for the vectors this Kernel should fill 
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.C++ Type:std::vector<std::string> Controllable:No Description:Adds user-defined labels for accessing object parameters via control logic. 
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)C++ Type:std::vector<AuxVariableName> Unit:(no unit assumed) Controllable:No Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.) 
- enableTrueSet the enabled status of the MooseObject.Default:True C++ Type:bool Controllable:Yes Description:Set the enabled status of the MooseObject. 
- implicitTrueDetermines whether this object is calculated using an implicit or explicit formDefault:True C++ Type:bool Controllable:No Description:Determines whether this object is calculated using an implicit or explicit form 
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)C++ Type:std::vector<AuxVariableName> Unit:(no unit assumed) Controllable:No Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.) 
- search_methodnearest_node_connected_sidesChoice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).Default:nearest_node_connected_sides C++ Type:MooseEnum Options:nearest_node_connected_sides, all_proximate_sides Controllable:No Description:Choice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes). 
- seed0The seed for the master random number generatorDefault:0 C++ Type:unsigned int Controllable:No Description:The seed for the master random number generator 
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.Default:False C++ Type:bool Controllable:No Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used. 
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.C++ Type:MaterialPropertyName Unit:(no unit assumed) Controllable:No Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character. 
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.Default:False C++ Type:bool Controllable:No Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction. 
Material Property Retrieval Parameters
Input Files
- (modules/porous_flow/test/tests/hysteresis/2phasePS_jac.i)
- (modules/porous_flow/test/tests/dirackernels/theis2.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/rsc01.i)
- (modules/porous_flow/test/tests/heterogeneous_materials/constant_poroperm3.i)
- (modules/porous_flow/examples/lava_lamp/2phase_convection.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_steady.i)
- (modules/porous_flow/test/tests/desorption/desorption02.i)
- (modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fullsat.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro05.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro04.i)
- (modules/porous_flow/test/tests/hysteresis/2phasePP_jac.i)
- (modules/porous_flow/test/tests/heat_advection/heat_advection_1d.i)
- (modules/porous_flow/test/tests/chemistry/2species_equilibrium_2phase.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/rd02.i)
- (modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
- (modules/porous_flow/test/tests/newton_cooling/nc02.i)
- (modules/porous_flow/test/tests/gravity/grav02a.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/wli01.i)
- (modules/porous_flow/test/tests/dirackernels/hfrompps.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_transient.i)
- (modules/porous_flow/test/tests/poro_elasticity/mandel.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_adaptivity.i)
- (modules/porous_flow/test/tests/jacobian/fflux04.i)
- (modules/porous_flow/test/tests/poro_elasticity/terzaghi_constM.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phase_monomial.i)
- (modules/porous_flow/examples/tutorial/11_2D.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_MD.i)
- (modules/porous_flow/test/tests/actions/addmaterials2.i)
- (modules/porous_flow/test/tests/poroperm/PermTensorFromVar03.i)
- (modules/porous_flow/test/tests/adaptivity/tet4_adaptivity.i)
- (modules/porous_flow/examples/tutorial/13.i)
- (modules/porous_flow/test/tests/recover/theis.i)
- (modules/porous_flow/test/tests/hysteresis/relperm_jac_1.i)
- (modules/porous_flow/test/tests/sinks/injection_production_eg.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_3comp.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/rd03.i)
- (modules/porous_flow/test/tests/actions/addmaterials.i)
- (modules/porous_flow/test/tests/jacobian/fflux02.i)
- (modules/porous_flow/test/tests/numerical_diffusion/no_action.i)
- (modules/porous_flow/test/tests/gravity/grav01a.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG2.i)
- (modules/porous_flow/test/tests/jacobian/fflux08.i)
- (modules/porous_flow/test/tests/jacobian/waterncg_liquid.i)
- (modules/porous_flow/test/tests/jacobian/fflux03.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_transient.i)
- (modules/porous_flow/test/tests/poro_elasticity/terzaghi.i)
- (modules/porous_flow/test/tests/gravity/grav01c.i)
- (modules/porous_flow/test/tests/fluidstate/coldwater_injection.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM.i)
- (modules/porous_flow/test/tests/newton_cooling/nc08.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2comp.i)
- (modules/porous_flow/test/tests/jacobian/waterncg_twophase.i)
- (modules/porous_flow/examples/lava_lamp/1phase_convection.i)
- (modules/porous_flow/test/tests/poro_elasticity/mandel_constM.i)
- (modules/porous_flow/test/tests/dispersion/disp01.i)
- (modules/porous_flow/test/tests/actions/block_restricted_materials.i)
- (modules/porous_flow/test/tests/sinks/s09.i)
- (modules/porous_flow/examples/flow_through_fractured_media/coarse.i)
- (modules/porous_flow/test/tests/newton_cooling/nc01.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation.i)
- (modules/porous_flow/test/tests/jacobian/fflux06.i)
- (modules/porous_flow/test/tests/jacobian/fflux07.i)
- (modules/porous_flow/test/tests/aux_kernels/properties.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/rsc02.i)
- (modules/porous_flow/test/tests/actions/block_restricted_and_not.i)
- (modules/porous_flow/test/tests/jacobian/fflux01.i)
- (modules/porous_flow/test/tests/dirackernels/bh07.i)
- (modules/porous_flow/test/tests/jacobian/outflowbc04.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phase.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro03.i)
- (modules/porous_flow/test/tests/gravity/grav02f.i)
- (modules/porous_flow/examples/restart/gas_injection.i)
- (modules/porous_flow/examples/thm_example/2D.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_gas.i)
- (modules/porous_flow/test/tests/sinks/injection_production_eg_outflowBC.i)
- (modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
- (modules/porous_flow/test/tests/fluidstate/coldwater_injection_radial.i)
- (modules/porous_flow/test/tests/gravity/grav02c.i)
- (modules/porous_flow/test/tests/jacobian/waterncg_twophase_nonisothermal.i)
- (modules/porous_flow/test/tests/jacobian/fflux09.i)
- (modules/porous_flow/test/tests/dirackernels/theis3.i)
- (modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
- (modules/porous_flow/test/tests/hysteresis/relperm_jac.i)
- (modules/porous_flow/test/tests/gravity/grav02g.i)
- (modules/porous_flow/test/tests/actions/multiblock.i)
- (modules/porous_flow/examples/flow_through_fractured_media/coarse_3D.i)
- (modules/porous_flow/test/tests/adaptivity/hex_adaptivity.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_twophase.i)
- (modules/porous_flow/test/tests/jacobian/fflux10.i)
- (modules/porous_flow/test/tests/jacobian/fflux12.i)
- (modules/porous_flow/test/tests/dirackernels/theis1.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_steady.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro02.i)
- (modules/porous_flow/test/tests/jacobian/fflux11.i)
- (modules/porous_flow/test/tests/jacobian/fflux14.i)
- (modules/porous_flow/test/tests/heterogeneous_materials/constant_poroperm.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_liquid_2.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG.i)
- (modules/porous_flow/test/tests/adaptivity/quad_adaptivity.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/rd01.i)
- (modules/porous_flow/test/tests/poroperm/PermTensorFromVar01.i)
- (modules/porous_flow/test/tests/fluidstate/theis.i)
- (modules/porous_flow/test/tests/jacobian/fflux15.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS.i)
- (modules/porous_flow/test/tests/gravity/grav01b.i)
- (modules/porous_flow/examples/coal_mining/coarse_with_fluid.i)
- (modules/porous_flow/test/tests/heterogeneous_materials/constant_poroperm2.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_liquid.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/bw02.i)
- (modules/porous_flow/test/tests/gravity/grav02b.i)
- (modules/porous_flow/test/tests/fluidstate/theis_nonisothermal.i)
- (modules/porous_flow/test/tests/jacobian/fflux13.i)
- (modules/porous_flow/examples/tutorial/10.i)
- (modules/porous_flow/test/tests/poroperm/PermTensorFromVar02.i)
- (modules/porous_flow/test/tests/newton_cooling/nc06.i)
- (modules/porous_flow/test/tests/dispersion/disp01_heavy.i)
- (modules/porous_flow/test/tests/buckley_leverett/bl01.i)
- (modules/porous_flow/test/tests/gravity/grav02d.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
- (modules/porous_flow/examples/coal_mining/fine_with_fluid.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/bw01.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_twophase_nonisothermal.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined.i)
- (modules/porous_flow/test/tests/dispersion/diff01.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro01.i)
- (modules/porous_flow/test/tests/jacobian/fflux05.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/wli02.i)
- (modules/porous_flow/test/tests/gravity/grav02e.i)
- (modules/porous_flow/examples/tutorial/11.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_steady.i)
- (modules/porous_flow/test/tests/adaptivity/tri3_adaptivity.i)
- (modules/porous_flow/examples/thm_example/2D_c.i)
- (modules/porous_flow/test/tests/gravity/grav01d.i)
- (modules/porous_flow/test/tests/jacobian/waterncg_gas.i)
(modules/porous_flow/test/tests/hysteresis/2phasePS_jac.i)
# Test of derivatives computed in PorousFlow2PhaseHysPS
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '-1 0 0'
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    number_fluid_phases = 2
    number_fluid_components = 2
    porous_flow_vars = 'pp0 sat1'
  []
[]
[Variables]
  [pp0]
  []
  [sat1]
    initial_condition = 0.2
  []
[]
[Kernels]
  [mass_conservation0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp0
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp0
  []
  [mass_conservation1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sat1
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[FluidProperties]
  [simple_fluid_0]
    type = SimpleFluidProperties
    bulk_modulus = 10
    viscosity = 1
  []
  [simple_fluid_1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    viscosity = 3
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
  [hys_order_material]
    type = PorousFlowHysteresisOrder
  []
  [pc_calculator]
    type = PorousFlow2PhaseHysPS
    alpha_d = 10.0
    alpha_w = 7.0
    n_d = 1.5
    n_w = 1.9
    S_l_min = 0.1
    S_lr = 0.2
    S_gr_max = 0.3
    Pc_max = 12.0
    high_ratio = 0.9
    low_extension_type = quadratic
    high_extension_type = power
    phase0_porepressure = pp0
    phase1_saturation = sat1
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_check_jacobian'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/dirackernels/theis2.i)
# Theis problem: Flow to single sink
# Constant rate injection between 200 and 1000 s.
# Cartesian mesh with logarithmic distribution in x and y.
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 20
  ny = 20
  bias_x = 1.1
  bias_y = 1.1
  ymax = 100
  xmax = 100
  # To get consistent ordering of results with distributed meshes
  allow_renumbering = false
[]
[GlobalParams]
  PorousFlowDictator = dictator
  compute_enthalpy = false
  compute_internal_energy = false
[]
[Variables]
  [pp]
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-7
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 0.001
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 200
  end_time = 1000
  nl_abs_tol = 1e-10
[]
[Outputs]
  perf_graph = true
  file_base = theis2
  [csv]
    type = CSV
    execute_on = final
  []
[]
[ICs]
  [PressureIC]
    variable = pp
    type = ConstantIC
    value = 20e6
  []
[]
[DiracKernels]
  [sink]
    type = PorousFlowSquarePulsePointSource
    start_time = 200
    end_time = 1000
    point = '0 0 0'
    mass_flux = -0.04
    variable = pp
  []
[]
[BCs]
  [right]
    type = DirichletBC
    variable = pp
    value = 20e6
    boundary = right
  []
  [top]
    type = DirichletBC
    variable = pp
    value = 20e6
    boundary = top
  []
[]
[VectorPostprocessors]
  [pressure]
    type = SideValueSampler
    variable = pp
    sort_by = x
    execute_on = timestep_end
    boundary = bottom
  []
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/rsc01.i)
# RSC test with high-res time and spatial resolution
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 600
  ny = 1
  xmin = 0
  xmax = 10 # x is the depth variable, called zeta in RSC
  ymin = 0
  ymax = 0.05
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    y = '3E-3 3E-2 0.05'
    x = '0 1 5'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater poil'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureRSC
    oil_viscosity = 2E-3
    scale_ratio = 2E3
    shift = 10
  []
[]
[FluidProperties]
  [water]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [oil]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 20
    thermal_expansion = 0
    viscosity = 2e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = pwater
    phase1_porepressure = poil
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = water
    phase = 0
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [oil]
    type = PorousFlowSingleComponentFluid
    fp = oil
    phase = 1
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_oil]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.25
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-5 0 0  0 1E-5 0  0 0 1E-5'
  []
[]
[Variables]
  [pwater]
  []
  [poil]
  []
[]
[ICs]
  [water_init]
    type = ConstantIC
    variable = pwater
    value = 0
  []
  [oil_init]
    type = ConstantIC
    variable = poil
    value = 15
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = poil
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = poil
  []
[]
[AuxVariables]
  [SWater]
    family = MONOMIAL
    order = CONSTANT
  []
  [SOil]
    family = MONOMIAL
    order = CONSTANT
  []
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[AuxKernels]
  [SWater]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 0
    variable = SWater
  []
  [SOil]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 1
    variable = SOil
  []
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously.  this adversely affects convergence because of almost-overflows and precision-loss problems.  The fixed things help keep pressures low and so prevent these awful behaviours.   the movement of the saturation front is the same regardless of the fixed things.
  active = 'recharge fixedoil fixedwater'
  [recharge]
    type = PorousFlowSink
    variable = pwater
    boundary = 'left'
    flux_function = -1.0
  []
  [fixedwater]
    type = DirichletBC
    variable = pwater
    boundary = 'right'
    value = 0
  []
  [fixedoil]
    type = DirichletBC
    variable = poil
    boundary = 'right'
    value = 15
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-10      1E-10      10000'
  []
[]
[VectorPostprocessors]
  [swater]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = SWater
    start_point = '0 0 0'
    end_point = '7 0 0'
    sort_by = x
    num_points = 21
    execute_on = timestep_end
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  petsc_options = '-snes_converged_reason'
  end_time = 5
  [TimeStepper]
    type = FunctionDT
    function = dts
  []
[]
[Outputs]
  file_base = rsc01
  [along_line]
    type = CSV
    execute_vector_postprocessors_on = final
  []
  [exodus]
    type = Exodus
    execute_on = 'initial final'
  []
[]
(modules/porous_flow/test/tests/heterogeneous_materials/constant_poroperm3.i)
# Assign porosity and permeability variables from constant AuxVariables read from the mesh
# to create a heterogeneous model
[Mesh]
  type = FileMesh
  file = 'gold/constant_poroperm2_out.e'
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 -10'
[]
[Problem]
  allow_initial_conditions_with_restart = true
[]
[Variables]
  [ppwater]
    initial_condition = 1e6
  []
[]
[AuxVariables]
  [poro]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = poro
  []
  [permxx]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = permxx
  []
  [permxy]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = permxy
  []
  [permxz]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = permxz
  []
  [permyx]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = permyx
  []
  [permyy]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = permyy
  []
  [permyz]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = permyz
  []
  [permzx]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = permzx
  []
  [permzy]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = permzy
  []
  [permzz]
    family = MONOMIAL
    order = CONSTANT
    initial_from_file_var = permzz
  []
  [poromat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxxmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxymat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxzmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyxmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyymat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyzmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzxmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzymat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzzmat]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [poromat]
    type = PorousFlowPropertyAux
    property = porosity
    variable = poromat
  []
  [permxxmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permxxmat
    column = 0
    row = 0
  []
  [permxymat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permxymat
    column = 1
    row = 0
  []
  [permxzmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permxzmat
    column = 2
    row = 0
  []
  [permyxmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permyxmat
    column = 0
    row = 1
  []
  [permyymat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permyymat
    column = 1
    row = 1
  []
  [permyzmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permyzmat
    column = 2
    row = 1
  []
  [permzxmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permzxmat
    column = 0
    row = 2
  []
  [permzymat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permzymat
    column = 1
    row = 2
  []
  [permzzmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permzzmat
    column = 2
    row = 2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = ppwater
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = poro
  []
  [permeability]
    type = PorousFlowPermeabilityConstFromVar
    perm_xx = permxx
    perm_xy = permxy
    perm_xz = permxz
    perm_yx = permyx
    perm_yy = permyy
    perm_yz = permyz
    perm_zx = permzx
    perm_zy = permzy
    perm_zz = permzz
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 100
  dt = 100
[]
[Outputs]
  execute_on = 'initial timestep_end'
  exodus = true
  perf_graph = true
  file_base = constant_poroperm2_out
[]
(modules/porous_flow/examples/lava_lamp/2phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# Initially, the model has a gas phase at the top with a saturation of 0.29
# (which corresponds to an initial value of zi = 0.2).
# Diffusion of the dissolved CO2
# component from the saturated liquid to the unsaturated liquid below reduces the
# amount of CO2 in the gas phase. As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores,
# preferably on a cluster.
[GlobalParams]
  PorousFlowDictator = 'dictator'
  gravity = '0 -9.81 0'
[]
[Adaptivity]
  max_h_level = 2
  marker = marker
  initial_marker = initial
  initial_steps = 2
  [Indicators]
    [indicator]
      type = GradientJumpIndicator
      variable = zi
    []
  []
  [Markers]
    [marker]
      type = ErrorFractionMarker
      indicator = indicator
      refine = 0.8
    []
    [initial]
      type = BoxMarker
      bottom_left = '0 1.95 0'
      top_right = '2 2 0'
      inside = REFINE
      outside = DO_NOTHING
    []
  []
[]
[Mesh]
  type = GeneratedMesh
  dim = 2
  ymax = 2
  xmax = 2
  ny = 40
  nx = 40
  bias_y = 0.95
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = pgas
    disp_long = '0 0'
    disp_trans = '0 0'
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = zi
    disp_long = '0 0'
    disp_trans = '0 0'
  []
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.01
  []
  [saturation_gas]
    order = FIRST
    family = MONOMIAL
  []
  [xco2l]
    order = FIRST
    family = MONOMIAL
  []
  [density_liquid]
    order = FIRST
    family = MONOMIAL
  []
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = 'timestep_end'
  []
  [xco2l]
    type = PorousFlowPropertyAux
    variable = xco2l
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = 'timestep_end'
  []
  [density_liquid]
    type = PorousFlowPropertyAux
    variable = density_liquid
    property = density
    phase = 0
    execute_on = 'timestep_end'
  []
[]
[Variables]
  [pgas]
  []
  [zi]
    scaling = 1e4
  []
[]
[ICs]
  [pressure]
    type = FunctionIC
    function = 10e6-9.81*1000*y
    variable = pgas
  []
  [zi]
    type = BoundingBoxIC
    variable = zi
    x1 = 0
    x2 = 2
    y1 = 1.95
    y2 = 2
    inside = 0.2
    outside = 0
  []
  [porosity]
    type = RandomIC
    variable = porosity
    min = 0.25
    max = 0.275
    seed = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2sw]
    type = CO2FluidProperties
  []
  [co2]
    type = TabulatedBicubicFluidProperties
    fp = co2sw
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = '45'
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = 'pgas'
    z = 'zi'
    temperature_unit = Celsius
    xnacl = 'xnacl'
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = porosity
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 2
    s_res = 0.1
    sum_s_res = 0.2
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
    s_res = 0.1
    sum_s_res = 0.2
  []
  [diffusivity]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
    tortuosity = '1 1'
  []
[]
[Preconditioning]
  active = basic
  [mumps_is_best_for_parallel_jobs]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e6
  nl_max_its = 25
  l_max_its = 100
  dtmax = 1e4
  nl_abs_tol = 1e-6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 10
    growth_factor = 2
    cutback_factor = 0.5
  []
[]
[Functions]
  [flux]
    type = ParsedFunction
    symbol_values = 'delta_xco2 dt'
    symbol_names = 'dx dt'
    expression = 'dx/dt'
  []
[]
[Postprocessors]
  [total_co2_in_gas]
    type = PorousFlowFluidMass
    phase = 1
    fluid_component = 1
  []
  [total_co2_in_liquid]
    type = PorousFlowFluidMass
    phase = 0
    fluid_component = 1
  []
  [numdofs]
    type = NumDOFs
  []
  [delta_xco2]
    type = ChangeOverTimePostprocessor
    postprocessor = total_co2_in_liquid
  []
  [dt]
    type = TimestepSize
  []
  [flux]
    type = FunctionValuePostprocessor
    function = flux
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  exodus = true
  csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_steady.i)
# Pressure pulse in 1D with 1 phase - steady
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    initial_condition = 2E6
  []
[]
[Kernels]
  active = flux
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-7
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    value = 3E6
    variable = pp
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
[]
[Postprocessors]
  [p000]
    type = PointValue
    variable = pp
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [p010]
    type = PointValue
    variable = pp
    point = '10 0 0'
    execute_on = 'initial timestep_end'
  []
  [p020]
    type = PointValue
    variable = pp
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [p030]
    type = PointValue
    variable = pp
    point = '30 0 0'
    execute_on = 'initial timestep_end'
  []
  [p040]
    type = PointValue
    variable = pp
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [p050]
    type = PointValue
    variable = pp
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [p060]
    type = PointValue
    variable = pp
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [p070]
    type = PointValue
    variable = pp
    point = '70 0 0'
    execute_on = 'initial timestep_end'
  []
  [p080]
    type = PointValue
    variable = pp
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [p090]
    type = PointValue
    variable = pp
    point = '90 0 0'
    execute_on = 'initial timestep_end'
  []
  [p100]
    type = PointValue
    variable = pp
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_steady
  print_linear_residuals = false
  csv = true
[]
(modules/porous_flow/test/tests/desorption/desorption02.i)
# Illustrates desorption works as planned.
#
# A mesh contains 3 elements in arranged in a line.
# The central element contains desorped fluid.
# This desorps to the nodes of that element.
#
# In the central element, of volume V, the following occurs.
# The initial porepressure=1, and concentration=1.
# The initial mass of fluid is
# V * (2 * porosity * density + (1 - porosity) * concentration)
# = V * 1.289547
# Notice the factor of "2" in the porespace contribution:
# it is because the porepressure is evaluated at nodes, so
# the nodes on the exterior of the centre_block have
# nodal-volume contributions from the elements not in centre_block.
#
# The mass-conservation equation reads
# 2 * porosity * density + (1 - porosity) * concentration = 1.289547
# and the desorption equation reads
# d( (1-porosity)C )/dt = - (1/tau)(C - dens_L * P / (P_L + P))
# where C = concentration, P = porepressure, P_L = Langmuir pressure
# dens_L = Langmuir density, tau = time constant.
# Using the mass-conservation equation in the desorption equation
# yields a nonlinear equation of P.  For dt=1, and the numerical values
# given below this yields
# P = 1.83697
# and
# C = 0.676616
# The desired result is achieved by MOOSE
[Mesh]
  type = FileMesh
  file = three_eles.e
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [conc]
    family = MONOMIAL
    order = CONSTANT
    block = centre_block
  []
[]
[ICs]
  [p_ic]
    type = ConstantIC
    variable = pp
    value = 1.0
  []
  [conc_ic]
    type = ConstantIC
    variable = conc
    value = 1.0
    block = centre_block
  []
[]
[Kernels]
  [porespace_mass_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [fluid_flow]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
     variable = pp
     gravity = '0 0 0'
  []
  [desorped_mass_dot]
    type = PorousFlowDesorpedMassTimeDerivative
    block = centre_block
    conc_var = conc
    variable = pp
  []
  [desorped_mass_dot_conc_var]
    type = PorousFlowDesorpedMassTimeDerivative
    block = centre_block
    conc_var = conc
    variable = conc
  []
  [flow_from_matrix]
    type = DesorptionFromMatrix
    block = centre_block
    variable = conc
    pressure_var = pp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp conc'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    viscosity = 1
    density0 = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [lang_stuff]
    type = LangmuirMaterial
    block = centre_block
    one_over_adsorption_time_const = 10.0
    one_over_desorption_time_const = 10.0
    langmuir_density = 1
    langmuir_pressure = 1
    pressure_var = pp
    conc_var = conc
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '0 0 0  0 0 0  0 0 0'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityFLAC
    m = 1
    phase = 0
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fullsat.i)
# 1phase, heat advecting with a moving fluid
# Full upwinding is used, as implemented by the PorousFlowFullySaturatedUpwindHeatAdvection added
# In this case, the results should be identical to the case when the PorousFlowHeatAdvection Kernel is used.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 50
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [temp]
    initial_condition = 200
  []
  [pp]
  []
[]
[ICs]
  [pp]
    type = FunctionIC
    variable = pp
    function = '1-x'
  []
[]
[BCs]
  [pp0]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
  [pp1]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [spit_heat]
    type = DirichletBC
    variable = temp
    boundary = left
    value = 300
  []
  [suck_heat]
    type = DirichletBC
    variable = temp
    boundary = right
    value = 200
  []
[]
[Kernels]
  [mass_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [advection]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [heat_advection]
    type = PorousFlowFullySaturatedUpwindHeatAdvection
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.6
    alpha = 1.3
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 100
    density0 = 1000
    viscosity = 4.4
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 125
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [PS]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres bjacobi 1E-15 1E-10 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.01
  end_time = 0.6
[]
[VectorPostprocessors]
  [T]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 51
    sort_by = x
    variable = temp
  []
[]
[Outputs]
  [csv]
    type = CSV
    sync_times = '0.1 0.6'
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro05.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * k
# with ln k = A * phi + B
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 3
  xmin = 0
  xmax = 3
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = ConstantIC
      value = 0
    []
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [poro]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_z]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [poro]
    type = PorousFlowPropertyAux
    property = porosity
    variable = poro
  []
  [perm_x]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_bottom]
    type = PointValue
    variable = perm_x
    point = '0 0 0'
  []
  [perm_y_bottom]
    type = PointValue
    variable = perm_y
    point = '0 0 0'
  []
  [perm_z_bottom]
    type = PointValue
    variable = perm_z
    point = '0 0 0'
  []
  [perm_x_top]
    type = PointValue
    variable = perm_x
    point = '3 0 0'
  []
  [perm_y_top]
    type = PointValue
    variable = perm_y
    point = '3 0 0'
  []
  [perm_z_top]
    type = PointValue
    variable = perm_z
    point = '3 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2.2e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityExponential
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = ln_k
    A = 10.0
    B = -18.420681
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = Newton
  type = Steady
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
  petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  petsc_options_value = ' asm      2              lu            gmres     200'
[]
[Outputs]
  csv = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro04.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * k
# with log k = A * phi + B
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 3
  xmin = 0
  xmax = 3
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = ConstantIC
      value = 0
    []
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [poro]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_z]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [poro]
    type = PorousFlowPropertyAux
    property = porosity
    variable = poro
  []
  [perm_x]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_bottom]
    type = PointValue
    variable = perm_x
    point = '0 0 0'
  []
  [perm_y_bottom]
    type = PointValue
    variable = perm_y
    point = '0 0 0'
  []
  [perm_z_bottom]
    type = PointValue
    variable = perm_z
    point = '0 0 0'
  []
  [perm_x_top]
    type = PointValue
    variable = perm_x
    point = '3 0 0'
  []
  [perm_y_top]
    type = PointValue
    variable = perm_y
    point = '3 0 0'
  []
  [perm_z_top]
    type = PointValue
    variable = perm_z
    point = '3 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2.2e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityExponential
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = log_k
    A = 4.342945
    B = -8
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = Newton
  type = Steady
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
  petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  petsc_options_value = ' asm      2              lu            gmres     200'
[]
[Outputs]
  csv = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/hysteresis/2phasePP_jac.i)
# Test of derivatives computed in PorousFlow2PhaseHysPP
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '-1 0 0'
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    number_fluid_phases = 2
    number_fluid_components = 2
    porous_flow_vars = 'pp0 pp1'
  []
[]
[Variables]
  [pp0]
    initial_condition = 0
  []
  [pp1]
    initial_condition = 1
  []
[]
[Kernels]
  [mass_conservation0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp0
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp0
  []
  [mass_conservation1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = pp1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = pp1
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[FluidProperties]
  [simple_fluid_0]
    type = SimpleFluidProperties
    bulk_modulus = 10
    viscosity = 1
  []
  [simple_fluid_1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    viscosity = 3
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
  [hys_order_material]
    type = PorousFlowHysteresisOrder
  []
  [pc_calculator]
    type = PorousFlow2PhaseHysPP
    alpha_d = 10.0
    alpha_w = 7.0
    n_d = 1.5
    n_w = 1.9
    S_l_min = 0.1
    S_lr = 0.2
    S_gr_max = 0.3
    Pc_max = 12.0
    high_ratio = 0.9
    low_extension_type = quadratic
    high_extension_type = power
    phase0_porepressure = pp0
    phase1_porepressure = pp1
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_check_jacobian'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/heat_advection/heat_advection_1d.i)
# 1phase, heat advecting with a moving fluid
# Full upwinding is used
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 50
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [temp]
    initial_condition = 200
  []
  [pp]
  []
[]
[ICs]
  [pp]
    type = FunctionIC
    variable = pp
    function = '1-x'
  []
[]
[BCs]
  [pp0]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
  [pp1]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [spit_heat]
    type = DirichletBC
    variable = temp
    boundary = left
    value = 300
  []
  [suck_heat]
    type = DirichletBC
    variable = temp
    boundary = right
    value = 200
  []
[]
[Kernels]
  [mass_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [advection]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.6
    alpha = 1.3
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 100
    density0 = 1000
    viscosity = 4.4
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 125
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [PS]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres bjacobi 1E-15 1E-10 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.01
  end_time = 0.6
[]
[VectorPostprocessors]
  [T]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 51
    sort_by = x
    variable = temp
  []
[]
[Outputs]
  [csv]
    type = CSV
    sync_times = '0.1 0.6'
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/chemistry/2species_equilibrium_2phase.i)
# Using a two-phase system (see 2species_equilibrium for the single-phase)
# The saturations, porosity, mass fractions, tortuosity and diffusion coefficients are chosen so that the results are identical to 2species_equilibrium
#
# PorousFlow analogy of chemical_reactions/test/tests/aqueous_equilibrium/2species.i
#
# Simple equilibrium reaction example to illustrate the use of PorousFlowMassFractionAqueousEquilibriumChemistry
#
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction:
#
#      reactions = '2a = pa2     rate = 10^2
#                   a + b = pab  rate = 10^-2'
#
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
[]
[Variables]
  [a]
    order = FIRST
    family = LAGRANGE
    [InitialCondition]
      type = BoundingBoxIC
      x1 = 0.0
      y1 = 0.0
      x2 = 1.0e-10
      y2 = 1
      inside = 1.0e-2
      outside = 1.0e-10
    []
  []
  [b]
    order = FIRST
    family = LAGRANGE
    [InitialCondition]
      type = BoundingBoxIC
      x1 = 0.0
      y1 = 0.0
      x2 = 1.0e-10
      y2 = 1
      inside = 1.0e-2
      outside = 1.0e-10
    []
  []
[]
[AuxVariables]
  [eqm_k0]
    initial_condition = 1E2
  []
  [eqm_k1]
    initial_condition = 1E-2
  []
  [pressure0]
  []
  [saturation1]
    initial_condition = 0.25
  []
  [a_in_phase0]
    initial_condition = 0.0
  []
  [b_in_phase0]
    initial_condition = 0.0
  []
  [pa2]
    family = MONOMIAL
    order = CONSTANT
  []
  [pab]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [pa2]
    type = PorousFlowPropertyAux
    property = secondary_concentration
    secondary_species = 0
    variable = pa2
  []
  [pab]
    type = PorousFlowPropertyAux
    property = secondary_concentration
    secondary_species = 1
    variable = pab
  []
[]
[ICs]
  [pressure0]
    type = FunctionIC
    variable = pressure0
    function = 2-x
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Kernels]
  [mass_a]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = a
  []
  [flux_a]
    type = PorousFlowAdvectiveFlux
    variable = a
    fluid_component = 0
  []
  [diff_a]
    type = PorousFlowDispersiveFlux
    variable = a
    fluid_component = 0
    disp_trans = '0 0'
    disp_long = '0 0'
  []
  [mass_b]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = b
  []
  [flux_b]
    type = PorousFlowAdvectiveFlux
    variable = b
    fluid_component = 1
  []
  [diff_b]
    type = PorousFlowDispersiveFlux
    variable = b
    fluid_component = 1
    disp_trans = '0 0'
    disp_long = '0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'a b'
    number_fluid_phases = 2
    number_fluid_components = 3
    number_aqueous_equilibrium = 2
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9 # huge, so mimic chemical_reactions
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pressure0
    phase1_saturation = saturation1
  []
  [massfrac]
    type = PorousFlowMassFractionAqueousEquilibriumChemistry
    mass_fraction_vars = 'a_in_phase0 b_in_phase0 a b'
    num_reactions = 2
    equilibrium_constants = 'eqm_k0 eqm_k1'
    primary_activity_coefficients = '1 1'
    secondary_activity_coefficients = '1 1'
    reactions = '2 0
                 1 1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.8
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    # porous_flow permeability / porous_flow viscosity = chemical_reactions conductivity = 1E-4
    permeability = '1E-7 0 0 0 1E-7 0 0 0 1E-7'
  []
  [relp0]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [relp1]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
  [diff]
    type = PorousFlowDiffusivityConst
    # porous_flow diffusion_coeff * tortuousity * porosity = chemical_reactions diffusivity = 1E-4
    diffusion_coeff = '5E-4 5E-4 5E-4
                       5E-4 5E-4 5E-4'
    tortuosity = '0.25 0.25'
  []
[]
[BCs]
  [a_left]
    type = DirichletBC
    variable = a
    boundary = left
    value = 1.0e-2
  []
  [b_left]
    type = DirichletBC
    variable = b
    boundary = left
    value = 1.0e-2
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 10
  end_time = 100
[]
[Outputs]
  print_linear_residuals = true
  exodus = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/rd02.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 120
  ny = 1
  xmin = 0
  xmax = 6
  ymin = 0
  ymax = 0.05
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    y = '1E-2 1 10 500 5000 50000'
    x = '0 10 100 1000 10000 500000'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = pressure
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.336
    alpha = 1.43e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    viscosity = 1.01e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [massfrac]
    type = PorousFlowMassFraction
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [relperm]
    type = PorousFlowRelativePermeabilityVG
    m = 0.336
    seff_turnover = 0.99
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.33
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '0.295E-12 0 0  0 0.295E-12 0  0 0 0.295E-12'
  []
[]
[Variables]
  [pressure]
    initial_condition = 0.0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pressure
    gravity = '-10 0 0'
  []
[]
[AuxVariables]
  [SWater]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [SWater]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 0
    variable = SWater
  []
[]
[BCs]
  [base]
    type = DirichletBC
    boundary = left
    value = 0.0
    variable = pressure
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-10      1E-10      10'
  []
[]
[VectorPostprocessors]
  [swater]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = SWater
    start_point = '0 0 0'
    end_point = '6 0 0'
    sort_by = x
    num_points = 121
    execute_on = timestep_end
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  petsc_options = '-snes_converged_reason'
  end_time = 345600
  [TimeStepper]
    type = FunctionDT
    function = dts
  []
[]
[Outputs]
  file_base = rd02
  [exodus]
    type = Exodus
    execute_on = 'initial final'
  []
  [along_line]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
# Intercomparison problem 3: Radial flow from an injection well
#
# From Pruess et al, Code intercomparison builds confidence in
# numerical simulation models for geologic disposal of CO2, Energy 29 (2004)
#
# A variation with zero salinity can be run by changing the initial condition
# of the AuxVariable xnacl
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 500
  xmax = 10000
  bias_x = 1.01
  coord_type = 'RZ'
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = 'dictator'
  gravity = '0 0 0'
[]
[AuxVariables]
  [pressure_liquid]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
  [xnacl]
    initial_condition = 0.15
  []
[]
[AuxKernels]
  [pressure_liquid]
    type = PorousFlowPropertyAux
    variable = pressure_liquid
    property = pressure
    phase = 0
    execute_on = 'timestep_end'
  []
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = 'timestep_end'
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = 'timestep_end'
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = 'timestep_end'
  []
[]
[Variables]
  [pgas]
    initial_condition = 12e6
  []
  [zi]
    initial_condition = 0
    scaling = 1e4
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 5.099e-5
    m = 0.457
    sat_lr = 0.0
    pc_max = 1e7
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2sw]
    type = CO2FluidProperties
  []
  [co2]
    type = TabulatedBicubicFluidProperties
    fp = co2sw
  []
  [water]
    type = Water97FluidProperties
  []
  [watertab]
    type = TabulatedBicubicFluidProperties
    fp = water
    temperature_min = 273.15
    temperature_max = 573.15
    fluid_property_output_file = water_fluid_properties.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = water_fluid_properties.csv
  []
  [brine]
    type = BrineFluidProperties
    water_fp = watertab
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = '45'
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = 'pgas'
    z = 'zi'
    temperature_unit = Celsius
    xnacl = 'xnacl'
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = '0.12'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityVG
    m = 0.457
    phase = 0
    s_res = 0.3
    sum_s_res = 0.35
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
    s_res = 0.05
    sum_s_res = 0.35
  []
[]
[BCs]
  [rightwater]
    type = PorousFlowPiecewiseLinearSink
    boundary = 'right'
    variable = pgas
    use_mobility = true
    PorousFlowDictator = dictator
    fluid_phase = 0
    multipliers = '0 1e9'
    PT_shift = '12e6'
    pt_vals = '0 1e9'
    mass_fraction_component = 0
    use_relperm = true
  []
  [rightco2]
    type = PorousFlowPiecewiseLinearSink
    variable = zi
    boundary = 'right'
    use_mobility = true
    PorousFlowDictator = dictator
    fluid_phase = 1
    multipliers = '0 1e9'
    PT_shift = '12e6'
    pt_vals = '0 1e9'
    mass_fraction_component = 1
    use_relperm = true
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 1
    variable = zi
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type'
    petsc_options_value = 'gmres bjacobi lu NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 8.64e8
  nl_max_its = 25
  l_max_its = 100
  dtmax = 5e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 100
  []
[]
[VectorPostprocessors]
  [vars]
    type = NodalValueSampler
    sort_by = x
    variable = 'pgas zi xnacl'
    execute_on = 'timestep_end'
    outputs = spatial
  []
  [auxvars]
    type = ElementValueSampler
    sort_by = x
    variable = 'saturation_gas x1 y0'
    execute_on = 'timestep_end'
    outputs = spatial
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '25.25 0 0'
    variable = pgas
    outputs = time
  []
  [sgas]
    type = PointValue
    point = '25.25 0 0'
    variable = saturation_gas
    outputs = time
  []
  [zi]
    type = PointValue
    point = '25.25 0 0'
    variable = zi
    outputs = time
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
    outputs = time
  []
  [x1]
    type = PointValue
    point = '25.25 0 0'
    variable = x1
    outputs = time
  []
  [y0]
    type = PointValue
    point = '25.25 0 0'
    variable = y0
    outputs = time
  []
  [xnacl]
    type = PointValue
    point = '25.25 0 0'
    variable = xnacl
    outputs = time
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  sync_times = '2.592e6 8.64e6 8.64e7 8.64e8'
  [time]
    type = CSV
  []
  [spatial]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/newton_cooling/nc02.i)
# Newton cooling from a bar.  1-phase steady
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 1000
  ny = 1
  xmin = 0
  xmax = 100
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pressure'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-5
  []
[]
[Variables]
  [pressure]
  []
[]
[ICs]
  [pressure]
    type = FunctionIC
    variable = pressure
    function = '(2-x/100)*1E6'
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    gravity = '0 0 0'
    variable = pressure
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e6
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey # irrelevant in this fully-saturated situation
    n = 2
    phase = 0
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = pressure
    boundary = left
    value = 2E6
  []
  [newton]
    type = PorousFlowPiecewiseLinearSink
    variable = pressure
    boundary = right
    pt_vals = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
    multipliers = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
    use_mobility = false
    use_relperm = false
    fluid_phase = 0
    flux_function = 1
  []
[]
[VectorPostprocessors]
  [porepressure]
    type = LineValueSampler
    variable = pressure
    start_point = '0 0.5 0'
    end_point = '100 0.5 0'
    sort_by = x
    num_points = 20
    execute_on = timestep_end
  []
[]
[Preconditioning]
  active = 'andy'
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_max_it -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol '
    petsc_options_value = 'gmres asm lu 100 NONZERO 2 1E-12 1E-15'
  []
[]
[Executioner]
  type = Steady
[]
[Outputs]
  file_base = nc02
  execute_on = timestep_end
  exodus = false
  [along_line]
    type = CSV
    execute_vector_postprocessors_on = timestep_end
  []
[]
(modules/porous_flow/test/tests/gravity/grav02a.i)
# Checking that gravity head is established in the transient situation when 0<saturation<1 (note the strictly less-than).
