- PorousFlowDictatorThe PorousFlowDictator UserObject
C++ Type:UserObjectName
Controllable:No
Description:The PorousFlowDictator UserObject
- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- porepressure_valueThe porepressure value on the boundary
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The porepressure value on the boundary
- variableThe name of the variable that this boundary condition applies to
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this boundary condition applies to
FVPorousFlowAdvectiveFluxBC
Advective Darcy flux boundary condition
This boundary condition implements the strong form of on the boundary where all parameters are defined in the nomenclature.
Input Parameters
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacements
- fluid_component0The fluid component for this BC
Default:0
C++ Type:unsigned int
Controllable:No
Description:The fluid component for this BC
- gravity0 0 -9.81Gravity vector. Defaults to (0, 0, -9.81)
Default:0 0 -9.81
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:Gravity vector. Defaults to (0, 0, -9.81)
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- phase0The fluid phase for this BC
Default:0
C++ Type:unsigned int
Controllable:No
Description:The fluid phase for this BC
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
(modules/porous_flow/examples/fluidflower/fluidflower.i)
# FluidFlower International Benchmark study model
# CSIRO 2023
#
# This example can be used to reproduce the results presented by the
# CSIRO team as part of this benchmark study. See
# Green, C., Jackson, S.J., Gunning, J., Wilkins, A. and Ennis-King, J.,
# 2023. Modelling the FluidFlower: Insights from Characterisation and
# Numerical Predictions. Transport in Porous Media.
#
# This example takes a long time to run! The large density contrast
# between the gas phase CO2 and the water makes convergence very hard,
# so small timesteps must be taken during injection.
#
# This example uses a simplified mesh in order to be run during the
# automated testing. To reproduce the results of the benchmark study,
# replace the simple layered input mesh with the one located in the
# large_media submodule.
#
# The mesh file contains:
# - porosity as given by FluidFlower description
# - permeability as given by FluidFlower description
# - subdomain ids for each sand type
#
# The nominal thickness of the FluidFlower tank is 19mm. To keep masses consistent
# with the experiment, porosity and permeability are multiplied by the thickness
thickness = 0.019
#
# Properties associated with each sand type associated with mesh block ids
#
# block 0 - ESF (very fine sand)
sandESF = '0 10 20'
sandESF_pe = 1471.5
sandESF_krg = 0.09
sandESF_swi = 0.32
sandESF_krw = 0.71
sandESF_sgi = 0.14
# block 1 - C - Coarse lower
sandC = '1 21'
sandC_pe = 294.3
sandC_krg = 0.05
sandC_swi = 0.14
sandC_krw = 0.93
sandC_sgi = 0.1
# block 2 - D - Coarse upper
sandD = '2 22'
sandD_pe = 98.1
sandD_krg = 0.02
sandD_swi = 0.12
sandD_krw = 0.95
sandD_sgi = 0.08
# block 3 - E - Very Coarse lower
sandE = '3 13 23'
sandE_pe = 10
sandE_krg = 0.1
sandE_swi = 0.12
sandE_krw = 0.93
sandE_sgi = 0.06
# block 4 - F - Very Coarse upper
sandF = '4 14 24 34'
sandF_pe = 10
sandF_krg = 0.11
sandF_swi = 0.12
sandF_krw = 0.72
sandF_sgi = 0.13
# block 5 - G - Flush Zone
sandG = '5 15 35'
sandG_pe = 10
sandG_krg = 0.16
sandG_swi = 0.1
sandG_krw = 0.75
sandG_sgi = 0.06
# block 6 - Fault 1 - Heterogeneous
fault1 = '6 26'
fault1_pe = 10
fault1_krg = 0.16
fault1_swi = 0.1
fault1_krw = 0.75
fault1_sgi = 0.06
# block 7 - Fault 2 - Impermeable
# Note: this fault has been removed from the mesh (no elements in this region)
# block 8 - Fault 3 - Homogeneous
fault3 = '8'
fault3_pe = 10
fault3_krg = 0.16
fault3_swi = 0.1
fault3_krw = 0.75
fault3_sgi = 0.06
# Top layer
top_layer = '9'
# Boxes A, B an C used to report values (sg, sgr, xco2, etc)
boxA = '10 13 14 15 34 35'
boxB = '20 21 22 23 24 26'
boxC = '34 35'
# Furthermore, the seal sand unit in boxes A and B
seal_boxA = '10'
seal_boxB = '20'
