www.mooseframework.org
Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | List of all members
MethaneFluidProperties Class Reference

Methane (CH4) fluid properties as a function of pressure (Pa) and temperature (K). More...

#include <MethaneFluidProperties.h>

Inheritance diagram for MethaneFluidProperties:
[legend]

Public Member Functions

 MethaneFluidProperties (const InputParameters &parameters)
 
virtual ~MethaneFluidProperties ()
 
virtual std::string fluidName () const override
 
virtual Real molarMass () const override
 Fluid name. More...
 
virtual Real mu_from_p_T (Real pressure, Real temperature) const override
 
virtual void mu_from_p_T (Real pressure, Real temperature, Real &mu, Real &dmu_dp, Real &dmu_dT) const override
 
virtual Real k_from_p_T (Real pressure, Real temperature) const override
 
virtual void k_from_p_T (Real pressure, Real temperature, Real &k, Real &dk_dp, Real &dk_dT) const override
 
virtual std::vector< Real > henryCoefficients () const override
 Henry's law coefficients for dissolution in water. More...
 
virtual Real criticalPressure () const override
 Critical pressure. More...
 
virtual Real criticalTemperature () const override
 Critical temperature. More...
 
virtual Real criticalDensity () const override
 Critical density. More...
 
virtual Real triplePointPressure () const override
 Triple point pressure. More...
 
virtual Real triplePointTemperature () const override
 Triple point temperature. More...
 
virtual Real vaporPressure (Real temperature) const override
 Vapor pressure. More...
 
virtual void vaporPressure (Real temperature, Real &psat, Real &dpsat_dT) const override
 
Real saturatedLiquidDensity (Real temperature) const
 Saturated liquid density of CH4 Valid for temperatures between the triple point temperature and critical temperature. More...
 
Real saturatedVaporDensity (Real temperature) const
 Saturated vapor density of CH4 Valid for temperatures between the triple point temperature and critical temperature. More...
 
virtual Real rho_from_p_T (Real pressure, Real temperature) const override
 
virtual void rho_from_p_T (Real pressure, Real temperature, Real &rho, Real &drho_dp, Real &drho_dT) const override
 
virtual Real e_from_p_T (Real pressure, Real temperature) const override
 
virtual void e_from_p_T (Real p, Real T, Real &e, Real &de_dp, Real &de_dT) const override
 
virtual Real c_from_p_T (Real pressure, Real temperature) const override
 
virtual Real cp_from_p_T (Real pressure, Real temperature) const override
 
virtual Real cv_from_p_T (Real pressure, Real temperature) const override
 
virtual Real s_from_p_T (Real pressure, Real temperature) const override
 
virtual void s_from_p_T (Real p, Real T, Real &s, Real &ds_dp, Real &ds_dT) const override
 
virtual Real h_from_p_T (Real pressure, Real temperature) const override
 
virtual void h_from_p_T (Real p, Real T, Real &h, Real &dh_dp, Real &dh_dT) const override
 
virtual Real p_from_rho_T (Real rho, Real T) const
 Pressure as a function of density and temperature. More...
 
virtual Real criticalInternalEnergy () const
 Critical specific internal energy. More...
 
virtual Real e_spndl_from_v (Real v) const
 Specific internal energy from temperature and specific volume. More...
 
virtual void v_e_spndl_from_T (Real T, Real &v, Real &e) const
 Specific internal energy from temperature and specific volume. More...
 
DualReal vaporPressure (const DualReal &T) const
 
virtual Real vaporTemperature (Real p) const
 Vapor temperature. More...
 
virtual void vaporTemperature (Real p, Real &Tsat, Real &dTsat_dp) const
 
DualReal vaporTemperature (const DualReal &p) const
 
virtual void rho_mu_from_p_T (Real p, Real T, Real &rho, Real &mu) const
 Combined methods. More...
 
virtual void rho_mu_from_p_T (Real p, Real T, Real &rho, Real &drho_dp, Real &drho_dT, Real &mu, Real &dmu_dp, Real &dmu_dT) const
 
virtual void rho_mu_from_p_T (const DualReal &p, const DualReal &T, DualReal &rho, DualReal &mu) const
 
virtual void rho_e_from_p_T (Real p, Real T, Real &rho, Real &drho_dp, Real &drho_dT, Real &e, Real &de_dp, Real &de_dT) const
 
virtual void execute () final
 
virtual void initialize () final
 
virtual void finalize () final
 
virtual void threadJoin (const UserObject &) final
 
virtual void subdomainSetup () final
 

Static Public Attributes

static const Real _R = 8.3144598
 Universal gas constant (J/mol/K) More...
 

Protected Member Functions

virtual Real alpha (Real delta, Real tau) const override
 Helmholtz free energy. More...
 
virtual Real dalpha_ddelta (Real delta, Real tau) const override
 Derivative of Helmholtz free energy wrt delta. More...
 
virtual Real dalpha_dtau (Real delta, Real tau) const override
 Derivative of Helmholtz free energy wrt tau. More...
 
virtual Real d2alpha_ddelta2 (Real delta, Real tau) const override
 Second derivative of Helmholtz free energy wrt delta. More...
 
virtual Real d2alpha_dtau2 (Real delta, Real tau) const override
 Second derivative of Helmholtz free energy wrt tau. More...
 
virtual Real d2alpha_ddeltatau (Real delta, Real tau) const override
 Second derivative of Helmholtz free energy wrt delta and tau. More...
 

Protected Attributes

const Real _Mch4
 Methane molar mass (kg/mol) More...
 
const Real _p_critical
 Critical pressure (Pa) More...
 
const Real _T_critical
 Critical temperature (K) More...
 
const Real _rho_critical
 Critical density (kg/m^3) More...
 
const Real _p_triple
 Triple point pressure (Pa) More...
 
const Real _T_triple
 Triple point temperature (K) More...
 
const std::array< Real, 5 > _a0 {{0.008449, 4.6942, 3.4865, 1.6572, 1.4115}}
 Coefficients for ideal gas component of the Helmholtz free energy. More...
 
const std::array< Real, 5 > _b0 {{3.4004324, 10.26951575, 20.43932747, 29.93744884, 79.13351945}}
 
const std::array< Real, 13 > _N1
 Coefficients for residual component of the Helmholtz free energy. More...
 
const std::array< Real, 13 > _t1
 
const std::array< unsigned int, 13 > _d1 {{1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 8, 9, 10}}
 
const std::array< Real, 23 > _N2
 
const std::array< Real, 23 > _t2
 
const std::array< unsigned int, 23 > _c2
 
const std::array< unsigned int, 23 > _d2
 
const std::array< Real, 4 > _N3
 
const std::array< Real, 4 > _t3 {{2.0, 0.0, 1.0, 2.0}}
 
const std::array< int, 4 > _d3 {{2, 0, 0, 0}}
 
const std::array< Real, 4 > _alpha3 {{20.0, 40.0, 40.0, 40.0}}
 
const std::array< Real, 4 > _beta3 {{200.0, 250.0, 250.0, 250.0}}
 
const std::array< Real, 4 > _gamma3 {{1.07, 1.11, 1.11, 1.11}}
 
const std::array< Real, 4 > _D3 {{1.0, 1.0, 1.0, 1.0}}
 
const std::array< Real, 6 > _a
 Coefficients for viscosity. More...
 
const std::array< Real, 7 > _b
 Coefficients for thermal conductivity. More...
 
const Real _T_c2k
 Conversion of temperature from Celsius to Kelvin. More...
 
const bool _allow_imperfect_jacobians
 Flag to set unimplemented Jacobian entries to zero. More...
 

Private Member Functions

template<typename... Args>
void fluidPropError (Args... args) const
 
e e e e p h T T T T T v v v s h propfuncWithDefault (beta, p, T) propfuncWithDefault(v
 
e e e e p h T T T T T v v v s h T propfuncWithDefault (e, p, T) propfuncWithDefault(gamma
 
 propfunc (p, v, e) propfunc(T
 Compute a fluid property given for the state defined by two given properties. More...
 
propfunc (c, v, e) propfunc(cp
 
e e propfunc (cv, v, e) propfunc(mu
 
e e e propfunc (k, v, e) propfunc(s
 
e e e e propfunc (s, h, p) propfunc(T
 
e e e e p propfunc (rho, p, s) propfunc(e
 
e e e e p h propfunc (s, p, T) propfunc(pp_sat
 
e e e e p h T propfunc (mu, rho, T) propfunc(k
 
e e e e p h T T propfunc (c, p, T) propfunc(cp
 
e e e e p h T T T propfunc (cv, p, T) propfunc(mu
 
e e e e p h T T T T propfunc (k, p, T) propfunc(rho
 
e e e e p h T T T T T propfunc (e, p, rho) propfunc(e
 
e e e e p h T T T T T v propfunc (p, T, v) propfunc(h
 
e e e e p h T T T T T v v propfunc (s, T, v) propfunc(cv
 
e e e e p h T T T T T v v v propfunc (h, p, T) propfunc(p
 
e e e e p h T T T T T v v vpropfunc (g, v, e) propfuncWithDefault(T
 
 v
 
v
 
e e v
 
e e e v
 
e e e e p v
 
e e e e p h T T T T T v v v s h T v
 
e e e e h
 
e e e e p h T T T T T v v v h
 
e e e e p h p
 
e e e e p h T T p
 
e e e e p h T T T p
 
e e e e p h T T T T p
 
e e e e p h T T T T T v v vp
 
e e e e p h T T T T T v v v s h p
 
e e e e p h T rho
 
e e e e p h T T T T T T
 
e e e e p h T T T T T v T
 
e e e e p h T T T T T v v T
 
e e e e p h T T T T T v v v s h TpropfuncWithDefault (gamma, p, T)
 

Detailed Description

Methane (CH4) fluid properties as a function of pressure (Pa) and temperature (K).