# 2phase (PP), 2components, vanGenuchten, constant fluid bulk-moduli for each phase, constant viscosity, constant permeability, Corey relative perm
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = -1
  xmax = 0
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
    initial_condition = -1.0
  []
  [ppgas]
    initial_condition = 0
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 0 0'
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = ppgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = ppgas
    gravity = '-1 0 0'
  []
[]
[Functions]
  [ana_ppwater]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 2 pp_water_top 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
  [ana_ppgas]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 1 pp_gas_top 0.1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    viscosity = 0.5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[Postprocessors]
  [pp_water_top]
    type = PointValue
    variable = ppwater
    point = '0 0 0'
  []
  [pp_water_base]
    type = PointValue
    variable = ppwater
    point = '-1 0 0'
  []
  [pp_water_analytical]
    type = FunctionValuePostprocessor
    function = ana_ppwater
    point = '-1 0 0'
  []
  [pp_gas_top]
    type = PointValue
    variable = ppgas
    point = '0 0 0'
  []
  [pp_gas_base]
    type = PointValue
    variable = ppgas
    point = '-1 0 0'
  []
  [pp_gas_analytical]
    type = FunctionValuePostprocessor
    function = ana_ppgas
    point = '-1 0 0'
  []
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.1
  end_time = 1.0
  nl_rel_tol = 1E-10
  nl_abs_tol = 1E-12
[]
[Outputs]
  [csv]
    type = CSV
    file_base = grav02a
    execute_on = 'initial final'
  []
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/wli01.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 1000
  ny = 1
  xmin = -10000
  xmax = 0
  ymin = 0
  ymax = 0.05
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = pressure
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureBW
    Sn = 0.0
    Ss = 1.0
    C = 1.5
    las = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    viscosity = 4
    density0 = 10
    thermal_expansion = 0
  []
[]
[Materials]
  [massfrac]
    type = PorousFlowMassFraction
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [relperm]
    type = PorousFlowRelativePermeabilityBW
    Sn = 0.0
    Ss = 1.0
    Kn = 0
    Ks = 1
    C = 1.5
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.25
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
[]
[Variables]
  [pressure]
    initial_condition = -1E-4
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pressure
    gravity = '-0.1 0 0'
  []
[]
[AuxVariables]
  [SWater]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [SWater]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 0
    variable = SWater
  []
[]
[BCs]
  [base]
    type = DirichletBC
    boundary = 'left'
    value = -1E-4
    variable = pressure
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-10      1E-10      10000'
  []
[]
[VectorPostprocessors]
  [swater]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = SWater
    start_point = '-5000 0 0'
    end_point = '0 0 0'
    sort_by = x
    num_points = 71
    execute_on = timestep_end
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  petsc_options = '-snes_converged_reason'
  end_time = 1000
  dt = 1
[]
[Outputs]
  file_base = wli01
  sync_times = '100 500 1000'
  [exodus]
    type = Exodus
    sync_only = true
  []
  [along_line]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/dirackernels/hfrompps.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 3
  ny = 3
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pressure]
  []
  [temperature]
    scaling = 1E-6
  []
[]
[ICs]
  [pressure_ic]
    type = ConstantIC
    variable = pressure
    value = 1e6
  []
  [temperature_ic]
    type = ConstantIC
    variable = temperature
    value = 400
  []
[]
[Kernels]
  [P_time_deriv]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [P_flux]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pressure
    gravity = '0 -9.8 0'
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
 []
  [heat_conduction]
    type = PorousFlowHeatConduction
    variable = temperature
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    variable = temperature
    gravity = '0 -9.8 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pressure temperature'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[Functions]
  [mass_flux_in_fn]
    type = PiecewiseConstant
    direction = left
    xy_data = '
      0    0
      100  0.1
      300  0
      600  0.1
      1400 0
      1500 0.2'
  []
  [T_in_fn]
    type = PiecewiseLinear
    xy_data = '
      0    400
      600  450'
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    at_nodes = true
  []
  [fluid_props]
    type = PorousFlowSingleComponentFluid
    phase = 0
    fp = simple_fluid
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [fp_mat]
    type = FluidPropertiesMaterialPT
    pressure = pressure
    temperature = temperature
    fp = simple_fluid
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 830.0
    density = 2750
  []
  [thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '2.5 0 0  0 2.5 0  0 0 2.5'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.0E-15 0 0  0 1.0E-15 0  0 0 1.0E-14'
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowPointSourceFromPostprocessor
    variable = pressure
    mass_flux = mass_flux_in
    point = '0.5 0.5 0'
  []
  [source_h]
    type = PorousFlowPointEnthalpySourceFromPostprocessor
    variable = temperature
    mass_flux = mass_flux_in
    point = '0.5 0.5 0'
    T_in = T_in
    pressure = pressure
    fp = simple_fluid
  []
[]
[Preconditioning]
  [preferred]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type'
    petsc_options_value = ' lu     '
  []
[]
[Postprocessors]
  [total_mass]
    type = PorousFlowFluidMass
    execute_on = 'initial timestep_end'
  []
  [total_heat]
    type = PorousFlowHeatEnergy
  []
  [mass_flux_in]
    type = FunctionValuePostprocessor
    function = mass_flux_in_fn
    execute_on = 'initial timestep_end'
  []
  [avg_temp]
    type = ElementAverageValue
    variable = temperature
    execute_on = 'initial timestep_end'
  []
  [T_in]
    type = FunctionValuePostprocessor
    function = T_in_fn
    execute_on = 'initial timestep_end'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1e-14
  dt = 100
  end_time = 2000
[]
[Outputs]
  csv = true
  execute_on = 'initial timestep_end'
  file_base = hfrompps
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_transient.i)
# Using a mixed-dimensional mesh
# Transient flow and solute transport along a fracture in a porous matrix
# advective dominated flow in the fracture and diffusion into the porous matrix
#
# Note that fine_steady.i must be run to initialise the porepressure properly
[Mesh]
  file = 'gold/fine_steady_out.e'
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
    initial_from_file_var = pp
    initial_from_file_timestep = 1
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [velocity_x]
    family = MONOMIAL
    order = CONSTANT
    block = fracture
  []
  [velocity_y]
    family = MONOMIAL
    order = CONSTANT
    block = fracture
  []
[]
[AuxKernels]
  [velocity_x]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = velocity_x
    component = x
    aperture = 6E-4
  []
  [velocity_y]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = velocity_y
    component = y
    aperture = 6E-4
  []
[]
[Problem]
  # massfrac0 has an initial condition despite the restart
  allow_initial_conditions_with_restart = true
[]
[ICs]
  [massfrac0]
    type = ConstantIC
    variable = massfrac0
    value = 0
  []
[]
[BCs]
  [top]
    type = DirichletBC
    value = 0
    variable = massfrac0
    boundary = top
  []
  [bottom]
    type = DirichletBC
    value = 1
    variable = massfrac0
    boundary = bottom
  []
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = top
    value = 1e6
  []
  [pbottom]
    type = DirichletBC
    variable = pp
    boundary = bottom
    value = 1.002e6
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = pp
    disp_trans = 0
    disp_long = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = massfrac0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    disp_trans = 0
    disp_long = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = massfrac0
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [poro_fracture]
    type = PorousFlowPorosityConst
    porosity = 6e-4 # = a * phif
    block = 'fracture'
  []
  [poro_matrix]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 'matrix1 matrix2'
  []
  [diff1]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '1e-9 1e-9'
    tortuosity = 1.0
    block = 'fracture'
  []
  [diff2]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '1e-9 1e-9'
    tortuosity = 0.1
    block = 'matrix1 matrix2'
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability_fracture]
    type = PorousFlowPermeabilityConst
    permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # kf=3e-8, a=6e-4m.  1.8e-11 = kf * a
    block = 'fracture'
  []
  [permeability_matrix]
    type = PorousFlowPermeabilityConst
    permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
    block = 'matrix1 matrix2'
  []
[]
[Functions]
  [dt_controller]
    type = PiecewiseConstant
    x = '0    30   40 100 200 83200'
    y = '0.01 0.1  1  10  100 32'
  []
[]
[Preconditioning]
  active = basic
  [mumps_is_best_for_parallel_jobs]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 86400
  [TimeStepper]
    type = FunctionDT
    function = dt_controller
  []
  # controls for nonlinear iterations
  nl_max_its = 15
  nl_rel_tol = 1e-14
  nl_abs_tol = 1e-9
[]
[VectorPostprocessors]
  [xmass]
    type = LineValueSampler
    start_point = '0.4 0 0'
    end_point = '0.5 0 0'
    sort_by = x
    num_points = 167
    variable = massfrac0
  []
[]
[Outputs]
  perf_graph = true
  console = true
  csv = true
  exodus = true
[]
(modules/porous_flow/test/tests/poro_elasticity/mandel.i)
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed.  The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width.  a = 1
# Soil height.  b = 0.1
# Soil's Lame lambda.  la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus.  mu = G = 0.75
# Soil bulk modulus.  K = la + 2*mu/3 = 1
# Drained Poisson ratio.  nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance.  1/K = 1
# Fluid bulk modulus.  Kf = 8
# Fluid bulk compliance.  1/Kf = 0.125
# Soil initial porosity.  phi0 = 0.1
# Biot coefficient.  alpha = 0.6
# Biot modulus.  M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio.  nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient.  B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity).  k = 1.5
# Consolidation coefficient.  c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top.  F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
#
# FINAL NOTE: The above solution assumes constant Biot Modulus.
# In porous_flow this is not true.  Therefore the solution is
# a little different than in the paper.  This test was therefore
# validated against MOOSE's poromechanics, which can choose either
# a constant Biot Modulus (which has been shown to agree with
# the analytic solution), or a non-constant Biot Modulus (which
# gives the same results as porous_flow).
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 10
  ny = 1
  nz = 1
  xmin = 0
  xmax = 1
  ymin = 0
  ymax = 0.1
  zmin = 0
  zmax = 1
[]
[GlobalParams]
  displacements = 'disp_x disp_y disp_z'
  PorousFlowDictator = dictator
  block = 0
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-5
  []
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [porepressure]
  []
[]
[BCs]
  [roller_xmin]
    type = DirichletBC
    variable = disp_x
    value = 0
    boundary = 'left'
  []
  [roller_ymin]
    type = DirichletBC
    variable = disp_y
    value = 0
    boundary = 'bottom'
  []
  [plane_strain]
    type = DirichletBC
    variable = disp_z
    value = 0
    boundary = 'back front'
  []
  [xmax_drained]
    type = DirichletBC
    variable = porepressure
    value = 0
    boundary = right
  []
  [top_velocity]
    type = FunctionDirichletBC
    variable = disp_y
    function = top_velocity
    boundary = top
  []
[]
[Functions]
  [top_velocity]
    type = PiecewiseLinear
    x = '0 0.002 0.006   0.014   0.03    0.046   0.062   0.078   0.094   0.11    0.126   0.142   0.158   0.174   0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
    y = '-0.041824842    -0.042730269    -0.043412712    -0.04428867     -0.045509181    -0.04645965     -0.047268246 -0.047974749      -0.048597109     -0.0491467  -0.049632388     -0.050061697      -0.050441198     -0.050776675     -0.051073238      -0.0513354 -0.051567152      -0.051772022     -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
  []
[]
[AuxVariables]
  [stress_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [tot_force]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [stress_yy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yy
    index_i = 1
    index_j = 1
  []
  [tot_force]
    type = ParsedAux
    coupled_variables = 'stress_yy porepressure'
    execute_on = timestep_end
    variable = tot_force
    expression = '-stress_yy+0.6*porepressure'
  []
[]
[Kernels]
  [grad_stress_x]
    type = StressDivergenceTensors
    variable = disp_x
    component = 0
  []
  [grad_stress_y]
    type = StressDivergenceTensors
    variable = disp_y
    component = 1
  []
  [grad_stress_z]
    type = StressDivergenceTensors
    variable = disp_z
    component = 2
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    variable = disp_x
    component = 0
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    variable = disp_y
    component = 1
  []
  [poro_z]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    component = 2
    variable = disp_z
  []
  [poro_vol_exp]
    type = PorousFlowMassVolumetricExpansion
    variable = porepressure
    fluid_component = 0
  []
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = porepressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = porepressure
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 8
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [elasticity_tensor]
    type = ComputeElasticityTensor
    C_ijkl = '0.5 0.75'
    # bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
    fill_method = symmetric_isotropic
  []
  [strain]
    type = ComputeSmallStrain
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    ensure_positive = false
    porosity_zero = 0.1
    biot_coefficient = 0.6
    solid_bulk = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.5 0 0   0 1.5 0   0 0 1.5'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Postprocessors]
  [p0]
    type = PointValue
    outputs = csv
    point = '0.0 0 0'
    variable = porepressure
  []
  [p1]
    type = PointValue
    outputs = csv
    point = '0.1 0 0'
    variable = porepressure
  []
  [p2]
    type = PointValue
    outputs = csv
    point = '0.2 0 0'
    variable = porepressure
  []
  [p3]
    type = PointValue
    outputs = csv
    point = '0.3 0 0'
    variable = porepressure
  []
  [p4]
    type = PointValue
    outputs = csv
    point = '0.4 0 0'
    variable = porepressure
  []
  [p5]
    type = PointValue
    outputs = csv
    point = '0.5 0 0'
    variable = porepressure
  []
  [p6]
    type = PointValue
    outputs = csv
    point = '0.6 0 0'
    variable = porepressure
  []
  [p7]
    type = PointValue
    outputs = csv
    point = '0.7 0 0'
    variable = porepressure
  []
  [p8]
    type = PointValue
    outputs = csv
    point = '0.8 0 0'
    variable = porepressure
  []
  [p9]
    type = PointValue
    outputs = csv
    point = '0.9 0 0'
    variable = porepressure
  []
  [p99]
    type = PointValue
    outputs = csv
    point = '1 0 0'
    variable = porepressure
  []
  [xdisp]
    type = PointValue
    outputs = csv
    point = '1 0.1 0'
    variable = disp_x
  []
  [ydisp]
    type = PointValue
    outputs = csv
    point = '1 0.1 0'
    variable = disp_y
  []
  [total_downwards_force]
     type = ElementAverageValue
     outputs = csv
     variable = tot_force
  []
  [dt]
    type = FunctionValuePostprocessor
    outputs = console
    function = if(0.15*t<0.01,0.15*t,0.01)
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  start_time = 0
  end_time = 0.7
  [TimeStepper]
    type = PostprocessorDT
    postprocessor = dt
    dt = 0.001
  []
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = mandel
  [csv]
    time_step_interval = 3
    type = CSV
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_adaptivity.i)
# Pressure pulse in 1D with 1 phase - transient simulation with a constant
# PorousFlowPorosity and mesh adaptivity with an indicator
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[Adaptivity]
  marker = marker
  [Markers]
    [marker]
      type = ErrorFractionMarker
      indicator = front
      refine = 0.5
      coarsen = 0.2
    []
  []
  [Indicators]
    [front]
      type = GradientJumpIndicator
      variable = pp
    []
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    initial_condition = 2E6
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-7
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    preset = false
    value = 3E6
    variable = pp
  []
  [right]
    type = PorousFlowPiecewiseLinearSink
    variable = pp
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E9'
    multipliers = '0 1E9'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E-6
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 5e3
[]
[Postprocessors]
  [p000]
    type = PointValue
    variable = pp
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [p010]
    type = PointValue
    variable = pp
    point = '10 0 0'
    execute_on = 'initial timestep_end'
  []
  [p020]
    type = PointValue
    variable = pp
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [p030]
    type = PointValue
    variable = pp
    point = '30 0 0'
    execute_on = 'initial timestep_end'
  []
  [p040]
    type = PointValue
    variable = pp
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [p050]
    type = PointValue
    variable = pp
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [p060]
    type = PointValue
    variable = pp
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [p070]
    type = PointValue
    variable = pp
    point = '70 0 0'
    execute_on = 'initial timestep_end'
  []
  [p080]
    type = PointValue
    variable = pp
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [p090]
    type = PointValue
    variable = pp
    point = '90 0 0'
    execute_on = 'initial timestep_end'
  []
  [p100]
    type = PointValue
    variable = pp
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  print_linear_residuals = false
  csv = true
[]
(modules/porous_flow/test/tests/jacobian/fflux04.i)
# 2phase (PP), 3components (that exist in both phases), constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity, unsaturated with vanGenuchten
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
  []
  [ppgas]
  []
  [massfrac_ph0_sp0]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp1]
  []
  [massfrac_ph1_sp0]
  []
  [massfrac_ph1_sp1]
  []
[]
[ICs]
  [ppwater]
    type = RandomIC
    variable = ppwater
    min = -1
    max = 0
  []
  [ppgas]
    type = RandomIC
    variable = ppgas
    min = 0
    max = 1
  []
  [massfrac_ph0_sp0]
    type = RandomIC
    variable = massfrac_ph0_sp0
    min = 0
    max = 0.4
  []
  [massfrac_ph0_sp1]
    type = RandomIC
    variable = massfrac_ph0_sp1
    min = 0
    max = 0.4
  []
  [massfrac_ph1_sp0]
    type = RandomIC
    variable = massfrac_ph1_sp0
    min = 0
    max = 0.4
  []
  [massfrac_ph1_sp1]
    type = RandomIC
    variable = massfrac_ph1_sp1
    min = 0
    max = 0.4
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 -0.1 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = ppgas
    gravity = '-1 -0.1 0'
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = massfrac_ph0_sp0
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas massfrac_ph0_sp0'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.5
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/poro_elasticity/terzaghi_constM.i)
# Terzaghi's problem of consolodation of a drained medium
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example.  Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height.  h = 10
# Soil's Lame lambda.  la = 2
# Soil's Lame mu, which is also the Soil's shear modulus.  mu = 3
# Soil bulk modulus.  K = la + 2*mu/3 = 4
# Soil confined compressibility.  m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance.  1/K = 0.25
# Fluid bulk modulus.  Kf = 8
# Fluid bulk compliance.  1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity).  k = 1.5
# Soil initial porosity.  phi0 = 0.1
# Biot coefficient.  alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus.  S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient.  c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top.  q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution).  p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution).  uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution).  uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 1
  ny = 1
  nz = 10
  xmin = -1
  xmax = 1
  ymin = -1
  ymax = 1
  zmin = 0
  zmax = 10
[]
[GlobalParams]
  displacements = 'disp_x disp_y disp_z'
  PorousFlowDictator = dictator
  block = 0
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1
  []
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [porepressure]
  []
[]
[BCs]
  [confinex]
    type = DirichletBC
    variable = disp_x
    value = 0
    boundary = 'left right'
  []
  [confiney]
    type = DirichletBC
    variable = disp_y
    value = 0
    boundary = 'bottom top'
  []
  [basefixed]
    type = DirichletBC
    variable = disp_z
    value = 0
    boundary = back
  []
  [topdrained]
    type = DirichletBC
    variable = porepressure
    value = 0
    boundary = front
  []
  [topload]
    type = NeumannBC
    variable = disp_z
    value = -1
    boundary = front
  []
[]
[Kernels]
  [grad_stress_x]
    type = StressDivergenceTensors
    variable = disp_x
    component = 0
  []
  [grad_stress_y]
    type = StressDivergenceTensors
    variable = disp_y
    component = 1
  []
  [grad_stress_z]
    type = StressDivergenceTensors
    variable = disp_z
    component = 2
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    variable = disp_x
    component = 0
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    variable = disp_y
    component = 1
  []
  [poro_z]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    component = 2
    variable = disp_z
  []
  [poro_vol_exp]
    type = PorousFlowMassVolumetricExpansion
    variable = porepressure
    fluid_component = 0
  []
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = porepressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = porepressure
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 8
    density0 = 1
    thermal_expansion = 0
    viscosity = 0.96
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [elasticity_tensor]
    type = ComputeElasticityTensor
    C_ijkl = '2 3'
    # bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
    fill_method = symmetric_isotropic
  []
  [strain]
    type = ComputeSmallStrain
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityHMBiotModulus
    porosity_zero = 0.1
    biot_coefficient = 0.6
    solid_bulk = 4
    constant_fluid_bulk_modulus = 8
    constant_biot_modulus = 16
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.5 0 0   0 1.5 0   0 0 1.5'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Postprocessors]
  [p0]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p1]
    type = PointValue
    outputs = csv
    point = '0 0 1'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p2]
    type = PointValue
    outputs = csv
    point = '0 0 2'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p3]
    type = PointValue
    outputs = csv
    point = '0 0 3'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p4]
    type = PointValue
    outputs = csv
    point = '0 0 4'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p5]
    type = PointValue
    outputs = csv
    point = '0 0 5'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p6]
    type = PointValue
    outputs = csv
    point = '0 0 6'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p7]
    type = PointValue
    outputs = csv
    point = '0 0 7'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p8]
    type = PointValue
    outputs = csv
    point = '0 0 8'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p9]
    type = PointValue
    outputs = csv
    point = '0 0 9'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p99]
    type = PointValue
    outputs = csv
    point = '0 0 10'
    variable = porepressure
    use_displaced_mesh = false
  []
  [zdisp]
    type = PointValue
    outputs = csv
    point = '0 0 10'
    variable = disp_z
    use_displaced_mesh = false
  []
  [dt]
    type = FunctionValuePostprocessor
    outputs = console
    function = if(0.5*t<0.1,0.5*t,0.1)
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  start_time = 0
  end_time = 10
  [TimeStepper]
    type = PostprocessorDT
    postprocessor = dt
    dt = 0.0001
  []
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = terzaghi_constM
  [csv]
    type = CSV
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phase_monomial.i)
# Pressure pulse in 1D with 2 phases (with one having zero saturation), 2components - transient
#
# Note: this is identical to pressure_pules_1d_2phase.i, except that the mass fraction AuxVariables are
# constant monomials. The result should be identical though.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
    initial_condition = 2E6
  []
  [ppgas]
    initial_condition = 2E6
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    order = CONSTANT
    family = MONOMIAL
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    order = CONSTANT
    family = MONOMIAL
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
    gravity = '0 0 0'
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = ppgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = ppgas
    gravity = '0 0 0'
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e6
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3E6
    variable = ppwater
  []
  [leftgas]
    type = DirichletBC
    boundary = left
    value = 3E6
    variable = ppgas
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-15       1E-20 20'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E3
  end_time = 1E4
[]
[Postprocessors]
  [p000]
    type = PointValue
    variable = ppwater
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [p010]
    type = PointValue
    variable = ppwater
    point = '10 0 0'
    execute_on = 'initial timestep_end'
  []
  [p020]
    type = PointValue
    variable = ppwater
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [p030]
    type = PointValue
    variable = ppwater
    point = '30 0 0'
    execute_on = 'initial timestep_end'
  []
  [p040]
    type = PointValue
    variable = ppwater
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [p050]
    type = PointValue
    variable = ppwater
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [p060]
    type = PointValue
    variable = ppwater
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [p070]
    type = PointValue
    variable = ppwater
    point = '70 0 0'
    execute_on = 'initial timestep_end'
  []
  [p080]
    type = PointValue
    variable = ppwater
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [p090]
    type = PointValue
    variable = ppwater
    point = '90 0 0'
    execute_on = 'initial timestep_end'
  []
  [p100]
    type = PointValue
    variable = ppwater
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phase
  print_linear_residuals = false
  csv = true
[]
(modules/porous_flow/examples/tutorial/11_2D.i)
# Two-phase borehole injection problem in RZ coordinates
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 10
    xmin = 1.0
    xmax = 10
    bias_x = 1.4
    ny = 3
    ymin = -6
    ymax = 6
  []
  [aquifer]
    input = gen
    type = SubdomainBoundingBoxGenerator
    block_id = 1
    bottom_left = '0 -2 0'
    top_right = '10 2 0'
  []
  [injection_area]
    type = ParsedGenerateSideset
    combinatorial_geometry = 'x<1.0001'
    included_subdomains = 1
    new_sideset_name = 'injection_area'
    input = 'aquifer'
  []
  [rename]
    type = RenameBlockGenerator
    old_block = '0 1'
    new_block = 'caps aquifer'
    input = 'injection_area'
  []
  coord_type = RZ
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater pgas T disp_r'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1E-6
    m = 0.6
  []
[]
[GlobalParams]
  displacements = 'disp_r disp_z'
  gravity = '0 0 0'
  biot_coefficient = 1.0
  PorousFlowDictator = dictator
[]
[Variables]
  [pwater]
    initial_condition = 20E6
  []
  [pgas]
    initial_condition = 20.1E6
  []
  [T]
    initial_condition = 330
    scaling = 1E-5
  []
  [disp_r]
    scaling = 1E-5
  []
[]
[Kernels]
  [mass_water_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux_water]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    use_displaced_mesh = false
    variable = pwater
  []
  [vol_strain_rate_water]
    type = PorousFlowMassVolumetricExpansion
    fluid_component = 0
    variable = pwater
  []
  [mass_co2_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = pgas
  []
  [flux_co2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    use_displaced_mesh = false
    variable = pgas
  []
  [vol_strain_rate_co2]
    type = PorousFlowMassVolumetricExpansion
    fluid_component = 1
    variable = pgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = T
  []
  [advection]
    type = PorousFlowHeatAdvection
    use_displaced_mesh = false
    variable = T
  []
  [conduction]
    type = PorousFlowHeatConduction
    use_displaced_mesh = false
    variable = T
  []
  [vol_strain_rate_heat]
    type = PorousFlowHeatVolumetricExpansion
    variable = T
  []
  [grad_stress_r]
    type = StressDivergenceRZTensors
    temperature = T
    variable = disp_r
    eigenstrain_names = thermal_contribution
    use_displaced_mesh = false
    component = 0
  []
  [poro_r]
    type = PorousFlowEffectiveStressCoupling
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
[]
[AuxVariables]
  [disp_z]
  []
  [effective_fluid_pressure]
    family = MONOMIAL
    order = CONSTANT
  []
  [mass_frac_phase0_species0]
    initial_condition = 1 # all water in phase=0
  []
  [mass_frac_phase1_species0]
    initial_condition = 0 # no water in phase=1
  []
  [sgas]
    family = MONOMIAL
    order = CONSTANT
  []
  [swater]
    family = MONOMIAL
    order = CONSTANT
  []
  [stress_rr]
    family = MONOMIAL
    order = CONSTANT
  []
  [stress_tt]
    family = MONOMIAL
    order = CONSTANT
  []
  [stress_zz]
    family = MONOMIAL
    order = CONSTANT
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [effective_fluid_pressure]
    type = ParsedAux
    coupled_variables = 'pwater pgas swater sgas'
    expression = 'pwater * swater + pgas * sgas'
    variable = effective_fluid_pressure
  []
  [swater]
    type = PorousFlowPropertyAux
    variable = swater
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [sgas]
    type = PorousFlowPropertyAux
    variable = sgas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [stress_rr_aux]
    type = RankTwoAux
    variable = stress_rr
    rank_two_tensor = stress
    index_i = 0
    index_j = 0
  []
  [stress_tt]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_tt
    index_i = 2
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 1
    index_j = 1
  []
  [porosity]
    type = PorousFlowPropertyAux
    variable = porosity
    property = porosity
    execute_on = timestep_end
  []
[]
[BCs]
  [pinned_top_bottom_r]
    type = DirichletBC
    variable = disp_r
    value = 0
    boundary = 'top bottom'
  []
  [cavity_pressure_r]
    type = Pressure
    boundary = injection_area
    variable = disp_r
    postprocessor = constrained_effective_fluid_pressure_at_wellbore
    use_displaced_mesh = false
  []
  [cold_co2]
    type = DirichletBC
    boundary = injection_area
    variable = T
    value = 290 # injection temperature
    use_displaced_mesh = false
  []
  [constant_co2_injection]
    type = PorousFlowSink
    boundary = injection_area
    variable = pgas
    fluid_phase = 1
    flux_function = -1E-4
    use_displaced_mesh = false
  []
  [outer_water_removal]
    type = PorousFlowPiecewiseLinearSink
    boundary = right
    variable = pwater
    fluid_phase = 0
    pt_vals = '0 1E9'
    multipliers = '0 1E8'
    PT_shift = 20E6
    use_mobility = true
    use_relperm = true
    use_displaced_mesh = false
  []
  [outer_co2_removal]
    type = PorousFlowPiecewiseLinearSink
    boundary = right
    variable = pgas
    fluid_phase = 1
    pt_vals = '0 1E9'
    multipliers = '0 1E8'
    PT_shift = 20.1E6
    use_mobility = true
    use_relperm = true
    use_displaced_mesh = false
  []
[]
[FluidProperties]
  [true_water]
    type = Water97FluidProperties
  []
  [tabulated_water]
    type = TabulatedBicubicFluidProperties
    fp = true_water
    temperature_min = 275
    pressure_max = 1E8
    fluid_property_output_file = water97_tabulated_11.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = water97_tabulated_11.csv
  []
  [true_co2]
    type = CO2FluidProperties
  []
  [tabulated_co2]
    type = TabulatedBicubicFluidProperties
    fp = true_co2
    temperature_min = 275
    pressure_max = 1E8
    fluid_property_output_file = co2_tabulated_11.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = co2_tabulated_11.csv
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = T
  []
  [saturation_calculator]
    type = PorousFlow2PhasePP
    phase0_porepressure = pwater
    phase1_porepressure = pgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = tabulated_water
    phase = 0
  []
  [co2]
    type = PorousFlowSingleComponentFluid
    fp = tabulated_co2
    phase = 1
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    s_res = 0.1
    sum_s_res = 0.2
    phase = 0
  []
  [relperm_co2]
    type = PorousFlowRelativePermeabilityBC
    nw_phase = true
    lambda = 2
    s_res = 0.1
    sum_s_res = 0.2
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    thermal = true
    porosity_zero = 0.1
    reference_temperature = 330
    reference_porepressure = 20E6
    thermal_expansion_coeff = 15E-6 # volumetric
    solid_bulk = 8E9 # unimportant since biot = 1
  []
  [permeability_aquifer]
    type = PorousFlowPermeabilityKozenyCarman
    block = aquifer
    poroperm_function = kozeny_carman_phi0
    phi0 = 0.1
    n = 2
    m = 2
    k0 = 1E-12
  []
  [permeability_caps]
    type = PorousFlowPermeabilityKozenyCarman
    block = caps
    poroperm_function = kozeny_carman_phi0
    phi0 = 0.1
    n = 2
    m = 2
    k0 = 1E-15
    k_anisotropy = '1 0 0  0 1 0  0 0 0.1'
  []
  [rock_thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '2 0 0  0 2 0  0 0 2'
  []
  [rock_internal_energy]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1100
    density = 2300
  []
  [elasticity_tensor]
    type = ComputeIsotropicElasticityTensor
    youngs_modulus = 5E9
    poissons_ratio = 0.0
  []
  [strain]
    type = ComputeAxisymmetricRZSmallStrain
    eigenstrain_names = 'thermal_contribution initial_stress'
  []
  [thermal_contribution]
    type = ComputeThermalExpansionEigenstrain
    temperature = T
    thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
    eigenstrain_name = thermal_contribution
    stress_free_temperature = 330
  []
  [initial_strain]
    type = ComputeEigenstrainFromInitialStress
    initial_stress = '20E6 0 0  0 20E6 0  0 0 20E6'
    eigenstrain_name = initial_stress
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [effective_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [volumetric_strain]
    type = PorousFlowVolumetricStrain
  []
[]
[Postprocessors]
  [effective_fluid_pressure_at_wellbore]
    type = PointValue
    variable = effective_fluid_pressure
    point = '1 0 0'
    execute_on = timestep_begin
    use_displaced_mesh = false
  []
  [constrained_effective_fluid_pressure_at_wellbore]
    type = FunctionValuePostprocessor
    function = constrain_effective_fluid_pressure
    execute_on = timestep_begin
  []
[]
[Functions]
  [constrain_effective_fluid_pressure]
    type = ParsedFunction
    symbol_names = effective_fluid_pressure_at_wellbore
    symbol_values = effective_fluid_pressure_at_wellbore
    expression = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1E3
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1E3
    growth_factor = 1.2
    optimal_iterations = 10
  []
  nl_abs_tol = 1E-7
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
# Two phase Theis problem: Flow from single source.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
#
# This test takes a few minutes to run, so is marked heavy
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 2000
  xmax = 2000
  rz_coord_axis = Y
  coord_type = RZ
[]
[Problem]
  type = FEProblem
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
  [xnacl]
    initial_condition = 0.1
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [mass2]
    type = PorousFlowMassTimeDerivative
    fluid_component = 2
    variable = xnacl
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = xnacl
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi xnacl'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2sw]
    type = CO2FluidProperties
  []
  [co2]
    type = TabulatedFluidProperties
    fp = co2sw
    fluid_property_file = 'fluid_properties.csv'
    allow_fp_and_tabulation = true
    error_on_out_of_bounds = false
  []
  [water]
    type = Water97FluidProperties
  []
  [watertab]
    type = TabulatedFluidProperties
    fp = water
    temperature_min = 273.15
    temperature_max = 573.15
    fluid_property_output_file = water_fluid_properties.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = water_fluid_properties.csv
  []
  [brine]
    type = BrineFluidProperties
    water_fp = watertab
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[BCs]
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 2
    variable = zi
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.5
  []
[]
[VectorPostprocessors]
  [line]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    start_point = '0 0 0'
    end_point = '2000 0 0'
    num_points = 10000
    variable = 'pgas zi xnacl x1 saturation_gas'
    execute_on = 'timestep_end'
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '4 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '4 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '4 0 0'
    variable = zi
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '4 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '4 0 0'
    variable = y0
  []
  [xnacl]
    type = PointValue
    point = '4 0 0'
    variable = xnacl
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  [csvout]
    type = CSV
    execute_on = timestep_end
    execute_vector_postprocessors_on = final
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_MD.i)
# Pressure pulse in 1D with 1 phase - transient
# Using the "MD" formulation (where primary variable is log(mass-density
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [md]
    # initial porepressure = 2E6
    # so initial md = log(density_P0) + porepressure/bulk_modulus =
    initial_condition = 6.90875527898214
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = md
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = md
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'md'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseMD_Gaussian
    mass_density = md
    al = 1E-6 # this is irrelevant in this example
    density_P0 = 1000
    bulk_modulus = 2E9
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    # BC porepressure = 3E6
    # so boundary md = log(density_P0) + porepressure/bulk_modulus =
    value = 6.90925527898214
    variable = md
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E3
  end_time = 1E4
[]
[AuxVariables]
  [pp]
  []
[]
[AuxKernels]
  [pp]
    type = ParsedAux
    expression = '(md-6.9077552789821)*2.0E9'
    coupled_variables = 'md'
    variable = pp
  []
[]
[Postprocessors]
  [p000]
    type = PointValue
    variable = pp
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [p010]
    type = PointValue
    variable = pp
    point = '10 0 0'
    execute_on = 'initial timestep_end'
  []
  [p020]
    type = PointValue
    variable = pp
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [p030]
    type = PointValue
    variable = pp
    point = '30 0 0'
    execute_on = 'initial timestep_end'
  []
  [p040]
    type = PointValue
    variable = pp
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [p050]
    type = PointValue
    variable = pp
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [p060]
    type = PointValue
    variable = pp
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [p070]
    type = PointValue
    variable = pp
    point = '70 0 0'
    execute_on = 'initial timestep_end'
  []
  [p080]
    type = PointValue
    variable = pp
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [p090]
    type = PointValue
    variable = pp
    point = '90 0 0'
    execute_on = 'initial timestep_end'
  []
  [p100]
    type = PointValue
    variable = pp
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_MD
  print_linear_residuals = false
  csv = true
[]
(modules/porous_flow/test/tests/actions/addmaterials2.i)
# Test that the PorousFlowAddMaterialAction correctly handles the case where
# the at_nodes parameter isn't provided. In this case, only a single material
# is given, and the action must correctly identify if materials should be added
# at the nodes, qps, or even both
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pwater]
    initial_condition = 1e6
  []
  [sgas]
    initial_condition = 0.3
  []
  [temperature]
    initial_condition = 50
  []
[]
[AuxVariables]
  [x0]
    initial_condition = 0.1
  []
  [x1]
    initial_condition = 0.5
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater sgas temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-5
    pc_max = 1e7
    sat_lr = 0.1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
    cv = 2
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-4
    density0 = 20
    thermal_expansion = 0
    cv = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'x0 x1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.11
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
    s_res = 0.01
    sum_s_res = 0.11
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 125
  []
  [unused]
    type = GenericConstantMaterial
    prop_names = unused
    prop_values = 0
  []
[]
[Executioner]
  type = Transient
  end_time = 1
  nl_abs_tol = 1e-14
[]
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar03.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# when k_anisotropy is not specified.
