www.mooseframework.org
Public Types | Public Member Functions | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Private Member Functions | Static Private Member Functions | Private Attributes | List of all members
FauxGrainTracker Class Reference

This class is a fake grain tracker object, it will not actually track grains nor remap them but will provide the same interface as the grain tracker and can be used as a lightweight replacement when neither of those methods are needed. More...

#include <FauxGrainTracker.h>

Inheritance diagram for FauxGrainTracker:
[legend]

Public Types

enum  FieldType {
  FieldType::UNIQUE_REGION, FieldType::VARIABLE_COLORING, FieldType::GHOSTED_ENTITIES, FieldType::HALOS,
  FieldType::CENTROID, FieldType::ACTIVE_BOUNDS
}
 
enum  Status : unsigned char { Status::CLEAR = 0x0, Status::MARKED = 0x1, Status::DIRTY = 0x2, Status::INACTIVE = 0x4 }
 This enumeration is used to indicate status of the grains in the _unique_grains data structure. More...
 
enum  BoundaryIntersection : unsigned char {
  BoundaryIntersection::NONE = 0x0, BoundaryIntersection::ANY_BOUNDARY = 0x1, BoundaryIntersection::PRIMARY_PERCOLATION_BOUNDARY = 0x2, BoundaryIntersection::SECONDARY_PERCOLATION_BOUNDARY = 0x4,
  BoundaryIntersection::SPECIFIED_BOUNDARY = 0x8
}
 This enumeration is used to inidacate status of boundary intersections. More...
 

Public Member Functions

 FauxGrainTracker (const InputParameters &parameters)
 
virtual ~FauxGrainTracker ()
 
virtual void initialize () override
 
virtual void finalize () override
 
virtual Real getValue () override
 
virtual void execute () override
 
virtual Real getEntityValue (dof_id_type entity_id, FeatureFloodCount::FieldType field_type, std::size_t var_idx) const override
 
virtual const std::vector< unsigned int > & getVarToFeatureVector (dof_id_type elem_id) const override
 Returns a list of active unique feature ids for a particular element. More...
 
virtual unsigned int getFeatureVar (unsigned int feature_id) const override
 Returns the variable representing the passed in feature. More...
 
virtual std::size_t getNumberActiveGrains () const override
 Returns the number of active grains current stored in the GrainTracker. More...
 
virtual std::size_t getTotalFeatureCount () const override
 Returns the total feature count (active and inactive ids, useful for sizing vectors) More...
 
virtual Point getGrainCentroid (unsigned int grain_id) const override
 Returns the centroid for the given grain number. More...
 
virtual bool doesFeatureIntersectBoundary (unsigned int feature_id) const override
 Returns a Boolean indicating whether this feature intersects any boundary. More...
 
virtual void initialSetup () override
 
virtual void meshChanged () override
 
std::size_t getNumberActiveFeatures () const
 Return the number of active features. More...
 
virtual bool doesFeatureIntersectSpecifiedBoundary (unsigned int feature_id) const
 Returns a Boolean indicating whether this feature intersects boundaries in a user-supplied list. More...
 
virtual bool isFeaturePercolated (unsigned int feature_id) const
 Returns a Boolean indicating whether this feature is percolated (e.g. More...
 
virtual Point featureCentroid (unsigned int feature_id) const
 Returns the centroid of the designated feature (only supported without periodic boundaries) More...
 
std::size_t numCoupledVars () const
 Returns the number of coupled varaibles. More...
 
const std::vector< MooseVariable * > & getCoupledVars () const
 Returns a const vector to the coupled variable pointers. More...
 
const std::vector< MooseVariableFEBase * > & getFECoupledVars () const
 Returns a const vector to the coupled MooseVariableFEBase pointers. More...
 
bool isElemental () const
 
const std::vector< FeatureData > & getFeatures () const
 Return a constant reference to the vector of all discovered features. More...
 
virtual std::vector< unsigned int > getNewGrainIDs () const
 This method returns all of the new ids generated in an invocation of the GrainTracker. More...
 