Thermodynamic properties calculated from: Setzmann and Wagner, A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa, Journal of Physical and Chemical Reference Data, 20, 1061–1155 (1991)

Viscosity and thermal conductivity calculated from Irvine Jr, T. F. and Liley, P. E. (1984) Steam and Gas Tables with Computer Equations.

Definition at line 37 of file MethaneFluidProperties.h.

Constructor & Destructor Documentation

◆ MethaneFluidProperties()

MethaneFluidProperties::MethaneFluidProperties ( const InputParameters &  parameters)

Definition at line 25 of file MethaneFluidProperties.C.

26  : HelmholtzFluidProperties(parameters),
27  _Mch4(16.0425e-3),
28  _p_critical(4.5992e6),
29  _T_critical(190.564),
30  _rho_critical(162.66),
31  _p_triple(1.169e4),
32  _T_triple(90.6941)
33 {
34 }

◆ ~MethaneFluidProperties()

MethaneFluidProperties::~MethaneFluidProperties ( )
virtual

Definition at line 36 of file MethaneFluidProperties.C.

36 {}

Member Function Documentation

◆ alpha()

Real MethaneFluidProperties::alpha ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Helmholtz free energy.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
alpha Helmholtz free energy

Implements HelmholtzFluidProperties.

Definition at line 209 of file MethaneFluidProperties.C.

210 {
211  // Ideal gas component of the Helmholtz free energy
212  Real alpha0 = std::log(delta) + 9.91243972 - 6.33270087 * tau + 3.0016 * std::log(tau);
213 
214  for (std::size_t i = 0; i < _a0.size(); ++i)
215  alpha0 += _a0[i] * std::log(1.0 - std::exp(-_b0[i] * tau));
216 
217  // Residual component of the Helmholtz free energy
218  Real alphar = 0.0;
219 
220  for (std::size_t i = 0; i < _t1.size(); ++i)
221  alphar += _N1[i] * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
222 
223  for (std::size_t i = 0; i < _t2.size(); ++i)
224  alphar += _N2[i] * MathUtils::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) *
225  std::exp(-MathUtils::pow(delta, _c2[i]));
226 
227  for (std::size_t i = 0; i < _t3.size(); ++i)
228  alphar += _N3[i] * MathUtils::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
229  std::exp(-_alpha3[i] * Utility::pow<2>(delta - _D3[i]) -
230  _beta3[i] * Utility::pow<2>(tau - _gamma3[i]));
231 
232  // The Helmholtz free energy is the sum of these two
233  return alpha0 + alphar;
234 }

◆ c_from_p_T()

Real HelmholtzFluidProperties::c_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Definition at line 100 of file HelmholtzFluidProperties.C.

101 {
102  // Require density first
103  const Real density = rho_from_p_T(pressure, temperature);
104  // Scale the input density and temperature
105  const Real delta = density / criticalDensity();
106  const Real tau = criticalTemperature() / temperature;
107 
108  const Real da_dd = dalpha_ddelta(delta, tau);
109 
110  Real w = 2.0 * delta * da_dd + delta * delta * d2alpha_ddelta2(delta, tau);
111  w -= Utility::pow<2>(delta * da_dd - delta * tau * d2alpha_ddeltatau(delta, tau)) /
112  (tau * tau * d2alpha_dtau2(delta, tau));
113 
114  return std::sqrt(_R * temperature * w / molarMass());
115 }

◆ cp_from_p_T()

Real HelmholtzFluidProperties::cp_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Definition at line 118 of file HelmholtzFluidProperties.C.

119 {
120  // Require density first
121  const Real density = rho_from_p_T(pressure, temperature);
122  // Scale the input density and temperature
123  const Real delta = density / criticalDensity();
124  const Real tau = criticalTemperature() / temperature;
125 
126  const Real da_dd = dalpha_ddelta(delta, tau);
127 
128  const Real cp = _R *
129  (-tau * tau * d2alpha_dtau2(delta, tau) +
130  Utility::pow<2>(delta * da_dd - delta * tau * d2alpha_ddeltatau(delta, tau)) /
131  (2.0 * delta * da_dd + delta * delta * d2alpha_ddelta2(delta, tau))) /
132  molarMass();
133 
134  return cp;
135 }

◆ criticalDensity()

Real MethaneFluidProperties::criticalDensity ( ) const
overridevirtual

Critical density.

Returns
critical density (kg/m^3)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 63 of file MethaneFluidProperties.C.

64 {
65  return _rho_critical;
66 }

◆ criticalInternalEnergy()

Real SinglePhaseFluidProperties::criticalInternalEnergy ( ) const
virtualinherited

Critical specific internal energy.

Returns
specific internal energy (J/kg)

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 126 of file SinglePhaseFluidProperties.C.

127 {
128  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
129 }

Referenced by IdealRealGasMixtureFluidProperties::p_T_from_v_e(), and IdealRealGasMixtureFluidProperties::T_from_p_v().

◆ criticalPressure()

Real MethaneFluidProperties::criticalPressure ( ) const
overridevirtual

Critical pressure.

Returns
critical pressure (Pa)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 51 of file MethaneFluidProperties.C.

52 {
53  return _p_critical;
54 }

◆ criticalTemperature()

Real MethaneFluidProperties::criticalTemperature ( ) const
overridevirtual

Critical temperature.

Returns
critical temperature (K)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 57 of file MethaneFluidProperties.C.

58 {
59  return _T_critical;
60 }

◆ cv_from_p_T()

Real HelmholtzFluidProperties::cv_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Definition at line 138 of file HelmholtzFluidProperties.C.

139 {
140  // Require density first
141  const Real density = rho_from_p_T(pressure, temperature);
142  // Scale the input density and temperature
143  const Real delta = density / criticalDensity();
144  const Real tau = criticalTemperature() / temperature;
145 
146  return -_R * tau * tau * d2alpha_dtau2(delta, tau) / molarMass();
147 }

◆ d2alpha_ddelta2()

Real MethaneFluidProperties::d2alpha_ddelta2 ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Second derivative of Helmholtz free energy wrt delta.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
second derivative of Helmholtz free energy wrt delta

Implements HelmholtzFluidProperties.

Definition at line 293 of file MethaneFluidProperties.C.

294 {
295  // Ideal gas component of the Helmholtz free energy
296  Real dalpha0 = -1.0 / delta / delta;
297 
298  // Residual component of the Helmholtz free energy
299  Real dalphar = 0.0;
300 
301  for (std::size_t i = 0; i < _t1.size(); ++i)
302  dalphar +=
303  _N1[i] * _d1[i] * (_d1[i] - 1.0) * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
304 
305  for (std::size_t i = 0; i < _t2.size(); ++i)
306  dalphar += _N2[i] * MathUtils::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) *
307  std::exp(-MathUtils::pow(delta, _c2[i])) *
308  ((_d2[i] - _c2[i] * MathUtils::pow(delta, _c2[i])) *
309  (_d2[i] - 1.0 - _c2[i] * MathUtils::pow(delta, _c2[i])) -
310  _c2[i] * _c2[i] * MathUtils::pow(delta, _c2[i]));
311 
312  for (std::size_t i = 0; i < _t3.size(); ++i)
313  dalphar += _N3[i] * std::pow(tau, _t3[i]) *
314  std::exp(-_alpha3[i] * Utility::pow<2>(delta - _D3[i]) -
315  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
316  (-2.0 * _alpha3[i] * MathUtils::pow(delta, _d3[i] + 2) +
317  4.0 * _alpha3[i] * _alpha3[i] * MathUtils::pow(delta, _d3[i] + 2) *
318  MathUtils::pow(delta - _D3[i], 2) -
319  4.0 * _d3[i] * _alpha3[i] * MathUtils::pow(delta, _d3[i] + 1) * (delta - _D3[i]) +
320  _d3[i] * (_d3[i] - 1) * MathUtils::pow(delta, _d3[i]));
321 
322  // The Helmholtz free energy is the sum of these two
323  return dalpha0 + dalphar / delta / delta;
324 }

◆ d2alpha_ddeltatau()

Real MethaneFluidProperties::d2alpha_ddeltatau ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Second derivative of Helmholtz free energy wrt delta and tau.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
second derivative of Helmholtz free energy wrt delta and tau

Implements HelmholtzFluidProperties.

Definition at line 361 of file MethaneFluidProperties.C.

362 {
363  // Residual component of the Helmholtz free energy
364  Real dalphar = 0.0;
365 
366  for (std::size_t i = 0; i < _t1.size(); ++i)
367  dalphar += _N1[i] * _d1[i] * _t1[i] * std::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
368 
369  for (std::size_t i = 0; i < _t2.size(); ++i)
370  dalphar += _N2[i] * _t2[i] * std::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) *
371  std::exp(-MathUtils::pow(delta, _c2[i])) *
372  (_d2[i] - _c2[i] * MathUtils::pow(delta, _c2[i]));
373 
374  for (std::size_t i = 0; i < _t3.size(); ++i)
375  dalphar += _N3[i] * std::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
376  std::exp(-_alpha3[i] * Utility::pow<2>(delta - _D3[i]) -
377  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
378  (_d3[i] - 2.0 * _alpha3[i] * delta * (delta - _D3[i]) *
379  (_t3[i] - 2.0 * _beta3[i] * tau * (tau - _gamma3[i])));
380 
381  // The Helmholtz free energy is the sum of these two
382  return dalphar / delta / tau;
383 }

◆ d2alpha_dtau2()

Real MethaneFluidProperties::d2alpha_dtau2 ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Second derivative of Helmholtz free energy wrt tau.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
second derivative of Helmholtz free energy wrt tau

Implements HelmholtzFluidProperties.

Definition at line 327 of file MethaneFluidProperties.C.