# k = k_anisotropy * perm
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 3
  xmin = 0
  xmax = 3
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = ConstantIC
      value = 0
    []
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [perm_var]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_z]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [perm_var]
    type = ConstantAux
    value = 2
    variable = perm_var
  []
  [perm_x]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_left]
    type = PointValue
    variable = perm_x
    point = '0.5 0 0'
  []
  [perm_y_left]
    type = PointValue
    variable = perm_y
    point = '0.5 0 0'
  []
  [perm_z_left]
    type = PointValue
    variable = perm_z
    point = '0.5 0 0'
  []
  [perm_x_right]
    type = PointValue
    variable = perm_x
    point = '2.5 0 0'
  []
  [perm_y_right]
    type = PointValue
    variable = perm_y
    point = '2.5 0 0'
  []
  [perm_z_right]
    type = PointValue
    variable = perm_z
    point = '2.5 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [permeability]
    type = PorousFlowPermeabilityTensorFromVar
    perm = perm_var
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = Newton
  type = Steady
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
  petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  petsc_options_value = ' asm      2              lu            gmres     200'
[]
[Outputs]
  csv = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/adaptivity/tet4_adaptivity.i)
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    elem_type = TET4
    dim = 3
    nx = 2
    ny = 2
  []
[]
[Adaptivity]
  marker = marker
  max_h_level = 1
  [Markers]
    [marker]
      type = UniformMarker
      mark = REFINE
    []
  []
[]
[GlobalParams]
  PorousFlowDictator = 'dictator'
[]
[Variables]
  [pp]
    initial_condition = '0'
  []
[]
[Kernels]
  [mass]
    type = PorousFlowMassTimeDerivative
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = pp
    boundary = 'left'
    value = 1
  []
  [right]
    type = DirichletBC
    variable = pp
    boundary = 'right'
    value = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = 'pp'
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = '0.1'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
[]
[Postprocessors]
  [numdofs]
    type = NumDOFs
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  end_time = 4
  dt = 1
  solve_type = Newton
  nl_abs_tol = 1e-12
[]
[Outputs]
  exodus = true
  perf_graph = true
  show = pp
[]
(modules/porous_flow/examples/tutorial/13.i)
# Example of reactive transport model with dissolution of dolomite
#
# The equilibrium system has 5 primary species (Variables) and
# 5 secondary species (PorousFlowMassFractionAqueousEquilibrium).
# Some of the equilibrium constants have been chosen rather arbitrarily.
#
# Equilibrium reactions
# H+  + HCO3-                      = CO2(aq)
# -H+ + HCO3-                      = CO32-
#       HCO3- + Ca2+               = CaHCO3+
#       HCO3-        + Mg2+        = MgHCO3+
#       HCO3-               + Fe2+ = FeHCO3+
#
# The kinetic reaction that dissolves dolomite involves all 5 primary species.
#
# -2H+ + 2HCO3- + Ca2+ + 0.8Mg2+ + 0.2Fe2+ = CaMg0.8Fe0.2(CO3)2
#
# The initial concentration of precipitated dolomite is high, so it starts
# to dissolve immediately, increasing the concentrations of the primary species.
#
# Only single-phase, fully saturated physics is used.
# The pressure gradient is fixed, so that the Darcy velocity is 0.1m/s.
#
# Primary species are injected from the left side, and they flow to the right.
# Less dolomite dissolution therefore occurs on the left side (where
# the primary species have higher concentration).
#
# This test is more fully documented in tutorial_13
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmax = 1
[]
[Variables]
  [h+]
  []
  [hco3-]
  []
  [ca2+]
  []
  [mg2+]
  []
  [fe2+]
  []
[]
[AuxVariables]
  [eqm_k0]
    initial_condition = 2.19E6
  []
  [eqm_k1]
    initial_condition = 4.73E-11
  []
  [eqm_k2]
    initial_condition = 0.222
  []
  [eqm_k3]
    initial_condition = 1E-2
  []
  [eqm_k4]
    initial_condition = 1E-3
  []
  [kinetic_k]
    initial_condition = 326.2
  []
  [pressure]
  []
  [dolomite]
    family = MONOMIAL
    order = CONSTANT
  []
  [dolomite_initial]
    initial_condition = 1E-7
  []
[]
[AuxKernels]
  [dolomite]
    type = PorousFlowPropertyAux
    property = mineral_concentration
    mineral_species = 0
    variable = dolomite
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[ICs]
  [pressure_ic]
    type = FunctionIC
    variable = pressure
    function = '(1 - x) * 1E6'
  []
  [h+_ic]
    type = BoundingBoxIC
    variable = h+
    x1 = 0.0
    y1 = 0.0
    x2 = 1.0e-10
    y2 = 0.25
    inside = 5.0e-2
    outside = 1.0e-6
  []
  [hco3_ic]
    type = BoundingBoxIC
    variable = hco3-
    x1 = 0.0
    y1 = 0.0
    x2 = 1.0e-10
    y2 = 0.25
    inside = 5.0e-2
    outside = 1.0e-6
  []
  [ca2_ic]
    type = BoundingBoxIC
    variable = ca2+
    x1 = 0.0
    y1 = 0.0
    x2 = 1.0e-10
    y2 = 0.25
    inside = 5.0e-2
    outside = 1.0e-6
  []
  [mg2_ic]
    type = BoundingBoxIC
    variable = mg2+
    x1 = 0.0
    y1 = 0.0
    x2 = 1.0e-10
    y2 = 0.25
    inside = 5.0e-2
    outside = 1.0e-6
  []
  [fe2_ic]
    type = BoundingBoxIC
    variable = fe2+
    x1 = 0.0
    y1 = 0.0
    x2 = 1.0e-10
    y2 = 0.25
    inside = 5.0e-2
    outside = 1.0e-6
  []
[]
[Kernels]
  [h+_ie]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = h+
  []
  [h+_conv]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = h+
  []
  [predis_h+]
    type = PorousFlowPreDis
    variable = h+
    mineral_density = 2875.0
    stoichiometry = -2
  []
  [hco3-_ie]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = hco3-
  []
  [hco3-_conv]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = hco3-
  []
  [predis_hco3-]
    type = PorousFlowPreDis
    variable = hco3-
    mineral_density = 2875.0
    stoichiometry = 2
  []
  [ca2+_ie]
    type = PorousFlowMassTimeDerivative
    fluid_component = 2
    variable = ca2+
  []
  [ca2+_conv]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = ca2+
  []
  [predis_ca2+]
    type = PorousFlowPreDis
    variable = ca2+
    mineral_density = 2875.0
    stoichiometry = 1
  []
  [mg2+_ie]
    type = PorousFlowMassTimeDerivative
    fluid_component = 3
    variable = mg2+
  []
  [mg2+_conv]
    type = PorousFlowAdvectiveFlux
    fluid_component = 3
    variable = mg2+
  []
  [predis_mg2+]
    type = PorousFlowPreDis
    variable = mg2+
    mineral_density = 2875.0
    stoichiometry = 0.8
  []
  [fe2+_ie]
    type = PorousFlowMassTimeDerivative
    fluid_component = 4
    variable = fe2+
  []
  [fe2+_conv]
    type = PorousFlowAdvectiveFlux
    fluid_component = 4
    variable = fe2+
  []
  [predis_fe2+]
    type = PorousFlowPreDis
    variable = fe2+
    mineral_density = 2875.0
    stoichiometry = 0.2
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'h+ hco3- ca2+ mg2+ fe2+'
    number_fluid_phases = 1
    number_fluid_components = 6
    number_aqueous_equilibrium = 5
    number_aqueous_kinetic = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    viscosity = 1E-3
  []
[]
[BCs]
  [hco3-_left]
    type = DirichletBC
    variable = hco3-
    boundary = left
    value = 5E-2
  []
  [h+_left]
    type = DirichletBC
    variable = h+
    boundary = left
    value = 5E-2
  []
  [ca2+_left]
    type = DirichletBC
    variable = ca2+
    boundary = left
    value = 5E-2
  []
  [mg2+_left]
    type = DirichletBC
    variable = mg2+
    boundary = left
    value = 5E-2
  []
  [fe2+_left]
    type = DirichletBC
    variable = fe2+
    boundary = left
    value = 5E-2
  []
  [hco3-_right]
    type = DirichletBC
    variable = hco3-
    boundary = right
    value = 1E-6
  []
  [h+_right]
    type = DirichletBC
    variable = h+
    boundary = right
    value = 1e-6
  []
  [ca2+_right]
    type = DirichletBC
    variable = ca2+
    boundary = right
    value = 1E-6
  []
  [mg2+_right]
    type = DirichletBC
    variable = mg2+
    boundary = right
    value = 1E-6
  []
  [fe2+_right]
    type = DirichletBC
    variable = fe2+
    boundary = right
    value = 1E-6
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 298.15
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pressure
  []
  [equilibrium_massfrac]
    type = PorousFlowMassFractionAqueousEquilibriumChemistry
    mass_fraction_vars = 'h+ hco3- ca2+ mg2+ fe2+'
    num_reactions = 5
    equilibrium_constants = 'eqm_k0 eqm_k1 eqm_k2 eqm_k3 eqm_k4'
    primary_activity_coefficients = '1 1 1 1 1'
    secondary_activity_coefficients = '1 1 1 1 1'
    reactions = '1 1 0 0 0
                -1 1 0 0 0
                 0 1 1 0 0
                 0 1 0 1 0
                 0 1 0 0 1'
  []
  [kinetic]
    type = PorousFlowAqueousPreDisChemistry
    primary_concentrations = 'h+ hco3- ca2+ mg2+ fe2+'
    num_reactions = 1
    equilibrium_constants = kinetic_k
    primary_activity_coefficients = '1 1 1 1 1'
    reactions = '-2 2 1 0.8 0.2'
    specific_reactive_surface_area = '1.2E-8'
    kinetic_rate_constant = '3E-4'
    activation_energy = '1.5e4'
    molar_volume = 64365.0
    gas_constant = 8.314
    reference_temperature = 298.15
  []
  [dolomite_conc]
    type = PorousFlowAqueousPreDisMineral
    initial_concentrations = dolomite_initial
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 0.1
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  exodus = true
[]
(modules/porous_flow/test/tests/recover/theis.i)
# Tests that PorousFlow can successfully recover using a checkpoint file.
# This test contains stateful material properties, adaptivity and integrated
# boundary conditions with nodal-sized materials.
#
# This test file is run three times:
# 1) The full input file is run to completion
# 2) The input file is run for half the time and checkpointing is included
# 3) The input file is run in recovery using the checkpoint data
#
# The final output of test 3 is compared to the final output of test 1 to verify
# that recovery was successful.
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 20
    xmax = 100
    bias_x = 1.05
  []
  coord_type = RZ
  rz_coord_axis = Y
  # To get consistent ordering of results with distributed meshes
  allow_renumbering = false
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Adaptivity]
  marker = marker
  max_h_level = 4
  [Indicators]
    [front]
      type = GradientJumpIndicator
      variable = zi
    []
  []
  [Markers]
    [marker]
      type = ErrorFractionMarker
      indicator = front
      refine = 0.8
      coarsen = 0.2
    []
  []
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[BCs]
  [aquifer]
    type = PorousFlowPiecewiseLinearSink
    variable = pgas
    boundary = right
    pt_vals = '0 1e8'
    multipliers = '0 1e8'
    flux_function = 1e-6
    PT_shift = 20e6
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 2
    variable = zi
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 2e2
  dt = 50
[]
[VectorPostprocessors]
  [line]
    type = NodalValueSampler
    sort_by = x
    variable = 'pgas zi'
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  csv = true
[]
(modules/porous_flow/test/tests/hysteresis/relperm_jac_1.i)
# Test of derivatives computed in PorousFlowHystereticRelativePermeability classes along first-order curve
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '-1 0 0'
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    number_fluid_phases = 2
    number_fluid_components = 2
    porous_flow_vars = 'pp0 sat1'
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 10.0
    m = 0.33
  []
[]
[Variables]
  [pp0]
  []
  [sat1]
    initial_condition = 0.5
  []
[]
[Kernels]
  [mass_conservation0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp0
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp0
  []
  [mass_conservation1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sat1
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[FluidProperties]
  [simple_fluid_0]
    type = SimpleFluidProperties
    bulk_modulus = 10
    viscosity = 1
  []
  [simple_fluid_1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    viscosity = 3
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
  [pc_calculator]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pp0
    phase1_saturation = sat1
  []
  [hys_order_material]
    type = PorousFlowHysteresisOrder
    initial_order = 1
    previous_turning_points = 0.3
  []
  [relperm_liquid]
    type = PorousFlowHystereticRelativePermeabilityLiquid
    phase = 0
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    liquid_modification_range = 0.9
  []
  [relperm_gas]
    type = PorousFlowHystereticRelativePermeabilityGas
    phase = 1
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    gamma = 0.33
    k_rg_max = 0.8
    gas_low_extension_type = linear_like
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_check_jacobian'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/sinks/injection_production_eg.i)
# phase = 0 is liquid phase
# phase = 1 is gas phase
# fluid_component = 0 is water
# fluid_component = 1 is CO2
# Constant rate of CO2 injection into the left boundary
# 1D mesh
# The PorousFlowPiecewiseLinearSinks remove the correct water and CO2 from the right boundary
# Note i take pretty big timesteps here so the system is quite nonlinear
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
  xmax = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [frac_water_in_liquid]
    initial_condition = 1.0
  []
  [frac_water_in_gas]
    initial_condition = 0.0
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
[]
[Variables]
  [pwater]
    initial_condition = 20E6
  []
  [pgas]
    initial_condition = 20.1E6
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = pgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = pgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas pwater'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1E-6
    m = 0.6
  []
[]
[FluidProperties]
  [true_water]
    type = Water97FluidProperties
  []
  [tabulated_water]
    type = TabulatedBicubicFluidProperties
    fp = true_water
    temperature_min = 275
    pressure_max = 1E8
    interpolated_properties = 'density viscosity enthalpy internal_energy'
    fluid_property_output_file = water97_tabulated_11.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = water97_tabulated_11.csv
  []
  [true_co2]
    type = CO2FluidProperties
  []
  [tabulated_co2]
    type = TabulatedBicubicFluidProperties
    fp = true_co2
    temperature_min = 275
    pressure_max = 1E8
    interpolated_properties = 'density viscosity enthalpy internal_energy'
    fluid_property_output_file = co2_tabulated_11.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = co2_tabulated_11.csv
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 293.15
  []
  [saturation_calculator]
    type = PorousFlow2PhasePP
    phase0_porepressure = pwater
    phase1_porepressure = pgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'frac_water_in_liquid frac_water_in_gas'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = tabulated_water
    phase = 0
  []
  [co2]
    type = PorousFlowSingleComponentFluid
    fp = tabulated_co2
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.2
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    nw_phase = true
    lambda = 2
    s_res = 0.1
    sum_s_res = 0.2
    phase = 1
  []
[]
[BCs]
  [co2_injection]
    type = PorousFlowSink
    boundary = left
    variable = pgas # pgas is associated with the CO2 mass balance (fluid_component = 1 in its Kernels)
    flux_function = -1E-2 # negative means a source, rather than a sink
  []
  [right_water]
    type = PorousFlowPiecewiseLinearSink
    boundary = right
    # a sink of water, since the Kernels given to pwater are for fluid_component = 0 (the water)
    variable = pwater
    # this Sink is a function of liquid porepressure
    # Also, all the mass_fraction, mobility and relperm are referenced to the liquid phase now
    fluid_phase = 0
    # Sink strength = (Pwater - 20E6)
    pt_vals = '0 1E9'
    multipliers = '0 1E9'
    PT_shift = 20E6
    # multiply Sink strength computed above by mass fraction of water at the boundary
    mass_fraction_component = 0
    # also multiply Sink strength by mobility of the liquid
    use_mobility = true
    # also multiply Sink strength by the relperm of the liquid
    use_relperm = true
    # also multiplly Sink strength by 1/L, where L is the distance to the fixed-porepressure external environment
    flux_function = 10 # 1/L
  []
  [right_co2]
    type = PorousFlowPiecewiseLinearSink
    boundary = right
    variable = pgas
    fluid_phase = 1
    pt_vals = '0 1E9'
    multipliers = '0 1E9'
    PT_shift = 20.1E6
    mass_fraction_component = 1
    use_mobility = true
    use_relperm = true
    flux_function = 10 # 1/L
  []
[]
[Preconditioning]
  active = 'basic'
  [basic]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres asm lu NONZERO 2'
  []
  [preferred]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = 'lu mumps'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  nl_abs_tol = 1E-13
  nl_rel_tol = 1E-10
  end_time = 1e4
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1E4
    growth_factor = 1.1
  []
[]
[VectorPostprocessors]
  [pps]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    start_point = '0 0 0'
    end_point = '20 0 0'
    num_points = 20
    sort_by = x
    variable = 'pgas pwater saturation_gas'
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_3comp.i)
# Pressure pulse in 1D with 1 phase but 3 components (viscosity, relperm, etc are independent of mass-fractions) - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    initial_condition = 2E6
  []
  [massfrac0]
    initial_condition = 0.1
  []
  [massfrac1]
    initial_condition = 0.3
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = massfrac0
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = massfrac0
    gravity = '0 0 0'
    fluid_component = 1
  []
  [mass2]
    type = PorousFlowMassTimeDerivative
    fluid_component = 2
    variable = massfrac1
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    variable = massfrac1
    gravity = '0 0 0'
    fluid_component = 2
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0 massfrac1'
    number_fluid_phases = 1
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-7
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac0 massfrac1'
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    value = 3E6
    variable = pp
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-7 1E-10 20 1E-10 1E-100'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E3
  end_time = 1E4
[]
[Postprocessors]
  [p000]
    type = PointValue
    variable = pp
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [p010]
    type = PointValue
    variable = pp
    point = '10 0 0'
    execute_on = 'initial timestep_end'
  []
  [p020]
    type = PointValue
    variable = pp
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [p030]
    type = PointValue
    variable = pp
    point = '30 0 0'
    execute_on = 'initial timestep_end'
  []
  [p040]
    type = PointValue
    variable = pp
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [p050]
    type = PointValue
    variable = pp
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [p060]
    type = PointValue
    variable = pp
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [p070]
    type = PointValue
    variable = pp
    point = '70 0 0'
    execute_on = 'initial timestep_end'
  []
  [p080]
    type = PointValue
    variable = pp
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [p090]
    type = PointValue
    variable = pp
    point = '90 0 0'
    execute_on = 'initial timestep_end'
  []
  [p100]
    type = PointValue
    variable = pp
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
  [mf_0_010]
    type = PointValue
    variable = massfrac0
    point = '10 0 0'
    execute_on = 'timestep_end'
  []
  [mf_1_010]
    type = PointValue
    variable = massfrac1
    point = '10 0 0'
    execute_on = 'timestep_end'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_3comp
  print_linear_residuals = true
  csv = true
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/rd03.i)
[Mesh]
  file = gold/rd02.e
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    y = '2E4 1E6'
    x = '0 1E6'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = pressure
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.336
    alpha = 1.43e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    viscosity = 1.01e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [massfrac]
    type = PorousFlowMassFraction
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [relperm]
    type = PorousFlowRelativePermeabilityVG
    m = 0.336
    seff_turnover = 0.99
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.33
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '0.295E-12 0 0  0 0.295E-12 0  0 0 0.295E-12'
  []
[]
[Variables]
  [pressure]
    initial_from_file_timestep = LATEST
    initial_from_file_var = pressure
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pressure
    gravity = '-10 0 0'
  []
[]
[AuxVariables]
  [SWater]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [SWater]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 0
    variable = SWater
  []
[]
[BCs]
  [base]
    type = DirichletBC
    boundary = left
    value = 0.0
    variable = pressure
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-10      1E-10      10'
  []
[]
[VectorPostprocessors]
  [swater]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = SWater
    start_point = '0 0 0'
    end_point = '6 0 0'
    sort_by = x
    num_points = 121
    execute_on = timestep_end
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  petsc_options = '-snes_converged_reason'
  end_time = 8.2944E6
  [TimeStepper]
    type = FunctionDT
    function = dts
  []
[]
[Outputs]
  file_base = rd03
  [exodus]
    type = Exodus
    execute_on = 'initial final'
  []
  [along_line]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/actions/addmaterials.i)
# Test that the PorousFlowAddMaterialAction correctly handles the case where
# materials are added with the default add_nodes parameter, as well as
# at_nodes = true, to make sure that the action doesn't add a duplicate material
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pwater]
    initial_condition = 1e6
  []
  [sgas]
    initial_condition = 0.3
  []
  [temperature]
    initial_condition = 50
  []
[]
[AuxVariables]
  [x0]
    initial_condition = 0.1
  []
  [x1]
    initial_condition = 0.5
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater sgas temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-5
    pc_max = 1e7
    sat_lr = 0.1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
    cv = 2
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-4
    density0 = 20
    thermal_expansion = 0
    cv = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [temperature_nodal]
    type = PorousFlowTemperature
    at_nodes = true
    temperature = 50
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [ppss_nodal]
    type = PorousFlow2PhasePS
    at_nodes = true
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'x0 x1'
  []
  [massfrac_nodal]
    type = PorousFlowMassFraction
    at_nodes = true
    mass_fraction_vars = 'x0 x1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid0_nodal]
    type = PorousFlowSingleComponentFluid
    at_nodes = true
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [simple_fluid1_nodal]
    type = PorousFlowSingleComponentFluid
    at_nodes = true
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.11
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
    s_res = 0.01
    sum_s_res = 0.11
  []
  [relperm0_nodal]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    at_nodes = true
  []
  [relperm1_nodal]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
    at_nodes = true
  []
  [porosity_nodal]
    type = PorousFlowPorosityConst
    porosity = 0.1
    at_nodes = true
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 125
  []
  [unused]
    type = GenericConstantMaterial
    prop_names = unused
    prop_values = 0
  []
[]
[Executioner]
  type = Transient
  end_time = 1
  nl_abs_tol = 1e-14
[]
(modules/porous_flow/test/tests/jacobian/fflux02.i)
# 1phase, 3components, constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity, unsaturated with vanGenuchten
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [massfrac0]
  []
  [massfrac1]
  []
[]
[ICs]
  [pp]
    type = FunctionIC
    variable = pp
    function = -0.7+x+y
  []
  [massfrac0]
    type = RandomIC
    variable = massfrac0
    min = 0
    max = 0.3
  []
  [massfrac1]
    type = RandomIC
    variable = massfrac1
    min = 0
    max = 0.4
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 -0.1 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
    gravity = '-1 -0.1 0'
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = massfrac1
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0 massfrac1'
    number_fluid_phases = 1
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac0 massfrac1'
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/numerical_diffusion/no_action.i)
# Using upwinded and mass-lumped PorousFlow Kernels: this is equivalent of fully_saturated_action.i with stabilization = Full
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '1 - x'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1,0,if(x>0.3,0,1))'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = tracer
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = porepressure
  []
[]
[BCs]
  [constant_injection_porepressure]
    type = DirichletBC
    variable = porepressure
    value = 1
    boundary = left
  []
  [no_tracer_on_left]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = left
  []
  [remove_component_1]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 1
    use_mobility = true
    flux_function = 1E3
  []
  [remove_component_0]
    type = PorousFlowPiecewiseLinearSink
    variable = tracer
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E3
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[VectorPostprocessors]
  [tracer]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 101
    sort_by = x
    variable = tracer
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 6
  dt = 6E-1
  nl_abs_tol = 1E-8
  timestep_tolerance = 1E-3
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/gravity/grav01a.i)
# Checking that gravity head is established
# 1phase, vanGenuchten, constant fluid-bulk, constant viscosity, constant permeability, Corey relative perm
# fully saturated
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = -1
  xmax = 0
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = RandomIC
      min = 0
      max = 1
    []
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 0 0'
  []
[]
[Functions]
  [ana_pp]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 1.2 0 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[BCs]
  [z]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
[]
[Postprocessors]
  [pp_base]
    type = PointValue
    variable = pp
    point = '-1 0 0'
  []
  [pp_analytical]
    type = FunctionValuePostprocessor
    function = ana_pp
    point = '-1 0 0'
  []
  [pp_00]
    type = PointValue
    variable = pp
    point = '0 0 0'
  []
  [pp_01]
    type = PointValue
    variable = pp
    point = '-0.1 0 0'
  []
  [pp_02]
    type = PointValue
    variable = pp
    point = '-0.2 0 0'
  []
  [pp_03]
    type = PointValue
    variable = pp
    point = '-0.3 0 0'
  []
  [pp_04]
    type = PointValue
    variable = pp
    point = '-0.4 0 0'
  []
  [pp_05]
    type = PointValue
    variable = pp
    point = '-0.5 0 0'
  []
  [pp_06]
    type = PointValue
    variable = pp
    point = '-0.6 0 0'
  []
  [pp_07]
    type = PointValue
    variable = pp
    point = '-0.7 0 0'
  []
  [pp_08]
    type = PointValue
    variable = pp
    point = '-0.8 0 0'
  []
  [pp_09]
    type = PointValue
    variable = pp
    point = '-0.9 0 0'
  []
  [pp_10]
    type = PointValue
    variable = pp
    point = '-1 0 0'
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = grav01a
  [csv]
    type = CSV
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG2.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 2e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-4
    sat_lr = 0.3
    pc_max = 1e9
    log_extension = true
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    variable = 'ppwater ppgas'
    start_point = '0 0 0'
    end_point = '100 0 0'
    num_points = 11
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePSVG2
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/jacobian/fflux08.i)
# 1phase, 1component, constant viscosity, Kozeny-Carman permeability
# density with constant bulk, Corey relative perm, nonzero gravity, unsaturated with vanGenuchten
[Mesh]
  type = GeneratedMesh
  dim = 3
[]
[GlobalParams]
  PorousFlowDictator = dictator
  displacements = 'disp_x disp_y disp_z'
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [pp]
  []
[]
[ICs]
  [disp_x]
    type = RandomIC
    variable = disp_x
    min = -0.1
    max = 0.1
  []
  [disp_y]
    type = RandomIC
    variable = disp_y
    min = -0.1
    max = 0.1
  []
  [disp_z]
    type = RandomIC
    variable = disp_z
    min = -0.1
    max = 0.1
  []
  [pp]
    type = RandomIC
    variable = pp
    min = -1
    max = 1
  []
[]
[Kernels]
  [grad_stress_x]
    type = StressDivergenceTensors
    variable = disp_x
    component = 0
  []
  [grad_stress_y]
    type = StressDivergenceTensors
    variable = disp_y
    component = 1
  []
  [grad_stress_z]
    type = StressDivergenceTensors
    variable = disp_z
    component = 2
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [elasticity_tensor]
    type = ComputeElasticityTensor
    C_ijkl = '0.5 0.75'
    # bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
    fill_method = symmetric_isotropic
  []
  [strain]
    type = ComputeSmallStrain
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [porosity]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    porosity_zero = 0.1
    biot_coefficient = 0.5
    solid_bulk = 1
  []
  [p_eff]
    type = PorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityKozenyCarman
    poroperm_function = kozeny_carman_phi0
    k_anisotropy = '1 0 0 0 2 0 0 0 3'
    phi0 = 0.1
    n = 1.0
    m = 2.0
    k0 = 2
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/jacobian/waterncg_liquid.i)
# Tests correct calculation of properties derivatives in PorousFlowWaterNCG
# for conditions that give a single liquid phase
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  ny = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pgas]
  []
  [z]
  []
[]
[ICs]
  [pgas]
    type = RandomIC
    min = 6e6
    max = 8e6
    variable = pgas
  []
  [z]
    type = RandomIC
    min = 0.01
    max = 0.05
    variable = z
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    variable = z
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 1e4
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[AuxVariables]
  [sgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sgas]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = sgas
  []
[]
[Postprocessors]
  [sgas_min]
    type = ElementExtremeValue
    variable = sgas
    value_type = min
  []
  [sgas_max]
    type = ElementExtremeValue
    variable = sgas
    value_type = max
  []
[]
(modules/porous_flow/test/tests/jacobian/fflux03.i)
# 2phase (PP), 2components (that exist in both phases), constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity, unsaturated with vanGenuchten
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
  []
  [ppgas]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
  []
  [massfrac_ph1_sp0]
  []
[]
[ICs]
  [ppwater]
    type = RandomIC
    variable = ppwater
    min = -1
    max = 0
  []
  [ppgas]
    type = RandomIC
    variable = ppgas
    min = 0
    max = 1
  []
  [massfrac_ph0_sp0]
    type = RandomIC
    variable = massfrac_ph0_sp0
    min = 0
    max = 1
  []
  [massfrac_ph1_sp0]
    type = RandomIC
    variable = massfrac_ph1_sp0
    min = 0
    max = 1
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 -0.1 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = ppgas
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.5
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_transient.i)
# Using a single-dimensional mesh
# Transient flow and solute transport along a fracture in a porous matrix
# advective dominated flow in the fracture and diffusion into the porous matrix
#
# Note that fine_thick_fracture_steady.i must be run to initialise the porepressure properly
[Mesh]
  file = 'gold/fine_thick_fracture_steady_out.e'
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
    initial_from_file_var = pp
    initial_from_file_timestep = 1
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [velocity_x]
    family = MONOMIAL
    order = CONSTANT
    block = fracture
  []
  [velocity_y]
    family = MONOMIAL
    order = CONSTANT
    block = fracture
  []
[]
[AuxKernels]
  [velocity_x]
    type = PorousFlowDarcyVelocityComponent
    variable = velocity_x
    component = x
  []
  [velocity_y]
    type = PorousFlowDarcyVelocityComponent
    variable = velocity_y
    component = y
  []
[]
[Problem]
  # massfrac0 has an initial condition despite the restart
  allow_initial_conditions_with_restart = true
[]
[ICs]
  [massfrac0]
    type = ConstantIC
    variable = massfrac0
    value = 0
  []
[]
[BCs]
  [top]
    type = DirichletBC
    value = 0
    variable = massfrac0
    boundary = top
  []
  [bottom]
    type = DirichletBC
    value = 1
    variable = massfrac0
    boundary = bottom
  []
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = top
    value = 1e6
  []
  [pbottom]
    type = DirichletBC
    variable = pp
    boundary = bottom
    value = 1.002e6
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = pp
    disp_trans = 0
    disp_long = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = massfrac0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    disp_trans = 0
    disp_long = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = massfrac0
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [poro_fracture]
    type = PorousFlowPorosityConst
    porosity = 1.0 # this is the true porosity of the fracture
    block = 'fracture'
  []
  [poro_matrix]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 'matrix1 matrix2'
  []
  [diff1]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '1e-9 1e-9'
    tortuosity = 1.0
    block = 'fracture'
  []
  [diff2]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '1e-9 1e-9'
    tortuosity = 0.1
    block = 'matrix1 matrix2'
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability1]
    type = PorousFlowPermeabilityConst
    permeability = '3e-8 0 0 0 3e-8 0 0 0 3e-8' # this is the true permeability of the fracture
    block = 'fracture'
  []
  [permeability2]
    type = PorousFlowPermeabilityConst
    permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
    block = 'matrix1 matrix2'
  []
[]
[Functions]
  [dt_controller]
    type = PiecewiseConstant
    x = '0    30   40 100 200 83200'
    y = '0.01 0.1  1  10  100 32'
  []
[]
[Preconditioning]
  active = basic
  [mumps_is_best_for_parallel_jobs]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 86400
  #dt = 0.01
  [TimeStepper]
    type = FunctionDT
    function = dt_controller
  []
  # controls for nonlinear iterations
  nl_max_its = 15
  nl_rel_tol = 1e-14
  nl_abs_tol = 1e-9
[]
[VectorPostprocessors]
  [xmass]
    type = LineValueSampler
    start_point = '0.4 0 0'
    end_point = '0.5 0 0'
    sort_by = x
    num_points = 167
    variable = massfrac0
  []
[]
[Outputs]
  perf_graph = true
  console = true
  csv = true
  exodus = true
[]
(modules/porous_flow/test/tests/poro_elasticity/terzaghi.i)
# Terzaghi's problem of consolodation of a drained medium
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example.  Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height.  h = 10
# Soil's Lame lambda.  la = 2
# Soil's Lame mu, which is also the Soil's shear modulus.  mu = 3
# Soil bulk modulus.  K = la + 2*mu/3 = 4
# Soil confined compressibility.  m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance.  1/K = 0.25
# Fluid bulk modulus.  Kf = 8
# Fluid bulk compliance.  1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity).  k = 1.5
# Soil initial porosity.  phi0 = 0.1
# Biot coefficient.  alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus.  S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient.  c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top.  q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution).  p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution).  uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution).  uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
#
# FINAL NOTE: The above solution assumes constant Biot Modulus.
# In porous_flow this is not true.  Therefore the solution is
# a little different than in the paper.  This test was therefore
# validated against MOOSE's poromechanics, which can choose either
# a constant Biot Modulus (which has been shown to agree with
# the analytic solution), or a non-constant Biot Modulus (which
# gives the same results as porous_flow).
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 1
  ny = 1
  nz = 10
  xmin = -1
  xmax = 1
  ymin = -1
  ymax = 1
  zmin = 0
  zmax = 10
[]
[GlobalParams]
  displacements = 'disp_x disp_y disp_z'
  PorousFlowDictator = dictator
  block = 0
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1
  []
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [porepressure]
  []
[]
[BCs]
  [confinex]
    type = DirichletBC
    variable = disp_x
    value = 0
    boundary = 'left right'
  []
  [confiney]
    type = DirichletBC
    variable = disp_y
    value = 0
    boundary = 'bottom top'
  []
  [basefixed]
    type = DirichletBC
    variable = disp_z
    value = 0
    boundary = back
  []
  [topdrained]
    type = DirichletBC
    variable = porepressure
    value = 0
    boundary = front
  []
  [topload]
    type = NeumannBC
    variable = disp_z
    value = -1
    boundary = front
  []
[]
[Kernels]
  [grad_stress_x]
    type = StressDivergenceTensors
    variable = disp_x
    component = 0
  []
  [grad_stress_y]
    type = StressDivergenceTensors
    variable = disp_y
    component = 1
  []
  [grad_stress_z]
    type = StressDivergenceTensors
    variable = disp_z
    component = 2
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    variable = disp_x
    component = 0
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    variable = disp_y
    component = 1
  []
  [poro_z]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    component = 2
    variable = disp_z
  []
  [poro_vol_exp]
    type = PorousFlowMassVolumetricExpansion
    variable = porepressure
    fluid_component = 0
  []
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = porepressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = porepressure
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 8
    density0 = 1
    thermal_expansion = 0
    viscosity = 0.96
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [elasticity_tensor]
    type = ComputeElasticityTensor
    C_ijkl = '2 3'
    # bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
    fill_method = symmetric_isotropic
  []
  [strain]
    type = ComputeSmallStrain
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure_qp]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    ensure_positive = false
    porosity_zero = 0.1
    biot_coefficient = 0.6
    solid_bulk = 4
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.5 0 0   0 1.5 0   0 0 1.5'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Postprocessors]
  [p0]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p1]
    type = PointValue
    outputs = csv
    point = '0 0 1'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p2]
    type = PointValue
    outputs = csv
    point = '0 0 2'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p3]
    type = PointValue
    outputs = csv
    point = '0 0 3'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p4]
    type = PointValue
    outputs = csv
    point = '0 0 4'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p5]
    type = PointValue
    outputs = csv
    point = '0 0 5'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p6]
    type = PointValue
    outputs = csv
    point = '0 0 6'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p7]
    type = PointValue
    outputs = csv
    point = '0 0 7'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p8]
    type = PointValue
    outputs = csv
    point = '0 0 8'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p9]
    type = PointValue
    outputs = csv
    point = '0 0 9'
    variable = porepressure
    use_displaced_mesh = false
  []
  [p99]
    type = PointValue
    outputs = csv
    point = '0 0 10'
    variable = porepressure
    use_displaced_mesh = false
  []
  [zdisp]
    type = PointValue
    outputs = csv
    point = '0 0 10'
    variable = disp_z
    use_displaced_mesh = false
  []
  [dt]
    type = FunctionValuePostprocessor
    outputs = console
    function = if(0.5*t<0.1,0.5*t,0.1)
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  start_time = 0
  end_time = 10
  [TimeStepper]
    type = PostprocessorDT
    postprocessor = dt
    dt = 0.0001
  []
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = terzaghi
  [csv]
    type = CSV
  []
[]
(modules/porous_flow/test/tests/gravity/grav01c.i)
# Checking that gravity head is established
# 1phase, vanGenuchten, constant fluid-bulk, constant viscosity, constant permeability, Corey relative perm
# unsaturated
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = -1
  xmax = 0
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = RandomIC
      min = -1
      max = 1
    []
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 0 0'
  []
[]
[Functions]
  [ana_pp]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 2 -1 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[BCs]
  [z]
    type = DirichletBC
    variable = pp
    boundary = right
    value = -1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
[]
[Postprocessors]
  [pp_base]
    type = PointValue
    variable = pp
    point = '-1 0 0'
  []
  [pp_analytical]
    type = FunctionValuePostprocessor
    function = ana_pp
    point = '-1 0 0'
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = grav01c
  exodus = true
  [csv]
    type = CSV
  []
[]
(modules/porous_flow/test/tests/fluidstate/coldwater_injection.i)
# Cold water injection into 1D hot reservoir (Avdonin, 1964)
#
# To generate results presented in documentation for this problem,
# set xmax = 50 and nx = 250 in the Mesh block, and dtmax = 100 and
# end_time = 1.3e5 in the Executioner block.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 25
  xmax = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [temperature]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [temperature]
    type = PorousFlowPropertyAux
    variable = temperature
    property = temperature
    execute_on = 'initial timestep_end'
  []
[]
[Variables]
  [pliquid]
    initial_condition = 5e6
  []
  [h]
    scaling = 1e-6
  []
[]
[ICs]
  [hic]
    type = PorousFlowFluidPropertyIC
    variable = h
    porepressure = pliquid
    property = enthalpy
    temperature = 170
    temperature_unit = Celsius
    fp = water
  []
[]
[BCs]
  [pleft]
    type = DirichletBC
    variable = pliquid
    value = 5.05e6
    boundary = left
  []
  [pright]
    type = DirichletBC
    variable = pliquid
    value = 5e6
    boundary = right
  []
  [hleft]
    type = DirichletBC
    variable = h
    value = 678.52e3
    boundary = left
  []
  [hright]
    type = DirichletBC
    variable = h
    value = 721.4e3
    boundary = right
  []
[]
[Kernels]
  [mass]
    type = PorousFlowMassTimeDerivative
    variable = pliquid
  []
  [massflux]
    type = PorousFlowAdvectiveFlux
    variable = pliquid
  []
  [heat]
    type = PorousFlowEnergyTimeDerivative
    variable = h
  []
  [heatflux]
    type = PorousFlowHeatAdvection
    variable = h
  []
  [heatcond]
    type = PorousFlowHeatConduction
    variable = h
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pliquid h'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    pc_max = 1e6
    sat_lr = 0.1
    m = 0.5
    alpha = 1e-5
  []
  [fs]
    type = PorousFlowWaterVapor
    water_fp = water
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [watervapor]
    type = PorousFlowFluidStateSingleComponent
    porepressure = pliquid
    enthalpy = h
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
    sum_s_res = 0.1
  []
  [internal_energy]
    type = PorousFlowMatrixInternalEnergy
    density = 2900
    specific_heat_capacity = 740
  []
  [rock_thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '20 0 0  0 20 0  0 0 20'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 5e3
  nl_abs_tol = 1e-10
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 100
  []
[]
[VectorPostprocessors]
  [line]
    type = ElementValueSampler
    sort_by = x
    variable = temperature
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  perf_graph = true
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM.i)
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable.  Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source, s, has units m^3/second/m^3.  Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz   (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz   (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/second/m^3.  The ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
# The relationship between the constant poroelastic source
# s (m^3/second/m^3) and the PorousFlow source, S (kg/second/m^3) is
# S = fluid_density * s = s * exp(porepressure/fluid_bulk)
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 1
  ny = 1
  nz = 1
  xmin = -0.5
  xmax = 0.5
  ymin = -0.5
  ymax = 0.5
  zmin = -0.5
  zmax = 0.5
[]
[GlobalParams]
  displacements = 'disp_x disp_y disp_z'
  PorousFlowDictator = dictator
  block = 0
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-5
  []
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [porepressure]
  []
[]
[BCs]
  [confinex]
    type = DirichletBC
    variable = disp_x
    value = 0
    boundary = 'left right'
  []
  [confiney]
    type = DirichletBC
    variable = disp_y
    value = 0
    boundary = 'bottom top'
  []
  [confinez]
    type = DirichletBC
    variable = disp_z
    value = 0
    boundary = 'back'
  []
[]
[Kernels]
  [grad_stress_x]
    type = StressDivergenceTensors
    variable = disp_x
    component = 0
  []
  [grad_stress_y]
    type = StressDivergenceTensors
    variable = disp_y
    component = 1
  []
  [grad_stress_z]
    type = StressDivergenceTensors
    variable = disp_z
    component = 2
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    variable = disp_x
    component = 0
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    variable = disp_y
    component = 1
  []
  [poro_z]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    component = 2
    variable = disp_z
  []
  [poro_vol_exp]
    type = PorousFlowMassVolumetricExpansion
    variable = porepressure
    fluid_component = 0
  []
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = porepressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = porepressure
    gravity = '0 0 0'
    fluid_component = 0
  []
  [source]
    type = BodyForce
    function = '0.1*exp(8.163265306*0.1*t/3.3333333333)'
    variable = porepressure
  []
[]
[AuxVariables]
  [stress_xx]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [stress_xx]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xx
    index_i = 0
    index_j = 0
  []
  [stress_xy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xy
    index_i = 0
    index_j = 1
  []
  [stress_xz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xz
    index_i = 0
    index_j = 2
  []
  [stress_yy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yy
    index_i = 1
    index_j = 1
  []
  [stress_yz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yz
    index_i = 1
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 2
    index_j = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 3.3333333333
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [elasticity_tensor]
    type = ComputeElasticityTensor
    C_ijkl = '1 1.5'
    # bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
    fill_method = symmetric_isotropic
  []
  [strain]
    type = ComputeSmallStrain
    displacements = 'disp_x disp_y disp_z'
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityHMBiotModulus
    porosity_zero = 0.1
    biot_coefficient = 0.3
    solid_bulk = 2
    constant_fluid_bulk_modulus = 3.3333333333
    constant_biot_modulus = 10.0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0   0 1 0   0 0 1' # unimportant
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Postprocessors]
  [p0]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = porepressure
  []
  [zdisp]
    type = PointValue
    outputs = csv
    point = '0 0 0.5'
    variable = disp_z
  []
  [stress_xx]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = stress_xx
  []
  [stress_yy]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = stress_yy
  []
  [stress_zz]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = stress_zz
  []
[]
[Functions]
  [stress_xx_over_strain_fcn]
    type = ParsedFunction
    expression = a/b
    symbol_names = 'a b'
    symbol_values = 'stress_xx zdisp'
  []
  [stress_zz_over_strain_fcn]
    type = ParsedFunction
    expression = a/b
    symbol_names = 'a b'
    symbol_values = 'stress_zz zdisp'
  []
  [p_over_strain_fcn]
    type = ParsedFunction
    expression = a/b
    symbol_names = 'a b'
    symbol_values = 'p0 zdisp'
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  start_time = 0
  end_time = 10
  dt = 1
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = pp_generation_unconfined_constM
  [csv]
    type = CSV
  []
[]
(modules/porous_flow/test/tests/newton_cooling/nc08.i)
# Newton cooling from a bar.  1-phase ideal fluid and heat, steady
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 100
  ny = 1
  xmin = 0
  xmax = 100
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pressure temp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-5
  []
[]
[Variables]
  [pressure]
  []
  [temp]
  []
[]
[ICs]
  # have to start these reasonably close to their steady-state values
  [pressure]
    type = FunctionIC
    variable = pressure
    function = '200-0.5*x'
  []
  [temperature]
    type = FunctionIC
    variable = temp
    function = 180+0.1*x
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    gravity = '0 0 0'
    variable = pressure
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    gravity = '0 0 0'
    variable = temp
  []
[]
[FluidProperties]
  [idealgas]
    type = IdealGasFluidProperties
    molar_mass = 1.4
    gamma = 1.2
    mu = 1.2
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [dens0]
    type = PorousFlowSingleComponentFluid
    fp = idealgas
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.1 0 0 0 1.1 0 0 0 1.1'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey # irrelevant in this fully-saturated situation
    n = 2
    phase = 0
  []
[]
[BCs]
  [leftp]
    type = DirichletBC
    variable = pressure
    boundary = left
    value = 200
  []
  [leftt]
    type = DirichletBC
    variable = temp
    boundary = left
    value = 180
  []
  [newtonp]
    type = PorousFlowPiecewiseLinearSink
    variable = pressure
    boundary = right
    pt_vals = '-200 0 200'
    multipliers = '-200 0 200'
    use_mobility = true
    use_relperm = true
    fluid_phase = 0
    flux_function = 0.005 # 1/2/L
  []
  [newtont]
    type = PorousFlowPiecewiseLinearSink
    variable = temp
    boundary = right
    pt_vals = '-200 0 200'
    multipliers = '-200 0 200'
    use_mobility = true
    use_relperm = true
    use_enthalpy = true
    fluid_phase = 0
    flux_function = 0.005 # 1/2/L
  []
[]
[VectorPostprocessors]
  [porepressure]
    type = LineValueSampler
    variable = pressure
    start_point = '0 0.5 0'
    end_point = '100 0.5 0'
    sort_by = x
    num_points = 11
    execute_on = timestep_end
  []
  [temperature]
    type = LineValueSampler
    variable = temp
    start_point = '0 0.5 0'
    end_point = '100 0.5 0'
    sort_by = x
    num_points = 11
    execute_on = timestep_end
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
  nl_rel_tol = 1E-10
  nl_abs_tol = 1E-15
[]
[Outputs]
  file_base = nc08
  execute_on = timestep_end
  [along_line]
    type = CSV
    execute_vector_postprocessors_on = timestep_end
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2comp.i)
# Pressure pulse in 1D with 1 phase but 2 components (where density and viscosity depend on mass fraction)
# This test uses BrineFluidProperties with the PorousFlowMultiComponentFluid material, but could be run using
# the PorousFlowBrine material instead.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp xnacl'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Variables]
  [pp]
    initial_condition = 1e6
  []
  [xnacl]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = xnacl
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = xnacl
  []
[]
[AuxVariables]
  [density]
    family = MONOMIAL
    order = FIRST
  []
[]
[AuxKernels]
  [density]
    type = PorousFlowPropertyAux
    variable = density
    property = density
    phase = 0
    execute_on = 'initial timestep_end'
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 293
  []
  [mass_fractions]
    type = PorousFlowMassFraction
    mass_fraction_vars = xnacl
  []
  [ps]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [brine]
    type = PorousFlowMultiComponentFluid
    x = xnacl
    fp = brine
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-7 0 0 0 1e-7 0 0 0 1e-7'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    kr = 1
    phase = 0
  []
[]
[BCs]
  [left_p]
    type = DirichletBC
    boundary = left
    value = 2e6
    variable = pp
  []
  [right_p]
    type = DirichletBC
    boundary = right
    value = 1e6
    variable = pp
  []
  [left_xnacl]
    type = DirichletBC
    boundary = left
    value = 0.2
    variable = xnacl
  []
  [right_xnacl]
    type = DirichletBC
    boundary = right
    value = 0
    variable = xnacl
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -pc_factor_shift_type'
    petsc_options_value = 'bcgs lu  NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 5
[]
[Postprocessors]
  [p000]
    type = PointValue
    variable = pp
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [p050]
    type = PointValue
    variable = pp
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [p100]
    type = PointValue
    variable = pp
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_000]
    type = PointValue
    variable = xnacl
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_000]
    type = PointValue
    variable = density
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_020]
    type = PointValue
    variable = xnacl
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_020]
    type = PointValue
    variable = density
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_040]
    type = PointValue
    variable = xnacl
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_040]
    type = PointValue
    variable = density
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_060]
    type = PointValue
    variable = xnacl
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_060]
    type = PointValue
    variable = density
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_080]
    type = PointValue
    variable = xnacl
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_080]
    type = PointValue
    variable = density
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_100]
    type = PointValue
    variable = xnacl
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_100]
    type = PointValue
    variable = density
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/jacobian/waterncg_twophase.i)
# Tests correct calculation of properties derivatives in PorousFlowWaterNCG
# for conditions for two phases
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  ny = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pgas]
  []
  [z]
  []
[]
[ICs]
  [pgas]
    type = RandomIC
    min = 1e5
    max = 5e5
    variable = pgas
  []
  [z]
    type = RandomIC
    min = 0.01
    max = 0.06
    variable = z
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    variable = z
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e1
    pc_max = 1e4
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[AuxVariables]
  [sgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sgas]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = sgas
  []
[]
[Postprocessors]
  [sgas_min]
    type = ElementExtremeValue
    variable = sgas
    value_type = min
  []
  [sgas_max]
    type = ElementExtremeValue
    variable = sgas
    value_type = max
  []
[]
(modules/porous_flow/examples/lava_lamp/1phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# The model starts with CO2 in the liquid phase only.  The CO2 diffuses into the brine.