# CO2 injection details:
# CO2 density ~1.8389 kg/m3 at 293.15 K, 1.01325e5 Pa
# Injection in Port (9, 3) for 5 hours.
# Injection in Port (17, 7) for 2:45 hours.
# Injection of 10 ml/min = 0.1666 ml/s = 1.666e-7 m3/s = ~3.06e-7 kg/s.
# Total mass of CO2 injected ~ 8.5g.
inj_rate = 3.06e-7
[Mesh]
[mesh]
type = FileMeshGenerator
file = 'fluidflower_test.e'
# file = '../../../../large_media/porous_flow/examples/fluidflower/fluidflower.e'
use_for_exodus_restart = true
[]
[]
[Debug]
show_var_residual_norms = true
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature = temperature
log_extension = false
[]
[Variables]
[pgas]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[z]
family = MONOMIAL
order = CONSTANT
fv = true
scaling = 1e4
[]
[]
[AuxVariables]
[xnacl]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.0055
[]
[temperature]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 20
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_from_file_var = porosity
[]
[porosity_times_thickness]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[permeability]
family = MONOMIAL
order = CONSTANT
fv = true
initial_from_file_var = permeability
[]
[permeability_times_thickness]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[saturation_water]
family = MONOMIAL
order = CONSTANT
[]
[saturation_gas]
family = MONOMIAL
order = CONSTANT
[]
[pressure_water]
family = MONOMIAL
order = CONSTANT
[]
[pc]
family = MONOMIAL
order = CONSTANT
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity_times_thickness]
type = ParsedAux
variable = porosity_times_thickness
coupled_variables = porosity
expression = 'porosity * ${thickness}'
execute_on = 'initial'
[]
[permeability_times_thickness]
type = ParsedAux
variable = permeability_times_thickness
coupled_variables = permeability
expression = 'permeability * ${thickness}'
execute_on = 'initial'
[]
[pressure_water]
type = ADPorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_water]
type = ADPorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_gas]
type = ADPorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'initial timestep_end'
[]
[density_water]
type = ADPorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = 'initial timestep_end'
[]
[density_gas]
type = ADPorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = 'initial timestep_end'
[]
[x1_water]
type = ADPorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = ADPorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x0_water]
type = ADPorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = ADPorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[pc]
type = ADPorousFlowPropertyAux
variable = pc
property = capillary_pressure
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass0]
type = FVPorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[flux0]
type = FVPorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[diff0]
type = FVPorousFlowDispersiveFlux
variable = pgas
fluid_component = 0
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = FVPorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[flux1]
type = FVPorousFlowAdvectiveFlux
variable = z
fluid_component = 1
[]
[diff1]
type = FVPorousFlowDispersiveFlux
variable = z
fluid_component = 1
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[DiracKernels]
[injector1]
type = ConstantPointSource
point = '0.9 0.3 0'
value = ${inj_rate}
variable = z
[]
[injector2]
type = ConstantPointSource
point = '1.7 0.7 0'
value = ${inj_rate}
variable = z
[]
[]
[Controls]
[injection1]
type = ConditionalFunctionEnableControl
enable_objects = 'DiracKernels::injector1'
conditional_function = injection_schedule1
[]
[injection2]
type = ConditionalFunctionEnableControl
enable_objects = 'DiracKernels::injector2'
conditional_function = injection_schedule2
[]
[]
[Functions]
[initial_p]
type = ParsedFunction
symbol_names = 'p0 g H rho0'
symbol_values = '101.325e3 9.81 1.5 1002'
expression = 'p0 + rho0 * g * (H - y)'
[]
[injection_schedule1]