328 {
329  // Ideal gas component of the Helmholtz free energy
330  Real dalpha0 = -3.0016 / tau / tau;
331 
332  for (std::size_t i = 0; i < _a0.size(); ++i)
333  {
334  Real exptau = std::exp(-_b0[i] * tau);
335  dalpha0 -= _a0[i] * (_b0[i] * _b0[i] * exptau / (1.0 - exptau) / (1.0 - exptau));
336  }
337 
338  // Residual component of the Helmholtz free energy
339  Real dalphar = 0.0;
340 
341  for (std::size_t i = 0; i < _t1.size(); ++i)
342  dalphar +=
343  _N1[i] * _t1[i] * (_t1[i] - 1.0) * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
344 
345  for (std::size_t i = 0; i < _t2.size(); ++i)
346  dalphar += _N2[i] * _t2[i] * (_t2[i] - 1.0) * MathUtils::pow(delta, _d2[i]) *
347  std::pow(tau, _t2[i]) * std::exp(-MathUtils::pow(delta, _c2[i]));
348 
349  for (std::size_t i = 0; i < _t3.size(); ++i)
350  dalphar += _N3[i] * MathUtils::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
351  std::exp(-_alpha3[i] * Utility::pow<2>(delta - _D3[i]) -
352  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
353  (tau * _t3[i] - _beta3[i] * tau * tau * MathUtils::pow(tau - _gamma3[i], 2) -
354  _t3[i] - 2.0 * tau * tau * _beta3[i]);
355 
356  // The Helmholtz free energy is the sum of these two
357  return dalpha0 + dalphar / tau / tau;
358 }

◆ dalpha_ddelta()

Real MethaneFluidProperties::dalpha_ddelta ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Derivative of Helmholtz free energy wrt delta.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
derivative of Helmholtz free energy wrt delta

Implements HelmholtzFluidProperties.

Definition at line 237 of file MethaneFluidProperties.C.

238 {
239  // Ideal gas component of the Helmholtz free energy
240  Real dalpha0 = 1.0 / delta;
241 
242  // Residual component of the Helmholtz free energy
243  Real dalphar = 0.0;
244 
245  for (std::size_t i = 0; i < _t1.size(); ++i)
246  dalphar += _N1[i] * _d1[i] * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
247 
248  for (std::size_t i = 0; i < _t2.size(); ++i)
249  dalphar += _N2[i] * MathUtils::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) *
250  std::exp(-MathUtils::pow(delta, _c2[i])) *
251  (_d2[i] - _c2[i] * MathUtils::pow(delta, _c2[i]));
252 
253  for (std::size_t i = 0; i < _t3.size(); ++i)
254  dalphar += _N3[i] * MathUtils::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
255  std::exp(-_alpha3[i] * Utility::pow<2>(delta - _D3[i]) -
256  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
257  (_d3[i] - delta * (2.0 * _alpha3[i] * (delta - _D3[i])));
258 
259  // The Helmholtz free energy is the sum of these two
260  return dalpha0 + dalphar / delta;
261 }

◆ dalpha_dtau()

Real MethaneFluidProperties::dalpha_dtau ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Derivative of Helmholtz free energy wrt tau.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
derivative of Helmholtz free energy wrt tau

Implements HelmholtzFluidProperties.

Definition at line 264 of file MethaneFluidProperties.C.

265 {
266  // Ideal gas component of the Helmholtz free energy
267  Real dalpha0 = -6.33270087 + 3.0016 / tau;
268 
269  for (std::size_t i = 0; i < _a0.size(); ++i)
270  dalpha0 += _a0[i] * _b0[i] * (1.0 / (1.0 - std::exp(-_b0[i] * tau)) - 1.0);
271 
272  // Residual component of the Helmholtz free energy
273  Real dalphar = 0.0;
274 
275  for (std::size_t i = 0; i < _t1.size(); ++i)
276  dalphar += _N1[i] * _t1[i] * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
277 
278  for (std::size_t i = 0; i < _t2.size(); ++i)
279  dalphar += _N2[i] * _t2[i] * MathUtils::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) *
280  std::exp(-MathUtils::pow(delta, _c2[i]));
281 
282  for (std::size_t i = 0; i < _t3.size(); ++i)
283  dalphar += _N3[i] * MathUtils::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
284  std::exp(-_alpha3[i] * Utility::pow<2>(delta - _D3[i]) -
285  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
286  (_t3[i] + tau * (2.0 * _beta3[i] * (tau - _gamma3[i])));
287 
288  // The Helmholtz free energy is the sum of these two
289  return dalpha0 + dalphar / tau;
290 }

◆ e_from_p_T() [1/2]

void HelmholtzFluidProperties::e_from_p_T ( Real  p,
Real  T,
Real &  e,
Real &  de_dp,
Real &  de_dT 
) const
overridevirtualinherited

Definition at line 77 of file HelmholtzFluidProperties.C.

79 {
80  e = this->e_from_p_T(pressure, temperature);
81 
82  // Require density first
84  // Scale the input density and temperature
85  const Real delta = density / criticalDensity();
86  const Real tau = criticalTemperature() / temperature;
87 
88  const Real da_dd = dalpha_ddelta(delta, tau);
89  const Real d2a_dd2 = d2alpha_ddelta2(delta, tau);
90  const Real d2a_ddt = d2alpha_ddeltatau(delta, tau);
91 
92  de_dp = tau * d2a_ddt / (density * (2.0 * da_dd + delta * d2a_dd2));
93  de_dT = -_R *
94  (delta * tau * d2a_ddt * (da_dd - tau * d2a_ddt) / (2.0 * da_dd + delta * d2a_dd2) +
95  tau * tau * d2alpha_dtau2(delta, tau)) /
96  molarMass();
97 }

◆ e_from_p_T() [2/2]

Real HelmholtzFluidProperties::e_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Definition at line 65 of file HelmholtzFluidProperties.C.

66 {
67  // Require density first
69  // Scale the input density and temperature
70  const Real delta = density / criticalDensity();
71  const Real tau = criticalTemperature() / temperature;
72 
73  return _R * temperature * tau * dalpha_dtau(delta, tau) / molarMass();
74 }

Referenced by HelmholtzFluidProperties::e_from_p_T().

◆ e_spndl_from_v()

Real SinglePhaseFluidProperties::e_spndl_from_v ( Real  v) const
virtualinherited

Specific internal energy from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 286 of file SinglePhaseFluidProperties.C.

287 {
288  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
289 }

Referenced by IdealRealGasMixtureFluidProperties::p_T_from_v_e(), and IdealRealGasMixtureFluidProperties::T_from_p_v().

◆ execute()

virtual void FluidProperties::execute ( )
inlinefinalvirtualinherited

Definition at line 34 of file FluidProperties.h.

34 {}

◆ finalize()

virtual void FluidProperties::finalize ( )
inlinefinalvirtualinherited

Definition at line 36 of file FluidProperties.h.

36 {}

◆ fluidName()

std::string MethaneFluidProperties::fluidName ( ) const
overridevirtual

Definition at line 39 of file MethaneFluidProperties.C.

40 {
41  return "methane";
42 }

◆ fluidPropError()

template<typename... Args>
void SinglePhaseFluidProperties::fluidPropError ( Args...  args) const
inlineprivateinherited

Definition at line 326 of file SinglePhaseFluidProperties.h.

327  {
329  mooseDoOnce(mooseWarning(std::forward<Args>(args)...));
330  else
331  mooseError(std::forward<Args>(args)...);
332  }

Referenced by SinglePhaseFluidProperties::vaporPressure(), and SinglePhaseFluidProperties::vaporTemperature().

◆ h_from_p_T() [1/2]

void HelmholtzFluidProperties::h_from_p_T ( Real  p,
Real  T,
Real &  h,
Real &  dh_dp,
Real &  dh_dT 
) const
overridevirtualinherited

Definition at line 198 of file HelmholtzFluidProperties.C.

200 {
201  h = this->h_from_p_T(pressure, temperature);
202 
203  // Require density first
204  const Real density = rho_from_p_T(pressure, temperature);
205  // Scale the input density and temperature
206  const Real delta = density / criticalDensity();
207  const Real tau = criticalTemperature() / temperature;
208 
209  const Real da_dd = dalpha_ddelta(delta, tau);
210  const Real d2a_dd2 = d2alpha_ddelta2(delta, tau);
211  const Real d2a_ddt = d2alpha_ddeltatau(delta, tau);
212 
213  dh_dp = (da_dd + delta * d2a_dd2 + tau * d2a_ddt) / (density * (2.0 * da_dd + delta * d2a_dd2));
214  dh_dT = _R *
215  (delta * da_dd * (1.0 - tau * d2a_ddt / da_dd) * (1.0 - tau * d2a_ddt / da_dd) /
216  (2.0 + delta * d2a_dd2 / da_dd) -
217  tau * tau * d2alpha_dtau2(delta, tau)) /
218  molarMass();
219 }

◆ h_from_p_T() [2/2]

Real HelmholtzFluidProperties::h_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Definition at line 185 of file HelmholtzFluidProperties.C.

186 {
187  // Require density first
188  const Real density = rho_from_p_T(pressure, temperature);
189  // Scale the input density and temperature
190  const Real delta = density / criticalDensity();
191  const Real tau = criticalTemperature() / temperature;
192 
193  return _R * temperature * (tau * dalpha_dtau(delta, tau) + delta * dalpha_ddelta(delta, tau)) /
194  molarMass();
195 }

Referenced by HelmholtzFluidProperties::h_from_p_T().

◆ henryCoefficients()

std::vector< Real > MethaneFluidProperties::henryCoefficients ( ) const
overridevirtual

Henry's law coefficients for dissolution in water.

Returns
Henry's constant coefficients

Reimplemented from SinglePhaseFluidProperties.

Definition at line 169 of file MethaneFluidProperties.C.

170 {
171  return {-10.44708, 4.66491, 12.12986};
172 }

◆ initialize()

virtual void FluidProperties::initialize ( )
inlinefinalvirtualinherited

Definition at line 35 of file FluidProperties.h.

35 {}

◆ k_from_p_T() [1/2]

Real MethaneFluidProperties::k_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtual

Definition at line 110 of file MethaneFluidProperties.C.