# As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores.
[GlobalParams]
  PorousFlowDictator = 'dictator'
  gravity = '0 -9.81 0'
[]
[Adaptivity]
  max_h_level = 2
  marker = marker
  initial_marker = initial
  initial_steps = 2
  [Indicators]
    [indicator]
      type = GradientJumpIndicator
      variable = zi
    []
  []
  [Markers]
    [marker]
      type = ErrorFractionMarker
      indicator = indicator
      refine = 0.8
    []
    [initial]
      type = BoxMarker
      bottom_left = '0 1.95 0'
      top_right = '2 2 0'
      inside = REFINE
      outside = DO_NOTHING
    []
  []
[]
[Mesh]
  type = GeneratedMesh
  dim = 2
  ymin = 1.5
  ymax = 2
  xmax = 2
  ny = 20
  nx = 40
  bias_y = 0.95
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.01
  []
  [saturation_gas]
    order = FIRST
    family = MONOMIAL
  []
  [xco2l]
    order = FIRST
    family = MONOMIAL
  []
  [density_liquid]
    order = FIRST
    family = MONOMIAL
  []
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = 'timestep_end'
  []
  [xco2l]
    type = PorousFlowPropertyAux
    variable = xco2l
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = 'timestep_end'
  []
  [density_liquid]
    type = PorousFlowPropertyAux
    variable = density_liquid
    property = density
    phase = 0
    execute_on = 'timestep_end'
  []
[]
[Variables]
  [pgas]
  []
  [zi]
    scaling = 1e4
  []
[]
[ICs]
  [pressure]
    type = FunctionIC
    function = 10e6-9.81*1000*y
    variable = pgas
  []
  [zi]
    type = ConstantIC
    value = 0
    variable = zi
  []
  [porosity]
    type = RandomIC
    variable = porosity
    min = 0.25
    max = 0.275
    seed = 0
  []
[]
[BCs]
  [top]
    type = DirichletBC
    value = 0.04
    variable = zi
    boundary = top
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = pgas
    disp_long = '0 0'
    disp_trans = '0 0'
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = zi
    disp_long = '0 0'
    disp_trans = '0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2sw]
    type = CO2FluidProperties
  []
  [co2]
    type = TabulatedBicubicFluidProperties
    fp = co2sw
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = '45'
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = 'pgas'
    z = 'zi'
    temperature_unit = Celsius
    xnacl = 'xnacl'
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = porosity
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 2
    s_res = 0.1
    sum_s_res = 0.2
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
    s_res = 0.1
    sum_s_res = 0.2
  []
  [diffusivity]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
    tortuosity = '1 1'
  []
[]
[Preconditioning]
  active = basic
  [mumps_is_best_for_parallel_jobs]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e6
  nl_max_its = 25
  l_max_its = 100
  dtmax = 1e4
  nl_abs_tol = 1e-6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 100
    growth_factor = 2
    cutback_factor = 0.5
  []
[]
[Functions]
  [flux]
    type = ParsedFunction
    symbol_values = 'delta_xco2 dt'
    symbol_names = 'dx dt'
    expression = 'dx/dt'
  []
[]
[Postprocessors]
  [total_co2_in_gas]
    type = PorousFlowFluidMass
    phase = 1
    fluid_component = 1
  []
  [total_co2_in_liquid]
    type = PorousFlowFluidMass
    phase = 0
    fluid_component = 1
  []
  [numdofs]
    type = NumDOFs
  []
  [delta_xco2]
    type = ChangeOverTimePostprocessor
    postprocessor = total_co2_in_liquid
  []
  [dt]
    type = TimestepSize
  []
  [flux]
    type = FunctionValuePostprocessor
    function = flux
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  exodus = true
  csv = true
[]
(modules/porous_flow/test/tests/poro_elasticity/mandel_constM.i)
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed.  The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width.  a = 1
# Soil height.  b = 0.1
# Soil's Lame lambda.  la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus.  mu = G = 0.75
# Soil bulk modulus.  K = la + 2*mu/3 = 1
# Drained Poisson ratio.  nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance.  1/K = 1
# Fluid bulk modulus.  Kf = 8
# Fluid bulk compliance.  1/Kf = 0.125
# Soil initial porosity.  phi0 = 0.1
# Biot coefficient.  alpha = 0.6
# Biot modulus.  M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio.  nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient.  B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity).  k = 1.5
# Consolidation coefficient.  c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top.  F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 10
  ny = 1
  nz = 1
  xmin = 0
  xmax = 1
  ymin = 0
  ymax = 0.1
  zmin = 0
  zmax = 1
[]
[GlobalParams]
  displacements = 'disp_x disp_y disp_z'
  PorousFlowDictator = dictator
  block = 0
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-5
  []
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [porepressure]
  []
[]
[BCs]
  [roller_xmin]
    type = DirichletBC
    variable = disp_x
    value = 0
    boundary = 'left'
  []
  [roller_ymin]
    type = DirichletBC
    variable = disp_y
    value = 0
    boundary = 'bottom'
  []
  [plane_strain]
    type = DirichletBC
    variable = disp_z
    value = 0
    boundary = 'back front'
  []
  [xmax_drained]
    type = DirichletBC
    variable = porepressure
    value = 0
    boundary = right
  []
  [top_velocity]
    type = FunctionDirichletBC
    variable = disp_y
    function = top_velocity
    boundary = top
  []
[]
[Functions]
  [top_velocity]
    type = PiecewiseLinear
    x = '0 0.002 0.006   0.014   0.03    0.046   0.062   0.078   0.094   0.11    0.126   0.142   0.158   0.174   0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
    y = '-0.041824842    -0.042730269    -0.043412712    -0.04428867     -0.045509181    -0.04645965     -0.047268246 -0.047974749      -0.048597109     -0.0491467  -0.049632388     -0.050061697      -0.050441198     -0.050776675     -0.051073238      -0.0513354 -0.051567152      -0.051772022     -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
  []
[]
[AuxVariables]
  [stress_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [tot_force]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [stress_yy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yy
    index_i = 1
    index_j = 1
  []
  [tot_force]
    type = ParsedAux
    coupled_variables = 'stress_yy porepressure'
    execute_on = timestep_end
    variable = tot_force
    expression = '-stress_yy+0.6*porepressure'
  []
[]
[Kernels]
  [grad_stress_x]
    type = StressDivergenceTensors
    variable = disp_x
    component = 0
  []
  [grad_stress_y]
    type = StressDivergenceTensors
    variable = disp_y
    component = 1
  []
  [grad_stress_z]
    type = StressDivergenceTensors
    variable = disp_z
    component = 2
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    variable = disp_x
    component = 0
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    variable = disp_y
    component = 1
  []
  [poro_z]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.6
    component = 2
    variable = disp_z
  []
  [poro_vol_exp]
    type = PorousFlowMassVolumetricExpansion
    variable = porepressure
    fluid_component = 0
  []
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = porepressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = porepressure
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 8
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [elasticity_tensor]
    type = ComputeElasticityTensor
    C_ijkl = '0.5 0.75'
    # bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
    fill_method = symmetric_isotropic
  []
  [strain]
    type = ComputeSmallStrain
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityHMBiotModulus
    porosity_zero = 0.1
    biot_coefficient = 0.6
    solid_bulk = 1
    constant_fluid_bulk_modulus = 8
    constant_biot_modulus = 4.7058823529
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.5 0 0   0 1.5 0   0 0 1.5'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Postprocessors]
  [p0]
    type = PointValue
    outputs = csv
    point = '0.0 0 0'
    variable = porepressure
  []
  [p1]
    type = PointValue
    outputs = csv
    point = '0.1 0 0'
    variable = porepressure
  []
  [p2]
    type = PointValue
    outputs = csv
    point = '0.2 0 0'
    variable = porepressure
  []
  [p3]
    type = PointValue
    outputs = csv
    point = '0.3 0 0'
    variable = porepressure
  []
  [p4]
    type = PointValue
    outputs = csv
    point = '0.4 0 0'
    variable = porepressure
  []
  [p5]
    type = PointValue
    outputs = csv
    point = '0.5 0 0'
    variable = porepressure
  []
  [p6]
    type = PointValue
    outputs = csv
    point = '0.6 0 0'
    variable = porepressure
  []
  [p7]
    type = PointValue
    outputs = csv
    point = '0.7 0 0'
    variable = porepressure
  []
  [p8]
    type = PointValue
    outputs = csv
    point = '0.8 0 0'
    variable = porepressure
  []
  [p9]
    type = PointValue
    outputs = csv
    point = '0.9 0 0'
    variable = porepressure
  []
  [p99]
    type = PointValue
    outputs = csv
    point = '1 0 0'
    variable = porepressure
  []
  [xdisp]
    type = PointValue
    outputs = csv
    point = '1 0.1 0'
    variable = disp_x
  []
  [ydisp]
    type = PointValue
    outputs = csv
    point = '1 0.1 0'
    variable = disp_y
  []
  [total_downwards_force]
     type = ElementAverageValue
     outputs = csv
     variable = tot_force
  []
  [dt]
    type = FunctionValuePostprocessor
    outputs = console
    function = if(0.15*t<0.01,0.15*t,0.01)
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  start_time = 0
  end_time = 0.7
  [TimeStepper]
    type = PostprocessorDT
    postprocessor = dt
    dt = 0.001
  []
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = mandel_constM
  [csv]
    time_step_interval = 3
    type = CSV
  []
[]
(modules/porous_flow/test/tests/dispersion/disp01.i)
# Test dispersive part of PorousFlowDispersiveFlux kernel by setting diffusion
# coefficients to zero. A pressure gradient is applied over the mesh to give a
# uniform velocity. Gravity is set to zero.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmax = 10
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [velocity]
    family = MONOMIAL
    order = FIRST
  []
[]
[AuxKernels]
  [velocity]
    type = PorousFlowDarcyVelocityComponent
    variable = velocity
    component = x
  []
[]
[ICs]
  [pp]
    type = FunctionIC
    variable = pp
    function = pic
  []
  [massfrac0]
    type = ConstantIC
    variable = massfrac0
    value = 0
  []
[]
[Functions]
  [pic]
    type = ParsedFunction
    expression = 1.1e5-x*1e3
  []
[]
[BCs]
  [xleft]
    type = DirichletBC
    value = 1
    variable = massfrac0
    boundary = left
  []
  [xright]
    type = DirichletBC
    value = 0
    variable = massfrac0
    boundary = right
  []
  [pright]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 1e5
  []
  [pleft]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1.1e5
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    variable = pp
    disp_trans = 0
    disp_long = 0.2
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = massfrac0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    disp_trans = 0
    disp_long = 0.2
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    density0 = 1000
    viscosity = 0.001
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = massfrac0
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [poro]
    type = PorousFlowPorosityConst
    porosity = 0.3
  []
  [diff]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '0 0'
    tortuosity = 0.1
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e3
  dtmax = 50
  [TimeStepper]
    type = IterationAdaptiveDT
    growth_factor = 1.5
    cutback_factor = 0.5
    dt = 1
  []
[]
[VectorPostprocessors]
  [xmass]
    type = NodalValueSampler
    sort_by = id
    variable = massfrac0
  []
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/actions/block_restricted_materials.i)
# Tests that the actions to automatically add PorousFlowJoiner's and the correct
# qp or nodal version of each material work as expected when a material is block
# restricted. Tests both phase dependent properties (like relative permeability)
# as well as phase-independent materials (like porosity)
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    ny = 2
  []
  [subdomain0]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '0 0 0'
    top_right = '1 0.5 0'
    block_id = 0
  []
  [subdomain1]
    input = subdomain0
    type = SubdomainBoundingBoxGenerator
    bottom_left = '0 0.5 0'
    top_right = '1 1 0'
    block_id = 1
  []
[]
[Variables]
  [p0]
    initial_condition = 1
  []
  [p1]
    initial_condition = 1.1
  []
[]
[AuxVariables]
  [porosity]
    family = MONOMIAL
    order = CONSTANT
  []
  [kl]
    family = MONOMIAL
    order = CONSTANT
  []
  [kg]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
  [kl]
    type = PorousFlowPropertyAux
    property = relperm
    variable = kl
    phase = 0
  []
  [kg]
    type = PorousFlowPropertyAux
    property = relperm
    variable = kg
    phase = 1
  []
[]
[Kernels]
  [p0]
    type = PorousFlowMassTimeDerivative
    variable = p0
  []
  [p1]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = p1
  []
[]
[FluidProperties]
  [fluid0]
    type = SimpleFluidProperties
  []
  [fluid1]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = p0
    phase1_porepressure = p1
    capillary_pressure = pc
  []
  [krl0]
    type = PorousFlowRelativePermeabilityConst
    kr = 0.7
    phase = 0
    block = 0
  []
  [krg0]
    type = PorousFlowRelativePermeabilityConst
    kr = 0.8
    phase = 1
    block = 0
  []
  [krl1]
    type = PorousFlowRelativePermeabilityConst
    kr = 0.5
    phase = 0
    block = 1
  []
  [krg1]
    type = PorousFlowRelativePermeabilityConst
    kr = 0.4
    phase = 1
    block = 1
  []
  [perm]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 1 0 0 0 1'
  []
  [fluid0]
    type = PorousFlowSingleComponentFluid
    fp = fluid0
    phase = 0
  []
  [fluid1]
    type = PorousFlowSingleComponentFluid
    fp = fluid1
    phase = 1
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [porosity0]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 0
  []
  [porosity1]
    type = PorousFlowPorosityConst
    porosity = 0.2
    block = 1
  []
[]
[Executioner]
  type = Transient
  end_time = 1
  nl_abs_tol = 1e-10
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 p1'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/sinks/s09.i)
# Apply a piecewise-linear sink flux to the right-hand side and watch fluid flow to it
#
# This test has a single phase with two components.  The test initialises with
# the porous material fully filled with component=1.  The left-hand side is fixed
# at porepressure=1 and mass-fraction of the zeroth component being unity.
# The right-hand side has a very strong piecewise-linear flux that keeps the
# porepressure~0 at that side.  Fluid mass is extracted by this flux in proportion
# to the fluid component mass fraction.
#
# Therefore, the zeroth fluid component will flow from left to right (down the
# pressure gradient).
#
# The important DE is
# porosity * dc/dt = (perm / visc) * grad(P) * grad(c)
# which is true for c = mass-fraction, and very large bulk modulus of the fluid.
# For grad(P) constant in time and space (as in this example) this is just the
# advection equation for c, with velocity = perm / visc / porosity.  The parameters
# are chosen to velocity = 1 m/s.
# In the numerical world, and especially with full upwinding, the advection equation
# suffers from diffusion.  In this example, the diffusion is obvious when plotting
# the mass-fraction along the line, but the average velocity of the front is still
# correct at 1 m/s.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp frac'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[Variables]
  [pp]
  []
  [frac]
  []
[]
[ICs]
  [pp]
    type = FunctionIC
    variable = pp
    function = 1-x
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = frac
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = pp
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    gravity = '0 0 0'
    variable = frac
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    gravity = '0 0 0'
    variable = pp
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e10 # need large in order for constant-velocity advection
    density0 = 1 # almost irrelevant, except that the ability of the right BC to keep P fixed at zero is related to density_P0
    thermal_expansion = 0
    viscosity = 11
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = frac
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.1 0 0 0 1.1 0 0 0 1.1'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2 # irrelevant in this fully-saturated situation
    phase = 0
  []
[]
[BCs]
  [lhs_fixed_a]
    type = DirichletBC
    boundary = 'left'
    variable = frac
    value = 1
  []
  [lhs_fixed_b]
    type = DirichletBC
    boundary = 'left'
    variable = pp
    value = 1
  []
  [flux0]
    type = PorousFlowPiecewiseLinearSink
    boundary = 'right'
    pt_vals = '-100 100'
    multipliers = '-1 1'
    variable = frac # the zeroth comonent
    mass_fraction_component = 0
    use_mobility = false
    use_relperm = false
    fluid_phase = 0
    flux_function = 1E4
  []
  [flux1]
    type = PorousFlowPiecewiseLinearSink
    boundary = 'right'
    pt_vals = '-100 100'
    multipliers = '-1 1'
    variable = pp # comonent 1
    mass_fraction_component = 1
    use_mobility = false
    use_relperm = false
    fluid_phase = 0
    flux_function = 1E4
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_max_it -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres asm lu 10000 NONZERO 2'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E-2
  end_time = 1
  nl_rel_tol = 1E-12
  nl_abs_tol = 1E-12
[]
[VectorPostprocessors]
  [mf]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 100
    sort_by = x
    variable = frac
  []
[]
[Outputs]
  file_base = s09
  [console]
    type = Console
    execute_on = 'nonlinear linear'
  []
  [csv]
    type = CSV
    sync_times = '0.1 0.5 1'
    sync_only = true
  []
  time_step_interval = 10
[]
(modules/porous_flow/examples/flow_through_fractured_media/coarse.i)
# Flow and solute transport along a fracture embedded in a porous matrix
# The fracture is represented by lower dimensional elements
# fracture aperture = 6e-4m
# fracture porosity = 6e-4m = phi * a
# fracture permeability = 1.8e-11 which is based on k=3e-8 from a**2/12, and k*a = 3e-8*6e-4
# matrix porosity = 0.1
# matrix permeanility = 1e-20
[Mesh]
  type = FileMesh
  file = 'coarse.e'
  block_id = '1 2 3'
  block_name = 'fracture matrix1 matrix2'
  boundary_id = '1 2'
  boundary_name = 'bottom top'
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [velocity_x]
    family = MONOMIAL
    order = CONSTANT
    block = 'fracture'
  []
  [velocity_y]
    family = MONOMIAL
    order = CONSTANT
    block = 'fracture'
  []
[]
[AuxKernels]
  [velocity_x]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = velocity_x
    component = x
    aperture = 6E-4
  []
  [velocity_y]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = velocity_y
    component = y
    aperture = 6E-4
  []
[]
[ICs]
  [massfrac0]
    type = ConstantIC
    variable = massfrac0
    value = 0
  []
  [pp_matrix]
    type = ConstantIC
    variable = pp
    value = 1E6
  []
[]
[BCs]
  [top]
    type = DirichletBC
    value = 0
    variable = massfrac0
    boundary = top
  []
  [bottom]
    type = DirichletBC
    value = 1
    variable = massfrac0
    boundary = bottom
  []
  [ptop]
    type = DirichletBC
    variable = pp
    boundary =  top
    value = 1e6
  []
  [pbottom]
    type = DirichletBC
    variable = pp
    boundary = bottom
    value = 1.002e6
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = pp
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = pp
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = pp
    disp_trans = 0
    disp_long = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = massfrac0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = massfrac0
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = massfrac0
    disp_trans = 0
    disp_long = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = massfrac0
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [poro_fracture]
    type = PorousFlowPorosityConst
    porosity = 6e-4   # = a * phif
    block = 'fracture'
  []
  [poro_matrix]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 'matrix1 matrix2'
  []
  [diff1]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '1e-9 1e-9'
    tortuosity = 1.0
    block = 'fracture'
  []
  [diff2]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '1e-9 1e-9'
    tortuosity = 0.1
    block = 'matrix1 matrix2'
  []
  [permeability_fracture]
    type = PorousFlowPermeabilityConst
    permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11'   # 1.8e-11 = a * kf
    block = 'fracture'
  []
  [permeability_matrix]
    type = PorousFlowPermeabilityConst
    permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
    block = 'matrix1 matrix2'
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
[]
[Preconditioning]
  [basic]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 10
  dt = 1
# controls for nonlinear iterations
  nl_max_its = 15
  nl_rel_tol = 1e-14
  nl_abs_tol = 1e-12
[]
[VectorPostprocessors]
  [xmass]
    type = LineValueSampler
    start_point = '-0.5 0 0'
    end_point = '0.5 0 0'
    sort_by = x
    num_points = 41
    variable = massfrac0
    outputs = csv
  []
[]
[Outputs]
  [csv]
    type = CSV
    execute_on = 'final'
  []
[]
(modules/porous_flow/test/tests/newton_cooling/nc01.i)
# Newton cooling from a bar.  1-phase transient
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 1000
  ny = 1
  xmin = 0
  xmax = 100
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pressure'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-5
  []
[]
[Variables]
  [pressure]
    initial_condition = 2E6
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    gravity = '0 0 0'
    variable = pressure
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e6
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey # irrelevant in this fully-saturated situation
    n = 2
    phase = 0
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = pressure
    boundary = left
    value = 2E6
  []
  [newton]
    type = PorousFlowPiecewiseLinearSink
    variable = pressure
    boundary = right
    pt_vals = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
    multipliers = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
    use_mobility = false
    use_relperm = false
    fluid_phase = 0
    flux_function = 1
  []
[]
[VectorPostprocessors]
  [porepressure]
    type = LineValueSampler
    variable = pressure
    start_point = '0 0.5 0'
    end_point = '100 0.5 0'
    sort_by = x
    num_points = 20
    execute_on = timestep_end
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason'
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-15 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1E8
  dt = 1E6
[]
[Outputs]
  file_base = nc01
  [along_line]
    type = CSV
    execute_vector_postprocessors_on = final
  []
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation.i)
# A sample is constrained on all sides and its boundaries are
# also impermeable.  Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s  (units = kg/m^3/second)
#
# Expect:
# fluid_mass = mass0 + s*t
# stress = 0 (remember this is effective stress)
# Porepressure = fluid_bulk*log(fluid_mass_density/density_P0), where fluid_mass_density = fluid_mass*porosity
# porosity = biot+(phi0-biot)*exp(pp(biot-1)/solid_bulk)
#
# Parameters:
# Biot coefficient = 0.3
# Phi0 = 0.1
# Solid Bulk modulus = 2
# fluid_bulk = 13
# density_P0 = 1
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 1
  ny = 1
  nz = 1
  xmin = -0.5
  xmax = 0.5
  ymin = -0.5
  ymax = 0.5
  zmin = -0.5
  zmax = 0.5
[]
[GlobalParams]
  displacements = 'disp_x disp_y disp_z'
  PorousFlowDictator = dictator
  block = 0
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [porepressure]
  []
[]
[BCs]
  [confinex]
    type = DirichletBC
    variable = disp_x
    value = 0
    boundary = 'left right'
  []
  [confiney]
    type = DirichletBC
    variable = disp_y
    value = 0
    boundary = 'bottom top'
  []
  [confinez]
    type = DirichletBC
    variable = disp_z
    value = 0
    boundary = 'back front'
  []
[]
[Kernels]
  [grad_stress_x]
    type = StressDivergenceTensors
    variable = disp_x
    component = 0
  []
  [grad_stress_y]
    type = StressDivergenceTensors
    variable = disp_y
    component = 1
  []
  [grad_stress_z]
    type = StressDivergenceTensors
    variable = disp_z
    component = 2
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    variable = disp_x
    component = 0
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    variable = disp_y
    component = 1
  []
  [poro_z]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    component = 2
    variable = disp_z
  []
  [poro_vol_exp]
    type = PorousFlowMassVolumetricExpansion
    variable = porepressure
    fluid_component = 0
  []
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = porepressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = porepressure
    gravity = '0 0 0'
    fluid_component = 0
  []
  [source]
    type = BodyForce
    function = 0.1
    variable = porepressure
  []
[]
[AuxVariables]
  [stress_xx]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [stress_xx]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xx
    index_i = 0
    index_j = 0
  []
  [stress_xy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xy
    index_i = 0
    index_j = 1
  []
  [stress_xz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xz
    index_i = 0
    index_j = 2
  []
  [stress_yy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yy
    index_i = 1
    index_j = 1
  []
  [stress_yz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yz
    index_i = 1
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 2
    index_j = 2
  []
  [porosity]
    type = PorousFlowPropertyAux
    variable = porosity
    property = porosity
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 13
    density0 = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [elasticity_tensor]
    type = ComputeElasticityTensor
    C_ijkl = '1 1.5'
    # bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
    fill_method = symmetric_isotropic
  []
  [strain]
    type = ComputeSmallStrain
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = porepressure
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    porosity_zero = 0.1
    biot_coefficient = 0.3
    solid_bulk = 2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0   0 1 0   0 0 1' # unimportant
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Functions]
  [porosity_analytic]
    type = ParsedFunction
    expression = 'biot+(phi0-biot)*exp(pp*(biot-1)/bulk)'
    symbol_names = 'biot phi0 pp bulk'
    symbol_values = '0.3 0.1 p0 2'
  []
[]
[Postprocessors]
  [fluid_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [porosity]
    type = PointValue
    outputs = 'console csv'
    point = '0 0 0'
    variable = porosity
  []
  [p0]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = porepressure
  []
  [porosity_analytic]
    type = FunctionValuePostprocessor
    function = porosity_analytic
  []
  [zdisp]
    type = PointValue
    outputs = csv
    point = '0 0 0.5'
    variable = disp_z
  []
  [stress_xx]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = stress_xx
  []
  [stress_yy]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = stress_yy
  []
  [stress_zz]
    type = PointValue
    outputs = csv
    point = '0 0 0'
    variable = stress_zz
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_max_it -snes_stol'
    petsc_options_value = 'bcgs bjacobi 10000 1E-11'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  start_time = 0
  end_time = 10
  dt = 1
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = pp_generation
  [csv]
    type = CSV
  []
[]
(modules/porous_flow/test/tests/jacobian/fflux06.i)
# 1phase with MD_Gaussian (var = log(mass-density) with Gaussian capillary) formulation
# constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity
# unsaturated
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [md]
  []
[]
[ICs]
  [md]
    type = RandomIC
    min = -1
    max = -0.224 # unsaturated for md<log(density_P0=0.8)=-0.223
    variable = md
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = md
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'md'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseMD_Gaussian
    mass_density = md
    al = 1.1
    density_P0 = 0.8
    bulk_modulus = 1.5
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/jacobian/fflux07.i)
# 2phase (PS), 2components (that exist in both phases), constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity, vanGenuchten capillary pressure
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
  []
  [sgas]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
  []
  [massfrac_ph1_sp0]
  []
[]
[ICs]
  [ppwater]
    type = RandomIC
    variable = ppwater
    min = 0
    max = 1
  []
  [ppgas]
    type = RandomIC
    variable = sgas
    min = 0
    max = 1
  []
  [massfrac_ph0_sp0]
    type = RandomIC
    variable = massfrac_ph0_sp0
    min = 0
    max = 1
  []
  [massfrac_ph1_sp0]
    type = RandomIC
    variable = massfrac_ph1_sp0
    min = 0
    max = 1
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 -0.1 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 10
    sat_lr = 0.1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.5
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
    s_res = 0.0
    sum_s_res = 0.1
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-snes_type'
    petsc_options_value = 'test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/aux_kernels/properties.i)
# Example of accessing properties using the PorousFlowPropertyAux AuxKernel for
# each phase and fluid component (as required).
[Mesh]
  type = GeneratedMesh
  dim = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pwater]
    initial_condition = 1e6
  []
  [sgas]
    initial_condition = 0.3
  []
  [temperature]
    initial_condition = 50
  []
[]
[AuxVariables]
  [x0_water]
    order = FIRST
    family = LAGRANGE
    initial_condition = 0.1
  []
  [x0_gas]
    order = FIRST
    family = LAGRANGE
    initial_condition = 0.8
  []
  [pressure_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [capillary_pressure]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [relperm_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [relperm_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [energy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [energy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [pressure_gas]
    type = PorousFlowPropertyAux
    variable = pressure_gas
    property = pressure
    phase = 1
    execute_on = timestep_end
  []
  [capillary_pressure]
    type = PorousFlowPropertyAux
    variable = capillary_pressure
    property = capillary_pressure
    execute_on = timestep_end
  []
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [density_water]
    type = PorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = timestep_end
  []
  [density_gas]
    type = PorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = timestep_end
  []
  [viscosity_water]
    type = PorousFlowPropertyAux
    variable = viscosity_water
    property = viscosity
    phase = 0
    execute_on = timestep_end
  []
  [viscosity_gas]
    type = PorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = timestep_end
  []
  [relperm_water]
    type = PorousFlowPropertyAux
    variable = relperm_water
    property = relperm
    phase = 0
    execute_on = timestep_end
  []
  [relperm_gas]
    type = PorousFlowPropertyAux
    variable = relperm_gas
    property = relperm
    phase = 1
    execute_on = timestep_end
  []
  [x1_water]
    type = PorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [x1_gas]
    type = PorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = timestep_end
  []
  [enthalpy_water]
    type = PorousFlowPropertyAux
    variable = enthalpy_water
    property = enthalpy
    phase = 0
    execute_on = timestep_end
  []
  [enthalpy_gas]
    type = PorousFlowPropertyAux
    variable = enthalpy_gas
    property = enthalpy
    phase = 1
    execute_on = timestep_end
  []
  [energy_water]
    type = PorousFlowPropertyAux
    variable = energy_water
    property = internal_energy
    phase = 0
    execute_on = timestep_end
  []
  [energy_gas]
    type = PorousFlowPropertyAux
    variable = energy_gas
    property = internal_energy
    phase = 1
    execute_on = timestep_end
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater sgas temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-5
    pc_max = 1e7
    sat_lr = 0.1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
    cv = 2
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-4
    density0 = 20
    thermal_expansion = 0
    cv = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'x0_water x0_gas'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 125
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/rsc02.i)
# RSC test with low-res time and spatial resolution
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 200
  ny = 1
  xmin = 0
  xmax = 10 # x is the depth variable, called zeta in RSC
  ymin = 0
  ymax = 0.05
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    y = '3E-2 5E-1 8E-1'
    x = '0 1 5'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater poil'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureRSC
    oil_viscosity = 2E-3
    scale_ratio = 2E3
    shift = 10
  []
[]
[FluidProperties]
  [water]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [oil]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 20
    thermal_expansion = 0
    viscosity = 2e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = pwater
    phase1_porepressure = poil
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = water
    phase = 0
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [oil]
    type = PorousFlowSingleComponentFluid
    fp = oil
    phase = 1
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_oil]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.25
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-5 0 0  0 1E-5 0  0 0 1E-5'
  []
[]
[Variables]
  [pwater]
  []
  [poil]
  []
[]
[ICs]
  [water_init]
    type = ConstantIC
    variable = pwater
    value = 0
  []
  [oil_init]
    type = ConstantIC
    variable = poil
    value = 15
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = poil
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = poil
  []
[]
[AuxVariables]
  [SWater]
    family = MONOMIAL
    order = CONSTANT
  []
  [SOil]
    family = MONOMIAL
    order = CONSTANT
  []
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[AuxKernels]
  [SWater]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 0
    variable = SWater
  []
  [SOil]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 1
    variable = SOil
  []
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously.  this adversely affects convergence because of almost-overflows and precision-loss problems.  The fixed things help keep pressures low and so prevent these awful behaviours.   the movement of the saturation front is the same regardless of the fixed things.