Static Public Attributes

static const std::size_t invalid_size_t = std::numeric_limits<std::size_t>::max()
 
static const unsigned int invalid_id = std::numeric_limits<unsigned int>::max()
 

Protected Member Functions

template<typename T >
bool isBoundaryEntity (const T *entity) const
 Returns a Boolean indicating whether the entity is on one of the desired boundaries. More...
 
virtual void updateFieldInfo ()
 This method is used to populate any of the data structures used for storing field data (nodal or elemental). More...
 
bool flood (const DofObject *dof_object, std::size_t current_index)
 This method will check if the current entity is above the supplied threshold and "mark" it. More...
 
virtual Real getThreshold (std::size_t current_index) const
 Return the starting comparison threshold to use when inspecting an entity during the flood stage. More...
 
virtual Real getConnectingThreshold (std::size_t current_index) const
 Return the "connecting" comparison threshold to use when inspecting an entity during the flood stage. More...
 
bool compareValueWithThreshold (Real entity_value, Real threshold) const
 This method is used to determine whether the current entity value is part of a feature or not. More...
 
virtual bool isNewFeatureOrConnectedRegion (const DofObject *dof_object, std::size_t &current_index, FeatureData *&feature, Status &status, unsigned int &new_id)
 Method called during the recursive flood routine that should return whether or not the current entity is part of the current feature (if one is being explored), or if it's the start of a new feature. More...
 
void expandPointHalos ()
 This method takes all of the partial features and expands the local, ghosted, and halo sets around those regions to account for the diffuse interface. More...
 
void expandEdgeHalos (unsigned int num_layers_to_expand)
 This method expands the existing halo set by some width determined by the passed in value. More...
 
template<typename T >
void visitNeighborsHelper (const T *curr_entity, std::vector< const T * > neighbor_entities, FeatureData *feature, bool expand_halos_only, bool topological_neighbor, bool disjoint_only)
 The actual logic for visiting neighbors is abstracted out here. More...
 
void prepareDataForTransfer ()
 This routine uses the local flooded data to build up the local feature data structures (_feature_sets). More...
 
void serialize (std::string &serialized_buffer, unsigned int var_num=invalid_id)
 This routines packs the _partial_feature_sets data into a structure suitable for parallel communication operations. More...
 
void deserialize (std::vector< std::string > &serialized_buffers, unsigned int var_num=invalid_id)
 This routine takes the vector of byte buffers (one for each processor), deserializes them into a series of FeatureSet objects, and appends them to the _feature_sets data structure. More...
 
virtual void mergeSets ()
 This routine is called on the master rank only and stitches together the partial feature pieces seen on any processor. More...
 
virtual bool areFeaturesMergeable (const FeatureData &f1, const FeatureData &f2) const
 Method for determining whether two features are mergeable. More...
 
void communicateAndMerge ()
 This routine handles all of the serialization, communication and deserialization of the data structures containing FeatureData objects. More...
 
void sortAndLabel ()
 Sort and assign ids to features based on their position in the container after sorting. More...
 
void scatterAndUpdateRanks ()
 Calls buildLocalToGlobalIndices to build the individual local to global indicies for each rank and scatters that information to all ranks. More...
 
virtual void buildLocalToGlobalIndices (std::vector< std::size_t > &local_to_global_all, std::vector< int > &counts) const
 This routine populates a stacked vector of local to global indices per rank and the associated count vector for scattering the vector to the ranks. More...
 
void buildFeatureIdToLocalIndices (unsigned int max_id)
 This method builds a lookup map for retrieving the right local feature (by index) given a global index or id. More...
 
virtual void clearDataStructures ()
 Helper routine for clearing up data structures during initialize and prior to parallel communication. More...
 
void updateBoundaryIntersections (FeatureData &feature) const
 Update the feature's attributes to indicate boundary intersections. More...
 
void appendPeriodicNeighborNodes (FeatureData &feature) const
 This routine adds the periodic node information to our data structure prior to packing the data this makes those periodic neighbors appear much like ghosted nodes in a multiprocessor setting. More...
 
void updateRegionOffsets ()
 This routine updates the _region_offsets variable which is useful for quickly determining the proper global number for a feature when using multimap mode. More...
 
void visitNodalNeighbors (const Node *node, FeatureData *feature, bool expand_halos_only)
 These two routines are utility routines used by the flood routine and by derived classes for visiting neighbors. More...
 
void visitElementalNeighbors (const Elem *elem, FeatureData *feature, bool expand_halos_only, bool disjoint_only)
 

Static Protected Member Functions

template<class InputIterator >
static bool setsIntersect (InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2)
 This method detects whether two sets intersect without building a result set. More...
 