111 {
112  // Check the temperature is in the range of validity (200 K <= T <= 1000 K)
113  if (temperature <= 200.0 || temperature >= 1000.0)
114  mooseException(
115  "Temperature ", temperature, "K out of range (200K, 1000K) in ", name(), ": k()");
116 
117  Real kt = 0.0;
118  for (std::size_t i = 0; i < _b.size(); ++i)
119  kt += _b[i] * MathUtils::pow(temperature, i);
120 
121  return kt;
122 }

◆ k_from_p_T() [2/2]

void MethaneFluidProperties::k_from_p_T ( Real  pressure,
Real  temperature,
Real &  k,
Real &  dk_dp,
Real &  dk_dT 
) const
overridevirtual

Definition at line 125 of file MethaneFluidProperties.C.

127 {
128  // Check the temperature is in the range of validity (200 K <= T <= 1000 K)
129  if (temperature <= 200.0 || temperature >= 1000.0)
130  mooseException(
131  "Temperature ", temperature, "K out of range (200K, 1000K) in ", name(), ": k()");
132 
133  Real kt = 0.0, dkt_dT = 0.0;
134 
135  for (std::size_t i = 0; i < _b.size(); ++i)
136  kt += _b[i] * MathUtils::pow(temperature, i);
137 
138  for (std::size_t i = 1; i < _b.size(); ++i)
139  dkt_dT += i * _b[i] * MathUtils::pow(temperature, i) / temperature;
140 
141  k = kt;
142  dk_dp = 0.0;
143  dk_dT = dkt_dT;
144 }

◆ molarMass()

Real MethaneFluidProperties::molarMass ( ) const
overridevirtual

Fluid name.

Returns
string representing fluid name Molar mass [kg/mol]
molar mass

Reimplemented from SinglePhaseFluidProperties.

Definition at line 45 of file MethaneFluidProperties.C.

46 {
47  return _Mch4;
48 }

◆ mu_from_p_T() [1/2]

Real MethaneFluidProperties::mu_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtual

Definition at line 81 of file MethaneFluidProperties.C.

82 {
83  // Check the temperature is in the range of validity (200 K <= T <= 1000 K)
84  if (temperature <= 200.0 || temperature >= 1000.0)
85  mooseException(
86  "Temperature ", temperature, "K out of range (200K, 1000K) in ", name(), ": mu_from_p_T()");
87 
88  Real viscosity = 0.0;
89  for (std::size_t i = 0; i < _a.size(); ++i)
90  viscosity += _a[i] * MathUtils::pow(temperature, i);
91 
92  return viscosity * 1.e-6;
93 }

Referenced by mu_from_p_T().

◆ mu_from_p_T() [2/2]

void MethaneFluidProperties::mu_from_p_T ( Real  pressure,
Real  temperature,
Real &  mu,
Real &  dmu_dp,
Real &  dmu_dT 
) const
overridevirtual

Definition at line 96 of file MethaneFluidProperties.C.

98 {
99 
100  mu = this->mu_from_p_T(pressure, temperature);
101  dmu_dp = 0.0;
102 
103  Real dmudt = 0.0;
104  for (std::size_t i = 0; i < _a.size(); ++i)
105  dmudt += i * _a[i] * MathUtils::pow(temperature, i) / temperature;
106  dmu_dT = dmudt * 1.e-6;
107 }

◆ p_from_rho_T()

Real HelmholtzFluidProperties::p_from_rho_T ( Real  rho,
Real  T 
) const
virtualinherited

Pressure as a function of density and temperature.

Parameters
rhodensity (kg/m^3)
Ttemperature (K)
Returns
pressure (Pa)

Reimplemented in CO2FluidProperties.

Definition at line 222 of file HelmholtzFluidProperties.C.

223 {
224  // Scale the input density and temperature
225  const Real delta = density / criticalDensity();
226  const Real tau = criticalTemperature() / temperature;
227 
228  return _R * density * temperature * delta * dalpha_ddelta(delta, tau) / molarMass();
229 }

Referenced by CO2FluidProperties::p_from_rho_T(), and HelmholtzFluidProperties::rho_from_p_T().

◆ propfunc() [1/16]

e e e e p h T T SinglePhaseFluidProperties::propfunc ( ,
p  ,
T   
)
inherited

◆ propfunc() [2/16]

e SinglePhaseFluidProperties::propfunc ( ,
v  ,
 
)
inherited

◆ propfunc() [3/16]

e e e e p h T T T SinglePhaseFluidProperties::propfunc ( cv  ,
p  ,
T   
)
inherited

◆ propfunc() [4/16]

e e SinglePhaseFluidProperties::propfunc ( cv  ,
v  ,
 
)
inherited

◆ propfunc() [5/16]

e e e e p h T T T T T SinglePhaseFluidProperties::propfunc ( ,
p  ,
rho   
)
inherited

◆ propfunc() [6/16]

e e e e p h T T T T T v v v s SinglePhaseFluidProperties::propfunc ( ,
v  ,
 
)
inherited

◆ propfunc() [7/16]

e e e e p h T T T T T v v v SinglePhaseFluidProperties::propfunc ( h  ,
p  ,
T   
)
inherited

◆ propfunc() [8/16]

e e e e p h T T T T SinglePhaseFluidProperties::propfunc ( ,
p  ,
T   
)
inherited

◆ propfunc() [9/16]

e e e SinglePhaseFluidProperties::propfunc ( ,
v  ,
 
)
inherited

◆ propfunc() [10/16]

e e e e p h T SinglePhaseFluidProperties::propfunc ( mu  ,
rho  ,
T   
)
inherited

◆ propfunc() [11/16]

e e e e p h T T T T T v SinglePhaseFluidProperties::propfunc ( p  ,
T  ,
v   
)
inherited

◆ propfunc() [12/16]

SinglePhaseFluidProperties::propfunc ( p  ,
v  ,
 
)
inherited

Compute a fluid property given for the state defined by two given properties.

For all functions, the first two arguments are the given properties that define the fluid state. For the two-argument variants, the desired property is the return value. The five-argument variants also provide partial derivatives dx/da and dx/db where x is the desired property being computed, a is the first given property, and b is the second given property. The desired property, dx/da, and dx/db are stored into the 3rd, 4th, and 5th arguments respectively.

Properties/parameters used in these function are listed below with their units:

@begincode p pressure [Pa] T temperature [K] e specific internal energy [J/kg] v specific volume [m^3/kg] rho density [kg/m^3] h specific enthalpy [J/kg] s specific entropy [J/(kg*K)] mu viscosity [Pa*s] k thermal conductivity [W/(m*K)] c speed of sound [m/s] cp constant-pressure specific heat [J/K] cv constant-volume specific heat [J/K] beta volumetric thermal expansion coefficient [1/K] g Gibbs free energy [J] pp_sat partial pressure at saturation [Pa] gamma Adiabatic ratio (cp/cv) [-]

As an example:

@begincode // calculate pressure given specific vol and energy: auto pressure = your_fluid_properties_object.p_from_v_e(specific_vol, specific_energy);

// or use the derivative variant: Real dp_dv = 0; // derivative will be stored into here Real dp_de = 0; // derivative will be stored into here your_fluid_properties_object.p_from_v_e(specific_vol, specific_energy, pressure, dp_dv, dp_de);

Automatic differentiation (AD) support is provided through x_from_a_b(DualReal a, DualReal b) and x_from_a_b(DualReal a, DualReal b, DualReal x, DualReal dx_da, DualReal dx_db) versions of the functions where a and b must be ADReal/DualNumber's calculated using all AD-supporting values:

@begincode auto v = 1/rho; // rho must be an AD non-linear variable. auto e = rhoE/rho - vel_energy; // rhoE and vel_energy must be AD variables/numbers also. auto pressure = your_fluid_properties_object.p_from_v_e(v, e); // pressure now contains partial derivatives w.r.t. all degrees of freedom

◆ propfunc() [13/16]

e e e e p SinglePhaseFluidProperties::propfunc ( rho  ,
p  ,
 
)
inherited

◆ propfunc() [14/16]

e e e e SinglePhaseFluidProperties::propfunc ( ,
h  ,
p   
)
inherited

◆ propfunc() [15/16]

e e e e p h SinglePhaseFluidProperties::propfunc ( ,
p  ,
T   
)
inherited

◆ propfunc() [16/16]

e e e e p h T T T T T v v SinglePhaseFluidProperties::propfunc ( ,
T  ,
v   
)
inherited

◆ propfuncWithDefault() [1/2]

e e e e p h T T T T T v v v s h SinglePhaseFluidProperties::propfuncWithDefault ( beta  ,
p  ,
T   
)
inherited

◆ propfuncWithDefault() [2/2]

e e e e p h T T T T T v v v s h T SinglePhaseFluidProperties::propfuncWithDefault ( ,
p  ,
T   
)
inherited

◆ rho_e_from_p_T()

void SinglePhaseFluidProperties::rho_e_from_p_T ( Real  p,
Real  T,
Real &  rho,
Real &  drho_dp,
Real &  drho_dT,
Real &  e,
Real &  de_dp,
Real &  de_dT 
) const
virtualinherited

Definition at line 242 of file SinglePhaseFluidProperties.C.

250 {
251  rho_from_p_T(p, T, rho, drho_dp, drho_dT);
252  e_from_p_T(p, T, e, de_dp, de_dT);
253 }

◆ rho_from_p_T() [1/2]

Real HelmholtzFluidProperties::rho_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Reimplemented in CO2FluidProperties.

Definition at line 29 of file HelmholtzFluidProperties.C.