type = ParsedFunction
expression = 'if(t >= 0 & t <= 1.8e4, 1, 0)'
[]
[injection_schedule2]
type = ParsedFunction
expression = 'if(t >= 8.1e3 & t <= 1.8e4, 1, 0)'
[]
[]
[ICs]
[p]
type = FunctionIC
variable = pgas
function = initial_p
[]
[]
[FVBCs]
[pressure_top]
type = FVPorousFlowAdvectiveFluxBC
boundary = top
porepressure_value = 1.01325e5
variable = pgas
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedBicubicFluidProperties
fp = water
save_file = false
pressure_min = 1e5
pressure_max = 1e6
temperature_min = 290
temperature_max = 300
num_p = 20
num_T = 10
[]
[co2]
type = CO2FluidProperties
[]
[co2tab]
type = TabulatedBicubicFluidProperties
fp = co2
save_file = false
pressure_min = 1e5
pressure_max = 1e6
temperature_min = 290
temperature_max = 300
num_p = 20
num_T = 10
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[sandESF_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandESF_pe}
lambda = 2
block = ${sandESF}
pc_max = 1e4
sat_lr = ${sandESF_swi}
[]
[sandC_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandC_pe}
lambda = 2
block = ${sandC}
pc_max = 1e4
sat_lr = ${sandC_swi}
[]
[sandD_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandD_pe}
lambda = 2
block = ${sandD}
pc_max = 1e4
sat_lr = ${sandD_swi}
[]
[sandE_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandE_pe}
lambda = 2
block = ${sandE}
pc_max = 1e4
sat_lr = ${sandE_swi}
[]
[sandF_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandF_pe}
lambda = 2
block = ${sandF}
pc_max = 1e4
sat_lr = ${sandF_swi}
[]
[sandG_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandG_pe}
lambda = 2
block = ${sandG}
pc_max = 1e4
sat_lr = ${sandG_swi}
[]
[fault1_pc]
type = PorousFlowCapillaryPressureBC
pe = ${fault1_pe}
lambda = 2
block = ${fault1}
pc_max = 1e4
sat_lr = ${fault1_swi}
[]
[fault3_pc]
type = PorousFlowCapillaryPressureBC
pe = ${fault3_pe}
lambda = 2
block = ${fault3}
pc_max = 1e4
sat_lr = ${fault3_swi}
[]
[top_layer_pc]
type = PorousFlowCapillaryPressureConst
pc = 0
block = ${top_layer}
[]
[sandESF_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandESF_pc
[]
[sandC_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandC_pc
[]
[sandD_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandD_pc
[]
[sandE_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandE_pc
[]
[sandF_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandF_pc
[]
[sandG_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandG_pc
[]
[fault1_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = fault1_pc
[]
[fault3_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = fault3_pc
[]
[top_layer_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = top_layer_pc
[]
[]
[Materials]
[temperature]
type = ADPorousFlowTemperature
temperature = temperature
[]
[sandESF_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandESF_fs
capillary_pressure = sandESF_pc
block = ${sandESF}
[]
[sandC_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandC_fs
capillary_pressure = sandC_pc
block = ${sandC}
[]
[sandD_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandD_fs
capillary_pressure = sandD_pc
block = ${sandD}
[]
[sandE_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandE_fs
capillary_pressure = sandE_pc
block = ${sandE}
[]
[sandF_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandF_fs
capillary_pressure = sandF_pc
block = ${sandF}
[]
[sandG_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandG_fs
capillary_pressure = sandG_pc
block = ${sandG}
[]
[fault1_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = fault1_fs
capillary_pressure = fault1_pc
block = ${fault1}
[]
[fault3_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = fault3_fs
capillary_pressure = fault3_pc
block = ${fault3}
[]
[top_layer_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = top_layer_fs
capillary_pressure = top_layer_pc
block = ${top_layer}
[]
[porosity]
type = ADPorousFlowPorosityConst
porosity = porosity_times_thickness
[]
[permeability]
