TriInterWrapperPowerIC

Computes linear power rate (W/m) that goes into interwrapper cells in a triangular subchannel lattice

Overview

This IC creates an initial field for the linear heat rate ("variable" = q_prime), that gets added or removed to the inter-wrapper flow area, that wraps around sub-assemblies with a triangular subchannel/pin arrangement.

Input Parameters

  • variableThe variable this initial condition is supposed to provide values for.

    C++ Type:VariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The variable this initial condition is supposed to provide values for.

Required Parameters

  • axial_heat_rate1.0user provided normalized function of axial heat rate [Unitless]. The integral over pin length should equal the heated length

    Default:1.0

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:user provided normalized function of axial heat rate [Unitless]. The integral over pin length should equal the heated length

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • filenamefile_was_not_foundname of power profile .txt file (should be a single column). It's a Radial Power Profile. [UnitLess]

    Default:file_was_not_found

    C++ Type:std::string

    Controllable:No

    Description:name of power profile .txt file (should be a single column). It's a Radial Power Profile. [UnitLess]

  • power0The total heating power [W]

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The total heating power [W]

  • stateCURRENTThis parameter is used to set old state solutions at the start of simulation. If specifying multiple states at the start of simulation, use one IC object for each state being specified. The states are CURRENT=0 OLD=1 OLDER=2. States older than 2 are not currently supported. When the user only specifies current state, the solution is copied to the old and older states, as expected. This functionality is mainly used for dynamic simulations with explicit time integration schemes, where old solution states are used in the velocity and acceleration approximations.

    Default:CURRENT

    C++ Type:MooseEnum

    Options:CURRENT, OLD, OLDER

    Controllable:No

    Description:This parameter is used to set old state solutions at the start of simulation. If specifying multiple states at the start of simulation, use one IC object for each state being specified. The states are CURRENT=0 OLD=1 OLDER=2. States older than 2 are not currently supported. When the user only specifies current state, the solution is copied to the old and older states, as expected. This functionality is mainly used for dynamic simulations with explicit time integration schemes, where old solution states are used in the velocity and acceleration approximations.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Set the enabled status of the MooseObject.

  • ignore_uo_dependencyFalseWhen set to true, a UserObject retrieved by this IC will not be executed before the this IC

    Default:False

    C++ Type:bool

    Controllable:No

    Description:When set to true, a UserObject retrieved by this IC will not be executed before the this IC

Advanced Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

Input Files