30 {
31  Real density;
32  // Initial estimate of a bracketing interval for the density
33  Real lower_density = 1.0e-2;
34  Real upper_density = 100.0;
35 
36  // The density is found by finding the zero of the pressure
37  auto pressure_diff = [&pressure, &temperature, this](Real x) {
38  return this->p_from_rho_T(x, temperature) - pressure;
39  };
40 
41  BrentsMethod::bracket(pressure_diff, lower_density, upper_density);
42  density = BrentsMethod::root(pressure_diff, lower_density, upper_density);
43 
44  return density;
45 }

Referenced by HelmholtzFluidProperties::c_from_p_T(), HelmholtzFluidProperties::cp_from_p_T(), HelmholtzFluidProperties::cv_from_p_T(), HelmholtzFluidProperties::e_from_p_T(), HelmholtzFluidProperties::h_from_p_T(), NitrogenFluidProperties::k_from_p_T(), HydrogenFluidProperties::k_from_p_T(), NitrogenFluidProperties::mu_from_p_T(), CO2FluidProperties::mu_from_p_T(), HydrogenFluidProperties::mu_from_p_T(), HelmholtzFluidProperties::rho_from_p_T(), CO2FluidProperties::rho_from_p_T(), NitrogenFluidProperties::rho_mu_from_p_T(), HydrogenFluidProperties::rho_mu_from_p_T(), and HelmholtzFluidProperties::s_from_p_T().

◆ rho_from_p_T() [2/2]

void HelmholtzFluidProperties::rho_from_p_T ( Real  pressure,
Real  temperature,
Real &  rho,
Real &  drho_dp,
Real &  drho_dT 
) const
overridevirtualinherited

Reimplemented in CO2FluidProperties.

Definition at line 48 of file HelmholtzFluidProperties.C.

50 {
52 
53  // Scale the density and temperature
54  const Real delta = rho / criticalDensity();
55  const Real tau = criticalTemperature() / temperature;
56  const Real da_dd = dalpha_ddelta(delta, tau);
57  const Real d2a_dd2 = d2alpha_ddelta2(delta, tau);
58 
59  drho_dp = molarMass() / (_R * temperature * delta * (2.0 * da_dd + delta * d2a_dd2));
60  drho_dT = rho * (tau * d2alpha_ddeltatau(delta, tau) - da_dd) / temperature /
61  (2.0 * da_dd + delta * d2a_dd2);
62 }

◆ rho_mu_from_p_T() [1/3]

void SinglePhaseFluidProperties::rho_mu_from_p_T ( const DualReal &  p,
const DualReal &  T,
DualReal &  rho,
DualReal &  mu 
) const
virtualinherited

Definition at line 277 of file SinglePhaseFluidProperties.C.

281 {
282  rho = rho_from_p_T(p, T);
283  mu = mu_from_p_T(p, T);
284 }

◆ rho_mu_from_p_T() [2/3]

void SinglePhaseFluidProperties::rho_mu_from_p_T ( Real  p,
Real  T,
Real &  rho,
Real &  drho_dp,
Real &  drho_dT,
Real &  mu,
Real &  dmu_dp,
Real &  dmu_dT 
) const
virtualinherited

Reimplemented in Water97FluidProperties, CO2FluidProperties, HydrogenFluidProperties, and NitrogenFluidProperties.

Definition at line 263 of file SinglePhaseFluidProperties.C.

271 {
272  rho_from_p_T(p, T, rho, drho_dp, drho_dT);
273  mu_from_p_T(p, T, mu, dmu_dp, dmu_dT);
274 }

◆ rho_mu_from_p_T() [3/3]

void SinglePhaseFluidProperties::rho_mu_from_p_T ( Real  p,
Real  T,
Real &  rho,
Real &  mu 
) const
virtualinherited

Combined methods.

These methods are particularly useful for the PorousFlow module, where density and viscosity are typically both computed everywhere. The combined methods allow the most efficient means of calculating both properties, especially where rho(p, T) and mu(rho, T). In this case, an extra density calculation would be required to calculate mu(p, T). All propery names are described above.

Reimplemented in Water97FluidProperties, CO2FluidProperties, HydrogenFluidProperties, and NitrogenFluidProperties.

Definition at line 256 of file SinglePhaseFluidProperties.C.

257 {
258  rho = rho_from_p_T(p, T);
259  mu = mu_from_p_T(p, T);
260 }

Referenced by PorousFlowSingleComponentFluid::computeQpProperties(), PorousFlowWaterNCG::gasProperties(), PorousFlowBrineCO2::gasProperties(), and PorousFlowWaterNCG::liquidProperties().

◆ s_from_p_T() [1/2]

void HelmholtzFluidProperties::s_from_p_T ( Real  p,
Real  T,
Real &  s,
Real &  ds_dp,
Real &  ds_dT 
) const
overridevirtualinherited

Definition at line 162 of file HelmholtzFluidProperties.C.

164 {
165  s = this->s_from_p_T(pressure, temperature);
166 
167  // Require density first
168  const Real density = rho_from_p_T(pressure, temperature);
169  // Scale the input density and temperature
170  const Real delta = density / criticalDensity();
171  const Real tau = criticalTemperature() / temperature;
172 
173  const Real da_dd = dalpha_ddelta(delta, tau);
174  const Real da_dt = dalpha_dtau(delta, tau);
175  const Real d2a_dd2 = d2alpha_ddelta2(delta, tau);
176  const Real d2a_dt2 = d2alpha_dtau2(delta, tau);
177  const Real d2a_ddt = d2alpha_ddeltatau(delta, tau);
178 
179  ds_dp = tau * (d2a_ddt - da_dd) / (density * temperature * (2.0 * da_dd + delta * d2a_dd2));
180  ds_dT = -_R * tau * (da_dt - alpha(delta, tau) + tau * (d2a_dt2 - da_dt)) /
181  (molarMass() * temperature);
182 }

◆ s_from_p_T() [2/2]

Real HelmholtzFluidProperties::s_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Definition at line 150 of file HelmholtzFluidProperties.C.

151 {
152  // Require density first
153  const Real density = rho_from_p_T(pressure, temperature);
154  // Scale the input density and temperature
155  const Real delta = density / criticalDensity();
156  const Real tau = criticalTemperature() / temperature;
157 
158  return _R * (tau * dalpha_dtau(delta, tau) - alpha(delta, tau)) / molarMass();
159 }

Referenced by HelmholtzFluidProperties::s_from_p_T().

◆ saturatedLiquidDensity()

Real MethaneFluidProperties::saturatedLiquidDensity ( Real  temperature) const

Saturated liquid density of CH4 Valid for temperatures between the triple point temperature and critical temperature.

Eq. (3.4), from Setzmann and Wagner (reference above)

Parameters
temperaturetemperature (K)
Returns
saturated liquid density (kg/m^3)

Definition at line 175 of file MethaneFluidProperties.C.

176 {
177  if (temperature < _T_triple || temperature > _T_critical)
178  mooseException(
179  "Temperature ", temperature, " is out of range in ", name(), ": saturatedLiquidDensity()");
180 
181  const Real Tr = temperature / _T_critical;
182  const Real theta = 1.0 - Tr;
183 
184  const Real logdensity = 1.9906389 * std::pow(theta, 0.354) - 0.78756197 * std::sqrt(theta) +
185  0.036976723 * std::pow(theta, 2.5);
186 
187  return _rho_critical * std::exp(logdensity);
188 }

◆ saturatedVaporDensity()

Real MethaneFluidProperties::saturatedVaporDensity ( Real  temperature) const

Saturated vapor density of CH4 Valid for temperatures between the triple point temperature and critical temperature.

Eq. (3.5), from Setzmann and Wagner (reference above)

Parameters
temperaturetemperature (K)
Returns
saturated vapor density (kg/m^3)

Definition at line 191 of file MethaneFluidProperties.C.

192 {
193  if (temperature < _T_triple || temperature > _T_critical)
194  mooseException(
195  "Temperature ", temperature, " is out of range in ", name(), ": saturatedVaporDensity()");
196 
197  const Real Tr = temperature / _T_critical;
198  const Real theta = 1.0 - Tr;
199 
200  const Real logdensity =
201  -1.880284 * std::pow(theta, 0.354) - 2.8526531 * std::pow(theta, 5.0 / 6.0) -
202  3.000648 * std::pow(theta, 1.5) - 5.251169 * std::pow(theta, 2.5) -
203  13.191859 * std::pow(theta, 25.0 / 6.0) - 37.553961 * std::pow(theta, 47.0 / 6.0);
204 
205  return _rho_critical * std::exp(logdensity);
206 }

◆ subdomainSetup()

virtual void FluidProperties::subdomainSetup ( )
inlinefinalvirtualinherited

Definition at line 39 of file FluidProperties.h.

39 {}

◆ threadJoin()

virtual void FluidProperties::threadJoin ( const UserObject &  )
inlinefinalvirtualinherited

Definition at line 38 of file FluidProperties.h.

38 {}

◆ triplePointPressure()

Real MethaneFluidProperties::triplePointPressure ( ) const
overridevirtual

Triple point pressure.

Returns
triple point pressure (Pa)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 69 of file MethaneFluidProperties.C.

70 {
71  return _p_triple;
72 }

◆ triplePointTemperature()

Real MethaneFluidProperties::triplePointTemperature ( ) const
overridevirtual

Triple point temperature.

Returns
triple point temperature (K)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 75 of file MethaneFluidProperties.C.

76 {
77  return _T_triple;
78 }

◆ v_e_spndl_from_T()

void SinglePhaseFluidProperties::v_e_spndl_from_T ( Real  T,
Real &  v,
Real &  e 
) const
virtualinherited

Specific internal energy from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 292 of file SinglePhaseFluidProperties.C.

293 {
294  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
295 }

Referenced by IdealRealGasMixtureFluidProperties::v_from_p_T().

◆ vaporPressure() [1/3]

DualReal SinglePhaseFluidProperties::vaporPressure ( const DualReal &  T) const
inherited

Definition at line 198 of file SinglePhaseFluidProperties.C.

199 {
200  Real p = 0.0;
201  Real temperature = T.value();
202  Real dpdT = 0.0;
203 
204  vaporPressure(temperature, p, dpdT);
205 
206  DualReal result = p;
207  result.derivatives() = T.derivatives() * dpdT;
208 
209  return result;
210 }

◆ vaporPressure() [2/3]

Real MethaneFluidProperties::vaporPressure ( Real  T) const
overridevirtual

Vapor pressure.