type = ADPorousFlowPermeabilityConstFromVar
perm_xx = permeability_times_thickness
perm_yy = permeability_times_thickness
perm_zz = permeability_times_thickness
[]
[diffcoeff]
type = ADPorousFlowDiffusivityConst
tortuosity = '1 1'
diffusion_coeff = '2e-9 2e-9 0 0'
[]
[sandESF_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandESF_swi}
sum_s_res = ${fparse sandESF_sgi + sandESF_swi}
scaling = ${sandESF_krw}
block = ${sandESF}
[]
[sandESF_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandESF_sgi}
sum_s_res = ${fparse sandESF_sgi + sandESF_swi}
scaling = ${sandESF_krg}
block = ${sandESF}
[]
[sandC_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandC_swi}
sum_s_res = ${fparse sandC_sgi + sandC_swi}
scaling = ${sandC_krw}
block = ${sandC}
[]
[sandC_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandC_sgi}
sum_s_res = ${fparse sandC_sgi + sandC_swi}
scaling = ${sandC_krg}
block = ${sandC}
[]
[sandD_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandD_swi}
sum_s_res = ${fparse sandD_sgi + sandD_swi}
scaling = ${sandD_krw}
block = ${sandD}
[]
[sandD_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandD_sgi}
sum_s_res = ${fparse sandD_sgi + sandD_swi}
scaling = ${sandD_krg}
block = ${sandD}
[]
[sandE_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandE_swi}
sum_s_res = ${fparse sandE_sgi + sandE_swi}
scaling = ${sandE_krw}
block = ${sandE}
[]
[sandE_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandE_sgi}
sum_s_res = ${fparse sandE_sgi + sandE_swi}
scaling = ${sandE_krg}
block = ${sandE}
[]
[sandF_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandF_swi}
sum_s_res = ${fparse sandF_sgi + sandF_swi}
scaling = ${sandF_krw}
block = ${sandF}
[]
[sandF_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandF_sgi}
sum_s_res = ${fparse sandF_sgi + sandF_swi}
scaling = ${sandF_krg}
block = ${sandF}
[]
[sandG_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandG_swi}
sum_s_res = ${fparse sandG_sgi + sandG_swi}
scaling = ${sandG_krw}
block = ${sandG}
[]
[sandG_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandG_sgi}
sum_s_res = ${fparse sandG_sgi + sandG_swi}
scaling = ${sandG_krg}
block = ${sandG}
[]
[fault1_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${fault1_swi}
sum_s_res = ${fparse fault1_sgi + fault1_swi}
scaling = ${fault1_krw}
block = ${fault1}
[]
[fault1_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${fault1_sgi}
sum_s_res = ${fparse fault1_sgi + fault1_swi}
scaling = ${fault1_krg}
block = ${fault1}
[]
[fault3_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${fault3_swi}
sum_s_res = ${fparse fault3_sgi + fault3_swi}
scaling = ${fault3_krw}
block = ${fault3}
[]
[fault3_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${fault3_sgi}
sum_s_res = ${fparse fault3_sgi + fault3_swi}
scaling = ${fault3_krg}
block = ${fault3}
[]
[top_layer_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
block = ${top_layer}
[]
[top_layer_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
block = ${top_layer}
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-ksp_snes_ew'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -sub_pc_factor_shift_type'
petsc_options_value = 'gmres lu mumps NONZERO'
# petsc_options_iname = '-ksp_type -pc_type -pc_hypre_type -sub_pc_type -sub_pc_factor_shift_type -sub_pc_factor_levels -ksp_gmres_restart'
# petsc_options_value = 'gmres hypre boomeramg lu NONZERO 4 301'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dtmax = 60
start_time = 0
end_time = 4.32e5
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-5
l_abs_tol = 1e-8
# line_search = none # Can be a useful option for this problem
[TimeSteppers]
[time]
type = FunctionDT
growth_factor = 2
cutback_factor_at_failure = 0.5
function = 'if(t<1.8e4, 2, if(t<3.6e4, 20, 60))'
[]
[]
[]
[Postprocessors]
[p_5_3]
type = PointValue
variable = pgas
point = '0.5 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_5_3_w]
type = PointValue
variable = pressure_water