  active = 'recharge fixedoil fixedwater'
  [recharge]
    type = PorousFlowSink
    variable = pwater
    boundary = 'left'
    flux_function = -1.0
  []
  [fixedwater]
    type = DirichletBC
    variable = pwater
    boundary = 'right'
    value = 0
  []
  [fixedoil]
    type = DirichletBC
    variable = poil
    boundary = 'right'
    value = 15
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-10      1E-10      10000'
  []
[]
[VectorPostprocessors]
  [swater]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = SWater
    start_point = '0 0 0'
    end_point = '7 0 0'
    sort_by = x
    num_points = 21
    execute_on = timestep_end
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  petsc_options = '-snes_converged_reason'
  end_time = 5
  [TimeStepper]
    type = FunctionDT
    function = dts
  []
[]
[Outputs]
  file_base = rsc02
  [along_line]
    type = CSV
    execute_vector_postprocessors_on = final
  []
  [exodus]
    type = Exodus
    execute_on = 'initial final'
  []
[]
(modules/porous_flow/test/tests/actions/block_restricted_and_not.i)
# This input file illustrates that the PorousFlow Joiners can correctly join block-restricted Materials, even when one PorousFlow material type (relative permeability and fluid properties in this case) is block-restricted for one phase and not block-restricted for another
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 10
  []
  [block1]
    type = SubdomainBoundingBoxGenerator
    input = gmg
    block_id = 1
    bottom_left = '3 -1 -1'
    top_right = '6 1 1'
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 p1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[Variables]
  [p0]
  []
  [p1]
  []
[]
[Kernels]
  [dot0]
    type = PorousFlowMassTimeDerivative
    variable = p0
    fluid_component = 0
  []
  [dot1]
    type = PorousFlowAdvectiveFlux
    variable = p1
    gravity = '0 0 0'
    fluid_component = 1
  []
[]
[AuxVariables]
  [m0]
  []
  [m1]
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    capillary_pressure = pc
    phase0_porepressure = p0
    phase1_porepressure = p1
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'm0 m1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid10]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
    block = 0
  []
  [simple_fluid11]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
    block = 1
  []
  [porosity0]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 0
  []
  [porosity1]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '0 0 0  0 0 0  0 0 0'
  []
  [relperm00]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
    block = 0
  []
  [relperm01]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
    block = 1
  []
  [relperm1_nonblockrestricted]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/jacobian/fflux01.i)
# 1phase, 1component, constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity, unsaturated with vanGenuchten
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
[]
[ICs]
  [pp]
    type = FunctionIC
    variable = pp
    function = -0.7+x+y
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/dirackernels/bh07.i)
# Comparison with analytical solution for cylindrically-symmetric situation
[Mesh]
  type = FileMesh
  file = bh07_input.e
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    y = '1000 10000'
    x = '100 1000'
  []
[]
[Variables]
  [pp]
    initial_condition = 1E7
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [fflux]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '0 0 0'
  []
[]
[BCs]
  [fix_outer]
    type = DirichletBC
    boundary = perimeter
    variable = pp
    value = 1E7
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [borehole_total_outflow_mass]
    type = PorousFlowSumQuantity
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-5
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityFLAC
    m = 2
    phase = 0
  []
[]
[DiracKernels]
  [bh]
    type = PorousFlowPeacemanBorehole
    variable = pp
    SumQuantityUO = borehole_total_outflow_mass
    point_file = bh07.bh
    fluid_phase = 0
    bottom_p_or_t = 0
    unit_weight = '0 0 0'
    use_mobility = true
    re_constant = 0.1594  # use Chen and Zhang version
    character = 2 # double the strength because bh07.bh only fills half the mesh
  []
[]
[Postprocessors]
  [bh_report]
    type = PorousFlowPlotQuantity
    uo = borehole_total_outflow_mass
    execute_on = 'initial timestep_end'
  []
  [fluid_mass]
    type = PorousFlowFluidMass
    execute_on = 'initial timestep_end'
  []
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    variable = pp
    start_point = '0 0 0'
    end_point = '300 0 0'
    sort_by = x
    num_points = 300
    execute_on = timestep_end
  []
[]
[Preconditioning]
  [usual]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason'
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
  []
[]
[Executioner]
  type = Transient
  end_time = 1E3
  solve_type = NEWTON
  [TimeStepper]
    # get only marginally better results for smaller time steps
    type = FunctionDT
    function = dts
  []
[]
[Outputs]
  file_base = bh07
  [along_line]
    type = CSV
    execute_on = final
  []
  [exodus]
    type = Exodus
    execute_on = 'initial final'
  []
[]
(modules/porous_flow/test/tests/jacobian/outflowbc04.i)
# PorousFlowOutflowBC: testing Jacobian for multi-phase, multi-component
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 3
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '1 2 3'
[]
[Variables]
  [pwater]
    initial_condition = 1
  []
  [pgas]
    initial_condition = 2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = pgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = pgas
  []
[]
[AuxVariables]
  [frac_water_in_liquid]
    initial_condition = 0.6
  []
  [frac_water_in_gas]
    initial_condition = 0.4
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas pwater'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1
    m = 0.6
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1.2
    cp = 0.9
    cv = 1.1
    viscosity = 0.4
    thermal_expansion = 0.7
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2.5
    density0 = 0.5
    cp = 1.9
    cv = 2.1
    viscosity = 0.9
    thermal_expansion = 0.4
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 0
  []
  [saturation_calculator]
    type = PorousFlow2PhasePP
    phase0_porepressure = pwater
    phase1_porepressure = pgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'frac_water_in_liquid frac_water_in_gas'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [co2]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '0.1 0.2 0.3 1.8 0.9 1.7 0.4 0.3 1.1'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.0
    sum_s_res = 0.0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    nw_phase = true
    lambda = 2
    s_res = 0.0
    sum_s_res = 0.0
    phase = 1
  []
[]
[BCs]
  [outflow0]
    type = PorousFlowOutflowBC
    boundary = 'front back top bottom'
    variable = pwater
    mass_fraction_component = 0
    multiplier = 1E8 # so this BC gets weighted much more heavily than Kernels
  []
  [outflow1]
    type = PorousFlowOutflowBC
    boundary = 'left right top bottom'
    variable = pgas
    mass_fraction_component = 1
    multiplier = 1E8 # so this BC gets weighted much more heavily than Kernels
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1E-7
  num_steps = 1
#  petsc_options = '-snes_test_jacobian -snes_force_iteration'
#  petsc_options_iname = '-snes_type --ksp_type -pc_type -snes_convergence_test'
#  petsc_options_value = ' ksponly     preonly   none     skip'
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phase.i)
# Pressure pulse in 1D with 2 phases (with one having zero saturation), 2components - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
    initial_condition = 2E6
  []
  [ppgas]
    initial_condition = 2E6
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
    gravity = '0 0 0'
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = ppgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = ppgas
    gravity = '0 0 0'
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e6
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3E6
    variable = ppwater
  []
  [leftgas]
    type = DirichletBC
    boundary = left
    value = 3E6
    variable = ppgas
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-15       1E-20 20'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E3
  end_time = 1E4
[]
[Postprocessors]
  [p000]
    type = PointValue
    variable = ppwater
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [p010]
    type = PointValue
    variable = ppwater
    point = '10 0 0'
    execute_on = 'initial timestep_end'
  []
  [p020]
    type = PointValue
    variable = ppwater
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [p030]
    type = PointValue
    variable = ppwater
    point = '30 0 0'
    execute_on = 'initial timestep_end'
  []
  [p040]
    type = PointValue
    variable = ppwater
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [p050]
    type = PointValue
    variable = ppwater
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [p060]
    type = PointValue
    variable = ppwater
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [p070]
    type = PointValue
    variable = ppwater
    point = '70 0 0'
    execute_on = 'initial timestep_end'
  []
  [p080]
    type = PointValue
    variable = ppwater
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [p090]
    type = PointValue
    variable = ppwater
    point = '90 0 0'
    execute_on = 'initial timestep_end'
  []
  [p100]
    type = PointValue
    variable = ppwater
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phase
  print_linear_residuals = false
  csv = true
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro03.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * B * exp(A * phi)
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 3
  xmin = 0
  xmax = 3
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = ConstantIC
      value = 0
    []
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [poro]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_z]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [poro]
    type = PorousFlowPropertyAux
    property = porosity
    variable = poro
  []
  [perm_x]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_bottom]
    type = PointValue
    variable = perm_x
    point = '0 0 0'
  []
  [perm_y_bottom]
    type = PointValue
    variable = perm_y
    point = '0 0 0'
  []
  [perm_z_bottom]
    type = PointValue
    variable = perm_z
    point = '0 0 0'
  []
  [perm_x_top]
    type = PointValue
    variable = perm_x
    point = '3 0 0'
  []
  [perm_y_top]
    type = PointValue
    variable = perm_y
    point = '3 0 0'
  []
  [perm_z_top]
    type = PointValue
    variable = perm_z
    point = '3 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2.2e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [permeability]
    type = PorousFlowPermeabilityExponential
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = exp_k
    A = 10
    B = 1e-8
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = Newton
  type = Steady
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
  petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  petsc_options_value = ' asm      2              lu            gmres     200'
[]
[Outputs]
  csv = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/gravity/grav02f.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PS), 2components, van Genuchten capillary pressure, constant fluid bulk-moduli for each phase, constant viscosity,
# constant permeability, Corey relative permeabilities with residual saturation
[Mesh]
  type = GeneratedMesh
  dim = 2
  ny = 10
  ymax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [ppwater]
    initial_condition = 1.5e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = CONSTANT
  []
  [swater]
    family = MONOMIAL
    order = CONSTANT
  []
  [relpermwater]
    family = MONOMIAL
    order = CONSTANT
  []
  [relpermgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [relpermwater]
    type = MaterialStdVectorAux
    property = PorousFlow_relative_permeability_qp
    index = 0
    variable = relpermwater
  []
  [relpermgas]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = relpermgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-4
    pc_max = 2e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0  0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.25
    sum_s_res = 0.35
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
    s_res = 0.1
    sum_s_res = 0.35
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_stol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-13 15'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e4
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  file_base = grav02f
  exodus = true
  perf_graph = true
  csv = false
[]
(modules/porous_flow/examples/restart/gas_injection.i)
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, where the mesh used is identical to the mesh used in gravityeq.i, we can use
# the basic restart capability by simply setting the initial condition for porepressure
# using the results from gravityeq.i.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we shift the mesh 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Results can be improved by uniformly refining the initial mesh.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
  uniform_refine = 1
  [file]
    type = FileMeshGenerator
    file = gravityeq_out.e
  []
  [translate]
    type = TransformGenerator
    transform = TRANSLATE
    vector_value = '0.1 0 0'
    input = file
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -9.81 0'
  temperature_unit = Celsius
[]
[Variables]
  [pp_liq]
    initial_from_file_var = porepressure
  []
  [sat_gas]
    initial_condition = 0
  []
[]
[AuxVariables]
  [temperature]
    initial_condition = 50
  []
  [xnacl]
    initial_condition = 0.1
  []
  [brine_density]
    family = MONOMIAL
    order = CONSTANT
  []
  [methane_density]
    family = MONOMIAL
    order = CONSTANT
  []
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [pp_gas]
    family = MONOMIAL
    order = CONSTANT
  []
  [sat_liq]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pp_liq
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = pp_liq
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = sat_gas
    fluid_component = 1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sat_gas
    fluid_component = 1
  []
[]
[AuxKernels]
  [brine_density]
    type = PorousFlowPropertyAux
    property = density
    variable = brine_density
    execute_on = 'initial timestep_end'
  []
  [methane_density]
    type = PorousFlowPropertyAux
    property = density
    variable = methane_density
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [pp_gas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pp_gas
    execute_on = 'initial timestep_end'
  []
  [sat_liq]
    type = PorousFlowPropertyAux
    property = saturation
    variable = sat_liq
    execute_on = 'initial timestep_end'
  []
[]
[BCs]
  [gas_injection]
    type = PorousFlowSink
    boundary = left
    variable = sat_gas
    flux_function = injection_rate
    fluid_phase = 1
  []
  [brine_out]
    type = PorousFlowPiecewiseLinearSink
    boundary = right
    variable = pp_liq
    multipliers = '0 1e9'
    pt_vals = '0 1e9'
    fluid_phase = 0
    flux_function = 1e-6
    use_mobility = true
  []
[]
[Functions]
  [injection_rate]
    type = ParsedFunction
    symbol_values = injection_area
    symbol_names = area
    expression = '-10/area'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp_liq sat_gas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1e-5
    m = 0.5
    sat_lr = 0.2
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
  [methane]
    type = MethaneFluidProperties
  []
  [methane_tab]
    type = TabulatedBicubicFluidProperties
    fp = methane
    save_file = false
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [ps]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp_liq
    phase1_saturation = sat_gas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [brine]
    type = PorousFlowBrine
    compute_enthalpy = false
    compute_internal_energy = false
    xnacl = xnacl
    phase = 0
  []
  [methane]
    type = PorousFlowSingleComponentFluid
    compute_enthalpy = false
    compute_internal_energy = false
    fp = methane_tab
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-13 0 0 0 1e-13 0  0 0 1e-13'
  []
  [relperm_liq]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.2
    sum_s_res = 0.3
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
    s_res = 0.1
    sum_s_res = 0.3
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
    petsc_options_value = ' asm      lu           NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e8
  nl_abs_tol = 1e-12
  nl_rel_tol = 1e-06
  nl_max_its = 20
  dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e1
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
  [injection_area]
    type = AreaPostprocessor
    boundary = left
    execute_on = initial
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  exodus = true
  perf_graph = true
  checkpoint = true
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2000
  bias_x = 1.003
  xmin = 0.1
  xmax = 5000
  ny = 1
  ymin = 0
  ymax = 11
  coord_type = RZ
[]
[GlobalParams]
  displacements = 'disp_r disp_z'
  PorousFlowDictator = dictator
  gravity = '0 0 0'
  biot_coefficient = 1.0
[]
[Variables]
  [pwater]
    initial_condition = 18.3e6
  []
  [sgas]
    initial_condition = 0.0
  []
  [temp]
    initial_condition = 358
  []
  [disp_r]
  []
[]
[AuxVariables]
  [rate]
  []
  [disp_z]
  []
  [massfrac_ph0_sp0]
    initial_condition = 1 # all H20 in phase=0
  []
  [massfrac_ph1_sp0]
    initial_condition = 0 # no H2O in phase=1
  []
  [pgas]
    family = MONOMIAL
    order = FIRST
  []
  [swater]
    family = MONOMIAL
    order = FIRST
  []
  [stress_rr]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_tt]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[Kernels]
  [mass_water_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux_water]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    use_displaced_mesh = false
    variable = pwater
  []
  [mass_co2_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux_co2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    use_displaced_mesh = false
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [advection]
    type = PorousFlowHeatAdvection
    use_displaced_mesh = false
    variable = temp
  []
  [conduction]
    type = PorousFlowExponentialDecay
    use_displaced_mesh = false
    variable = temp
    reference = 358
    rate = rate
  []
  [grad_stress_r]
    type = StressDivergenceRZTensors
    temperature = temp
    eigenstrain_names = thermal_contribution
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
  [poro_r]
    type = PorousFlowEffectiveStressCoupling
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
[]
[AuxKernels]
  [rate]
    type = FunctionAux
    variable = rate
    execute_on = timestep_begin
    function = decay_rate
  []
  [pgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [stress_rr]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_rr
    index_i = 0
    index_j = 0
  []
  [stress_tt]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_tt
    index_i = 2
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 1
    index_j = 1
  []
[]
[Functions]
  [decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
    type = ParsedFunction
    expression = 'sqrt(10056886.914/t)/11.0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp pwater sgas disp_r'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [water]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 970.0
    viscosity = 0.3394e-3
    cv = 4149.0
    cp = 4149.0
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
  [co2]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 516.48
    viscosity = 0.0393e-3
    cv = 2920.5
    cp = 2920.5
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = water
    phase = 0
  []
  [gas]
    type = PorousFlowSingleComponentFluid
    fp = co2
    phase = 1
  []
  [porosity_reservoir]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability_reservoir]
    type = PorousFlowPermeabilityConst
    permeability = '2e-12 0 0  0 0 0  0 0 0'
  []
  [relperm_liquid]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    phase = 0
    s_res = 0.200
    sum_s_res = 0.405
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    s_res = 0.205
    sum_s_res = 0.405
    nw_phase = true
    lambda = 2
  []
  [thermal_conductivity_reservoir]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0 0 0  0 1.320 0  0 0 0'
    wet_thermal_conductivity = '0 0 0  0 3.083 0  0 0 0'
  []
  [internal_energy_reservoir]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1100
    density = 2350.0
  []
  [elasticity_tensor]
    type = ComputeIsotropicElasticityTensor
    shear_modulus = 6.0E9
    poissons_ratio = 0.2
  []
  [strain]
    type = ComputeAxisymmetricRZSmallStrain
    eigenstrain_names = 'thermal_contribution ini_stress'
  []
  [ini_strain]
    type = ComputeEigenstrainFromInitialStress
    initial_stress = '-12.8E6 0 0  0 -51.3E6 0  0 0 -12.8E6'
    eigenstrain_name = ini_stress
  []
  [thermal_contribution]
    type = ComputeThermalExpansionEigenstrain
    temperature = temp
    stress_free_temperature = 358
    thermal_expansion_coeff = 5E-6
    eigenstrain_name = thermal_contribution
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
[]
[BCs]
  [outer_pressure_fixed]
    type = DirichletBC
    boundary = right
    value = 18.3e6
    variable = pwater
  []
  [outer_saturation_fixed]
    type = DirichletBC
    boundary = right
    value = 0.0
    variable = sgas
  []
  [outer_temp_fixed]
    type = DirichletBC
    boundary = right
    value = 358
    variable = temp
  []
  [fixed_outer_r]
    type = DirichletBC
    variable = disp_r
    value = 0
    boundary = right
  []
  [co2_injection]
    type = PorousFlowSink
    boundary = left
    variable = sgas
    use_mobility = false
    use_relperm = false
    fluid_phase = 1
    flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
  []
  [cold_co2]
    type = DirichletBC
    boundary = left
    variable = temp
    value = 294
  []
  [cavity_pressure_x]
    type = Pressure
    boundary = left
    variable = disp_r
    component = 0
    postprocessor = p_bh # note, this lags
    use_displaced_mesh = false
  []
[]
[Postprocessors]
  [p_bh]
    type = PointValue
    variable = pwater
    point = '0.1 0 0'
    execute_on = timestep_begin
    use_displaced_mesh = false
  []
[]
[VectorPostprocessors]
  [ptsuss]
    type = LineValueSampler
    use_displaced_mesh = false
    start_point = '0.1 0 0'
    end_point = '5000 0 0'
    sort_by = x
    num_points = 50000
    outputs = csv
    variable = 'pwater temp sgas disp_r stress_rr stress_tt'
  []
[]
[Preconditioning]
  active = 'smp'
  [smp]
    type = SMP
    full = true
    #petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E2       1E-5        500'
  []
  [mumps]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
    petsc_options_value = 'gmres      lu       mumps                         NONZERO               1E-5       1E2       50'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1.5768e8
  #dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.1
  []
[]
[Outputs]
  print_linear_residuals = false
  sync_times = '3600 86400 2.592E6 1.5768E8'
  perf_graph = true
  exodus = true
  [csv]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/jacobian/brineco2_gas.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that give a single gas phase
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  ny = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.05
  []
[]
[Variables]
  [pgas]
  []
  [zi]
  []
[]
[ICs]
  [pgas]
    type = RandomIC
    min = 5e4
    max = 1e5
    variable = pgas
  []
  [z]
    type = RandomIC
    min = 0.9
    max = 0.99
    variable = zi
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = zi
    fluid_component = 1
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    variable = zi
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 1e3
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[AuxVariables]
  [sgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sgas]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = sgas
  []
[]
[Postprocessors]
  [sgas_min]
    type = ElementExtremeValue
    variable = sgas
    value_type = min
  []
  [sgas_max]
    type = ElementExtremeValue
    variable = sgas
    value_type = max
  []
[]
(modules/porous_flow/test/tests/sinks/injection_production_eg_outflowBC.i)
# phase = 0 is liquid phase
# phase = 1 is gas phase
# fluid_component = 0 is water
# fluid_component = 1 is CO2
# Constant rates of water and CO2 injection into the left boundary
# 1D mesh
# The PorousFlowOutflowBCs remove the correct water and CO2 from the right boundary
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
  xmax = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [frac_water_in_liquid]
    initial_condition = 1.0
  []
  [frac_water_in_gas]
    initial_condition = 0.0
  []
  [water_kg_per_s]
  []
  [co2_kg_per_s]
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
[]
[Variables]
  [pwater]
    initial_condition = 20E6
  []
  [pgas]
    initial_condition = 21E6
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = pgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = pgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas pwater'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1E-6
    m = 0.6
  []
[]
[FluidProperties]
  [true_water]
    type = Water97FluidProperties
  []
  [tabulated_water]
    type = TabulatedBicubicFluidProperties
    fp = true_water
    temperature_min = 275
    pressure_max = 1E8
    interpolated_properties = 'density viscosity enthalpy internal_energy'
    fluid_property_output_file = water97_tabulated_11.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = water97_tabulated_11.csv
  []
  [true_co2]
    type = CO2FluidProperties
  []
  [tabulated_co2]
    type = TabulatedBicubicFluidProperties
    fp = true_co2
    temperature_min = 275
    pressure_max = 1E8
    interpolated_properties = 'density viscosity enthalpy internal_energy'
    fluid_property_output_file = co2_tabulated_11.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = co2_tabulated_11.csv
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 293.15
  []
  [saturation_calculator]
    type = PorousFlow2PhasePP
    phase0_porepressure = pwater
    phase1_porepressure = pgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'frac_water_in_liquid frac_water_in_gas'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = tabulated_water
    phase = 0
  []
  [co2]
    type = PorousFlowSingleComponentFluid
    fp = tabulated_co2
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.2
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    nw_phase = true
    lambda = 2
    s_res = 0.1
    sum_s_res = 0.2
    phase = 1
  []
[]
[BCs]
  [water_injection]
    type = PorousFlowSink
    boundary = left
    variable = pwater # pwater is associated with the water mass balance (fluid_component = 0 in its Kernels)
    flux_function = -1E-5 # negative means a source, rather than a sink
  []
  [co2_injection]
    type = PorousFlowSink
    boundary = left
    variable = pgas # pgas is associated with the CO2 mass balance (fluid_component = 1 in its Kernels)
    flux_function = -2E-5 # negative means a source, rather than a sink
  []
  [right_water_component0]
    type = PorousFlowOutflowBC
    boundary = right
    variable = pwater
    mass_fraction_component = 0
    save_in = water_kg_per_s
  []
  [right_co2_component1]
    type = PorousFlowOutflowBC
    boundary = right
    variable = pgas
    mass_fraction_component = 1
    save_in = co2_kg_per_s
  []
[]
[Preconditioning]
  active = 'basic'
  [basic]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres asm lu NONZERO 2'
  []
  [preferred]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = 'lu mumps'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  nl_abs_tol = 1E-10
  nl_rel_tol = 1E-10
  end_time = 1E5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1E5
    growth_factor = 1.1
  []
[]
[Postprocessors]
  [water_kg_per_s]
    type = NodalSum
    boundary = right
    variable = water_kg_per_s
  []
  [co2_kg_per_s]
    type = NodalSum
    boundary = right
    variable = co2_kg_per_s
  []
[]
[VectorPostprocessors]
  [pps]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '20 0 0'
    num_points = 20
    sort_by = x
    variable = 'pgas pwater saturation_gas'
  []
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, the mesh is not identical to the mesh used in gravityeq.i. Rather, it is
# generated so that it is more refined near the injection boundary and at the top of
# the model, as that is where the gas plume will be present.
#
# To use the hydrostatic pressure calculated using the gravity equilibrium run as the initial
# condition for the pressure, a SolutionUserObject is used, along with a SolutionFunction to
# interpolate the pressure from the gravity equilibrium run to the initial condition for liqiud
# porepressure in this example.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we use a mesh shifted 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
  type = GeneratedMesh
  dim = 2
  ny = 25
  nx = 50
  ymax = 100
  xmin = 0.1
  xmax = 5000
  bias_x = 1.05
  bias_y = 0.95
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -9.81 0'
  temperature_unit = Celsius
[]
[Variables]
  [pp_liq]
  []
  [sat_gas]
    initial_condition = 0
  []
[]
[ICs]
  [ppliq_ic]
    type = FunctionIC
    variable = pp_liq
    function = ppliq_ic
  []
[]
[AuxVariables]
  [temperature]
    initial_condition = 50
  []
  [xnacl]
    initial_condition = 0.1
  []
  [brine_density]
    family = MONOMIAL
    order = CONSTANT
  []
  [methane_density]
    family = MONOMIAL
    order = CONSTANT
  []
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [pp_gas]
    family = MONOMIAL
    order = CONSTANT
  []
  [sat_liq]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pp_liq
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = pp_liq
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = sat_gas
    fluid_component = 1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sat_gas
    fluid_component = 1
  []
[]
[AuxKernels]
  [brine_density]
    type = PorousFlowPropertyAux
    property = density
    variable = brine_density
    execute_on = 'initial timestep_end'
  []
  [methane_density]
    type = PorousFlowPropertyAux
    property = density
    variable = methane_density
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [pp_gas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pp_gas
    execute_on = 'initial timestep_end'
  []
  [sat_liq]
    type = PorousFlowPropertyAux
    property = saturation
    variable = sat_liq
    execute_on = 'initial timestep_end'
  []
[]
[BCs]
  [gas_injection]
    type = PorousFlowSink
    boundary = left
    variable = sat_gas
    flux_function = injection_rate
    fluid_phase = 1
  []
  [brine_out]
    type = PorousFlowPiecewiseLinearSink
    boundary = right
    variable = pp_liq
    multipliers = '0 1e9'
    pt_vals = '0 1e9'
    fluid_phase = 0
    flux_function = 1e-6
    use_mobility = true
    use_relperm = true
    mass_fraction_component = 0
  []
[]
[Functions]
  [injection_rate]
    type = ParsedFunction
    symbol_values = injection_area
    symbol_names = area
    expression = '-1/area'
  []
  [ppliq_ic]
    type = SolutionFunction
    solution = soln
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp_liq sat_gas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1e-5
    m = 0.5
    sat_lr = 0.2
    pc_max = 1e7
  []
  [soln]
    type = SolutionUserObject
    mesh = gravityeq_out.e
    system_variables = porepressure
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
  [methane]
    type = MethaneFluidProperties
  []
  [methane_tab]
    type = TabulatedBicubicFluidProperties
    fp = methane
    save_file = false
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [ps]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp_liq
    phase1_saturation = sat_gas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [brine]
    type = PorousFlowBrine
    compute_enthalpy = false
    compute_internal_energy = false
    xnacl = xnacl
    phase = 0
  []
  [methane]
    type = PorousFlowSingleComponentFluid
    compute_enthalpy = false
    compute_internal_energy = false
    fp = methane_tab
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-13 0 0 0 5e-14 0  0 0 1e-13'
  []
  [relperm_liq]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.2
    sum_s_res = 0.3
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
    s_res = 0.1
    sum_s_res = 0.3
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
    petsc_options_value = ' asm      lu           NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e8
  nl_abs_tol = 1e-12
  nl_rel_tol = 1e-06
  nl_max_its = 20
  dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e1
    growth_factor = 1.5
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
  [injection_area]
    type = AreaPostprocessor
    boundary = left
    execute_on = initial
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  exodus = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/fluidstate/coldwater_injection_radial.i)
# Cold water injection into 1D radial hot reservoir (Avdonin, 1964)
#
# To generate results presented in documentation for this problem,
# set xmax = 1000 and nx = 200 in the Mesh block, and dtmax = 1e4
# and end_time = 1e6 in the Executioner block.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 50
  xmin = 0.1
  xmax = 5
  bias_x = 1.05
  rz_coord_axis = Y
  coord_type = RZ
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [temperature]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [temperature]
    type = PorousFlowPropertyAux
    variable = temperature
    property = temperature
    execute_on = 'initial timestep_end'
  []
[]
[Variables]
  [pliquid]
    initial_condition = 5e6
  []
  [h]
    scaling = 1e-6
  []
[]
[ICs]
  [hic]
    type = PorousFlowFluidPropertyIC
    variable = h
    porepressure = pliquid
    property = enthalpy
    temperature = 170
    temperature_unit = Celsius
    fp = water
  []
[]
[Functions]
  [injection_rate]
    type = ParsedFunction
    symbol_values = injection_area
    symbol_names = area
    expression = '-0.1/area'
  []
[]
[BCs]
  [source]
    type = PorousFlowSink
    variable = pliquid
    flux_function = injection_rate
    boundary = left
  []
  [pright]
    type = DirichletBC
    variable = pliquid
    value = 5e6
    boundary = right
  []
  [hleft]
    type = DirichletBC
    variable = h
    value = 678.52e3
    boundary = left
  []
  [hright]
    type = DirichletBC
    variable = h
    value = 721.4e3
    boundary = right
  []
[]
[Kernels]
  [mass]
    type = PorousFlowMassTimeDerivative
    variable = pliquid
  []
  [massflux]
    type = PorousFlowAdvectiveFlux
    variable = pliquid
  []
  [heat]
    type = PorousFlowEnergyTimeDerivative
    variable = h
  []
  [heatflux]
    type = PorousFlowHeatAdvection
    variable = h
  []
  [heatcond]
    type = PorousFlowHeatConduction
    variable = h
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pliquid h'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    pc_max = 1e6
    sat_lr = 0.1
    m = 0.5
    alpha = 1e-5
  []
  [fs]
    type = PorousFlowWaterVapor
    water_fp = water
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [watervapor]
    type = PorousFlowFluidStateSingleComponent
    porepressure = pliquid
    enthalpy = h
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
    sum_s_res = 0.1
  []
  [internal_energy]
    type = PorousFlowMatrixInternalEnergy
    density = 2900
    specific_heat_capacity = 740
  []
  [rock_thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '20 0 0  0 20 0  0 0 20'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e3
  nl_abs_tol = 1e-8
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 100
  []
[]
[Postprocessors]
  [injection_area]
    type = AreaPostprocessor
    boundary = left
    execute_on = initial
  []
[]
[VectorPostprocessors]
  [line]
    type = ElementValueSampler
    sort_by = x
    variable = temperature
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  perf_graph = true
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/gravity/grav02c.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PP), 2components, vanGenuchten, constant fluid bulk-moduli for each phase, constant viscosity, constant permeability, Corey relative perm
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = -1
  xmax = 0
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    y = '1E-3 1E-2 1E-1'
    x = '1E-3 1E-2 1E-1'
  []
[]
[Variables]
  [ppwater]
    initial_condition = -0.1
  []
  [ppgas]
    initial_condition = 0
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 0 0'
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = ppgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = ppgas
    gravity = '-1 0 0'
  []
[]
[Functions]
  [ana_ppwater]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 2 pp_water_top 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    viscosity = 0.5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[Postprocessors]
  [pp_water_top]
    type = PointValue
    variable = ppwater
    point = '0 0 0'
  []
  [pp_water_base]
    type = PointValue
    variable = ppwater
    point = '-1 0 0'
  []
  [pp_water_analytical]
    type = FunctionValuePostprocessor
    function = ana_ppwater
    point = '-1 0 0'
  []
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  active = andy
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  [TimeStepper]
    type = FunctionDT
    function = dts
  []
  end_time = 1.0
[]
[Outputs]
  execute_on = 'initial timestep_end'
  file_base = grav02c
  [csv]
    type = CSV
  []
  exodus = true
[]
(modules/porous_flow/test/tests/jacobian/waterncg_twophase_nonisothermal.i)
# Tests correct calculation of properties derivatives in PorousFlowWaterNCG
# for nonisothermal two phase conditions
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 2
    ny = 2
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pgas]
  []
  [z]
  []
  [temperature]
  []
[]
[ICs]
  [pgas]
    type = RandomIC
    min = 1e5
    max = 5e5
    variable = pgas
  []
  [z]
    type = RandomIC
    min = 0.01
    max = 0.06
    variable = z
  []
  [temperature]
    type = RandomIC
    min = 20
    max = 80
    variable = temperature
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    variable = z
    fluid_component = 1
  []
  [energy]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heat]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e1
    pc_max = 1e4
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature = temperature
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1000
    density = 2500
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[AuxVariables]
  [sgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sgas]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = sgas
  []
[]
[Postprocessors]
  [sgas_min]
    type = ElementExtremeValue
    variable = sgas
    value_type = min
  []
  [sgas_max]
    type = ElementExtremeValue
    variable = sgas
    value_type = max
  []
[]
(modules/porous_flow/test/tests/jacobian/fflux09.i)
# 2phase (PP), 3components (that exist in both phases), constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity, unsaturated with RSC capillary
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
  []
  [ppgas]
  []
  [massfrac_ph0_sp0]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp1]
  []
  [massfrac_ph1_sp0]
  []
  [massfrac_ph1_sp1]
  []
[]
[ICs]
  [ppwater]
    type = RandomIC
    variable = ppwater
    min = -1
    max = 0
  []
  [ppgas]
    type = RandomIC
    variable = ppgas
    min = 0
    max = 1
  []
  [massfrac_ph0_sp0]
    type = RandomIC
    variable = massfrac_ph0_sp0
    min = 0
    max = 0.4
  []
  [massfrac_ph0_sp1]
    type = RandomIC
    variable = massfrac_ph0_sp1
    min = 0
    max = 0.4
  []
  [massfrac_ph1_sp0]
    type = RandomIC
    variable = massfrac_ph1_sp0
    min = 0
    max = 0.4
  []
  [massfrac_ph1_sp1]
    type = RandomIC
    variable = massfrac_ph1_sp1
    min = 0
    max = 0.4
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 -0.1 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = ppgas
    gravity = '-1 -0.1 0'
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = massfrac_ph0_sp0
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas massfrac_ph0_sp0'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureRSC
    shift = -0.1
    scale_ratio = 3
    oil_viscosity = 2
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.5
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/dirackernels/theis3.i)
# Two phase Theis problem: Flow from single source
# Constant rate injection 0.5 kg/s
# 1D cylindrical mesh
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmax = 2000
  bias_x = 1.05
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 20e6
  []
  [sgas]
    initial_condition = 0
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-4
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = ppwater
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 0.5
    variable = sgas
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-8       1E-10 20'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e4
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 10
    growth_factor = 2
  []
[]
[VectorPostprocessors]
  [line]
    type = NodalValueSampler
    sort_by = x
    variable = 'ppwater sgas'
    execute_on = 'timestep_end'
  []
[]
[Postprocessors]
  [ppwater]
    type = PointValue
    point = '4 0 0'
    variable = ppwater
  []
  [sgas]
    type = PointValue
    point = '4 0 0'
    variable = sgas
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
[]
[Outputs]
  file_base = theis3
  print_linear_residuals = false
  perf_graph = true
  [csv]
    type = CSV
    execute_on = timestep_end
    execute_vector_postprocessors_on = final
  []
[]
(modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
# Note: this test is the same as theis.i, but uses the tabulated version of the CO2FluidProperties
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 80
  xmax = 200
  bias_x = 1.05
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = tabulated
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [tabulated]
    type = TabulatedBicubicFluidProperties
    fp = co2
    fluid_property_file = fluid_properties.csv
    # We try to avoid using both, but some properties are not implemented in the tabulation
    allow_fp_and_tabulation = true
    # Test was design prior to bounds check
    error_on_out_of_bounds = false
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = fluid_properties.csv
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[BCs]
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 2
    variable = zi
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-8       1E-10 20'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 8e2
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 2
    growth_factor = 2
  []
[]
[VectorPostprocessors]
  [line]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    start_point = '0 0 0'
    end_point = '200 0 0'
    num_points = 1000
    variable = 'pgas zi x1 saturation_gas'
    execute_on = 'timestep_end'
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '1 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '1 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '1 0 0'
    variable = zi
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '1 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '1 0 0'
    variable = y0
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  [csvout]
    type = CSV
    file_base = theis_tabulated_csvout
    execute_on = timestep_end
    execute_vector_postprocessors_on = final
  []
[]
(modules/porous_flow/test/tests/hysteresis/relperm_jac.i)
# Test of derivatives computed in PorousFlowHystereticRelativePermeability classes along zeroth-order curve
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '-1 0 0'
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    number_fluid_phases = 2
    number_fluid_components = 2
    porous_flow_vars = 'pp0 sat1'
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 10.0
    m = 0.33
  []
[]
[Variables]
  [pp0]
  []
  [sat1]
    initial_condition = 0.5
  []
[]
[Kernels]
  [mass_conservation0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp0
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp0
  []
  [mass_conservation1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sat1
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[FluidProperties]
  [simple_fluid_0]
    type = SimpleFluidProperties
    bulk_modulus = 10
    viscosity = 1
  []
  [simple_fluid_1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    viscosity = 3
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
  [pc_calculator]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pp0
    phase1_saturation = sat1
  []
  [hys_order_material]
    type = PorousFlowHysteresisOrder
  []
  [relperm_liquid]
    type = PorousFlowHystereticRelativePermeabilityLiquid
    phase = 0
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    liquid_modification_range = 0.9
  []
  [relperm_gas]
    type = PorousFlowHystereticRelativePermeabilityGas
    phase = 1
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    gamma = 0.33
    k_rg_max = 0.8
    gas_low_extension_type = linear_like
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_check_jacobian'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/gravity/grav02g.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PS), 2components, Brooks-Corey capillary pressure, constant fluid bulk-moduli for each phase, constant viscosity,
# constant permeability, Brooks-Corey relative permeabilities with residual saturation
[Mesh]
  type = GeneratedMesh
  dim = 2
  ny = 10
  ymax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [ppwater]
    initial_condition = 1.5e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = CONSTANT
  []
  [swater]
    family = MONOMIAL
    order = CONSTANT
  []
  [relpermwater]
    family = MONOMIAL
    order = CONSTANT
  []
  [relpermgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [relpermwater]
    type = MaterialStdVectorAux
    property = PorousFlow_relative_permeability_qp
    index = 0
    variable = relpermwater
  []
  [relpermgas]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = relpermgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureBC
    lambda = 2
    pe = 1e4
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0  0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityBC
    lambda = 2
    phase = 0
    s_res = 0.25
    sum_s_res = 0.35
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    lambda = 2
    phase = 1
    s_res = 0.1
    sum_s_res = 0.35
    nw_phase = true
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_stol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-13 15'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 5e3
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  file_base = grav02g
  exodus = true
  perf_graph = true
  csv = false
[]
(modules/porous_flow/test/tests/actions/multiblock.i)
# This input file illustrates that PorousFlow can be block-restricted.  That is, porous-flow physics acts only on some blocks (block = '0, 1', in this case), and different physics, in this case diffusion, acts on other blocks (block = 2, in this case).
# Here:
# - the Variable "pressure" exists everywhere, but is governed by PorousFlow only on block = '0 1', and diffusion on block = 2
# - the Variable "temp" exists only on block = '0 1', and is governed by PorousFlow there
# - the Variable "temp1" exists only on block = 2, and is governed by diffusion there
# Hence, the PorousFlow Materials only need to be defined on block = '0 1'
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 10
  []
  [block1]
    type = SubdomainBoundingBoxGenerator
    input = gmg
    block_id = 1
    bottom_left = '3 -1 -1'
    top_right = '6 1 1'
  []
  [block2]
    type = SubdomainBoundingBoxGenerator
    input = block1
    block_id = 2
    bottom_left = '6 -1 -1'
    top_right = '10 1 1'
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pressure temp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[Variables]
  [pressure] # exists over the entire mesh: governed by PorousFlow on block=0, 1, and diffusion on block=2
  []
  [temp]
    block = '0 1' # only governed by PorousFlow
  []
  [temp1]
    block = 2 # only governed by diffusion
  []
[]
[Kernels]
  [porous_flow_time_derivative]
    type = PorousFlowMassTimeDerivative
    block = '0 1'
    variable = pressure
  []
  [porous_flow_flux]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    gravity = '0 0 0'
    variable = pressure
    block = '0 1'
  []
  [porous_flow_heat_time_derivative]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
    block = '0 1'
  []
  [porous_flow_heat_advection]
    type = PorousFlowHeatAdvection
    gravity = '0 0 0'
    variable = temp
    block = '0 1'
  []
  [diffusion_p]
    type = Diffusion
    variable = pressure
    block = 2
  []
  [diffusion_t1]
    type = Diffusion
    variable = temp1
    block = 2
  []
[]
[AuxVariables]
  [density]
    family = MONOMIAL
    order = CONSTANT
    block = '0 1'
  []
  [relperm]
    family = MONOMIAL
    order = CONSTANT
    block = '0 1'
  []
[]
[AuxKernels]
  [density]
    type = PorousFlowPropertyAux
    variable = density
    property = density
  []
  [relperm]
    type = PorousFlowPropertyAux
    variable = relperm
    property = relperm
  []
[]
[Postprocessors]
  [density1000]
    type = PointValue
    point = '0 0 0'
    variable = density
  []
  [density2000]
    type = PointValue
    point = '5 0 0'
    variable = density
  []
  [relperm0.25]
    type = PointValue
    point = '0 0 0'
    variable = relperm
  []
  [relperm0.5]
    type = PointValue
    point = '5 0 0'
    variable = relperm
  []
[]
[FluidProperties]
  [simple_fluid1000]
    type = SimpleFluidProperties
  []
  [simple_fluid2000]
    type = SimpleFluidProperties
    density0 = 2000
  []
[]
[Materials] # note these PorousFlow materials are all on block = '0 1'
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
    block = '0 1'
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pressure
    block = '0 1'
  []
  [massfrac]
    type = PorousFlowMassFraction
    block = '0 1'
  []
  [simple_fluid1000]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1000
    phase = 0
    block = 0
  []
  [simple_fluid2000]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid2000
    phase = 0
    block = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = '0 1'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
    block = '0 1'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
    block = 0
    kr = 0.25
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
    block = 1
    kr = 0.5
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1
    density = 1
    block = '0 1'
  []
  [dummy_material]
    type = GenericConstantMaterial
    block = 2
    prop_names = dummy
    prop_values = 0
  []
[]
[Preconditioning]
  [lu]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = 'lu NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
  line_search = 'none'
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/examples/flow_through_fractured_media/coarse_3D.i)
# Flow and solute transport along 2 2D eliptical fractures embedded in a 3D porous matrix
# the model domain has dimensions 1 x 1 x 0.3m and the two fracture have r1 = 0.45 and r2 = 0.2
# The fractures intersect each other and the domain boundaries on two opposite sides
# fracture aperture = 6e-4m
# fracture porosity = 6e-4m
# fracture permeability = 1.8e-11 which is based in k=3e-8 from a**2/12, and k*a = 3e-8*6e-4;
# matrix porosity = 0.1;
# matrix permeanility = 1e-20;
[Mesh]
  type = FileMesh
  file = coarse_3D.e
  block_id = '1 2 3'
  block_name = 'matrix f1 f2'
  boundary_id = '1 2 3 4'
  boundary_name = 'rf2 lf1 right_matrix left_matrix'
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
  []
  [tracer]
  []
[]
[AuxVariables]
  [velocity_x]
    family = MONOMIAL
    order = CONSTANT
    block = 'f1 f2'
  []
  [velocity_y]
    family = MONOMIAL
    order = CONSTANT
    block = 'f1 f2'
  []
  [velocity_z]
    family = MONOMIAL
    order = CONSTANT
    block = 'f1 f2'
  []
[]
[AuxKernels]
  [velocity_x]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = velocity_x
    component = x
    aperture = 6E-4
  []
  [velocity_y]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = velocity_y
    component = y
    aperture = 6E-4
  []
  [velocity_z]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = velocity_z
    component = z
    aperture = 6E-4
  []
[]
[ICs]
  [pp]
    type = ConstantIC
    variable = pp
    value = 1e6
  []
  [tracer]
    type = ConstantIC
    variable = tracer
    value = 0
  []
[]
[BCs]
  [top]
    type = DirichletBC
    value = 0
    variable = tracer
    boundary = rf2
  []
  [bottom]
    type = DirichletBC
    value = 1
    variable = tracer
    boundary = lf1
  []
  [ptop]
    type = DirichletBC
    variable = pp
    boundary =  rf2
    value = 1e6
  []
  [pbottom]
    type = DirichletBC
    variable = pp
    boundary = lf1
    value = 1.02e6
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = pp
    disp_trans = 0
    disp_long = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = tracer
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = tracer
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = tracer
    disp_trans = 0
    disp_long = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'tracer'
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [poro1]
    type = PorousFlowPorosityConst
    porosity = 6e-4   # = a * phif
    block = 'f1 f2'
  []
  [diff1]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '1.e-9 1.e-9'
    tortuosity = 1.0
    block = 'f1 f2'
  []
  [poro2]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 'matrix'
  []
  [diff2]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '1.e-9 1.e-9'
    tortuosity = 0.1
    block = 'matrix'
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability1]
    type = PorousFlowPermeabilityConst
    permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11'   # 1.8e-11 = a * kf
    block = 'f1 f2'
  []
  [permeability2]
    type = PorousFlowPermeabilityConst
    permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
    block = 'matrix'
  []
[]
[Preconditioning]
  active = basic
  [mumps_is_best_for_parallel_jobs]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 20
  dt = 1
[]
[VectorPostprocessors]
  [xmass]
    type = LineValueSampler
    start_point = '-0.5 0 0'
    end_point = '0.5 0 0'
    sort_by = x
    num_points = 41
    variable = tracer
    outputs = csv
  []
[]
[Outputs]
  [csv]
    type = CSV
    execute_on = 'final'
  []
[]
(modules/porous_flow/test/tests/adaptivity/hex_adaptivity.i)
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 3
    nx = 2
    ny = 2
  []
[]
[Adaptivity]
  marker = marker
  max_h_level = 1
  [Markers]
    [marker]
      type = UniformMarker
      mark = REFINE
    []
  []
[]
[GlobalParams]
  PorousFlowDictator = 'dictator'
[]
[Variables]
  [pp]
    initial_condition = '0'
  []
[]
[Kernels]
  [mass]
    type = PorousFlowMassTimeDerivative
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = pp
    boundary = 'left'
    value = 1
  []
  [right]
    type = DirichletBC
    variable = pp
    boundary = 'right'
    value = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = 'pp'
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = '0.1'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
[]
[Postprocessors]
  [numdofs]
    type = NumDOFs
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  end_time = 4
  dt = 1
  solve_type = Newton
  nl_abs_tol = 1e-12
[]
[Outputs]
  exodus = true
  perf_graph = true
  show = pp
[]
(modules/porous_flow/test/tests/jacobian/brineco2_twophase.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that are appropriate for two phases
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  ny = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.05
  []
[]
[Variables]
  [pgas]
  []
  [zi]
  []
[]
[ICs]
  [pgas]
    type = RandomIC
    min = 1e6
    max = 4e6
    variable = pgas
    seed = 1
  []
  [z]
    type = RandomIC
    min = 0.2
    max = 0.8
    variable = zi
    seed = 2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = zi
    fluid_component = 1
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    variable = zi
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e1
    pc_max = 1e4
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[AuxVariables]
  [sgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sgas]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = sgas
  []
[]
[Postprocessors]
  [sgas_min]
    type = ElementExtremeValue
    variable = sgas
    value_type = min
  []
  [sgas_max]
    type = ElementExtremeValue
    variable = sgas
    value_type = max
  []
[]
(modules/porous_flow/test/tests/jacobian/fflux10.i)
# 1phase, 3components, constant viscosity, constant insitu permeability
# density with constant bulk, BW relative perm, nonzero gravity, unsaturated with BW
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [massfrac0]
  []
  [massfrac1]
  []
[]
[ICs]
  [pp]
    type = FunctionIC
    variable = pp
    function = -0.7+x+y
  []
  [massfrac0]
    type = RandomIC
    variable = massfrac0
    min = 0
    max = 0.3
  []
  [massfrac1]
    type = RandomIC
    variable = massfrac1
    min = 0
    max = 0.4
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 -0.1 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
    gravity = '-1 -0.1 0'
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = massfrac1
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0 massfrac1'
    number_fluid_phases = 1
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureBW
    Sn = 0.05
    Ss = 0.9
    las = 2.2
    C = 1.5
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac0 massfrac1'
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityBW
    Sn = 0.05
    Ss = 0.9
    Kn = 0.02
    Ks = 0.95
    C = 1.5
    phase = 0
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/jacobian/fflux12.i)
# 1phase, 3components, constant viscosity, constant insitu permeability
# density with constant bulk, FLAC relative perm with a cubic, nonzero gravity, unsaturated with VG
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [massfrac0]
  []
  [massfrac1]
  []
[]
[ICs]
  [pp]
    type = RandomIC
    variable = pp
    min = -1.0
    max = 0.0
  []
  [massfrac0]
    type = RandomIC
    variable = massfrac0
    min = 0
    max = 0.3
  []
  [massfrac1]
    type = RandomIC
    variable = massfrac1
    min = 0
    max = 0.4
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 -0.1 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
    gravity = '-1 -0.1 0'
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = massfrac1
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0 massfrac1'
    number_fluid_phases = 1
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.6
    alpha = 1 # small so that most effective saturations are close to 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac0 massfrac1'
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityFLAC
    m = 10
    phase = 0
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/dirackernels/theis1.i)