Used to delineate liquid and gas phases. Valid for temperatures between the triple point temperature and the critical temperature

Parameters
Tfluid temperature (K)
[out]saturationpressure (Pa)
[out]derivativeof saturation pressure wrt temperature (Pa/K)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 147 of file MethaneFluidProperties.C.

148 {
149  if (temperature < _T_triple || temperature > _T_critical)
150  mooseException("Temperature is out of range in ", name(), ": vaporPressure()");
151 
152  const Real Tr = temperature / _T_critical;
153  const Real theta = 1.0 - Tr;
154 
155  const Real logpressure = (-6.036219 * theta + 1.409353 * std::pow(theta, 1.5) -
156  0.4945199 * Utility::pow<2>(theta) - 1.443048 * std::pow(theta, 4.5)) /
157  Tr;
158 
159  return _p_critical * std::exp(logpressure);
160 }

◆ vaporPressure() [3/3]

void MethaneFluidProperties::vaporPressure ( Real  temperature,
Real &  psat,
Real &  dpsat_dT 
) const
overridevirtual

Reimplemented from SinglePhaseFluidProperties.

Definition at line 163 of file MethaneFluidProperties.C.

164 {
165  mooseError(name(), ": vaporPressure() is not implemented");
166 }

◆ vaporTemperature() [1/3]

DualReal SinglePhaseFluidProperties::vaporTemperature ( const DualReal &  p) const
inherited

Definition at line 227 of file SinglePhaseFluidProperties.C.

228 {
229  Real T = 0.0;
230  Real pressure = p.value();
231  Real dTdp = 0.0;
232 
233  vaporTemperature(pressure, T, dTdp);
234 
235  DualReal result = T;
236  result.derivatives() = p.derivatives() * dTdp;
237 
238  return result;
239 }

◆ vaporTemperature() [2/3]

Real SinglePhaseFluidProperties::vaporTemperature ( Real  p) const
virtualinherited

Vapor temperature.

Used to delineate liquid and gas phases. Valid for pressures between the triple point pressure and the critical pressure

Parameters
pfluid pressure (Pa)
[out]saturationtemperature (K)
[out]derivativeof saturation temperature wrt pressure

Reimplemented in Water97FluidProperties.

Definition at line 212 of file SinglePhaseFluidProperties.C.

213 {
214  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
215 }

Referenced by PorousFlowWaterVapor::thermophysicalProperties(), and SinglePhaseFluidProperties::vaporTemperature().

◆ vaporTemperature() [3/3]

void SinglePhaseFluidProperties::vaporTemperature ( Real  p,
Real &  Tsat,
Real &  dTsat_dp 
) const
virtualinherited

Reimplemented in Water97FluidProperties.

Definition at line 218 of file SinglePhaseFluidProperties.C.

219 {
220  fluidPropError(name(), ": ", __PRETTY_FUNCTION__, " derivatives not implemented.");
221 
222  dT_dp = 0.0;
223  T = vaporTemperature(p);
224 }

Member Data Documentation

◆ _a

const std::array<Real, 6> MethaneFluidProperties::_a
protected
Initial value:
{
{2.968267e-1, 3.711201e-2, 1.218298e-5, -7.02426e-8, 7.543269e-11, -2.7237166e-14}}

Coefficients for viscosity.

Definition at line 169 of file MethaneFluidProperties.h.

Referenced by mu_from_p_T().

◆ _a0

const std::array<Real, 5> MethaneFluidProperties::_a0 {{0.008449, 4.6942, 3.4865, 1.6572, 1.4115}}
protected

Coefficients for ideal gas component of the Helmholtz free energy.

Definition at line 124 of file MethaneFluidProperties.h.

Referenced by alpha(), d2alpha_dtau2(), and dalpha_dtau().

◆ _allow_imperfect_jacobians

const bool FluidProperties::_allow_imperfect_jacobians
protectedinherited

Flag to set unimplemented Jacobian entries to zero.

Definition at line 48 of file FluidProperties.h.

Referenced by SinglePhaseFluidProperties::fluidPropError().

◆ _alpha3

const std::array<Real, 4> MethaneFluidProperties::_alpha3 {{20.0, 40.0, 40.0, 40.0}}
protected

◆ _b

const std::array<Real, 7> MethaneFluidProperties::_b
protected
Initial value:
{{-1.3401499e-2,
3.663076e-4,
-1.82248608e-6,
5.93987998e-9,
-9.1405505e-12,
6.7896889e-15,
-1.95048736e-18}}

Coefficients for thermal conductivity.

Definition at line 172 of file MethaneFluidProperties.h.

Referenced by k_from_p_T().

◆ _b0

const std::array<Real, 5> MethaneFluidProperties::_b0 {{3.4004324, 10.26951575, 20.43932747, 29.93744884, 79.13351945}}
protected

Definition at line 125 of file MethaneFluidProperties.h.

Referenced by alpha(), d2alpha_dtau2(), and dalpha_dtau().

◆ _beta3

const std::array<Real, 4> MethaneFluidProperties::_beta3 {{200.0, 250.0, 250.0, 250.0}}
protected

◆ _c2

const std::array<unsigned int, 23> MethaneFluidProperties::_c2
protected
Initial value:
{
{1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4}}

Definition at line 154 of file MethaneFluidProperties.h.

Referenced by alpha(), d2alpha_ddelta2(), d2alpha_ddeltatau(), d2alpha_dtau2(), dalpha_ddelta(), and dalpha_dtau().

◆ _d1

const std::array<unsigned int, 13> MethaneFluidProperties::_d1 {{1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 8, 9, 10}}
protected

◆ _d2

const std::array<unsigned int, 23> MethaneFluidProperties::_d2
protected
Initial value:
{
{1, 1, 1, 2, 4, 5, 6, 1, 2, 3, 4, 4, 3, 5, 5, 8, 2, 3, 4, 4, 4, 5, 6}}

Definition at line 156 of file MethaneFluidProperties.h.

Referenced by alpha(), d2alpha_ddelta2(), d2alpha_ddeltatau(), d2alpha_dtau2(), dalpha_ddelta(), and dalpha_dtau().

◆ _d3

const std::array<int, 4> MethaneFluidProperties::_d3 {{2, 0, 0, 0}}
protected

◆ _D3

const std::array<Real, 4> MethaneFluidProperties::_D3 {{1.0, 1.0, 1.0, 1.0}}
protected

◆ _gamma3

const std::array<Real, 4> MethaneFluidProperties::_gamma3 {{1.07, 1.11, 1.11, 1.11}}
protected

◆ _Mch4

const Real MethaneFluidProperties::_Mch4
protected

Methane molar mass (kg/mol)

Definition at line 111 of file MethaneFluidProperties.h.

Referenced by molarMass().

◆ _N1

const std::array<Real, 13> MethaneFluidProperties::_N1
protected
Initial value:
{{0.4367901028e-1,
0.6709236199,
-0.1765577859e1,
0.8582330241,
-0.1206513052e1,
0.512046722,
-0.4000010791e-3,
-0.1247842423e-1,
0.3100269701e-1,
0.1754748522e-2,
-0.3171921605e-5,
-0.224034684e-5,
0.2947056156e-6}}

Coefficients for residual component of the Helmholtz free energy.

Definition at line 128 of file MethaneFluidProperties.h.

Referenced by alpha(), d2alpha_ddelta2(), d2alpha_ddeltatau(), d2alpha_dtau2(), dalpha_ddelta(), and dalpha_dtau().

◆ _N2

const std::array<Real, 23> MethaneFluidProperties::_N2
protected
Initial value:
{
{0.1830487909, 0.1511883679, -0.4289363877, 0.6894002446e-1, -0.1408313996e-1,
-0.306305483e-1, -0.2969906708e-1, -0.1932040831e-1, -0.1105739959, 0.9952548995e-1,
0.8548437825e-2, -0.6150555662e-1, -0.4291792423e-1, -0.181320729e-1, 0.344590476e-1,
-0.238591945e-2, -0.1159094939e-1, 0.6641693602e-1, -0.237154959e-1, -0.3961624905e-1,
-0.1387292044e-1, 0.3389489599e-1, -0.2927378753e-2}}

Definition at line 145 of file MethaneFluidProperties.h.

Referenced by alpha(), d2alpha_ddelta2(), d2alpha_ddeltatau(), d2alpha_dtau2(), dalpha_ddelta(), and dalpha_dtau().

◆ _N3

const std::array<Real, 4> MethaneFluidProperties::_N3
protected
Initial value:
{
{0.9324799946e-4, -0.6287171518e1, 0.1271069467e2, -0.6423953466e1}}

Definition at line 159 of file MethaneFluidProperties.h.

Referenced by alpha(), d2alpha_ddelta2(), d2alpha_ddeltatau(), d2alpha_dtau2(), dalpha_ddelta(), and dalpha_dtau().

◆ _p_critical

const Real MethaneFluidProperties::_p_critical
protected

Critical pressure (Pa)

Definition at line 113 of file MethaneFluidProperties.h.

Referenced by criticalPressure(), and vaporPressure().

◆ _p_triple

const Real MethaneFluidProperties::_p_triple
protected

Triple point pressure (Pa)

Definition at line 119 of file MethaneFluidProperties.h.

Referenced by triplePointPressure().

◆ _R

const Real FluidProperties::_R = 8.3144598
staticinherited

◆ _rho_critical

const Real MethaneFluidProperties::_rho_critical
protected

Critical density (kg/m^3)

Definition at line 117 of file MethaneFluidProperties.h.

Referenced by criticalDensity(), saturatedLiquidDensity(), and saturatedVaporDensity().

◆ _t1

const std::array<Real, 13> MethaneFluidProperties::_t1
protected
Initial value:
{
{-0.5, 0.5, 1.0, 0.5, 1.0, 1.5, 4.5, 0.0, 1.0, 3.0, 1.0, 3.0, 3.0}}

Definition at line 141 of file MethaneFluidProperties.h.