point = '0.5 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_5_7]
type = PointValue
variable = pgas
point = '0.5 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_5_7_w]
type = PointValue
variable = pressure_water
point = '0.5 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_9_3]
type = PointValue
variable = pgas
point = '0.9 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_9_3_w]
type = PointValue
variable = pressure_water
point = '0.9 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_15_5]
type = PointValue
variable = pgas
point = '1.5 0.5 0'
execute_on = 'initial timestep_end'
[]
[p_15_5_w]
type = PointValue
variable = pressure_water
point = '1.5 0.5 0'
execute_on = 'initial timestep_end'
[]
[p_17_7]
type = PointValue
variable = pgas
point = '1.7 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_17_7_w]
type = PointValue
variable = pressure_water
point = '1.7 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_17_11]
type = PointValue
variable = pgas
point = '1.7 1.1 0'
execute_on = 'initial timestep_end'
[]
[p_17_11_w]
type = PointValue
variable = pressure_water
point = '1.7 1.1 0'
execute_on = 'initial timestep_end'
[]
[x0mass]
type = FVPorousFlowFluidMass
fluid_component = 0
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1mass]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1gas]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '1'
execute_on = 'initial timestep_end'
[]
[boxA]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${boxA}
execute_on = 'initial timestep_end'
[]
[imm_A_sandESF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandESF_sgi}
block = 10
execute_on = 'initial timestep_end'
[]
[imm_A_sandE]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandE_sgi}
block = 13
execute_on = 'initial timestep_end'
[]
[imm_A_sandF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandF_sgi}
block = '14 34'
execute_on = 'initial timestep_end'
[]
[imm_A_sandG]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandG_sgi}
block = '15 35'
execute_on = 'initial timestep_end'
[]
[imm_A]
type = LinearCombinationPostprocessor
pp_names = 'imm_A_sandESF imm_A_sandE imm_A_sandF imm_A_sandG'
pp_coefs = '1 1 1 1'
execute_on = 'initial timestep_end'
[]
[diss_A]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 0
block = ${boxA}
execute_on = 'initial timestep_end'
[]
[seal_A]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${seal_boxA}
execute_on = 'initial timestep_end'
[]
[boxB]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${boxB}
execute_on = 'initial timestep_end'
[]
[imm_B_sandESF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandESF_sgi}
block = 20
execute_on = 'initial timestep_end'
[]
[imm_B_sandC]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandC_sgi}
block = 21
execute_on = 'initial timestep_end'
[]
[imm_B_sandD]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandD_sgi}
block = 22
execute_on = 'initial timestep_end'
[]
[imm_B_sandE]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandE_sgi}
block = 23
execute_on = 'initial timestep_end'
[]
[imm_B_sandF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandF_sgi}
block = 24
execute_on = 'initial timestep_end'
[]
[imm_B_fault1]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${fault1_sgi}
block = 26
execute_on = 'initial timestep_end'
[]
[imm_B]
type = LinearCombinationPostprocessor
pp_names = 'imm_B_sandESF imm_B_sandC imm_B_sandD imm_B_sandE imm_B_sandF imm_B_fault1'
pp_coefs = '1 1 1 1 1 1'
execute_on = 'initial timestep_end'
[]
[diss_B]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 0
block = ${boxB}
execute_on = 'initial timestep_end'
[]
[seal_B]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${seal_boxB}
execute_on = 'initial timestep_end'
[]
[boxC]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0'
block = ${boxC}
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
# exodus = true
[csv]
type = CSV
[]
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_fv.i)