# Theis problem: Flow to single sink
# SinglePhase
# Cartesian mesh with logarithmic distribution in x and y.
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 20
  ny = 20
  bias_x = 1.1
  bias_y = 1.1
  ymax = 100
  xmax = 100
  # To get consistent ordering of results with distributed meshes
  allow_renumbering = false
[]
[GlobalParams]
  PorousFlowDictator = dictator
  compute_enthalpy = false
  compute_internal_energy = false
[]
[Variables]
  [pp]
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-7
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 0.001
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
[]
[Postprocessors]
  [porepressure]
    type = PointValue
    point = '0 0 0'
    variable = pp
    execute_on = 'initial timestep_end'
  []
  [total_mass]
    type = PorousFlowFluidMass
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 200
  end_time = 1E3
  nl_abs_tol = 1e-10
[]
[Outputs]
  perf_graph = true
  file_base = theis1
  [csv]
    type = CSV
    execute_on = final
  []
[]
[ICs]
  [PressureIC]
    variable = pp
    type = ConstantIC
    value = 20e6
  []
[]
[DiracKernels]
  [sink]
    type = PorousFlowSquarePulsePointSource
    end_time = 1000
    point = '0 0 0'
    mass_flux = -0.04
    variable = pp
  []
[]
[BCs]
  [right]
    type = DirichletBC
    variable = pp
    value = 20e6
    boundary = right
  []
  [top]
    type = DirichletBC
    variable = pp
    value = 20e6
    boundary = top
  []
[]
[VectorPostprocessors]
  [pressure]
    type = SideValueSampler
    variable = pp
    sort_by = x
    execute_on = timestep_end
    boundary = bottom
  []
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_steady.i)
# Using a single-dimensional mesh
# Steady-state porepressure distribution along a fracture in a porous matrix
# This is used to initialise the transient solute-transport simulation
[Mesh]
  type = FileMesh
  # The gold mesh is used to reduce the number of large files in the MOOSE repository.
  # The porepressure is not read from the gold mesh
  file = 'gold/fine_thick_fracture_steady_out.e'
  block_id = '1 2 3'
  block_name = 'fracture matrix1 matrix2'
  boundary_id = '1 2'
  boundary_name = 'bottom top'
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
  []
[]
[ICs]
  [pp]
    type = ConstantIC
    variable = pp
    value = 1e6
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary =  top
    value = 1e6
  []
  [pbottom]
    type = DirichletBC
    variable = pp
    boundary = bottom
    value = 1.002e6
  []
[]
[Kernels]
  [adv0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability1]
    type = PorousFlowPermeabilityConst
  permeability = '3e-8 0 0 0 3e-8 0 0 0 3e-8' # the true permeability is used without scaling by aperture
    block = 'fracture'
  []
  [permeability2]
    type = PorousFlowPermeabilityConst
    permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
    block = 'matrix1 matrix2'
  []
[]
[Preconditioning]
  active = basic
  [mumps_is_best_for_parallel_jobs]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
# controls for nonlinear iterations
  nl_abs_tol = 1e-9
  nl_rel_tol = 1e-10
[]
[Outputs]
  exodus = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro02.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * k0 * (1-phi0)^m/phi0^n * phi^n/(1-phi)^m
# Block 1 k0 twice that of block 0 so permeability is twice has high in block 1
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 3
    xmin = 0
    xmax = 3
  []
  [top_two_elements]
    type = SubdomainBoundingBoxGenerator
    input = gmg
    bottom_left = '1.1 0 0'
    top_right = '3.1 0 0'
    block_id = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = ConstantIC
      value = 0
    []
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [poro]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_z]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [poro]
    type = PorousFlowPropertyAux
    property = porosity
    variable = poro
  []
  [perm_x]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_bottom]
    type = PointValue
    variable = perm_x
    point = '0 0 0'
  []
  [perm_y_bottom]
    type = PointValue
    variable = perm_y
    point = '0 0 0'
  []
  [perm_z_bottom]
    type = PointValue
    variable = perm_z
    point = '0 0 0'
  []
  [perm_x_top]
    type = PointValue
    variable = perm_x
    point = '3 0 0'
  []
  [perm_y_top]
    type = PointValue
    variable = perm_y
    point = '3 0 0'
  []
  [perm_z_top]
    type = PointValue
    variable = perm_z
    point = '3 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2.2e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[AuxVariables]
  [A_var]
    order = CONSTANT
    family = MONOMIAL
  []
  [A_var_bad]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [A]
    type = ParsedAux
    variable = A_var
    expression = 'if(x<1.1,0.11552,0.23104)'
    use_xyzt = true
  []
  [A_bad]
    type = ParsedAux
    variable = A_var_bad
    expression = 'if(x<1.1,0.11552,-.01)'
    use_xyzt = true
  []
[]
[Materials]
  inactive = 'permeability_all permeability_0A permeability_1A var_error param_error'
  [permeability_0]
    type = PorousFlowPermeabilityKozenyCarman
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = kozeny_carman_phi0
    k0 = 1e-10
    phi0 = 0.05
    m = 2
    n = 7
    block = 0
  []
  [permeability_1]
    type = PorousFlowPermeabilityKozenyCarman
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = kozeny_carman_phi0
    k0 = 2e-10
    phi0 = 0.05
    m = 2
    n = 7
    block = 1
  []
  [permeability_0A]
    type = PorousFlowPermeabilityKozenyCarman
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = kozeny_carman_A
    A = 0.11552
    m = 2
    n = 7
    block = 0
  []
  [permeability_1A]
    type = PorousFlowPermeabilityKozenyCarman
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = kozeny_carman_A
    A = 0.23104
    m = 2
    n = 7
    block = 1
  []
  [permeability_all]
    type = PorousFlowPermeabilityKozenyCarmanFromVar
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    m = 2
    n = 7
    A = A_var
  []
  [var_error]
    type = PorousFlowPermeabilityKozenyCarmanFromVar
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    m = 2
    n = 7
    A = A_var_bad
  []
  [param_error]
    type = PorousFlowPermeabilityKozenyCarman
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = kozeny_carman_A
    A = 0.23104
    phi0 = .01
    m = 2
    n = 7
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = Newton
  type = Steady
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
  petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  petsc_options_value = ' asm      2              lu            gmres     200'
[]
[Outputs]
  csv = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/jacobian/fflux11.i)
# 1phase, 3components, constant viscosity, constant insitu permeability
# density with constant bulk, VG relative perm with a cubic, nonzero gravity, unsaturated with VG
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [massfrac0]
  []
  [massfrac1]
  []
[]
[ICs]
  [pp]
    type = RandomIC
    variable = pp
    min = -1.0
    max = 0.0
  []
  [massfrac0]
    type = RandomIC
    variable = massfrac0
    min = 0
    max = 0.3
  []
  [massfrac1]
    type = RandomIC
    variable = massfrac1
    min = 0
    max = 0.4
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 -0.1 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
    gravity = '-1 -0.1 0'
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = massfrac1
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0 massfrac1'
    number_fluid_phases = 1
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.6
    alpha = 1 # small so that most effective saturations are close to 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac0 massfrac1'
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityVG
    m = 0.6
    seff_turnover = 0.8
    phase = 0
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/jacobian/fflux14.i)
# 1phase, 2components (water and salt using BrineFluidProperties), constant insitu permeability
# Constant relative perm, nonzero gravity
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 1
    xmin = 0
    xmax = 10
    ny = 1
    ymin = 0
    ymax = 10
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [pp]
  []
  [xnacl]
  []
[]
[ICs]
  [pp]
    type = RandomIC
    variable = pp
    min = 1e6
    max = 2e6
  []
  [massfrac0]
    type = RandomIC
    variable = xnacl
    min = 0.1
    max = 0.2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pp
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = xnacl
    fluid_component = 1
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = xnacl
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp xnacl'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'xnacl'
  []
  [brine]
    type = PorousFlowBrine
    phase = 0
    xnacl = xnacl
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-14 0 0 0 2e-14 0 0 0 3e-14'
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    kr = 1
    phase = 0
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/heterogeneous_materials/constant_poroperm.i)
# Assign porosity and permeability variables from constant AuxVariables to create
# a heterogeneous model
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 3
    nx = 3
    ny = 3
    nz = 3
    xmax = 3
    ymax = 3
    zmax = 3
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 -10'
[]
[Variables]
  [ppwater]
    initial_condition = 1.5e6
  []
[]
[AuxVariables]
  [poro]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxx]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxy]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxz]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyx]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyy]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyz]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzx]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzy]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzz]
    family = MONOMIAL
    order = CONSTANT
  []
  [poromat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxxmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxymat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxzmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyxmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyymat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyzmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzxmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzymat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzzmat]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [poromat]
    type = PorousFlowPropertyAux
    property = porosity
    variable = poromat
  []
  [permxxmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permxxmat
    column = 0
    row = 0
  []
  [permxymat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permxymat
    column = 1
    row = 0
  []
  [permxzmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permxzmat
    column = 2
    row = 0
  []
  [permyxmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permyxmat
    column = 0
    row = 1
  []
  [permyymat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permyymat
    column = 1
    row = 1
  []
  [permyzmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permyzmat
    column = 2
    row = 1
  []
  [permzxmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permzxmat
    column = 0
    row = 2
  []
  [permzymat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permzymat
    column = 1
    row = 2
  []
  [permzzmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permzzmat
    column = 2
    row = 2
  []
[]
[ICs]
  [poro]
    type = RandomIC
    seed = 0
    variable = poro
    max = 0.5
    min = 0.1
  []
  [permx]
    type = FunctionIC
    function = permx
    variable = permxx
  []
  [permy]
    type = FunctionIC
    function = permy
    variable = permyy
  []
  [permz]
    type = FunctionIC
    function = permz
    variable = permzz
  []
[]
[Functions]
  [permx]
    type = ParsedFunction
    expression = '(1+x)*1e-11'
  []
  [permy]
    type = ParsedFunction
    expression = '(1+y)*1e-11'
  []
  [permz]
    type = ParsedFunction
    expression = '(1+z)*1e-11'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = ppwater
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = poro
  []
  [permeability]
    type = PorousFlowPermeabilityConstFromVar
    perm_xx = permxx
    perm_yy = permyy
    perm_zz = permzz
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 100
  dt = 100
[]
[Outputs]
  execute_on = 'initial timestep_end'
  exodus = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/jacobian/brineco2_liquid_2.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that give a single liquid phase, including salt as a nonlinear variable
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  ny = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pgas]
  []
  [zi]
  []
  [xnacl]
  []
[]
[ICs]
  [pgas]
    type = RandomIC
    min = 5e6
    max = 8e6
    variable = pgas
  []
  [z]
    type = RandomIC
    min = 0.01
    max = 0.03
    variable = zi
  []
  [xnacl]
    type = RandomIC
    min = 0.01
    max = 0.15
    variable = xnacl
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = zi
    fluid_component = 1
  []
  [mass2]
    type = PorousFlowMassTimeDerivative
    variable = xnacl
    fluid_component = 2
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    variable = zi
    fluid_component = 1
  []
  [adv2]
    type = PorousFlowAdvectiveFlux
    variable = xnacl
    fluid_component = 2
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi xnacl'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 1e3
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 2e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-4
    sat_lr = 0.3
    pc_max = 1e6
    log_extension = false
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    variable = 'ppwater ppgas'
    start_point = '0 0 0'
    end_point = '100 0 0'
    num_points = 11
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePSVG
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/adaptivity/quad_adaptivity.i)
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 2
    ny = 2
  []
[]
[Adaptivity]
  marker = marker
  max_h_level = 1
  [Markers]
    [marker]
      type = UniformMarker
      mark = REFINE
    []
  []
[]
[GlobalParams]
  PorousFlowDictator = 'dictator'
[]
[Variables]
  [pp]
    initial_condition = '0'
  []
[]
[Kernels]
  [mass]
    type = PorousFlowMassTimeDerivative
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = pp
    boundary = 'left'
    value = 1
  []
  [right]
    type = DirichletBC
    variable = pp
    boundary = 'right'
    value = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = 'pp'
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = '0.1'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
[]
[Postprocessors]
  [numdofs]
    type = NumDOFs
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  end_time = 4
  dt = 1
  solve_type = Newton
  nl_abs_tol = 1e-12
[]
[Outputs]
  exodus = true
  perf_graph = true
  show = pp
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/rd01.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 120
  ny = 1
  xmin = 0
  xmax = 6
  ymin = 0
  ymax = 0.05
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    y = '1E-2 1 10 500 5000 5000'
    x = '0 10 100 1000 10000 100000'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = pressure
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.336
    alpha = 1.43e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    viscosity = 1.01e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [massfrac]
    type = PorousFlowMassFraction
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [relperm]
    type = PorousFlowRelativePermeabilityVG
    m = 0.336
    seff_turnover = 0.99
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.33
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '0.295E-12 0 0  0 0.295E-12 0  0 0 0.295E-12'
  []
[]
[Variables]
  [pressure]
    initial_condition = -72620.4
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pressure
    gravity = '-10 0 0'
  []
[]
[AuxVariables]
  [SWater]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [SWater]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 0
    variable = SWater
  []
[]
[BCs]
  [base]
    type = PorousFlowSink
    boundary = right
    flux_function = -2.315E-3
    variable = pressure
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-10      1E-10      10'
  []
[]
[VectorPostprocessors]
  [swater]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = SWater
    start_point = '0 0 0'
    end_point = '6 0 0'
    sort_by = x
    num_points = 121
    execute_on = timestep_end
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  petsc_options = '-snes_converged_reason'
  end_time = 359424
  [TimeStepper]
    type = FunctionDT
    function = dts
  []
[]
[Outputs]
  file_base = rd01
  [exodus]
    type = Exodus
    execute_on = 'initial final'
  []
  [along_line]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar01.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# k = k_anisotropy * perm
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 3
  xmin = 0
  xmax = 3
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = ConstantIC
      value = 0
    []
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [perm_var]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_z]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [perm_var]
    type = ConstantAux
    value = 2
    variable = perm_var
  []
  [perm_x]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_left]
    type = PointValue
    variable = perm_x
    point = '0.5 0 0'
  []
  [perm_y_left]
    type = PointValue
    variable = perm_y
    point = '0.5 0 0'
  []
  [perm_z_left]
    type = PointValue
    variable = perm_z
    point = '0.5 0 0'
  []
  [perm_x_right]
    type = PointValue
    variable = perm_x
    point = '2.5 0 0'
  []
  [perm_y_right]
    type = PointValue
    variable = perm_y
    point = '2.5 0 0'
  []
  [perm_z_right]
    type = PointValue
    variable = perm_z
    point = '2.5 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [permeability]
    type = PorousFlowPermeabilityTensorFromVar
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    perm = perm_var
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = Newton
  type = Steady
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
  petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  petsc_options_value = ' asm      2              lu            gmres     200'
[]
[Outputs]
  csv = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/fluidstate/theis.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 40
  xmax = 200
  bias_x = 1.05
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[BCs]
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 2
    variable = zi
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-8       1E-10 20'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 2e2
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 10
    growth_factor = 2
  []
[]
[VectorPostprocessors]
  [line]
    type = NodalValueSampler
    sort_by = x
    variable = 'pgas zi'
    execute_on = 'timestep_end'
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '1 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '1 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '1 0 0'
    variable = zi
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '1 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '1 0 0'
    variable = y0
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  [csvout]
    type = CSV
    execute_on = timestep_end
    execute_vector_postprocessors_on = final
  []
[]
(modules/porous_flow/test/tests/jacobian/fflux15.i)
# 1phase, 2components (water and tracer using BrineFluidProperties with constant salinity),
# constant insitu permeability and relative perm, nonzero gravity
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 1
    xmin = 0
    xmax = 10
    ny = 1
    ymin = 0
    ymax = 10
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [pp]
  []
  [tracer]
  []
[]
[ICs]
  [pp]
    type = RandomIC
    variable = pp
    min = 1e6
    max = 2e6
  []
  [tracer]
    type = RandomIC
    variable = tracer
    min = 0.1
    max = 0.2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pp
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = tracer
    fluid_component = 1
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = tracer
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'tracer'
  []
  [brine]
    type = PorousFlowBrine
    phase = 0
    xnacl = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-14 0 0 0 2e-14 0 0 0 3e-14'
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    kr = 1
    phase = 0
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 2e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    family = MONOMIAL
    order = FIRST
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    family = MONOMIAL
    order = FIRST
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    variable = 'ppwater ppgas'
    start_point = '0 0 0'
    end_point = '100 0 0'
    num_points = 11
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePS
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/gravity/grav01b.i)
# Checking that gravity head is established
# 1phase, vanGenuchten, constant and large fluid-bulk, constant viscosity, constant permeability, Corey relperm
# fully saturated
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = -1
  xmax = 0
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = RandomIC
      min = 0
      max = 1
    []
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 0 0'
  []
[]
[Functions]
  [ana_pp]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 1E3 0 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[BCs]
  [z]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e3
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
[]
[Postprocessors]
  [pp_base]
    type = PointValue
    variable = pp
    point = '-1 0 0'
  []
  [pp_analytical]
    type = FunctionValuePostprocessor
    function = ana_pp
    point = '-1 0 0'
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = grav01b
  [csv]
    type = CSV
  []
[]
(modules/porous_flow/examples/coal_mining/coarse_with_fluid.i)
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used.  The mine is 400m deep and
# just the roof is studied (-400<=z<=0).  The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long.  The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
#  - disp_x = 0 at x=0 and x=1150
#  - disp_y = 0 at y=-1000 and y=1000
#  - disp_z = 0 at z=-400, but there is a time-dependent
#               Young modulus that simulates excavation
#  - wc_x = 0 at y=-1000 and y=1000
#  - wc_y = 0 at x=0 and x=1150
#  - no flow at x=0, z=-400 and z=0
#  - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
  perform_finite_strain_rotations = false
  displacements = 'disp_x disp_y disp_z'
  Cosserat_rotations = 'wc_x wc_y wc_z'
  PorousFlowDictator = dictator
  biot_coefficient = 0.7
[]
[Mesh]
  [file]
    type = FileMeshGenerator
    file = mesh/coarse.e
  []
  [xmin]
    type = SideSetsAroundSubdomainGenerator
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    new_boundary = xmin
    normal = '-1 0 0'
    input = file
  []
  [xmax]
    type = SideSetsAroundSubdomainGenerator
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    new_boundary = xmax
    normal = '1 0 0'
    input = xmin
  []
  [ymin]
    type = SideSetsAroundSubdomainGenerator
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    new_boundary = ymin
    normal = '0 -1 0'
    input = xmax
  []
  [ymax]
    type = SideSetsAroundSubdomainGenerator
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    new_boundary = ymax
    normal = '0 1 0'
    input = ymin
  []
  [zmax]
    type = SideSetsAroundSubdomainGenerator
    block = 16
    new_boundary = zmax
    normal = '0 0 1'
    input = ymax
  []
  [zmin]
    type = SideSetsAroundSubdomainGenerator
    block = 2
    new_boundary = zmin
    normal = '0 0 -1'
    input = zmax
  []
  [excav]
    type = SubdomainBoundingBoxGenerator
    input = zmin
    block_id = 1
    bottom_left = '0 0 -400'
    top_right = '150 1000 -397'
  []
  [roof]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 3
    paired_block = 1
    input = excav
    new_boundary = roof
  []
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [wc_x]
  []
  [wc_y]
  []
  [porepressure]
    scaling = 1E-5
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = ini_pp
  []
[]
[Kernels]
  [cx_elastic]
    type = CosseratStressDivergenceTensors
    use_displaced_mesh = false
    variable = disp_x
    component = 0
  []
  [cy_elastic]
    type = CosseratStressDivergenceTensors
    use_displaced_mesh = false
    variable = disp_y
    component = 1
  []
  [cz_elastic]
    type = CosseratStressDivergenceTensors
    use_displaced_mesh = false
    variable = disp_z
    component = 2
  []
  [x_couple]
    type = StressDivergenceTensors
    use_displaced_mesh = false
    variable = wc_x
    displacements = 'wc_x wc_y wc_z'
    component = 0
    base_name = couple
  []
  [y_couple]
    type = StressDivergenceTensors
    use_displaced_mesh = false
    variable = wc_y
    displacements = 'wc_x wc_y wc_z'
    component = 1
    base_name = couple
  []
  [x_moment]
    type = MomentBalancing
    use_displaced_mesh = false
    variable = wc_x
    component = 0
  []
  [y_moment]
    type = MomentBalancing
    use_displaced_mesh = false
    variable = wc_y
    component = 1
  []
  [gravity]
    type = Gravity
    use_displaced_mesh = false
    variable = disp_z
    value = -10E-6 # remember this is in MPa
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    use_displaced_mesh = false
    variable = disp_x
    component = 0
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    use_displaced_mesh = false
    variable = disp_y
    component = 1
  []
  [poro_z]
    type = PorousFlowEffectiveStressCoupling
    use_displaced_mesh = false
    component = 2
    variable = disp_z
  []
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = porepressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    use_displaced_mesh = false
    variable = porepressure
    gravity = '0 0 -10E-6'
    fluid_component = 0
  []
  [poro_vol_exp]
    type = PorousFlowMassVolumetricExpansion
    block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    variable = porepressure
    fluid_component = 0
  []
[]
[AuxVariables]
  [saturation]
    order = CONSTANT
    family = MONOMIAL
  []
  [darcy_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [darcy_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [darcy_z]
    order = CONSTANT
    family = MONOMIAL
  []
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
  [wc_z]
  []
  [stress_xx]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yx]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zx]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_xx]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_xy]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_xz]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_yx]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_yz]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_zx]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_zy]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_xx]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [mc_shear]
    order = CONSTANT
    family = MONOMIAL
  []
  [mc_tensile]
    order = CONSTANT
    family = MONOMIAL
  []
  [wp_shear]
    order = CONSTANT
    family = MONOMIAL
  []
  [wp_tensile]
    order = CONSTANT
    family = MONOMIAL
  []
  [wp_shear_f]
    order = CONSTANT
    family = MONOMIAL
  []
  [wp_tensile_f]
    order = CONSTANT
    family = MONOMIAL
  []
  [mc_shear_f]
    order = CONSTANT
    family = MONOMIAL
  []
  [mc_tensile_f]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [darcy_x]
    type = PorousFlowDarcyVelocityComponent
    variable = darcy_x
    gravity = '0 0 -10E-6'
    component = x
  []
  [darcy_y]
    type = PorousFlowDarcyVelocityComponent
    variable = darcy_y
    gravity = '0 0 -10E-6'
    component = y
  []
  [darcy_z]
    type = PorousFlowDarcyVelocityComponent
    variable = darcy_z
    gravity = '0 0 -10E-6'
    component = z
  []
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
    execute_on = timestep_end
  []
  [stress_xx]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xx
    index_i = 0
    index_j = 0
    execute_on = timestep_end
  []
  [stress_xy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xy
    index_i = 0
    index_j = 1
    execute_on = timestep_end
  []
  [stress_xz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xz
    index_i = 0
    index_j = 2
    execute_on = timestep_end
  []
  [stress_yx]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yx
    index_i = 1
    index_j = 0
    execute_on = timestep_end
  []
  [stress_yy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yy
    index_i = 1
    index_j = 1
    execute_on = timestep_end
  []
  [stress_yz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yz
    index_i = 1
    index_j = 2
    execute_on = timestep_end
  []
  [stress_zx]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zx
    index_i = 2
    index_j = 0
    execute_on = timestep_end
  []
  [stress_zy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zy
    index_i = 2
    index_j = 1
    execute_on = timestep_end
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 2
    index_j = 2
    execute_on = timestep_end
  []
  [total_strain_xx]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_xx
    index_i = 0
    index_j = 0
    execute_on = timestep_end
  []
  [total_strain_xy]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_xy
    index_i = 0
    index_j = 1
    execute_on = timestep_end
  []
  [total_strain_xz]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_xz
    index_i = 0
    index_j = 2
    execute_on = timestep_end
  []
  [total_strain_yx]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_yx
    index_i = 1
    index_j = 0
    execute_on = timestep_end
  []
  [total_strain_yy]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_yy
    index_i = 1
    index_j = 1
    execute_on = timestep_end
  []
  [total_strain_yz]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_yz
    index_i = 1
    index_j = 2
    execute_on = timestep_end
  []
  [total_strain_zx]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_zx
    index_i = 2
    index_j = 0
    execute_on = timestep_end
  []
  [total_strain_zy]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_zy
    index_i = 2
    index_j = 1
    execute_on = timestep_end
  []
  [total_strain_zz]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_zz
    index_i = 2
    index_j = 2
    execute_on = timestep_end
  []
  [perm_xx]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_xx
    row = 0
    column = 0
    execute_on = timestep_end
  []
  [perm_yy]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_yy
    row = 1
    column = 1
    execute_on = timestep_end
  []
  [perm_zz]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_zz
    row = 2
    column = 2
    execute_on = timestep_end
  []
  [mc_shear]
    type = MaterialStdVectorAux
    index = 0
    property = mc_plastic_internal_parameter
    variable = mc_shear
    execute_on = timestep_end
  []
  [mc_tensile]
    type = MaterialStdVectorAux
    index = 1
    property = mc_plastic_internal_parameter
    variable = mc_tensile
    execute_on = timestep_end
  []
  [wp_shear]
    type = MaterialStdVectorAux
    index = 0
    property = wp_plastic_internal_parameter
    variable = wp_shear
    execute_on = timestep_end
  []
  [wp_tensile]
    type = MaterialStdVectorAux
    index = 1
    property = wp_plastic_internal_parameter
    variable = wp_tensile
    execute_on = timestep_end
  []
  [mc_shear_f]
    type = MaterialStdVectorAux
    index = 6
    property = mc_plastic_yield_function
    variable = mc_shear_f
    execute_on = timestep_end
  []
  [mc_tensile_f]
    type = MaterialStdVectorAux
    index = 0
    property = mc_plastic_yield_function
    variable = mc_tensile_f
    execute_on = timestep_end
  []
  [wp_shear_f]
    type = MaterialStdVectorAux
    index = 0
    property = wp_plastic_yield_function
    variable = wp_shear_f
    execute_on = timestep_end
  []
  [wp_tensile_f]
    type = MaterialStdVectorAux
    index = 1
    property = wp_plastic_yield_function
    variable = wp_tensile_f
    execute_on = timestep_end
  []
[]
[BCs]
  [no_x]
    type = DirichletBC
    variable = disp_x
    boundary = 'xmin xmax'
    value = 0.0
  []
  [no_y]
    type = DirichletBC
    variable = disp_y
    boundary = 'ymin ymax'
    value = 0.0
  []
  [no_z]
    type = DirichletBC
    variable = disp_z
    boundary = zmin
    value = 0.0
  []
  [no_wc_x]
    type = DirichletBC
    variable = wc_x
    boundary = 'ymin ymax'
    value = 0.0
  []
  [no_wc_y]
    type = DirichletBC
    variable = wc_y
    boundary = 'xmin xmax'
    value = 0.0
  []
  [fix_porepressure]
    type = FunctionDirichletBC
    variable = porepressure
    boundary = 'ymin ymax xmax'
    function = ini_pp
  []
  [roof_porepressure]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    pt_vals = '-1E3 1E3'
    multipliers = '-1 1'
    fluid_phase = 0
    flux_function = roof_conductance
    boundary = roof
  []
  [roof_bcs]
    type = StickyBC
    variable = disp_z
    min_value = -3.0
    boundary = roof
  []
[]
[Functions]
  [ini_pp]
    type = ParsedFunction
    symbol_names = 'bulk p0 g    rho0'
    symbol_values = '2E3 0.0 1E-5 1E3'
    expression = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
  []
  [ini_xx]
    type = ParsedFunction
    symbol_names = 'bulk p0 g    rho0 biot'
    symbol_values = '2E3 0.0 1E-5 1E3  0.7'
    expression = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
  []
  [ini_zz]
    type = ParsedFunction
    symbol_names = 'bulk p0 g    rho0 biot'
    symbol_values = '2E3 0.0 1E-5 1E3  0.7'
    expression = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
  []
  [excav_sideways]
    type = ParsedFunction
    symbol_names = 'end_t ymin ymax  minval maxval slope'
    symbol_values = '0.5   0    1000.0 1E-9 1 60'
    # excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
    # slope is the distance over which the modulus reduces from maxval to minval
    expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
  []
  [density_sideways]
    type = ParsedFunction
    symbol_names = 'end_t ymin ymax  minval maxval'
    symbol_values = '0.5   0    1000.0 0 2500'
    expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
  []
  [roof_conductance]
    type = ParsedFunction
    symbol_names = 'end_t ymin ymax   maxval minval'
    symbol_values = '0.5   0    1000.0 1E7      0'
    expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1 # MPa^-1
  []
  [mc_coh_strong_harden]
    type = TensorMechanicsHardeningExponential
    value_0 = 1.99 # MPa
    value_residual = 2.01 # MPa
    rate = 1.0
  []
  [mc_fric]
    type = TensorMechanicsHardeningConstant
    value = 0.61 # 35deg
  []
  [mc_dil]
    type = TensorMechanicsHardeningConstant
    value = 0.15 # 8deg
  []
  [mc_tensile_str_strong_harden]
    type = TensorMechanicsHardeningExponential
    value_0 = 1.0 # MPa
    value_residual = 1.0 # MPa
    rate = 1.0
  []
  [mc_compressive_str]
    type = TensorMechanicsHardeningCubic
    value_0 = 100 # Large!
    value_residual = 100
    internal_limit = 0.1
  []
  [wp_coh_harden]
    type = TensorMechanicsHardeningCubic
    value_0 = 0.05
    value_residual = 0.05
    internal_limit = 10
  []
  [wp_tan_fric]
    type = TensorMechanicsHardeningConstant
    value = 0.26 # 15deg
  []
  [wp_tan_dil]
    type = TensorMechanicsHardeningConstant
    value = 0.18 # 10deg
  []
  [wp_tensile_str_harden]
    type = TensorMechanicsHardeningCubic
    value_0 = 0.05
    value_residual = 0.05
    internal_limit = 10
  []
  [wp_compressive_str_soften]
    type = TensorMechanicsHardeningCubic
    value_0 = 100
    value_residual = 1
    internal_limit = 1.0
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E3
    density0 = 1000
    thermal_expansion = 0
    viscosity = 3.5E-17
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity_bulk]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    ensure_positive = true
    porosity_zero = 0.02
    solid_bulk = 5.3333E3
  []
  [porosity_excav]
    type = PorousFlowPorosityConst
    block = 1
    porosity = 1.0
  []
  [permeability_bulk]
    type = PorousFlowPermeabilityKozenyCarman
    block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    poroperm_function = kozeny_carman_phi0
    k0 = 1E-15
    phi0 = 0.02
    n = 2
    m = 2
  []
  [permeability_excav]
    type = PorousFlowPermeabilityConst
    block = 1
    permeability = '0 0 0   0 0 0   0 0 0'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    s_res = 0.4
    sum_s_res = 0.4
    phase = 0
  []
  [elasticity_tensor_0]
    type = ComputeLayeredCosseratElasticityTensor
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    young = 8E3 # MPa
    poisson = 0.25
    layer_thickness = 1.0
    joint_normal_stiffness = 1E9 # huge
    joint_shear_stiffness = 1E3 # MPa
  []
  [elasticity_tensor_1]
    type = ComputeLayeredCosseratElasticityTensor
    block = 1
    young = 8E3 # MPa
    poisson = 0.25
    layer_thickness = 1.0
    joint_normal_stiffness = 1E9 # huge
    joint_shear_stiffness = 1E3 # MPa
    elasticity_tensor_prefactor = excav_sideways
  []
  [strain]
    type = ComputeCosseratIncrementalSmallStrain
    eigenstrain_names = ini_stress
  []
  [ini_stress]
    type = ComputeEigenstrainFromInitialStress
    eigenstrain_name = ini_stress
    initial_stress = 'ini_xx 0 0  0 ini_xx 0  0 0 ini_zz'
  []
  [stress_0]
    type = ComputeMultipleInelasticCosseratStress
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    inelastic_models = 'mc wp'
    cycle_models = true
    relative_tolerance = 2.0
    absolute_tolerance = 1E6
    max_iterations = 1
    tangent_operator = nonlinear
    perform_finite_strain_rotations = false
  []
  [stress_1]
    type = ComputeMultipleInelasticCosseratStress
    block = 1
    inelastic_models = ''
    relative_tolerance = 2.0
    absolute_tolerance = 1E6
    max_iterations = 1
    tangent_operator = nonlinear
    perform_finite_strain_rotations = false
  []
  [mc]
    type = CappedMohrCoulombCosseratStressUpdate
    warn_about_precision_loss = false
    host_youngs_modulus = 8E3
    host_poissons_ratio = 0.25
    base_name = mc
    tensile_strength = mc_tensile_str_strong_harden
    compressive_strength = mc_compressive_str
    cohesion = mc_coh_strong_harden
    friction_angle = mc_fric
    dilation_angle = mc_dil
    max_NR_iterations = 100000
    smoothing_tol = 0.1 # MPa  # Must be linked to cohesion
    yield_function_tol = 1E-9 # MPa.  this is essentially the lowest possible without lots of precision loss
    perfect_guess = true
    min_step_size = 1.0
  []
  [wp]
    type = CappedWeakPlaneCosseratStressUpdate
    warn_about_precision_loss = false
    base_name = wp
    cohesion = wp_coh_harden
    tan_friction_angle = wp_tan_fric
    tan_dilation_angle = wp_tan_dil
    tensile_strength = wp_tensile_str_harden
    compressive_strength = wp_compressive_str_soften
    max_NR_iterations = 10000
    tip_smoother = 0.05
    smoothing_tol = 0.05 # MPa  # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
    yield_function_tol = 1E-11 # MPa.  this is essentially the lowest possible without lots of precision loss
    perfect_guess = true
    min_step_size = 1.0E-3
  []
  [undrained_density_0]
    type = GenericConstantMaterial
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    prop_names = density
    prop_values = 2500
  []
  [undrained_density_1]
    type = GenericFunctionMaterial
    block = 1
    prop_names = density
    prop_values = density_sideways
  []
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [min_roof_disp]
    type = NodalExtremeValue
    boundary = roof
    value_type = min
    variable = disp_z
  []
  [min_roof_pp]
    type = NodalExtremeValue
    boundary = roof
    value_type = min
    variable = porepressure
  []
  [min_surface_disp]
    type = NodalExtremeValue
    boundary = zmax
    value_type = min
    variable = disp_z
  []
  [min_surface_pp]
    type = NodalExtremeValue
    boundary = zmax
    value_type = min
    variable = porepressure
  []
  [max_perm_zz]
    type = ElementExtremeValue
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
    variable = perm_zz
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options = '-snes_converged_reason'
  # best overall
  # petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
  # petsc_options_value = ' lu       mumps'
  # best if you do not have mumps:
  petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
  petsc_options_value = ' lu       superlu_dist'
  # best if you do not have mumps or superlu_dist:
  #petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  #petsc_options_value = ' asm      2              lu            gmres     200'
  # very basic:
  #petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
  #petsc_options_value = ' bjacobi  gmres     200'
  line_search = bt
  nl_abs_tol = 1e-3
  nl_rel_tol = 1e-5
  l_max_its = 200
  nl_max_its = 30
  start_time = 0.0
  dt = 0.014706
  end_time = 0.014706 #0.5
[]
[Outputs]
  time_step_interval = 1
  print_linear_residuals = true
  exodus = true
  csv = true
  console = true
[]
(modules/porous_flow/test/tests/heterogeneous_materials/constant_poroperm2.i)
# Assign porosity and permeability variables from constant AuxVariables to create
# a heterogeneous model
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 3
  ny = 3
  nz = 3
  xmin = 1
  xmax = 4
  ymin = 1
  ymax = 4
  zmin = 1
  zmax = 4
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 -10'
[]
[Variables]
  [ppwater]
    initial_condition = 1e6
  []
[]
[AuxVariables]
  [poro]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxx]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxy]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxz]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyx]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyy]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyz]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzx]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzy]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzz]
    family = MONOMIAL
    order = CONSTANT
  []
  [poromat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxxmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxymat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permxzmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyxmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyymat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permyzmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzxmat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzymat]
    family = MONOMIAL
    order = CONSTANT
  []
  [permzzmat]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [poromat]
    type = PorousFlowPropertyAux
    property = porosity
    variable = poromat
  []
  [permxxmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permxxmat
    column = 0
    row = 0
  []
  [permxymat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permxymat
    column = 1
    row = 0
  []
  [permxzmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permxzmat
    column = 2
    row = 0
  []
  [permyxmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permyxmat
    column = 0
    row = 1
  []
  [permyymat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permyymat
    column = 1
    row = 1
  []
  [permyzmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permyzmat
    column = 2
    row = 1
  []
  [permzxmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permzxmat
    column = 0
    row = 2
  []
  [permzymat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permzymat
    column = 1
    row = 2
  []
  [permzzmat]
    type = PorousFlowPropertyAux
    property = permeability
    variable = permzzmat
    column = 2
    row = 2
  []
[]
[ICs]
  [poro]
    type = RandomIC
    seed = 0
    variable = poro
    max = 0.5
    min = 0.1
  []
  [permxx]
    type = FunctionIC
    function = permxx
    variable = permxx
  []
  [permxy]
    type = FunctionIC
    function = permxy
    variable = permxy
  []
  [permxz]
    type = FunctionIC
    function = permxz
    variable = permxz
  []
  [permyx]
    type = FunctionIC
    function = permyx
    variable = permyx
  []
  [permyy]
    type = FunctionIC
    function = permyy
    variable = permyy
  []
  [permyz]
    type = FunctionIC
    function = permyz
    variable = permyz
  []
  [permzx]
    type = FunctionIC
    function = permzx
    variable = permzx
  []
  [permzy]
    type = FunctionIC
    function = permzy
    variable = permzy
  []
  [permzz]
    type = FunctionIC
    function = permzz
    variable = permzz
  []
[]
[Functions]
  [permxx]
    type = ParsedFunction
    expression = '(x*x)*1e-11'
  []
  [permxy]
    type = ParsedFunction
    expression = '(x*y)*1e-11'
  []
  [permxz]
    type = ParsedFunction
    expression = '(x*z)*1e-11'
  []
  [permyx]
    type = ParsedFunction
    expression = '(y*x)*1e-11'
  []
  [permyy]
    type = ParsedFunction
    expression = '(y*y)*1e-11'
  []
  [permyz]
    type = ParsedFunction
    expression = '(y*z)*1e-11'
  []
  [permzx]
    type = ParsedFunction
    expression = '(z*x)*1e-11'
  []
  [permzy]
    type = ParsedFunction
    expression = '(z*y)*1e-11'
  []
  [permzz]
    type = ParsedFunction
    expression = '(z*z)*1e-11'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = ppwater
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = poro
  []
  [permeability]
    type = PorousFlowPermeabilityConstFromVar
    perm_xx = permxx
    perm_xy = permxy
    perm_xz = permxz
    perm_yx = permyx
    perm_yy = permyy
    perm_yz = permyz
    perm_zx = permzx
    perm_zy = permzy
    perm_zz = permzz
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 100
  dt = 100
[]
[Outputs]
  execute_on = 'initial timestep_end'
  exodus = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d.i)
# Pressure pulse in 1D with 1 phase - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    initial_condition = 2E6
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
    fluid_component = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-7
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    value = 3E6
    variable = pp
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E3
  end_time = 1E4
[]
[Postprocessors]
  [p000]
    type = PointValue
    variable = pp
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [p010]
    type = PointValue
    variable = pp
    point = '10 0 0'
    execute_on = 'initial timestep_end'
  []
  [p020]
    type = PointValue
    variable = pp
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [p030]
    type = PointValue
    variable = pp
    point = '30 0 0'
    execute_on = 'initial timestep_end'
  []
  [p040]
    type = PointValue
    variable = pp
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [p050]
    type = PointValue
    variable = pp
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [p060]
    type = PointValue
    variable = pp
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [p070]
    type = PointValue
    variable = pp
    point = '70 0 0'
    execute_on = 'initial timestep_end'
  []
  [p080]
    type = PointValue
    variable = pp
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [p090]
    type = PointValue
    variable = pp
    point = '90 0 0'
    execute_on = 'initial timestep_end'
  []
  [p100]
    type = PointValue
    variable = pp
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d
  print_linear_residuals = false
  csv = true
[]
(modules/porous_flow/test/tests/jacobian/brineco2_liquid.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that give a single liquid phase
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  ny = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.05
  []
[]
[Variables]
  [pgas]
  []
  [zi]
  []
[]
[ICs]
  [pgas]
    type = RandomIC
    min = 5e6
    max = 8e6
    variable = pgas
  []
  [z_liquid]
    type = RandomIC
    min = 0.01
    max = 0.03
    variable = zi
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = zi
    fluid_component = 1
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    variable = zi
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 1e4
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[AuxVariables]
  [sgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sgas]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = sgas
  []
[]
[Postprocessors]
  [sgas_min]
    type = ElementExtremeValue
    variable = sgas
    value_type = min
  []
  [sgas_max]
    type = ElementExtremeValue
    variable = sgas
    value_type = max
  []
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/bw02.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 200
  ny = 1
  xmin = -10
  xmax = 10
  ymin = 0
  ymax = 0.05
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    y = '1E-1 5E-1 5E-1'
    x = '0 1 10'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = pressure
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureBW
    Sn = 0.0
    Ss = 1.0
    C = 1.5
    las = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    viscosity = 4
    density0 = 10
    thermal_expansion = 0
  []
[]
[Materials]
  [massfrac]
    type = PorousFlowMassFraction
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [relperm]
    type = PorousFlowRelativePermeabilityBW
    Sn = 0.0
    Ss = 1.0
    Kn = 0
    Ks = 1
    C = 1.5
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.25
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
[]
[Variables]
  [pressure]
    initial_condition = -9E2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pressure
    gravity = '-0.1 0 0'
  []
[]
[AuxVariables]
  [SWater]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [SWater]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 0
    variable = SWater
  []
[]
[BCs]
  [recharge]
    type = PorousFlowSink
    variable = pressure
    boundary = right
    flux_function = -1.25 # corresponds to Rstar being 0.5 because i have to multiply by density*porosity
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-10      1E-10      10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  petsc_options = '-snes_converged_reason'
  end_time = 2
  [TimeStepper]
    type = FunctionDT
    function = dts
  []
[]
[VectorPostprocessors]
  [swater]
    type = LineValueSampler
    variable = SWater
    start_point = '-10 0 0'
    end_point = '10 0 0'
    sort_by = x
    num_points = 80
    execute_on = timestep_end
  []
[]
[Outputs]
  file_base = bw02
  sync_times = '0.5 2 8'
  [exodus]
    type = Exodus
    sync_only = true
  []
  [along_line]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/gravity/grav02b.i)
# Checking that gravity head is established in the steady-state situation when 0<saturation<1 (note the strictly less-than).