Referenced by alpha(), d2alpha_ddelta2(), d2alpha_ddeltatau(), d2alpha_dtau2(), dalpha_ddelta(), and dalpha_dtau().

◆ _t2

const std::array<Real, 23> MethaneFluidProperties::_t2
protected
Initial value:
{{0.0, 1.0, 2.0, 0.0, 0.0, 2.0, 2.0, 5.0,
5.0, 5.0, 2.0, 4.0, 12.0, 8.0, 10.0, 10.0,
10.0, 14.0, 12.0, 18.0, 22.0, 18.0, 14.0}}

Definition at line 151 of file MethaneFluidProperties.h.

Referenced by alpha(), d2alpha_ddelta2(), d2alpha_ddeltatau(), d2alpha_dtau2(), dalpha_ddelta(), and dalpha_dtau().

◆ _t3

const std::array<Real, 4> MethaneFluidProperties::_t3 {{2.0, 0.0, 1.0, 2.0}}
protected

◆ _T_c2k

const Real FluidProperties::_T_c2k
protectedinherited

◆ _T_critical

const Real MethaneFluidProperties::_T_critical
protected

Critical temperature (K)

Definition at line 115 of file MethaneFluidProperties.h.

Referenced by criticalTemperature(), saturatedLiquidDensity(), saturatedVaporDensity(), and vaporPressure().

◆ _T_triple

const Real MethaneFluidProperties::_T_triple
protected

Triple point temperature (K)

Definition at line 121 of file MethaneFluidProperties.h.

Referenced by triplePointTemperature().

◆ h [1/2]

e e e e SinglePhaseFluidProperties::h
inherited

◆ h [2/2]

e e e e p h T T T T T v v v SinglePhaseFluidProperties::h
inherited

Definition at line 183 of file SinglePhaseFluidProperties.h.

◆ p [1/6]

e e e e p h SinglePhaseFluidProperties::p
inherited

Definition at line 167 of file SinglePhaseFluidProperties.h.

Referenced by StiffenedGasFluidProperties::c_from_v_e(), HeliumFluidProperties::c_from_v_e(), IdealGasFluidProperties::cp_from_p_T(), IdealGasFluidProperties::cv_from_p_T(), StiffenedGasFluidProperties::e_from_p_rho(), IdealGasFluidProperties::e_from_p_rho(), StiffenedGasFluidProperties::e_from_p_T(), IdealGasFluidProperties::e_from_p_T(), StiffenedGasFluidProperties::g_from_v_e(), IdealGasFluidProperties::g_from_v_e(), TabulatedFluidProperties::generateTabulatedData(), StiffenedGasFluidProperties::h_from_p_T(), IdealGasFluidProperties::h_from_p_T(), Water97FluidProperties::henryConstant(), IdealGasFluidProperties::k_from_p_T(), StiffenedGasFluidProperties::p_from_h_s(), IdealGasFluidProperties::p_from_h_s(), StiffenedGasFluidProperties::p_from_T_v(), IdealGasFluidProperties::p_from_T_v(), IdealGasFluidProperties::p_from_v_e(), StiffenedGasFluidProperties::p_from_v_e(), HeliumFluidProperties::p_from_v_e(), FlinakFluidProperties::p_from_v_e(), FlibeFluidProperties::p_from_v_e(), SinglePhaseFluidProperties::rho_e_from_p_T(), StiffenedGasFluidProperties::rho_from_p_s(), IdealGasFluidProperties::rho_from_p_s(), StiffenedGasFluidProperties::rho_from_p_T(), IdealGasFluidProperties::rho_from_p_T(), SinglePhaseFluidProperties::rho_mu_from_p_T(), StiffenedGasFluidProperties::s_from_h_p(), IdealGasFluidProperties::s_from_h_p(), StiffenedGasFluidProperties::s_from_p_T(), IdealGasFluidProperties::s_from_p_T(), SimpleFluidProperties::s_from_p_T(), Water97FluidProperties::s_from_p_T(), TabulatedFluidProperties::s_from_p_T(), IdealGasFluidProperties::s_from_T_v(), StiffenedGasFluidProperties::s_from_v_e(), IdealGasFluidProperties::s_from_v_e(), Water97FluidProperties::T_from_p_h(), FlinakFluidProperties::T_from_v_e(), FlibeFluidProperties::T_from_v_e(), Water97FluidProperties::vaporPressure(), SinglePhaseFluidProperties::vaporPressure(), Water97FluidProperties::vaporTemperature(), SinglePhaseFluidProperties::vaporTemperature(), and TabulatedFluidProperties::writeTabulatedData().

◆ p [2/6]

e e e e p h T T SinglePhaseFluidProperties::p
inherited

Definition at line 171 of file SinglePhaseFluidProperties.h.

◆ p [3/6]

e e e e p h T T T SinglePhaseFluidProperties::p
inherited

Definition at line 173 of file SinglePhaseFluidProperties.h.

◆ p [4/6]

e e e e p h T T T T SinglePhaseFluidProperties::p
inherited

Definition at line 175 of file SinglePhaseFluidProperties.h.

◆ p [5/6]

e e e e p h T T T T T v v v s SinglePhaseFluidProperties::p
inherited

Definition at line 185 of file SinglePhaseFluidProperties.h.

◆ p [6/6]

e e e e p h T T T T T v v v s h SinglePhaseFluidProperties::p
inherited

Definition at line 187 of file SinglePhaseFluidProperties.h.

◆ propfuncWithDefault

e e e e p h T T T T T v v v s h T e SinglePhaseFluidProperties::propfuncWithDefault(gamma, p, T)
inherited

Definition at line 190 of file SinglePhaseFluidProperties.h.

◆ rho

e e e e p h T SinglePhaseFluidProperties::rho
inherited

◆ T [1/3]

e e e e p h T T T T T SinglePhaseFluidProperties::T
inherited

Definition at line 177 of file SinglePhaseFluidProperties.h.

Referenced by IdealGasFluidProperties::c_from_p_T(), IdealGasFluidProperties::c_from_v_e(), HeliumFluidProperties::c_from_v_e(), IdealGasFluidProperties::cp_from_p_T(), IdealGasFluidProperties::cv_from_p_T(), StiffenedGasFluidProperties::e_from_p_T(), IdealGasFluidProperties::e_from_p_T(), StiffenedGasFluidProperties::e_from_T_v(), IdealGasFluidProperties::e_from_T_v(), StiffenedGasFluidProperties::g_from_v_e(), IdealGasFluidProperties::g_from_v_e(), StiffenedGasFluidProperties::h_from_p_T(), IdealGasFluidProperties::h_from_p_T(), StiffenedGasFluidProperties::h_from_T_v(), IdealGasFluidProperties::h_from_T_v(), Water97FluidProperties::henryConstant(), IdealGasFluidProperties::k_from_p_T(), HeliumFluidProperties::k_from_v_e(), IdealGasFluidProperties::mu_from_p_T(), StiffenedGasFluidProperties::p_from_T_v(), IdealGasFluidProperties::p_from_T_v(), HeliumFluidProperties::p_from_v_e(), FlibeFluidProperties::p_from_v_e(), FlinakFluidProperties::p_from_v_e(), SinglePhaseFluidProperties::rho_e_from_p_T(), StiffenedGasFluidProperties::rho_from_p_s(), IdealGasFluidProperties::rho_from_p_s(), StiffenedGasFluidProperties::rho_from_p_T(), IdealGasFluidProperties::rho_from_p_T(), SinglePhaseFluidProperties::rho_mu_from_p_T(), StiffenedGasFluidProperties::s_from_p_T(), IdealGasFluidProperties::s_from_p_T(), SimpleFluidProperties::s_from_p_T(), Water97FluidProperties::s_from_p_T(), TabulatedFluidProperties::s_from_p_T(), StiffenedGasFluidProperties::s_from_T_v(), IdealGasFluidProperties::s_from_T_v(), StiffenedGasFluidProperties::s_from_v_e(), IdealGasFluidProperties::s_from_v_e(), IdealGasFluidProperties::T_from_p_h(), Water97FluidProperties::T_from_p_h(), StiffenedGasFluidProperties::T_from_v_e(), IdealGasFluidProperties::T_from_v_e(), FlibeFluidProperties::T_from_v_e(), FlinakFluidProperties::T_from_v_e(), HeliumFluidProperties::T_from_v_e(), SinglePhaseFluidProperties::vaporPressure(), Water97FluidProperties::vaporTemperature(), and SinglePhaseFluidProperties::vaporTemperature().

◆ T [2/3]

e e e e p h T T T T T v SinglePhaseFluidProperties::T
inherited

Definition at line 179 of file SinglePhaseFluidProperties.h.

◆ T [3/3]

e e e e p h T T T T T v v SinglePhaseFluidProperties::T
inherited

Definition at line 181 of file SinglePhaseFluidProperties.h.

◆ v [1/6]

SinglePhaseFluidProperties::v
inherited

Definition at line 155 of file SinglePhaseFluidProperties.h.