# Pressure pulse in 1D with 1 phase - transient FV model
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 2E6
[]
[]
[FVKernels]
[mass0]
type = FVPorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = FVPorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[Materials]
[temperature]
type = ADPorousFlowTemperature
temperature = 293
[]
[ppss]
type = ADPorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = ADPorousFlowMassFraction
[]
[simple_fluid]
type = ADPorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = ADPorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = ADPorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = ADPorousFlowRelativePermeabilityConst
kr = 1
phase = 0
[]
[]
[FVBCs]
[left]
type = FVPorousFlowAdvectiveFluxBC
boundary = left
porepressure_value = 3E6
variable = pp
gravity = '0 0 0'
fluid_component = 0
phase = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p005]
type = PointValue
variable = pp
point = '5 0 0'
execute_on = 'initial timestep_end'
[]
[p015]
type = PointValue
variable = pp
point = '15 0 0'
execute_on = 'initial timestep_end'
[]
[p025]
type = PointValue
variable = pp
point = '25 0 0'
execute_on = 'initial timestep_end'
[]
[p035]
type = PointValue
variable = pp
point = '35 0 0'
execute_on = 'initial timestep_end'
[]
[p045]
type = PointValue
variable = pp
point = '45 0 0'
execute_on = 'initial timestep_end'
[]
[p055]
type = PointValue
variable = pp
point = '55 0 0'
execute_on = 'initial timestep_end'
[]
[p065]
type = PointValue
variable = pp
point = '65 0 0'
execute_on = 'initial timestep_end'
[]
[p075]
type = PointValue
variable = pp
point = '75 0 0'
execute_on = 'initial timestep_end'
[]
[p085]
type = PointValue
variable = pp
point = '85 0 0'
execute_on = 'initial timestep_end'
[]
[p095]
type = PointValue
variable = pp
point = '95 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_fv
print_linear_residuals = false
csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_fully_saturated_fv.i)
# Pressure pulse in 1D with 1 phase fully saturated - transient FV model
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
type = MooseVariableFVReal
initial_condition = 2E6
[]
[]
[FVKernels]
[mass0]
type = FVPorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = FVPorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[Materials]
[temperature]
type = ADPorousFlowTemperature
temperature = 293
[]
[ppss]
type = ADPorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = ADPorousFlowMassFraction
[]
[simple_fluid]
type = ADPorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = ADPorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = ADPorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = ADPorousFlowRelativePermeabilityConst
kr = 1
phase = 0
[]
[]
[FVBCs]
[left]
type = FVPorousFlowAdvectiveFluxBC
boundary = left
porepressure_value = 3E6
variable = pp
gravity = '0 0 0'
fluid_component = 0
phase = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p005]
type = PointValue
variable = pp
point = '5 0 0'
execute_on = 'initial timestep_end'
[]
[p015]
type = PointValue
variable = pp
point = '15 0 0'
execute_on = 'initial timestep_end'
[]
[p025]
type = PointValue
variable = pp
point = '25 0 0'
execute_on = 'initial timestep_end'
[]
[p035]
type = PointValue
variable = pp
point = '35 0 0'
execute_on = 'initial timestep_end'
[]
[p045]
type = PointValue
variable = pp
point = '45 0 0'
execute_on = 'initial timestep_end'
[]
[p055]
type = PointValue
variable = pp
point = '55 0 0'
execute_on = 'initial timestep_end'
[]
[p065]
type = PointValue
variable = pp
point = '65 0 0'
execute_on = 'initial timestep_end'
[]
[p075]
type = PointValue
variable = pp
point = '75 0 0'
execute_on = 'initial timestep_end'
[]
[p085]
type = PointValue
variable = pp
point = '85 0 0'
execute_on = 'initial timestep_end'
[]
[p095]
type = PointValue
variable = pp
point = '95 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_fv
print_linear_residuals = false
csv = true
[]