# 2phase (PP), 2components, vanGenuchten, constant fluid bulk-moduli for each phase, constant viscosity, constant permeability, Corey relative perm
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = -1
  xmax = 0
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
    initial_condition = -1.0
  []
  [ppgas]
    initial_condition = 0
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 0 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = ppgas
    gravity = '-1 0 0'
  []
[]
[BCs]
  [ppwater]
    type = DirichletBC
    boundary = right
    variable = ppwater
    value = -1
  []
  [ppgas]
    type = DirichletBC
    boundary = right
    variable = ppgas
    value = 0
  []
[]
[Functions]
  [ana_ppwater]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 2 pp_water_top 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
  [ana_ppgas]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 1 pp_gas_top 0.1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    viscosity = 0.5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[Postprocessors]
  [pp_water_top]
    type = PointValue
    variable = ppwater
    point = '0 0 0'
  []
  [pp_water_base]
    type = PointValue
    variable = ppwater
    point = '-1 0 0'
  []
  [pp_water_analytical]
    type = FunctionValuePostprocessor
    function = ana_ppwater
    point = '-1 0 0'
  []
  [pp_gas_top]
    type = PointValue
    variable = ppgas
    point = '0 0 0'
  []
  [pp_gas_base]
    type = PointValue
    variable = ppgas
    point = '-1 0 0'
  []
  [pp_gas_analytical]
    type = FunctionValuePostprocessor
    function = ana_ppgas
    point = '-1 0 0'
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
[]
[Outputs]
  file_base = grav02b
  [csv]
    type = CSV
  []
  exodus = false
[]
(modules/porous_flow/test/tests/fluidstate/theis_nonisothermal.i)
# Two-phase nonisothermal Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s of cold gas into warm reservoir
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 40
    xmin = 0.1
    xmax = 200
    bias_x = 1.05
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
  [temperature]
    initial_condition = 70
    scaling = 1e-4
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [energy]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heatadv]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
  [conduction]
    type = PorousFlowHeatConduction
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = methane
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [methane]
    type = MethaneFluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature = temperature
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
  [rockheat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1000
    density = 2500
  []
  [rock_thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '50 0 0  0 50 0  0 0 50'
  []
[]
[BCs]
  [cold_gas]
    type = DirichletBC
    boundary = left
    variable = temperature
    value = 20
  []
  [gas_injecton]
    type = PorousFlowSink
    boundary = left
    variable = zi
    flux_function = -0.159155
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
  [righttemp]
    type = DirichletBC
    boundary = right
    value = 70
    variable = temperature
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e4
  nl_abs_tol = 1e-7
  nl_rel_tol = 1e-5
  # Avoids failing first time step in parallel
  line_search = 'none'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.5
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '2 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '2 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '2 0 0'
    variable = zi
  []
  [temperature]
    type = PointValue
    point = '2 0 0'
    variable = temperature
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '2 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '2 0 0'
    variable = y0
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  csv = true
[]
(modules/porous_flow/test/tests/jacobian/fflux13.i)
# 2phase (PP), 3components (that exist in both phases), constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity, unsaturated with vanGenuchten
# using harmonic-mean mobility
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
  []
  [ppgas]
  []
  [massfrac_ph0_sp0]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp1]
  []
  [massfrac_ph1_sp0]
  []
  [massfrac_ph1_sp1]
  []
[]
[ICs]
  [ppwater]
    type = RandomIC
    variable = ppwater
    min = -1
    max = 0
  []
  [ppgas]
    type = RandomIC
    variable = ppgas
    min = 0
    max = 1
  []
  [massfrac_ph0_sp0]
    type = RandomIC
    variable = massfrac_ph0_sp0
    min = 0
    max = 0.4
  []
  [massfrac_ph0_sp1]
    type = RandomIC
    variable = massfrac_ph0_sp1
    min = 0
    max = 0.4
  []
  [massfrac_ph1_sp0]
    type = RandomIC
    variable = massfrac_ph1_sp0
    min = 0
    max = 0.4
  []
  [massfrac_ph1_sp1]
    type = RandomIC
    variable = massfrac_ph1_sp1
    min = 0
    max = 0.4
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 -0.1 0'
    full_upwind_threshold = 0
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = ppgas
    gravity = '-1 -0.1 0'
    full_upwind_threshold = 0
    fallback_scheme = harmonic
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = massfrac_ph0_sp0
    gravity = '-1 -0.1 0'
    full_upwind_threshold = 0
    fallback_scheme = harmonic
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas massfrac_ph0_sp0'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.5
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/examples/tutorial/10.i)
# Unsaturated Darcy-Richards flow without using an Action
[Mesh]
  [annular]
    type = AnnularMeshGenerator
    nr = 10
    rmin = 1.0
    rmax = 10
    growth_r = 1.4
    nt = 4
    dmin = 0
    dmax = 90
  []
  [make3D]
    input = annular
    type = MeshExtruderGenerator
    extrusion_vector = '0 0 12'
    num_layers = 3
    bottom_sideset = 'bottom'
    top_sideset = 'top'
  []
  [shift_down]
    type = TransformGenerator
    transform = TRANSLATE
    vector_value = '0 0 -6'
    input = make3D
  []
  [aquifer]
    type = SubdomainBoundingBoxGenerator
    block_id = 1
    bottom_left = '0 0 -2'
    top_right = '10 10 2'
    input = shift_down
  []
  [injection_area]
    type = ParsedGenerateSideset
    combinatorial_geometry = 'x*x+y*y<1.01'
    included_subdomains = 1
    new_sideset_name = 'injection_area'
    input = 'aquifer'
  []
  [rename]
    type = RenameBlockGenerator
    old_block = '0 1'
    new_block = 'caps aquifer'
    input = 'injection_area'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = pp
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1E-6
    m = 0.6
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
[]
[Kernels]
  [time_derivative]
    type = PorousFlowMassTimeDerivative
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
  []
[]
[AuxVariables]
  [sat]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [saturation]
    type = PorousFlowPropertyAux
    variable = sat
    property = saturation
  []
[]
[BCs]
  [production]
    type = PorousFlowSink
    variable = pp
    fluid_phase = 0
    flux_function = 1E-2
    use_relperm = true
    boundary = injection_area
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    viscosity = 1.0E-3
    density0 = 1000.0
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability_aquifer]
    type = PorousFlowPermeabilityConst
    block = aquifer
    permeability = '1E-14 0 0   0 1E-14 0   0 0 1E-14'
  []
  [permeability_caps]
    type = PorousFlowPermeabilityConst
    block = caps
    permeability = '1E-15 0 0   0 1E-15 0   0 0 1E-16'
  []
  [saturation_calculator]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [temperature]
    type = PorousFlowTemperature
    temperature = 293
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    s_res = 0.1
    sum_s_res = 0.1
    phase = 0
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1E6
  dt = 1E5
  nl_rel_tol = 1E-12
  nl_abs_tol = 1e-10
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar02.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# when scalar is a FunctionAux.
# k = k_anisotropy * perm
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 3
  xmin = 0
  xmax = 3
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = ConstantIC
      value = 0
    []
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[Functions]
  [perm_fn]
    type = ParsedFunction
    expression = '2*(x+1)'
  []
[]
[AuxVariables]
  [perm_var]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_z]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [perm_var]
    type = FunctionAux
    function = perm_fn
    variable = perm_var
  []
  [perm_x]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_left]
    type = PointValue
    variable = perm_x
    point = '0.5 0 0'
  []
  [perm_y_left]
    type = PointValue
    variable = perm_y
    point = '0.5 0 0'
  []
  [perm_z_left]
    type = PointValue
    variable = perm_z
    point = '0.5 0 0'
  []
  [perm_x_right]
    type = PointValue
    variable = perm_x
    point = '2.5 0 0'
  []
  [perm_y_right]
    type = PointValue
    variable = perm_y
    point = '2.5 0 0'
  []
  [perm_z_right]
    type = PointValue
    variable = perm_z
    point = '2.5 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [permeability]
    type = PorousFlowPermeabilityTensorFromVar
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    perm = perm_var
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = Newton
  type = Steady
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
  petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  petsc_options_value = ' asm      2              lu            gmres     200'
[]
[Outputs]
  csv = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/newton_cooling/nc06.i)
# Newton cooling from a bar.  1-phase and heat, steady
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 100
  ny = 1
  xmin = 0
  xmax = 100
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pressure temp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-5
  []
[]
[Variables]
  [pressure]
  []
  [temp]
  []
[]
[ICs]
  # have to start these reasonably close to their steady-state values
  [pressure]
    type = FunctionIC
    variable = pressure
    function = '(2-x/100)*1E6'
  []
  [temperature]
    type = FunctionIC
    variable = temp
    function = 100+0.1*x
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    gravity = '0 0 0'
    variable = pressure
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    gravity = '0 0 0'
    variable = temp
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e6
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
    cv = 1e6
    porepressure_coefficient = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey # irrelevant in this fully-saturated situation
    n = 2
    phase = 0
  []
[]
[BCs]
  [leftp]
    type = DirichletBC
    variable = pressure
    boundary = left
    value = 2E6
  []
  [leftt]
    type = DirichletBC
    variable = temp
    boundary = left
    value = 100
  []
  [newtonp]
    type = PorousFlowPiecewiseLinearSink
    variable = pressure
    boundary = right
    pt_vals = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
    multipliers = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
    use_mobility = false
    use_relperm = false
    fluid_phase = 0
    flux_function = 1
  []
  [newton]
    type = PorousFlowPiecewiseLinearSink
    variable = temp
    boundary = right
    pt_vals = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
    multipliers = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
    use_mobility = false
    use_relperm = false
    use_internal_energy = true
    fluid_phase = 0
    flux_function = 1
  []
[]
[VectorPostprocessors]
  [porepressure]
    type = LineValueSampler
    variable = pressure
    start_point = '0 0.5 0'
    end_point = '100 0.5 0'
    sort_by = x
    num_points = 11
    execute_on = timestep_end
  []
  [temperature]
    type = LineValueSampler
    variable = temp
    start_point = '0 0.5 0'
    end_point = '100 0.5 0'
    sort_by = x
    num_points = 11
    execute_on = timestep_end
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_max_it -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol '
    petsc_options_value = 'gmres asm lu 100 NONZERO 2 1E-8 1E-15'
  []
[]
[Executioner]
  type = Steady
  solve_type = Newton
[]
[Outputs]
  file_base = nc06
  execute_on = timestep_end
  [along_line]
    type = CSV
    execute_vector_postprocessors_on = timestep_end
  []
[]
(modules/porous_flow/test/tests/dispersion/disp01_heavy.i)
# Test dispersive part of PorousFlowDispersiveFlux kernel by setting diffusion
# coefficients to zero. A pressure gradient is applied over the mesh to give a
# uniform velocity. Gravity is set to zero.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 200
  xmax = 10
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
  compute_enthalpy = false
  compute_internal_energy = false
[]
[Variables]
  [pp]
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [velocity]
    family = MONOMIAL
    order = FIRST
  []
[]
[AuxKernels]
  [velocity]
    type = PorousFlowDarcyVelocityComponent
    variable = velocity
    component = x
  []
[]
[ICs]
  [pp]
    type = FunctionIC
    variable = pp
    function = pic
  []
  [massfrac0]
    type = ConstantIC
    variable = massfrac0
    value = 0
  []
[]
[Functions]
  [pic]
    type = ParsedFunction
    expression = 1.1e5-x*1e3
  []
[]
[BCs]
  [xleft]
    type = DirichletBC
    value = 1
    variable = massfrac0
    boundary = left
  []
  [xright]
    type = DirichletBC
    value = 0
    variable = massfrac0
    boundary = right
  []
  [pright]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 1e5
  []
  [pleft]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1.1e5
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    variable = pp
    disp_trans = 0
    disp_long = 0.2
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = massfrac0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    disp_trans = 0
    disp_long = 0.2
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    density0 = 1000
    viscosity = 0.001
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = massfrac0
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [poro]
    type = PorousFlowPorosityConst
    porosity = 0.3
  []
  [diff]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '0 0'
    tortuosity = 0.1
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e3
  dtmax = 10
  [TimeStepper]
    type = IterationAdaptiveDT
    growth_factor = 1.5
    cutback_factor = 0.5
    dt = 1
  []
[]
[VectorPostprocessors]
  [xmass]
    type = NodalValueSampler
    sort_by = id
    variable = massfrac0
  []
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/buckley_leverett/bl01.i)
# Buckley-Leverett 1-phase.
# The front starts at (around) x=5, and at t=50 it should
# have moved to x=9.6.  The version below has a nonzero
# suction function, and at t=50, the front sits between
# (about) x=9.6 and x=9.9.  Changing the van-Genuchten
# al parameter to 1E-4 softens the front so it sits between
# (about) x=9.7 and x=10.4, and the simulation runs much faster.
# With al=1E-2 and nx=600, the front sits between x=9.6 and x=9.8,
# but takes about 100 times longer to run.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 150
  xmin = 0
  xmax = 15
[]
[GlobalParams]
  PorousFlowDictator = dictator
  compute_enthalpy = false
  compute_internal_energy = false
[]
[Variables]
  [pp]
    [InitialCondition]
      type = FunctionIC
      function = 'max((1000000-x/5*1000000)-20000,-20000)'
    []
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '0 0 0'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 980000
  []
[]
[AuxVariables]
  [sat]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sat]
    type = MaterialStdVectorAux
    variable = sat
    execute_on = timestep_end
    index = 0
    property = PorousFlow_saturation_qp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-3
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e6
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-10 0 0  0 1E-10 0  0 0 1E-10'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.15
  []
[]
[Preconditioning]
  active = andy
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres bjacobi 1E-10 1E-10 20'
  []
[]
[Functions]
  [timestepper]
    type = PiecewiseLinear
    x = '0    0.01 0.1 1   1.5 2   20  30  40  50'
    y = '0.01 0.1  0.2 0.3 0.1 0.3 0.3 0.4 0.4 0.5'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 50
  [TimeStepper]
    type = FunctionDT
    function = timestepper
  []
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '15 0 0'
    num_points = 150
    sort_by = x
    variable = pp
  []
  [sat]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    start_point = '0 0 0'
    end_point = '15 0 0'
    num_points = 150
    sort_by = x
    variable = sat
  []
[]
[Outputs]
  file_base = bl01
  [csv]
    type = CSV
    sync_only = true
    sync_times = '0.01 50'
  []
  [exodus]
    type = Exodus
    execute_on = 'initial final'
  []
[]
(modules/porous_flow/test/tests/gravity/grav02d.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PP), 2components, vanGenuchten, constant fluid bulk-moduli for each phase, constant viscosity, constant permeability, Corey relative perm.
# A boundary condition enforces porepressures at the right boundary
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = -1
  xmax = 0
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    x = '1E-3 1E-2 1E-1 2E-1'
    y = '1E-3 1E-2 0.2E-1 1E-1'
  []
[]
[Variables]
  [ppwater]
    initial_condition = 0
  []
  [ppgas]
    initial_condition = 0.5
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[BCs]
  [ppwater]
    type = DirichletBC
    boundary = right
    variable = ppwater
    value = 0
  []
  [ppgas]
    type = DirichletBC
    boundary = right
    variable = ppgas
    value = 0.5
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 0 0'
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = ppgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = ppgas
    gravity = '-1 0 0'
  []
[]
[Functions]
  [ana_ppwater]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 2 pp_water_top 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    viscosity = 0.5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[Postprocessors]
  [pp_water_top]
    type = PointValue
    variable = ppwater
    point = '0 0 0'
  []
  [pp_water_base]
    type = PointValue
    variable = ppwater
    point = '-1 0 0'
  []
  [pp_water_analytical]
    type = FunctionValuePostprocessor
    function = ana_ppwater
    point = '-1 0 0'
  []
  [ppwater_00]
    type = PointValue
    variable = ppwater
    point = '0 0 0'
  []
  [ppwater_01]
    type = PointValue
    variable = ppwater
    point = '-0.1 0 0'
  []
  [ppwater_02]
    type = PointValue
    variable = ppwater
    point = '-0.2 0 0'
  []
  [ppwater_03]
    type = PointValue
    variable = ppwater
    point = '-0.3 0 0'
  []
  [ppwater_04]
    type = PointValue
    variable = ppwater
    point = '-0.4 0 0'
  []
  [ppwater_05]
    type = PointValue
    variable = ppwater
    point = '-0.5 0 0'
  []
  [ppwater_06]
    type = PointValue
    variable = ppwater
    point = '-0.6 0 0'
  []
  [ppwater_07]
    type = PointValue
    variable = ppwater
    point = '-0.7 0 0'
  []
  [ppwater_08]
    type = PointValue
    variable = ppwater
    point = '-0.8 0 0'
  []
  [ppwater_09]
    type = PointValue
    variable = ppwater
    point = '-0.9 0 0'
  []
  [ppwater_10]
    type = PointValue
    variable = ppwater
    point = '-1 0 0'
  []
  [ppgas_00]
    type = PointValue
    variable = ppgas
    point = '0 0 0'
  []
  [ppgas_01]
    type = PointValue
    variable = ppgas
    point = '-0.1 0 0'
  []
  [ppgas_02]
    type = PointValue
    variable = ppgas
    point = '-0.2 0 0'
  []
  [ppgas_03]
    type = PointValue
    variable = ppgas
    point = '-0.3 0 0'
  []
  [ppgas_04]
    type = PointValue
    variable = ppgas
    point = '-0.4 0 0'
  []
  [ppgas_05]
    type = PointValue
    variable = ppgas
    point = '-0.5 0 0'
  []
  [ppgas_06]
    type = PointValue
    variable = ppgas
    point = '-0.6 0 0'
  []
  [ppgas_07]
    type = PointValue
    variable = ppgas
    point = '-0.7 0 0'
  []
  [ppgas_08]
    type = PointValue
    variable = ppgas
    point = '-0.8 0 0'
  []
  [ppgas_09]
    type = PointValue
    variable = ppgas
    point = '-0.9 0 0'
  []
  [ppgas_10]
    type = PointValue
    variable = ppgas
    point = '-1 0 0'
  []
[]
[Preconditioning]
  active = andy
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  [TimeStepper]
    type = FunctionDT
    function = dts
  []
  end_time = 1.0
[]
[Outputs]
  [csv]
    type = CSV
    execute_on = 'initial final'
    file_base = grav02d
  []
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
# Two phase nonisothermal Theis problem: Flow from single source.
# Constant rate injection 2 kg/s of cold CO2 into warm reservoir
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 40
    xmin = 0.1
    xmax = 200
    bias_x = 1.05
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
  [xnacl]
    initial_condition = 0.1
  []
  [temperature]
    initial_condition = 70
    scaling = 1e-4
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [mass2]
    type = PorousFlowMassTimeDerivative
    fluid_component = 2
    variable = xnacl
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = xnacl
  []
  [energy]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heatadv]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
  [conduction]
    type = PorousFlowHeatConduction
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi xnacl temperature'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature = temperature
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
  [rockheat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1000
    density = 2500
  []
  [rock_thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '50 0 0  0 50 0  0 0 50'
  []
[]
[BCs]
  [cold_gas]
    type = DirichletBC
    boundary = left
    variable = temperature
    value = 20
  []
  [gas_injecton]
    type = PorousFlowSink
    boundary = left
    variable = zi
    flux_function = -0.159155
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
  [righttemp]
    type = DirichletBC
    boundary = right
    value = 70
    variable = temperature
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e4
  nl_abs_tol = 1e-7
  nl_rel_tol = 1e-5
  # Avoids failing first time step in parallel
  line_search = 'none'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.5
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '2 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '2 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '2 0 0'
    variable = zi
  []
  [temperature]
    type = PointValue
    point = '2 0 0'
    variable = temperature
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '2 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '2 0 0'
    variable = y0
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  csv = true
[]
(modules/porous_flow/examples/coal_mining/fine_with_fluid.i)
#################################################################
#
#  NOTE:
#  The mesh for this model is too large for the MOOSE repository
#  so is kept in the the large_media submodule
#
#################################################################
#
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used.  The mine is 400m deep and
# just the roof is studied (-400<=z<=0).  The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long.  The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
#  - disp_x = 0 at x=0 and x=1150
#  - disp_y = 0 at y=-1000 and y=1000
#  - disp_z = 0 at z=-400, but there is a time-dependent
#               Young modulus that simulates excavation
#  - wc_x = 0 at y=-1000 and y=1000
#  - wc_y = 0 at x=0 and x=1150
#  - no flow at x=0, z=-400 and z=0
#  - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
  perform_finite_strain_rotations = false
  displacements = 'disp_x disp_y disp_z'
  Cosserat_rotations = 'wc_x wc_y wc_z'
  PorousFlowDictator = dictator
  biot_coefficient = 0.7
[]
[Mesh]
  [file]
    type = FileMeshGenerator
    file = fine.e
  []
  [xmin]
    type = SideSetsAroundSubdomainGenerator
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    new_boundary = xmin
    normal = '-1 0 0'
    input = file
  []
  [xmax]
    type = SideSetsAroundSubdomainGenerator
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    new_boundary = xmax
    normal = '1 0 0'
    input = xmin
  []
  [ymin]
    type = SideSetsAroundSubdomainGenerator
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    new_boundary = ymin
    normal = '0 -1 0'
    input = xmax
  []
  [ymax]
    type = SideSetsAroundSubdomainGenerator
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    new_boundary = ymax
    normal = '0 1 0'
    input = ymin
  []
  [zmax]
    type = SideSetsAroundSubdomainGenerator
    block = 30
    new_boundary = zmax
    normal = '0 0 1'
    input = ymax
  []
  [zmin]
    type = SideSetsAroundSubdomainGenerator
    block = 2
    new_boundary = zmin
    normal = '0 0 -1'
    input = zmax
  []
  [excav]
    type = SubdomainBoundingBoxGenerator
    input = zmin
    block_id = 1
    bottom_left = '0 0 -400'
    top_right = '150 1000 -397'
  []
  [roof]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 3
    paired_block = 1
    input = excav
    new_boundary = roof
  []
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [wc_x]
  []
  [wc_y]
  []
  [porepressure]
    scaling = 1E-5
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = ini_pp
  []
[]
[Kernels]
  [cx_elastic]
    type = CosseratStressDivergenceTensors
    use_displaced_mesh = false
    variable = disp_x
    component = 0
  []
  [cy_elastic]
    type = CosseratStressDivergenceTensors
    use_displaced_mesh = false
    variable = disp_y
    component = 1
  []
  [cz_elastic]
    type = CosseratStressDivergenceTensors
    use_displaced_mesh = false
    variable = disp_z
    component = 2
  []
  [x_couple]
    type = StressDivergenceTensors
    use_displaced_mesh = false
    variable = wc_x
    displacements = 'wc_x wc_y wc_z'
    component = 0
    base_name = couple
  []
  [y_couple]
    type = StressDivergenceTensors
    use_displaced_mesh = false
    variable = wc_y
    displacements = 'wc_x wc_y wc_z'
    component = 1
    base_name = couple
  []
  [x_moment]
    type = MomentBalancing
    use_displaced_mesh = false
    variable = wc_x
    component = 0
  []
  [y_moment]
    type = MomentBalancing
    use_displaced_mesh = false
    variable = wc_y
    component = 1
  []
  [gravity]
    type = Gravity
    use_displaced_mesh = false
    variable = disp_z
    value = -10E-6 # remember this is in MPa
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    use_displaced_mesh = false
    variable = disp_x
    component = 0
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    use_displaced_mesh = false
    variable = disp_y
    component = 1
  []
  [poro_z]
    type = PorousFlowEffectiveStressCoupling
    use_displaced_mesh = false
    component = 2
    variable = disp_z
  []
  [poro_vol_exp]
    type = PorousFlowMassVolumetricExpansion
    use_displaced_mesh = false
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    variable = porepressure
    fluid_component = 0
  []
  [mass0]
    type = PorousFlowMassTimeDerivative
    use_displaced_mesh = false
    fluid_component = 0
    variable = porepressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    use_displaced_mesh = false
    variable = porepressure
    gravity = '0 0 -10E-6'
    fluid_component = 0
  []
[]
[AuxVariables]
  [saturation]
    order = CONSTANT
    family = MONOMIAL
  []
  [darcy_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [darcy_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [darcy_z]
    order = CONSTANT
    family = MONOMIAL
  []
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
  [wc_z]
  []
  [stress_xx]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yx]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zx]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_xx]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_xy]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_xz]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_yx]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_yz]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_zx]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_zy]
    order = CONSTANT
    family = MONOMIAL
  []
  [total_strain_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_xx]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [mc_shear]
    order = CONSTANT
    family = MONOMIAL
  []
  [mc_tensile]
    order = CONSTANT
    family = MONOMIAL
  []
  [wp_shear]
    order = CONSTANT
    family = MONOMIAL
  []
  [wp_tensile]
    order = CONSTANT
    family = MONOMIAL
  []
  [wp_shear_f]
    order = CONSTANT
    family = MONOMIAL
  []
  [wp_tensile_f]
    order = CONSTANT
    family = MONOMIAL
  []
  [mc_shear_f]
    order = CONSTANT
    family = MONOMIAL
  []
  [mc_tensile_f]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [darcy_x]
    type = PorousFlowDarcyVelocityComponent
    variable = darcy_x
    gravity = '0 0 -10E-6'
    component = x
  []
  [darcy_y]
    type = PorousFlowDarcyVelocityComponent
    variable = darcy_y
    gravity = '0 0 -10E-6'
    component = y
  []
  [darcy_z]
    type = PorousFlowDarcyVelocityComponent
    variable = darcy_z
    gravity = '0 0 -10E-6'
    component = z
  []
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
    execute_on = timestep_end
  []
  [stress_xx]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xx
    index_i = 0
    index_j = 0
    execute_on = timestep_end
  []
  [stress_xy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xy
    index_i = 0
    index_j = 1
    execute_on = timestep_end
  []
  [stress_xz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xz
    index_i = 0
    index_j = 2
    execute_on = timestep_end
  []
  [stress_yx]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yx
    index_i = 1
    index_j = 0
    execute_on = timestep_end
  []
  [stress_yy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yy
    index_i = 1
    index_j = 1
    execute_on = timestep_end
  []
  [stress_yz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yz
    index_i = 1
    index_j = 2
    execute_on = timestep_end
  []
  [stress_zx]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zx
    index_i = 2
    index_j = 0
    execute_on = timestep_end
  []
  [stress_zy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zy
    index_i = 2
    index_j = 1
    execute_on = timestep_end
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 2
    index_j = 2
    execute_on = timestep_end
  []
  [total_strain_xx]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_xx
    index_i = 0
    index_j = 0
    execute_on = timestep_end
  []
  [total_strain_xy]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_xy
    index_i = 0
    index_j = 1
    execute_on = timestep_end
  []
  [total_strain_xz]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_xz
    index_i = 0
    index_j = 2
    execute_on = timestep_end
  []
  [total_strain_yx]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_yx
    index_i = 1
    index_j = 0
    execute_on = timestep_end
  []
  [total_strain_yy]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_yy
    index_i = 1
    index_j = 1
    execute_on = timestep_end
  []
  [total_strain_yz]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_yz
    index_i = 1
    index_j = 2
    execute_on = timestep_end
  []
  [total_strain_zx]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_zx
    index_i = 2
    index_j = 0
    execute_on = timestep_end
  []
  [total_strain_zy]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_zy
    index_i = 2
    index_j = 1
    execute_on = timestep_end
  []
  [total_strain_zz]
    type = RankTwoAux
    rank_two_tensor = total_strain
    variable = total_strain_zz
    index_i = 2
    index_j = 2
    execute_on = timestep_end
  []
  [perm_xx]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_xx
    row = 0
    column = 0
    execute_on = timestep_end
  []
  [perm_yy]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_yy
    row = 1
    column = 1
    execute_on = timestep_end
  []
  [perm_zz]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_zz
    row = 2
    column = 2
    execute_on = timestep_end
  []
  [mc_shear]
    type = MaterialStdVectorAux
    index = 0
    property = mc_plastic_internal_parameter
    variable = mc_shear
    execute_on = timestep_end
  []
  [mc_tensile]
    type = MaterialStdVectorAux
    index = 1
    property = mc_plastic_internal_parameter
    variable = mc_tensile
    execute_on = timestep_end
  []
  [wp_shear]
    type = MaterialStdVectorAux
    index = 0
    property = wp_plastic_internal_parameter
    variable = wp_shear
    execute_on = timestep_end
  []
  [wp_tensile]
    type = MaterialStdVectorAux
    index = 1
    property = wp_plastic_internal_parameter
    variable = wp_tensile
    execute_on = timestep_end
  []
  [mc_shear_f]
    type = MaterialStdVectorAux
    index = 6
    property = mc_plastic_yield_function
    variable = mc_shear_f
    execute_on = timestep_end
  []
  [mc_tensile_f]
    type = MaterialStdVectorAux
    index = 0
    property = mc_plastic_yield_function
    variable = mc_tensile_f
    execute_on = timestep_end
  []
  [wp_shear_f]
    type = MaterialStdVectorAux
    index = 0
    property = wp_plastic_yield_function
    variable = wp_shear_f
    execute_on = timestep_end
  []
  [wp_tensile_f]
    type = MaterialStdVectorAux
    index = 1
    property = wp_plastic_yield_function
    variable = wp_tensile_f
    execute_on = timestep_end
  []
[]
[BCs]
  [no_x]
    type = DirichletBC
    variable = disp_x
    boundary = 'xmin xmax'
    value = 0.0
  []
  [no_y]
    type = DirichletBC
    variable = disp_y
    boundary = 'ymin ymax'
    value = 0.0
  []
  [no_z]
    type = DirichletBC
    variable = disp_z
    boundary = zmin
    value = 0.0
  []
  [no_wc_x]
    type = DirichletBC
    variable = wc_x
    boundary = 'ymin ymax'
    value = 0.0
  []
  [no_wc_y]
    type = DirichletBC
    variable = wc_y
    boundary = 'xmin xmax'
    value = 0.0
  []
  [fix_porepressure]
    type = FunctionDirichletBC
    variable = porepressure
    boundary = 'ymin ymax xmax'
    function = ini_pp
  []
  [roof_porepressure]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    pt_vals = '-1E3 1E3'
    multipliers = '-1 1'
    fluid_phase = 0
    flux_function = roof_conductance
    boundary = roof
  []
  [roof]
    type = StickyBC
    variable = disp_z
    min_value = -3.0
    boundary = roof
  []
[]
[Functions]
  [ini_pp]
    type = ParsedFunction
    symbol_names = 'bulk p0 g    rho0'
    symbol_values = '2E3 0.0 1E-5 1E3'
    expression = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
  []
  [ini_xx]
    type = ParsedFunction
    symbol_names = 'bulk p0 g    rho0 biot'
    symbol_values = '2E3 0.0 1E-5 1E3  0.7'
    expression = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
  []
  [ini_zz]
    type = ParsedFunction
    symbol_names = 'bulk p0 g    rho0 biot'
    symbol_values = '2E3 0.0 1E-5 1E3  0.7'
    expression = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
  []
  [excav_sideways]
    type = ParsedFunction
    symbol_names = 'end_t ymin ymax  minval maxval slope'
    symbol_values = '0.5   0    1000.0 1E-9 1 10'
    # excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
    # slope is the distance over which the modulus reduces from maxval to minval
    expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
  []
  [density_sideways]
    type = ParsedFunction
    symbol_names = 'end_t ymin ymax  minval maxval'
    symbol_values = '0.5   0    1000.0 0 2500'
    expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
  []
  [roof_conductance]
    type = ParsedFunction
    symbol_names = 'end_t ymin ymax   maxval minval'
    symbol_values = '0.5   0    1000.0 1E7      0'
    expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1 # MPa^-1
  []
  [mc_coh_strong_harden]
    type = TensorMechanicsHardeningExponential
    value_0 = 1.99 # MPa
    value_residual = 2.01 # MPa
    rate = 1.0
  []
  [mc_fric]
    type = TensorMechanicsHardeningConstant
    value = 0.61 # 35deg
  []
  [mc_dil]
    type = TensorMechanicsHardeningConstant
    value = 0.15 # 8deg
  []
  [mc_tensile_str_strong_harden]
    type = TensorMechanicsHardeningExponential
    value_0 = 1.0 # MPa
    value_residual = 1.0 # MPa
    rate = 1.0
  []
  [mc_compressive_str]
    type = TensorMechanicsHardeningCubic
    value_0 = 100 # Large!