Referenced by StiffenedGasFluidProperties::c_from_v_e(), IdealGasFluidProperties::c_from_v_e(), HeliumFluidProperties::c_from_v_e(), StiffenedGasFluidProperties::cp_from_v_e(), IdealGasFluidProperties::cp_from_v_e(), FlibeFluidProperties::cp_from_v_e(), FlinakFluidProperties::cp_from_v_e(), HeliumFluidProperties::cp_from_v_e(), FlibeFluidProperties::cv_from_p_T(), FlinakFluidProperties::cv_from_p_T(), IdealGasFluidProperties::cv_from_v_e(), FlibeFluidProperties::cv_from_v_e(), FlinakFluidProperties::cv_from_v_e(), HeliumFluidProperties::cv_from_v_e(), FlibeFluidProperties::e_from_p_T(), FlinakFluidProperties::e_from_p_T(), StiffenedGasFluidProperties::e_from_T_v(), IdealGasFluidProperties::e_from_v_h(), StiffenedGasFluidProperties::e_from_v_h(), StiffenedGasFluidProperties::g_from_v_e(), IdealGasFluidProperties::g_from_v_e(), FlibeFluidProperties::k_from_v_e(), FlinakFluidProperties::k_from_v_e(), HeliumFluidProperties::k_from_v_e(), FlibeFluidProperties::mu_from_v_e(), FlinakFluidProperties::mu_from_v_e(), HeliumFluidProperties::mu_from_v_e(), StiffenedGasFluidProperties::p_from_T_v(), IdealGasFluidProperties::p_from_T_v(), IdealGasFluidProperties::p_from_v_e(), StiffenedGasFluidProperties::p_from_v_e(), HeliumFluidProperties::p_from_v_e(), FlibeFluidProperties::p_from_v_e(), FlinakFluidProperties::p_from_v_e(), StiffenedGasFluidProperties::s_from_T_v(), IdealGasFluidProperties::s_from_T_v(), StiffenedGasFluidProperties::s_from_v_e(), IdealGasFluidProperties::s_from_v_e(), StiffenedGasFluidProperties::T_from_v_e(), IdealGasFluidProperties::T_from_v_e(), FlinakFluidProperties::T_from_v_e(), FlibeFluidProperties::T_from_v_e(), HeliumFluidProperties::T_from_v_e(), StiffenedGasFluidProperties::v_e_spndl_from_T(), IdealGasFluidProperties::v_e_spndl_from_T(), FlibeFluidProperties::v_from_p_T(), and FlinakFluidProperties::v_from_p_T().

◆ v [2/6]

e SinglePhaseFluidProperties::v
inherited

Definition at line 157 of file SinglePhaseFluidProperties.h.

◆ v [3/6]

e e SinglePhaseFluidProperties::v
inherited

Definition at line 159 of file SinglePhaseFluidProperties.h.

◆ v [4/6]

e e e SinglePhaseFluidProperties::v
inherited

Definition at line 161 of file SinglePhaseFluidProperties.h.

◆ v [5/6]

e e e e p SinglePhaseFluidProperties::v
inherited

Definition at line 165 of file SinglePhaseFluidProperties.h.

◆ v [6/6]

e e e e p h T T T T T v v v s h T SinglePhaseFluidProperties::v
inherited

Definition at line 189 of file SinglePhaseFluidProperties.h.


The documentation for this class was generated from the following files:
HelmholtzFluidProperties::h_from_p_T
virtual Real h_from_p_T(Real pressure, Real temperature) const override
Definition: HelmholtzFluidProperties.C:185
MethaneFluidProperties::_beta3
const std::array< Real, 4 > _beta3
Definition: MethaneFluidProperties.h:164
MethaneFluidProperties::_d2
const std::array< unsigned int, 23 > _d2
Definition: MethaneFluidProperties.h:156
HelmholtzFluidProperties::rho_from_p_T
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Definition: HelmholtzFluidProperties.C:29
MethaneFluidProperties::_N3
const std::array< Real, 4 > _N3
Definition: MethaneFluidProperties.h:159
MethaneFluidProperties::_p_critical
const Real _p_critical
Critical pressure (Pa)
Definition: MethaneFluidProperties.h:113
MethaneFluidProperties::_alpha3
const std::array< Real, 4 > _alpha3
Definition: MethaneFluidProperties.h:163
MethaneFluidProperties::_d3
const std::array< int, 4 > _d3
Definition: MethaneFluidProperties.h:162
HelmholtzFluidProperties::p_from_rho_T
virtual Real p_from_rho_T(Real rho, Real T) const
Pressure as a function of density and temperature.
Definition: HelmholtzFluidProperties.C:222
pow
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
Definition: ExpressionBuilder.h:673
MethaneFluidProperties::_a
const std::array< Real, 6 > _a
Coefficients for viscosity.
Definition: MethaneFluidProperties.h:169
HelmholtzFluidProperties::alpha
virtual Real alpha(Real delta, Real tau) const =0
Helmholtz free energy.
BrentsMethod::root
Real root(std::function< Real(Real)> const &f, Real x1, Real x2, Real tol=1.0e-12)
Finds the root of a function using Brent's method.
Definition: BrentsMethod.C:61
MethaneFluidProperties::_T_critical
const Real _T_critical
Critical temperature (K)
Definition: MethaneFluidProperties.h:115
MethaneFluidProperties::_T_triple
const Real _T_triple
Triple point temperature (K)
Definition: MethaneFluidProperties.h:121
HelmholtzFluidProperties::d2alpha_dtau2
virtual Real d2alpha_dtau2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt tau.
HelmholtzFluidProperties::HelmholtzFluidProperties
HelmholtzFluidProperties(const InputParameters &parameters)
Definition: HelmholtzFluidProperties.C:23
MethaneFluidProperties::_c2
const std::array< unsigned int, 23 > _c2
Definition: MethaneFluidProperties.h:154
MethaneFluidProperties::_d1
const std::array< unsigned int, 13 > _d1
Definition: MethaneFluidProperties.h:143
MethaneFluidProperties::_p_triple
const Real _p_triple
Triple point pressure (Pa)
Definition: MethaneFluidProperties.h:119
MethaneFluidProperties::_rho_critical
const Real _rho_critical
Critical density (kg/m^3)
Definition: MethaneFluidProperties.h:117
MethaneFluidProperties::_a0
const std::array< Real, 5 > _a0
Coefficients for ideal gas component of the Helmholtz free energy.
Definition: MethaneFluidProperties.h:124
HelmholtzFluidProperties::d2alpha_ddelta2
virtual Real d2alpha_ddelta2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta.
MethaneFluidProperties::_t3
const std::array< Real, 4 > _t3
Definition: MethaneFluidProperties.h:161
HelmholtzFluidProperties::e_from_p_T
virtual Real e_from_p_T(Real pressure, Real temperature) const override
Definition: HelmholtzFluidProperties.C:65
HelmholtzFluidProperties::dalpha_dtau
virtual Real dalpha_dtau(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt tau.
NS::density
const std::string density
Definition: NS.h:16
SinglePhaseFluidProperties::T
e e e e p h T T T T T T
Definition: SinglePhaseFluidProperties.h:177
SinglePhaseFluidProperties::criticalTemperature
virtual Real criticalTemperature() const
Critical temperature.
Definition: SinglePhaseFluidProperties.C:114
MethaneFluidProperties::_N2
const std::array< Real, 23 > _N2
Definition: MethaneFluidProperties.h:145
SinglePhaseFluidProperties::rho
e e e e p h T rho
Definition: SinglePhaseFluidProperties.h:169
SinglePhaseFluidProperties::vaporPressure
virtual Real vaporPressure(Real T) const
Vapor pressure.
Definition: SinglePhaseFluidProperties.C:177
SinglePhaseFluidProperties::vaporTemperature
virtual Real vaporTemperature(Real p) const
Vapor temperature.
Definition: SinglePhaseFluidProperties.C:212
name
const std::string name
Definition: Setup.h:21
MethaneFluidProperties::_N1
const std::array< Real, 13 > _N1
Coefficients for residual component of the Helmholtz free energy.
Definition: MethaneFluidProperties.h:128
SinglePhaseFluidProperties::criticalDensity
virtual Real criticalDensity() const
Critical density.
Definition: SinglePhaseFluidProperties.C:120
MethaneFluidProperties::mu_from_p_T
virtual Real mu_from_p_T(Real pressure, Real temperature) const override
Definition: MethaneFluidProperties.C:81
SinglePhaseFluidProperties::molarMass
virtual virtual std Real molarMass() const
Fluid name.
Definition: SinglePhaseFluidProperties.C:96
SinglePhaseFluidProperties::fluidPropError
void fluidPropError(Args... args) const
Definition: SinglePhaseFluidProperties.h:326
FluidProperties::_R
static const Real _R
Universal gas constant (J/mol/K)
Definition: FluidProperties.h:42
NS::temperature
const std::string temperature
Definition: NS.h:26
MethaneFluidProperties::_t1
const std::array< Real, 13 > _t1
Definition: MethaneFluidProperties.h:141
MethaneFluidProperties::_b0
const std::array< Real, 5 > _b0
Definition: MethaneFluidProperties.h:125
MethaneFluidProperties::_D3
const std::array< Real, 4 > _D3
Definition: MethaneFluidProperties.h:166
FluidProperties::_allow_imperfect_jacobians
const bool _allow_imperfect_jacobians
Flag to set unimplemented Jacobian entries to zero.
Definition: FluidProperties.h:48
MethaneFluidProperties::_b
const std::array< Real, 7 > _b
Coefficients for thermal conductivity.
Definition: MethaneFluidProperties.h:172
HelmholtzFluidProperties::d2alpha_ddeltatau
virtual Real d2alpha_ddeltatau(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta and tau.
SinglePhaseFluidProperties::p
e e e e p h p
Definition: SinglePhaseFluidProperties.h:167
MethaneFluidProperties::_Mch4
const Real _Mch4
Methane molar mass (kg/mol)
Definition: MethaneFluidProperties.h:111
HelmholtzFluidProperties::dalpha_ddelta
virtual Real dalpha_ddelta(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt delta.
MethaneFluidProperties::_gamma3
const std::array< Real, 4 > _gamma3
Definition: MethaneFluidProperties.h:165
MethaneFluidProperties::_t2
const std::array< Real, 23 > _t2
Definition: MethaneFluidProperties.h:151
HelmholtzFluidProperties::s_from_p_T
virtual Real s_from_p_T(Real pressure, Real temperature) const override
Definition: HelmholtzFluidProperties.C:150
BrentsMethod::bracket
void bracket(std::function< Real(Real)> const &f, Real &x1, Real &x2)
Function to bracket a root of a given function.
Definition: BrentsMethod.C:17
NS::pressure
const std::string pressure
Definition: NS.h:25
SinglePhaseFluidProperties::h
e e e e h
Definition: SinglePhaseFluidProperties.h:163