    value_residual = 100
    internal_limit = 0.1
  []
  [wp_coh_harden]
    type = TensorMechanicsHardeningCubic
    value_0 = 0.05
    value_residual = 0.05
    internal_limit = 10
  []
  [wp_tan_fric]
    type = TensorMechanicsHardeningConstant
    value = 0.26 # 15deg
  []
  [wp_tan_dil]
    type = TensorMechanicsHardeningConstant
    value = 0.18 # 10deg
  []
  [wp_tensile_str_harden]
    type = TensorMechanicsHardeningCubic
    value_0 = 0.05
    value_residual = 0.05
    internal_limit = 10
  []
  [wp_compressive_str_soften]
    type = TensorMechanicsHardeningCubic
    value_0 = 100
    value_residual = 1
    internal_limit = 1.0
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E3
    density0 = 1000
    thermal_expansion = 0
    viscosity = 3.5E-17
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity_for_aux]
    type = PorousFlowPorosity
    at_nodes = false
    fluid = true
    mechanical = true
    ensure_positive = true
    porosity_zero = 0.02
    solid_bulk = 5.3333E3
  []
  [porosity_bulk]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    ensure_positive = true
    porosity_zero = 0.02
    solid_bulk = 5.3333E3
  []
  [porosity_excav]
    type = PorousFlowPorosityConst
    block = 1
    porosity = 1.0
  []
  [permeability_bulk]
    type = PorousFlowPermeabilityKozenyCarman
    block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    poroperm_function = kozeny_carman_phi0
    k0 = 1E-15
    phi0 = 0.02
    n = 2
    m = 2
  []
  [permeability_excav]
    type = PorousFlowPermeabilityConst
    block = 1
    permeability = '0 0 0   0 0 0   0 0 0'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    s_res = 0.4
    sum_s_res = 0.4
    phase = 0
  []
  [elasticity_tensor_0]
    type = ComputeLayeredCosseratElasticityTensor
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    young = 8E3 # MPa
    poisson = 0.25
    layer_thickness = 1.0
    joint_normal_stiffness = 1E9 # huge
    joint_shear_stiffness = 1E3 # MPa
  []
  [elasticity_tensor_1]
    type = ComputeLayeredCosseratElasticityTensor
    block = 1
    young = 8E3 # MPa
    poisson = 0.25
    layer_thickness = 1.0
    joint_normal_stiffness = 1E9 # huge
    joint_shear_stiffness = 1E3 # MPa
    elasticity_tensor_prefactor = excav_sideways
  []
  [strain]
    type = ComputeCosseratIncrementalSmallStrain
    eigenstrain_names = ini_stress
  []
  [ini_stress]
    type = ComputeEigenstrainFromInitialStress
    eigenstrain_name = ini_stress
    initial_stress = 'ini_xx 0 0  0 ini_xx 0  0 0 ini_zz'
  []
  [stress_0]
    type = ComputeMultipleInelasticCosseratStress
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    inelastic_models = 'mc wp'
    cycle_models = true
    relative_tolerance = 2.0
    absolute_tolerance = 1E6
    max_iterations = 1
    tangent_operator = nonlinear
    perform_finite_strain_rotations = false
  []
  [stress_1]
    type = ComputeMultipleInelasticCosseratStress
    block = 1
    inelastic_models = ''
    relative_tolerance = 2.0
    absolute_tolerance = 1E6
    max_iterations = 1
    tangent_operator = nonlinear
    perform_finite_strain_rotations = false
  []
  [mc]
    type = CappedMohrCoulombCosseratStressUpdate
    warn_about_precision_loss = false
    host_youngs_modulus = 8E3
    host_poissons_ratio = 0.25
    base_name = mc
    tensile_strength = mc_tensile_str_strong_harden
    compressive_strength = mc_compressive_str
    cohesion = mc_coh_strong_harden
    friction_angle = mc_fric
    dilation_angle = mc_dil
    max_NR_iterations = 100000
    smoothing_tol = 0.1 # MPa  # Must be linked to cohesion
    yield_function_tol = 1E-9 # MPa.  this is essentially the lowest possible without lots of precision loss
    perfect_guess = true
    min_step_size = 1.0
  []
  [wp]
    type = CappedWeakPlaneCosseratStressUpdate
    warn_about_precision_loss = false
    base_name = wp
    cohesion = wp_coh_harden
    tan_friction_angle = wp_tan_fric
    tan_dilation_angle = wp_tan_dil
    tensile_strength = wp_tensile_str_harden
    compressive_strength = wp_compressive_str_soften
    max_NR_iterations = 10000
    tip_smoother = 0.05
    smoothing_tol = 0.05 # MPa  # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
    yield_function_tol = 1E-11 # MPa.  this is essentially the lowest possible without lots of precision loss
    perfect_guess = true
    min_step_size = 1.0E-3
  []
  [undrained_density_0]
    type = GenericConstantMaterial
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    prop_names = density
    prop_values = 2500
  []
  [undrained_density_1]
    type = GenericFunctionMaterial
    block = 1
    prop_names = density
    prop_values = density_sideways
  []
[]
[Preconditioning]
  [SMP]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [min_roof_disp]
    type = NodalExtremeValue
    boundary = roof
    value_type = min
    variable = disp_z
  []
  [min_roof_pp]
    type = NodalExtremeValue
    boundary = roof
    value_type = min
    variable = porepressure
  []
  [min_surface_disp]
    type = NodalExtremeValue
    boundary = zmax
    value_type = min
    variable = disp_z
  []
  [min_surface_pp]
    type = NodalExtremeValue
    boundary = zmax
    value_type = min
    variable = porepressure
  []
  [max_perm_zz]
    type = ElementExtremeValue
     block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
    variable = perm_zz
  []
[]
[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  petsc_options = '-snes_converged_reason'
  # best overall
  petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
  petsc_options_value = ' lu       mumps'
  # best if you don't have mumps:
  #petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  #petsc_options_value = ' asm      2              lu            gmres     200'
  # very basic:
  #petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
  #petsc_options_value = ' bjacobi  gmres     200'
  line_search = bt
  nl_abs_tol = 1e-3
  nl_rel_tol = 1e-5
  l_max_its = 200
  nl_max_its = 30
  start_time = 0.0
  dt = 0.0025
  end_time = 0.5
[]
[Outputs]
  time_step_interval = 1
  print_linear_residuals = true
  exodus = true
  csv = true
  console = true
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/bw01.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 400
  ny = 1
  xmin = -10
  xmax = 10
  ymin = 0
  ymax = 0.05
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Functions]
  [dts]
    type = PiecewiseLinear
    y = '1E-5 1E-2 1E-2 1E-1'
    x = '0 1E-5 1 10'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = pressure
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureBW
    Sn = 0.0
    Ss = 1.0
    C = 1.5
    las = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    viscosity = 4
    density0 = 10
    thermal_expansion = 0
  []
[]
[Materials]
  [massfrac]
    type = PorousFlowMassFraction
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [relperm]
    type = PorousFlowRelativePermeabilityBW
    Sn = 0.0
    Ss = 1.0
    Kn = 0
    Ks = 1
    C = 1.5
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.25
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
[]
[Variables]
  [pressure]
    initial_condition = -9E2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pressure
    gravity = '-0.1 0 0'
  []
[]
[AuxVariables]
  [SWater]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [SWater]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 0
    variable = SWater
  []
[]
[BCs]
  [recharge]
    type = PorousFlowSink
    variable = pressure
    boundary = right
    flux_function = -1.25 # corresponds to Rstar being 0.5 because i have to multiply by density*porosity
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-10      1E-10      10000'
  []
[]
[VectorPostprocessors]
  [swater]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = SWater
    start_point = '-10 0 0'
    end_point = '10 0 0'
    sort_by = x
    num_points = 101
    execute_on = timestep_end
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  petsc_options = '-snes_converged_reason'
  end_time = 8
  [TimeStepper]
    type = FunctionDT
    function = dts
  []
[]
[Outputs]
  file_base = bw01
  sync_times = '0.5 2 8'
  [exodus]
    type = Exodus
    sync_only = true
  []
  [along_line]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/jacobian/brineco2_twophase_nonisothermal.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for nonisothermal two phase conditions, including salt as a nonlinear variable
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 2
    ny = 2
    xmax = 10
    ymax = 10
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pgas]
  []
  [zi]
    scaling = 1e-4
  []
  [xnacl]
  []
  [temperature]
    scaling = 1e-7
  []
[]
[ICs]
  [pgas]
    type = RandomIC
    min = 1e6
    max = 4e6
    variable = pgas
    seed = 1
  []
  [z]
    type = RandomIC
    min = 0.2
    max = 0.8
    variable = zi
    seed = 1
  []
  [xnacl]
    type = RandomIC
    min = 0.01
    max = 0.15
    variable = xnacl
    seed = 1
  []
  [temperature]
    type = RandomIC
    min = 20
    max = 80
    variable = temperature
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = zi
    fluid_component = 1
  []
  [mass2]
    type = PorousFlowMassTimeDerivative
    variable = xnacl
    fluid_component = 2
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    variable = zi
    fluid_component = 1
  []
  [adv2]
    type = PorousFlowAdvectiveFlux
    variable = xnacl
    fluid_component = 2
  []
  [energy]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heat]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi xnacl temperature'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 1e3
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature = temperature
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1000
    density = 2500
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined.i)
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable.  Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/time.  Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz   (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz   (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/s/m^3 and the
# Biot Modulus is not held fixed.  This means that disp_z, porepressure,
# etc are not linear functions of t.  Nevertheless, the ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 1
  ny = 1
  nz = 1
  xmin = -0.5
  xmax = 0.5
  ymin = -0.5
  ymax = 0.5
  zmin = -0.5
  zmax = 0.5
[]
[GlobalParams]
  displacements = 'disp_x disp_y disp_z'
  PorousFlowDictator = dictator
  block = 0
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure disp_x disp_y disp_z'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.8
    alpha = 1e-5
  []
[]
[Variables]
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
  [porepressure]
  []
[]
[BCs]
  [confinex]
    type = DirichletBC
    variable = disp_x
    value = 0
    boundary = 'left right'
  []
  [confiney]
    type = DirichletBC
    variable = disp_y
    value = 0
    boundary = 'bottom top'
  []
  [confinez]
    type = DirichletBC
    variable = disp_z
    value = 0
    boundary = 'back'
  []
[]
[Kernels]
  [grad_stress_x]
    type = StressDivergenceTensors
    variable = disp_x
    component = 0
  []
  [grad_stress_y]
    type = StressDivergenceTensors
    variable = disp_y
    component = 1
  []
  [grad_stress_z]
    type = StressDivergenceTensors
    variable = disp_z
    component = 2
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    variable = disp_x
    component = 0
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    variable = disp_y
    component = 1
  []
  [poro_z]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    component = 2
    variable = disp_z
  []
  [poro_vol_exp]
    type = PorousFlowMassVolumetricExpansion
    variable = porepressure
    fluid_component = 0
  []
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = porepressure
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = porepressure
    gravity = '0 0 0'
    fluid_component = 0
  []
  [source]
    type = BodyForce
    function = 0.1
    variable = porepressure
  []
[]
[AuxVariables]
  [stress_xx]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_xz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yy]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_yz]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [stress_xx]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xx
    index_i = 0
    index_j = 0
  []
  [stress_xy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xy
    index_i = 0
    index_j = 1
  []
  [stress_xz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_xz
    index_i = 0
    index_j = 2
  []
  [stress_yy]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yy
    index_i = 1
    index_j = 1
  []
  [stress_yz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_yz
    index_i = 1
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 2
    index_j = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 3.3333333333
    density0 = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [elasticity_tensor]
    type = ComputeElasticityTensor
    C_ijkl = '1 1.5'
    # bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
    fill_method = symmetric_isotropic
  []
  [strain]
    type = ComputeSmallStrain
    displacements = 'disp_x disp_y disp_z'
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    porosity_zero = 0.1
    biot_coefficient = 0.3
    solid_bulk = 2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0   0 1 0   0 0 1' # unimportant
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Postprocessors]
  [p0]
    type = PointValue
    outputs = none
    point = '0 0 0'
    variable = porepressure
  []
  [zdisp]
    type = PointValue
    outputs = none
    point = '0 0 0.5'
    variable = disp_z
  []
  [stress_xx]
    type = PointValue
    outputs = none
    point = '0 0 0'
    variable = stress_xx
  []
  [stress_yy]
    type = PointValue
    outputs = none
    point = '0 0 0'
    variable = stress_yy
  []
  [stress_zz]
    type = PointValue
    outputs = none
    point = '0 0 0'
    variable = stress_zz
  []
  [stress_xx_over_strain]
    type = FunctionValuePostprocessor
    function = stress_xx_over_strain_fcn
    outputs = csv
  []
  [stress_zz_over_strain]
    type = FunctionValuePostprocessor
    function = stress_zz_over_strain_fcn
    outputs = csv
  []
  [p_over_strain]
    type = FunctionValuePostprocessor
    function = p_over_strain_fcn
    outputs = csv
  []
[]
[Functions]
  [stress_xx_over_strain_fcn]
    type = ParsedFunction
    expression = a/b
    symbol_names = 'a b'
    symbol_values = 'stress_xx zdisp'
  []
  [stress_zz_over_strain_fcn]
    type = ParsedFunction
    expression = a/b
    symbol_names = 'a b'
    symbol_values = 'stress_zz zdisp'
  []
  [p_over_strain_fcn]
    type = ParsedFunction
    expression = a/b
    symbol_names = 'a b'
    symbol_values = 'p0 zdisp'
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  start_time = 0
  end_time = 10
  dt = 1
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = pp_generation_unconfined
  [csv]
    type = CSV
  []
[]
(modules/porous_flow/test/tests/dispersion/diff01.i)
# Test diffusive part of PorousFlowDispersiveFlux kernel by setting dispersion
# coefficients to zero. Pressure is held constant over the mesh, and gravity is
# set to zero so that no advective transport of mass takes place.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
  xmax = 10
  bias_x = 1.1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [velocity]
    family = MONOMIAL
    order = FIRST
  []
[]
[AuxKernels]
  [velocity]
    type = PorousFlowDarcyVelocityComponent
    variable = velocity
    component = x
  []
[]
[ICs]
  [pp]
    type = ConstantIC
    variable = pp
    value = 1e5
  []
  [massfrac0]
    type = ConstantIC
    variable = massfrac0
    value = 0
  []
[]
[BCs]
  [left]
    type = DirichletBC
    value = 1
    variable = massfrac0
    boundary = left
  []
  [right]
    type = DirichletBC
    value = 0
    variable = massfrac0
    boundary = right
  []
  [pright]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 1e5
  []
  [pleft]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1e5
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = pp
    disp_trans = 0
    disp_long = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = massfrac0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = massfrac0
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    disp_trans = 0
    disp_long = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp massfrac0'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 1000
    viscosity = 0.001
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = massfrac0
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [poro]
    type = PorousFlowPorosityConst
    porosity = 0.3
  []
  [diff]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '1 1'
    tortuosity = 0.1
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 20
[]
[VectorPostprocessors]
  [xmass]
    type = NodalValueSampler
    sort_by = id
    variable = massfrac0
  []
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro01.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * f * d^2 * phi^n / (1-phi)^m
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 3
  xmin = 0
  xmax = 3
[]
[GlobalParams]
  block = 0
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = ConstantIC
      value = 0
    []
  []
[]
[Kernels]
  [flux]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = pp
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary = right
    value = 0
  []
  [pbase]
    type = DirichletBC
    variable = pp
    boundary = left
    value = 1
  []
[]
[AuxVariables]
  [poro]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [perm_z]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [poro]
    type = PorousFlowPropertyAux
    property = porosity
    variable = poro
  []
  [perm_x]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_x
    row = 0
    column = 0
  []
  [perm_y]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_y
    row = 1
    column = 1
  []
  [perm_z]
    type = PorousFlowPropertyAux
    property = permeability
    variable = perm_z
    row = 2
    column = 2
  []
[]
[Postprocessors]
  [perm_x_bottom]
    type = PointValue
    variable = perm_x
    point = '0 0 0'
  []
  [perm_y_bottom]
    type = PointValue
    variable = perm_y
    point = '0 0 0'
  []
  [perm_z_bottom]
    type = PointValue
    variable = perm_z
    point = '0 0 0'
  []
  [perm_x_top]
    type = PointValue
    variable = perm_x
    point = '3 0 0'
  []
  [perm_y_top]
    type = PointValue
    variable = perm_y
    point = '3 0 0'
  []
  [perm_z_top]
    type = PointValue
    variable = perm_z
    point = '3 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    # unimportant in this fully-saturated test
    m = 0.8
    alpha = 1e-4
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2.2e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [permeability]
    type = PorousFlowPermeabilityKozenyCarman
    k_anisotropy = '1 0 0  0 2 0  0 0 0.1'
    poroperm_function = kozeny_carman_fd2
    f = 0.1
    d = 5
    m = 2
    n = 7
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0 # unimportant in this fully-saturated situation
    phase = 0
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  solve_type = Newton
  type = Steady
  l_tol = 1E-5
  nl_abs_tol = 1E-3
  nl_rel_tol = 1E-8
  l_max_its = 200
  nl_max_its = 400
  petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
  petsc_options_value = ' asm      2              lu            gmres     200'
[]
[Outputs]
  csv = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/jacobian/fflux05.i)
# 1phase with MD_Gaussian (var = log(mass-density) with Gaussian capillary) formulation
# constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity
# fully saturated
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [md]
  []
[]
[ICs]
  [md]
    type = RandomIC
    min = 0
    max = 1 # unsaturated for md<log(density_P0=0.8)=-0.223
    variable = md
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = md
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'md'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseMD_Gaussian
    mass_density = md
    al = 1.1
    density_P0 = 0.8
    bulk_modulus = 1.5
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/wli02.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 50
  ny = 1
  xmin = -1000
  xmax = 0
  ymin = 0
  ymax = 0.05
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = pressure
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureBW
    Sn = 0.0
    Ss = 1.0
    C = 1.5
    las = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    viscosity = 4
    density0 = 10
    thermal_expansion = 0
  []
[]
[Materials]
  [massfrac]
    type = PorousFlowMassFraction
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [relperm]
    type = PorousFlowRelativePermeabilityBW
    Sn = 0.0
    Ss = 1.0
    Kn = 0
    Ks = 1
    C = 1.5
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.25
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
[]
[Variables]
  [pressure]
    initial_condition = -1E-4
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pressure
    gravity = '-0.1 0 0'
  []
[]
[AuxVariables]
  [SWater]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [SWater]
    type = MaterialStdVectorAux
    property = PorousFlow_saturation_qp
    index = 0
    variable = SWater
  []
[]
[BCs]
  [base]
    type = DirichletBC
    boundary = 'left'
    value = -1E-4
    variable = pressure
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-10      1E-10      10000'
  []
[]
[VectorPostprocessors]
  [swater]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = SWater
    start_point = '-1000 0 0'
    end_point = '0 0 0'
    sort_by = x
    num_points = 71
    execute_on = timestep_end
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  petsc_options = '-snes_converged_reason'
  end_time = 100
  dt = 5
[]
[Outputs]
  file_base = wli02
  sync_times = '100 500 1000'
  [exodus]
    type = Exodus
    sync_only = true
  []
  [along_line]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/gravity/grav02e.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PS), 2components, constant capillary pressure, constant fluid bulk-moduli for each phase, constant viscosity,
# constant permeability, Corey relative permeabilities with no residual saturation
[Mesh]
  type = GeneratedMesh
  dim = 2
  ny = 10
  ymax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [ppwater]
    initial_condition = 1.5e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
  [swater]
    family = MONOMIAL
    order = FIRST
  []
  [relpermwater]
    family = MONOMIAL
    order = FIRST
  []
  [relpermgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [relpermwater]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = relpermwater
  []
  [relpermgas]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = relpermgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0  0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e4
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  file_base = grav02e
  exodus = true
  perf_graph = true
  csv = false
[]
(modules/porous_flow/examples/tutorial/11.i)
# Two-phase borehole injection problem
[Mesh]
  [annular]
    type = AnnularMeshGenerator
    nr = 10
    rmin = 1.0
    rmax = 10
    growth_r = 1.4
    nt = 4
    dmin = 0
    dmax = 90
  []
  [make3D]
    input = annular
    type = MeshExtruderGenerator
    extrusion_vector = '0 0 12'
    num_layers = 3
    bottom_sideset = 'bottom'
    top_sideset = 'top'
  []
  [shift_down]
    type = TransformGenerator
    transform = TRANSLATE
    vector_value = '0 0 -6'
    input = make3D
  []
  [aquifer]
    type = SubdomainBoundingBoxGenerator
    block_id = 1
    bottom_left = '0 0 -2'
    top_right = '10 10 2'
    input = shift_down
  []
  [injection_area]
    type = ParsedGenerateSideset
    combinatorial_geometry = 'x*x+y*y<1.01'
    included_subdomains = 1
    new_sideset_name = 'injection_area'
    input = 'aquifer'
  []
  [rename]
    type = RenameBlockGenerator
    old_block = '0 1'
    new_block = 'caps aquifer'
    input = 'injection_area'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater pgas T disp_x disp_y'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1E-6
    m = 0.6
  []
[]
[GlobalParams]
  displacements = 'disp_x disp_y disp_z'
  gravity = '0 0 0'
  biot_coefficient = 1.0
  PorousFlowDictator = dictator
[]
[Variables]
  [pwater]
    initial_condition = 20E6
  []
  [pgas]
    initial_condition = 20.1E6
  []
  [T]
    initial_condition = 330
    scaling = 1E-5
  []
  [disp_x]
    scaling = 1E-5
  []
  [disp_y]
    scaling = 1E-5
  []
[]
[Kernels]
  [mass_water_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux_water]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    use_displaced_mesh = false
    variable = pwater
  []
  [vol_strain_rate_water]
    type = PorousFlowMassVolumetricExpansion
    fluid_component = 0
    variable = pwater
  []
  [mass_co2_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = pgas
  []
  [flux_co2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    use_displaced_mesh = false
    variable = pgas
  []
  [vol_strain_rate_co2]
    type = PorousFlowMassVolumetricExpansion
    fluid_component = 1
    variable = pgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = T
  []
  [advection]
    type = PorousFlowHeatAdvection
    use_displaced_mesh = false
    variable = T
  []
  [conduction]
    type = PorousFlowHeatConduction
    use_displaced_mesh = false
    variable = T
  []
  [vol_strain_rate_heat]
    type = PorousFlowHeatVolumetricExpansion
    variable = T
  []
  [grad_stress_x]
    type = StressDivergenceTensors
    temperature = T
    variable = disp_x
    eigenstrain_names = thermal_contribution
    use_displaced_mesh = false
    component = 0
  []
  [poro_x]
    type = PorousFlowEffectiveStressCoupling
    variable = disp_x
    use_displaced_mesh = false
    component = 0
  []
  [grad_stress_y]
    type = StressDivergenceTensors
    temperature = T
    variable = disp_y
    eigenstrain_names = thermal_contribution
    use_displaced_mesh = false
    component = 1
  []
  [poro_y]
    type = PorousFlowEffectiveStressCoupling
    variable = disp_y
    use_displaced_mesh = false
    component = 1
  []
[]
[AuxVariables]
  [disp_z]
  []
  [effective_fluid_pressure]
    family = MONOMIAL
    order = CONSTANT
  []
  [mass_frac_phase0_species0]
    initial_condition = 1 # all water in phase=0
  []
  [mass_frac_phase1_species0]
    initial_condition = 0 # no water in phase=1
  []
  [sgas]
    family = MONOMIAL
    order = CONSTANT
  []
  [swater]
    family = MONOMIAL
    order = CONSTANT
  []
  [stress_rr]
    family = MONOMIAL
    order = CONSTANT
  []
  [stress_tt]
    family = MONOMIAL
    order = CONSTANT
  []
  [stress_zz]
    family = MONOMIAL
    order = CONSTANT
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [effective_fluid_pressure]
    type = ParsedAux
    coupled_variables = 'pwater pgas swater sgas'
    expression = 'pwater * swater + pgas * sgas'
    variable = effective_fluid_pressure
  []
  [swater]
    type = PorousFlowPropertyAux
    variable = swater
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [sgas]
    type = PorousFlowPropertyAux
    variable = sgas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [stress_rr]
    type = RankTwoScalarAux
    variable = stress_rr
    rank_two_tensor = stress
    scalar_type = RadialStress
    point1 = '0 0 0'
    point2 = '0 0 1'
    execute_on = timestep_end
  []
  [stress_tt]
    type = RankTwoScalarAux
    variable = stress_tt
    rank_two_tensor = stress
    scalar_type = HoopStress
    point1 = '0 0 0'
    point2 = '0 0 1'
    execute_on = timestep_end
  []
  [stress_zz]
    type = RankTwoAux
    variable = stress_zz
    rank_two_tensor = stress
    index_i = 2
    index_j = 2
    execute_on = timestep_end
  []
  [porosity]
    type = PorousFlowPropertyAux
    variable = porosity
    property = porosity
    execute_on = timestep_end
  []
[]
[BCs]
  [roller_tmax]
    type = DirichletBC
    variable = disp_x
    value = 0
    boundary = dmax
  []
  [roller_tmin]
    type = DirichletBC
    variable = disp_y
    value = 0
    boundary = dmin
  []
  [pinned_top_bottom_x]
    type = DirichletBC
    variable = disp_x
    value = 0
    boundary = 'top bottom'
  []
  [pinned_top_bottom_y]
    type = DirichletBC
    variable = disp_y
    value = 0
    boundary = 'top bottom'
  []
  [cavity_pressure_x]
    type = Pressure
    boundary = injection_area
    variable = disp_x
    component = 0
    postprocessor = constrained_effective_fluid_pressure_at_wellbore
    use_displaced_mesh = false
  []
  [cavity_pressure_y]
    type = Pressure
    boundary = injection_area
    variable = disp_y
    component = 1
    postprocessor = constrained_effective_fluid_pressure_at_wellbore
    use_displaced_mesh = false
  []
  [cold_co2]
    type = DirichletBC
    boundary = injection_area
    variable = T
    value = 290 # injection temperature
    use_displaced_mesh = false
  []
  [constant_co2_injection]
    type = PorousFlowSink
    boundary = injection_area
    variable = pgas
    fluid_phase = 1
    flux_function = -1E-4
    use_displaced_mesh = false
  []
  [outer_water_removal]
    type = PorousFlowPiecewiseLinearSink
    boundary = rmax
    variable = pwater
    fluid_phase = 0
    pt_vals = '0 1E9'
    multipliers = '0 1E8'
    PT_shift = 20E6
    use_mobility = true
    use_relperm = true
    use_displaced_mesh = false
  []
  [outer_co2_removal]
    type = PorousFlowPiecewiseLinearSink
    boundary = rmax
    variable = pgas
    fluid_phase = 1
    pt_vals = '0 1E9'
    multipliers = '0 1E8'
    PT_shift = 20.1E6
    use_mobility = true
    use_relperm = true
    use_displaced_mesh = false
  []
[]
[FluidProperties]
  [true_water]
    type = Water97FluidProperties
  []
  [tabulated_water]
    type = TabulatedFluidProperties
    fp = true_water
    temperature_min = 275
    pressure_max = 1E8
    interpolated_properties = 'density viscosity enthalpy internal_energy'
    fluid_property_output_file = water97_tabulated_11.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = water97_tabulated_11.csv
  []
  [true_co2]
    type = CO2FluidProperties
  []
  [tabulated_co2]
    type = TabulatedFluidProperties
    fp = true_co2
    temperature_min = 275
    pressure_max = 1E8
    interpolated_properties = 'density viscosity enthalpy internal_energy'
    fluid_property_output_file = co2_tabulated_11.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = co2_tabulated_11.csv
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = T
  []
  [saturation_calculator]
    type = PorousFlow2PhasePP
    phase0_porepressure = pwater
    phase1_porepressure = pgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = tabulated_water
    phase = 0
  []
  [co2]
    type = PorousFlowSingleComponentFluid
    fp = tabulated_co2
    phase = 1
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    s_res = 0.1
    sum_s_res = 0.2
    phase = 0
  []
  [relperm_co2]
    type = PorousFlowRelativePermeabilityBC
    nw_phase = true
    lambda = 2
    s_res = 0.1
    sum_s_res = 0.2
    phase = 1
  []
  [porosity_mat]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    thermal = true
    porosity_zero = 0.1
    reference_temperature = 330
    reference_porepressure = 20E6
    thermal_expansion_coeff = 15E-6 # volumetric
    solid_bulk = 8E9 # unimportant since biot = 1
  []
  [permeability_aquifer]
    type = PorousFlowPermeabilityKozenyCarman
    block = aquifer
    poroperm_function = kozeny_carman_phi0
    phi0 = 0.1
    n = 2
    m = 2
    k0 = 1E-12
  []
  [permeability_caps]
    type = PorousFlowPermeabilityKozenyCarman
    block = caps
    poroperm_function = kozeny_carman_phi0
    phi0 = 0.1
    n = 2
    m = 2
    k0 = 1E-15
    k_anisotropy = '1 0 0  0 1 0  0 0 0.1'
  []
  [rock_thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '2 0 0  0 2 0  0 0 2'
  []
  [rock_internal_energy]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1100
    density = 2300
  []
  [elasticity_tensor]
    type = ComputeIsotropicElasticityTensor
    youngs_modulus = 5E9
    poissons_ratio = 0.0
  []
  [strain]
    type = ComputeSmallStrain
    eigenstrain_names = 'thermal_contribution initial_stress'
  []
  [thermal_contribution]
    type = ComputeThermalExpansionEigenstrain
    temperature = T
    thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
    eigenstrain_name = thermal_contribution
    stress_free_temperature = 330
  []
  [initial_strain]
    type = ComputeEigenstrainFromInitialStress
    initial_stress = '20E6 0 0  0 20E6 0  0 0 20E6'
    eigenstrain_name = initial_stress
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [effective_fluid_pressure_mat]
    type = PorousFlowEffectiveFluidPressure
  []
  [volumetric_strain]
    type = PorousFlowVolumetricStrain
  []
[]
[Postprocessors]
  [effective_fluid_pressure_at_wellbore]
    type = PointValue
    variable = effective_fluid_pressure
    point = '1 0 0'
    execute_on = timestep_begin
    use_displaced_mesh = false
  []
  [constrained_effective_fluid_pressure_at_wellbore]
    type = FunctionValuePostprocessor
    function = constrain_effective_fluid_pressure
    execute_on = timestep_begin
  []
[]
[Functions]
  [constrain_effective_fluid_pressure]
    type = ParsedFunction
    symbol_names = effective_fluid_pressure_at_wellbore
    symbol_values = effective_fluid_pressure_at_wellbore
    expression = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1E3
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1E3
    growth_factor = 1.2
    optimal_iterations = 10
  []
  nl_abs_tol = 1E-7
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_steady.i)
# Using a mixed-dimensional mesh
# Steady-state porepressure distribution along a fracture in a porous matrix
# This is used to initialise the transient solute-transport simulation
[Mesh]
  type = FileMesh
  # The gold mesh is used to reduce the number of large files in the MOOSE repository.
  # The porepressure is not read from the gold mesh
  file = 'gold/fine_steady_out.e'
  block_id = '1 2 3'
  block_name = 'fracture matrix1 matrix2'
  boundary_id = '1 2'
  boundary_name = 'bottom top'
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pp]
  []
[]
[ICs]
  [pp]
    type = ConstantIC
    variable = pp
    value = 1e6
  []
[]
[BCs]
  [ptop]
    type = DirichletBC
    variable = pp
    boundary =  top
    value = 1e6
  []
  [pbottom]
    type = DirichletBC
    variable = pp
    boundary = bottom
    value = 1.002e6
  []
[]
[Kernels]
  [adv0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [relp]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability1]
    type = PorousFlowPermeabilityConst
    permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # kf=3e-8, a=6e-4m.  1.8e-11 = kf * a
    block = 'fracture'
  []
  [permeability2]
    type = PorousFlowPermeabilityConst
    permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
    block = 'matrix1 matrix2'
  []
[]
[Preconditioning]
  active = basic
  [mumps_is_best_for_parallel_jobs]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  # controls for nonlinear iterations
  nl_abs_tol = 1e-9
  nl_rel_tol = 1e-14
[]
[Outputs]
  exodus = true
  execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/adaptivity/tri3_adaptivity.i)
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    elem_type = TRI3
    dim = 2
    nx = 2
    ny = 2
  []
[]
[Adaptivity]
  marker = marker
  max_h_level = 1
  [Markers]
    [marker]
      type = UniformMarker
      mark = REFINE
    []
  []
[]
[GlobalParams]
  PorousFlowDictator = 'dictator'
[]
[Variables]
  [pp]
    initial_condition = '0'
  []
[]
[Kernels]
  [mass]
    type = PorousFlowMassTimeDerivative
    variable = pp
  []
  [flux]
    type = PorousFlowAdvectiveFlux
    variable = pp
    gravity = '0 0 0'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    variable = pp
    boundary = 'left'
    value = 1
  []
  [right]
    type = DirichletBC
    variable = pp
    boundary = 'right'
    value = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1.2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = 'pp'
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = '0.1'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
[]
[Postprocessors]
  [numdofs]
    type = NumDOFs
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  end_time = 4
  dt = 1
  solve_type = Newton
  nl_abs_tol = 1e-12
[]
[Outputs]
  exodus = true
  perf_graph = true
  show = pp
[]
(modules/porous_flow/examples/thm_example/2D_c.i)
# Two phase, temperature-dependent, with mechanics and chemistry, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2000
  bias_x = 1.003
  xmin = 0.1
  xmax = 5000
  ny = 1
  ymin = 0
  ymax = 11
  coord_type = RZ
[]
[GlobalParams]
  displacements = 'disp_r disp_z'
  PorousFlowDictator = dictator
  gravity = '0 0 0'
  biot_coefficient = 1.0
[]
[Variables]
  [pwater]
    initial_condition = 18.3e6
  []
  [sgas]
    initial_condition = 0.0
  []
  [temp]
    initial_condition = 358
  []
  [disp_r]
  []
[]
[AuxVariables]
  [rate]
  []
  [disp_z]
  []
  [massfrac_ph0_sp0]
    initial_condition = 1 # all H20 in phase=0
  []
  [massfrac_ph1_sp0]
    initial_condition = 0 # no H2O in phase=1
  []
  [pgas]
    family = MONOMIAL
    order = FIRST
  []
  [swater]
    family = MONOMIAL
    order = FIRST
  []
  [stress_rr]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_tt]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [mineral_conc_m3_per_m3]
    family = MONOMIAL
    order = CONSTANT
    initial_condition = 0.1
  []
  [eqm_const]
    initial_condition = 0.0
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass_water_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux_water]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    use_displaced_mesh = false
    variable = pwater
  []
  [mass_co2_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux_co2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    use_displaced_mesh = false
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [advection]
    type = PorousFlowHeatAdvection
    use_displaced_mesh = false
    variable = temp
  []
  [conduction]
    type = PorousFlowExponentialDecay
    use_displaced_mesh = false
    variable = temp
    reference = 358
    rate = rate
  []
  [grad_stress_r]
    type = StressDivergenceRZTensors
    temperature = temp
    eigenstrain_names = thermal_contribution
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
  [poro_r]
    type = PorousFlowEffectiveStressCoupling
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
[]
[AuxKernels]
  [rate]
    type = FunctionAux
    variable = rate
    execute_on = timestep_begin
    function = decay_rate
  []
  [pgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [stress_rr]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_rr
    index_i = 0
    index_j = 0
  []
  [stress_tt]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_tt
    index_i = 2
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 1
    index_j = 1
  []
  [mineral]
    type = PorousFlowPropertyAux
    property = mineral_concentration
    mineral_species = 0
    variable = mineral_conc_m3_per_m3
  []
  [eqm_const_auxk]
    type = ParsedAux
    variable = eqm_const
    coupled_variables = temp
    expression = '(358 - temp) / (358 - 294)'
  []
  [porosity_auxk]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
[]
[Functions]
  [decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
    type = ParsedFunction
    expression = 'sqrt(10056886.914/t)/11.0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp pwater sgas disp_r'
    number_fluid_phases = 2
    number_fluid_components = 2
    number_aqueous_kinetic = 1
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [water]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 970.0
    viscosity = 0.3394e-3
    cv = 4149.0
    cp = 4149.0
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
  [co2]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 516.48
    viscosity = 0.0393e-3
    cv = 2920.5
    cp = 2920.5
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = water
    phase = 0
  []
  [gas]
    type = PorousFlowSingleComponentFluid
    fp = co2
    phase = 1
  []
  [porosity_reservoir]
    type = PorousFlowPorosity
    porosity_zero = 0.2
    chemical = true
    reference_chemistry = 0.1
    initial_mineral_concentrations = 0.1
  []
  [permeability_reservoir]
    type = PorousFlowPermeabilityConst
    permeability = '2e-12 0 0  0 0 0  0 0 0'
  []
  [relperm_liquid]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    phase = 0
    s_res = 0.200
    sum_s_res = 0.405
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    s_res = 0.205
    sum_s_res = 0.405
    nw_phase = true
    lambda = 2
  []
  [thermal_conductivity_reservoir]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0 0 0  0 1.320 0  0 0 0'
    wet_thermal_conductivity = '0 0 0  0 3.083 0  0 0 0'
  []
  [internal_energy_reservoir]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1100
    density = 2350.0
  []
  [elasticity_tensor]
    type = ComputeIsotropicElasticityTensor
    shear_modulus = 6.0E9
    poissons_ratio = 0.2
  []
  [strain]
    type = ComputeAxisymmetricRZSmallStrain
    eigenstrain_names = 'thermal_contribution ini_stress'
  []
  [ini_strain]
    type = ComputeEigenstrainFromInitialStress
    initial_stress = '-12.8E6 0 0  0 -51.3E6 0  0 0 -12.8E6'
    eigenstrain_name = ini_stress
  []
  [thermal_contribution]
    type = ComputeThermalExpansionEigenstrain
    temperature = temp
    stress_free_temperature = 358
    thermal_expansion_coeff = 5E-6
    eigenstrain_name = thermal_contribution
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [predis]
    type = PorousFlowAqueousPreDisChemistry
    num_reactions = 1
    primary_concentrations = 1.0 # fixed activity
    equilibrium_constants_as_log10 = true
    equilibrium_constants = eqm_const
    primary_activity_coefficients = 1.0 # fixed activity
    reactions = 1
    kinetic_rate_constant = 1E-6
    molar_volume = 1.0
    specific_reactive_surface_area = 1.0
    activation_energy = 0.0 # no Arrhenius
  []
  [mineral_conc]
    type = PorousFlowAqueousPreDisMineral
    initial_concentrations = 0.1
  []
  [predis_nodes]
    type = PorousFlowAqueousPreDisChemistry
    at_nodes = true
    num_reactions = 1
    primary_concentrations = 1.0 # fixed activity
    equilibrium_constants_as_log10 = true
    equilibrium_constants = eqm_const
    primary_activity_coefficients = 1.0 # fixed activity
    reactions = 1
    kinetic_rate_constant = 1E-6
    molar_volume = 1.0
    specific_reactive_surface_area = 1.0
    activation_energy = 0.0 # no Arrhenius
  []
  [mineral_conc_nodes]
    type = PorousFlowAqueousPreDisMineral
    at_nodes = true
    initial_concentrations = 0.1
  []
[]
[BCs]
  [outer_pressure_fixed]
    type = DirichletBC
    boundary = right
    value = 18.3e6
    variable = pwater
  []
  [outer_saturation_fixed]
    type = DirichletBC
    boundary = right
    value = 0.0
    variable = sgas
  []
  [outer_temp_fixed]
    type = DirichletBC
    boundary = right
    value = 358
    variable = temp
  []
  [fixed_outer_r]
    type = DirichletBC
    variable = disp_r
    value = 0
    boundary = right
  []
  [co2_injection]
    type = PorousFlowSink
    boundary = left
    variable = sgas
    use_mobility = false
    use_relperm = false
    fluid_phase = 1
    flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
  []
  [cold_co2]
    type = DirichletBC
    boundary = left
    variable = temp
    value = 294
  []
  [cavity_pressure_x]
    type = Pressure
    boundary = left
    variable = disp_r
    component = 0
    postprocessor = p_bh # note, this lags
    use_displaced_mesh = false
  []
[]
[Postprocessors]
  [p_bh]
    type = PointValue
    variable = pwater
    point = '0.1 0 0'
    execute_on = timestep_begin
    use_displaced_mesh = false
  []
  [mineral_bh] # mineral concentration (m^3(mineral)/m^3(rock)) at the borehole
    type = PointValue
    variable = mineral_conc_m3_per_m3
    point = '0.1 0 0'
    use_displaced_mesh = false
  []
[]
[VectorPostprocessors]
  [ptsuss]
    type = LineValueSampler
    use_displaced_mesh = false
    start_point = '0.1 0 0'
    end_point = '5000 0 0'
    sort_by = x
    num_points = 50000
    outputs = csv
    variable = 'pwater temp sgas disp_r stress_rr stress_tt mineral_conc_m3_per_m3 porosity'
  []
[]
[Preconditioning]
  active = 'smp'
  [smp]
    type = SMP
    full = true
    #petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E2       1E-5        50'
  []
  [mumps]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
    petsc_options_value = 'gmres      lu       mumps                         NONZERO               1E-5       1E2       50'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1.5768e8
  #dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.1
  []
[]
[Outputs]
  print_linear_residuals = false
  sync_times = '3600 86400 2.592E6 1.5768E8'
  perf_graph = true
  exodus = true
  [csv]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/gravity/grav01d.i)
# Test illustrating that PorousFlow allows block-restricted relative permeabilities and capillarities
# and automatically adds appropriate Joiners.
# Physically, this test is checking that gravity head is established
# for 1phase, vanGenuchten, constant fluid-bulk, constant viscosity, constant permeability, Corey relative perm
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 100
    xmin = -1
    xmax = 0
  []
  [define_block1]
    input = gen
    type = SubdomainBoundingBoxGenerator
    block_id = 1
    bottom_left = '-1 -1 -1'
    top_right = '-0.5 1 1'
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
    [InitialCondition]
      type = RandomIC
      min = -1
      max = 1
    []
  []
[]
[Kernels]
  [dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
    gravity = '-1 0 0'
  []
[]
[Functions]
  [ana_pp]
    type = ParsedFunction
    symbol_names = 'g B p0 rho0'
    symbol_values = '1 2 -1 1'
    expression = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
  []
[]
[BCs]
  [z]
    type = DirichletBC
    variable = pp
    boundary = right
    value = -1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc_0]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
  [pc_1]
    type = PorousFlowCapillaryPressureVG
    m = 0.6
    alpha = 2
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2
    density0 = 1
    viscosity = 1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss_0]
    type = PorousFlow1PhaseP
    block = 0
    porepressure = pp
    capillary_pressure = pc_0
  []
  [ppss_1]
    type = PorousFlow1PhaseP
    block = 1
    porepressure = pp
    capillary_pressure = pc_1
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 2 0  0 0 3'
  []
  [relperm_0]
    type = PorousFlowRelativePermeabilityCorey
    block = 0
    n = 1
    phase = 0
  []
  [relperm_1]
    type = PorousFlowRelativePermeabilityCorey
    block = 1
    n = 2
    phase = 0
  []
[]
[Postprocessors]
  [pp_base]
    type = PointValue
    variable = pp
    point = '-1 0 0'
  []
  [pp_analytical]
    type = FunctionValuePostprocessor
    function = ana_pp
    point = '-1 0 0'
  []
[]
[Preconditioning]
  active = andy
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E6
  end_time = 1E6
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = grav01d
  csv = true
[]
(modules/porous_flow/test/tests/jacobian/waterncg_gas.i)
# Tests correct calculation of properties derivatives in PorousFlowWaterNCG
# for conditions that give a single gas phase
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  ny = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pgas]
  []
  [z]
  []
[]
[ICs]
  [pgas]
    type = RandomIC
    min = 1e4
    max = 4e4
    variable = pgas
  []
  [z]
    type = RandomIC
    min = 0.88
    max = 0.98
    variable = z
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
  [adv0]
    type = PorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [adv1]
    type = PorousFlowAdvectiveFlux
    variable = z
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 1e3
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[AuxVariables]
  [sgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sgas]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = sgas
  []
[]
[Postprocessors]
  [sgas_min]
    type = ElementExtremeValue
    variable = sgas
    value_type = min
  []
  [sgas_max]
    type = ElementExtremeValue
    variable = sgas
    value_type = max
  []
[]