Protected Attributes

std::vector< MooseVariableFEBase * > _fe_vars
 The vector of coupled in variables. More...
 
std::vector< MooseVariable * > _vars
 The vector of coupled in variables cast to MooseVariable. More...
 
const DofMap & _dof_map
 Reference to the dof_map containing the coupled variables. More...
 
const Real _threshold
 The threshold above (or below) where an entity may begin a new region (feature) More...
 
Real _step_threshold
 
const Real _connecting_threshold
 The threshold above (or below) which neighboring entities are flooded (where regions can be extended but not started) More...
 
Real _step_connecting_threshold
 
MooseMesh & _mesh
 A reference to the mesh. More...
 
unsigned long _var_number
 This variable is used to build the periodic node map. More...
 
const bool _single_map_mode
 This variable is used to indicate whether or not multiple maps are used during flooding. More...
 
const bool _condense_map_info
 
const bool _global_numbering
 This variable is used to indicate whether or not we identify features with unique numbers on multiple maps. More...
 
const bool _var_index_mode
 This variable is used to indicate whether the maps will contain unique region information or just the variable numbers owning those regions. More...
 
const bool _compute_halo_maps
 Indicates whether or not to communicate halo map information with all ranks. More...
 
const bool _compute_var_to_feature_map
 Indicates whether or not the var to feature map is populated. More...
 
const bool _use_less_than_threshold_comparison
 Use less-than when comparing values against the threshold value. More...
 
const std::size_t _maps_size
 Convenience variable holding the size of all the datastructures size by the number of maps. More...
 
const processor_id_type _n_procs
 Convenience variable holding the number of processors in this simulation. More...
 
std::vector< std::set< dof_id_type > > _entities_visited
 This variable keeps track of which nodes have been visited during execution. More...
 
std::vector< std::map< dof_id_type, int > > _var_index_maps
 This map keeps track of which variables own which nodes. More...
 
std::vector< std::vector< const Elem * > > _nodes_to_elem_map
 The data structure used to find neighboring elements give a node ID. More...
 
std::vector< unsigned int > _feature_counts_per_map
 The number of features seen by this object per map. More...
 
unsigned int _feature_count
 The number of features seen by this object (same as summing _feature_counts_per_map) More...
 
std::vector< std::list< FeatureData > > _partial_feature_sets
 The data structure used to hold partial and communicated feature data, during the discovery and merging phases. More...
 
std::vector< FeatureData > & _feature_sets
 The data structure used to hold the globally unique features. More...
 
std::vector< FeatureData_volatile_feature_sets
 Derived objects (e.g. More...
 
std::vector< std::map< dof_id_type, int > > _feature_maps
 The feature maps contain the raw flooded node information and eventually the unique grain numbers. More...
 
std::vector< std::size_t > _local_to_global_feature_map
 The vector recording the local to global feature indices. More...
 
std::vector< std::size_t > _feature_id_to_local_index
 The vector recording the grain_id to local index (several indices will contain invalid_size_t) More...
 
PeriodicBoundaries * _pbs
 A pointer to the periodic boundary constraints object. More...
 
std::unique_ptr< PointLocatorBase > _point_locator
 
const PostprocessorValue & _element_average_value
 Average value of the domain which can optionally be used to find features in a field. More...
 
std::map< dof_id_type, int > _ghosted_entity_ids
 The map for holding reconstructed ghosted element information. More...
 
std::vector< std::map< dof_id_type, int > > _halo_ids
 The data structure for looking up halos around features. More...
 
std::multimap< dof_id_type, dof_id_type > _periodic_node_map
 The data structure which is a list of nodes that are constrained to other nodes based on the imposed periodic boundary conditions. More...
 
std::unordered_set< dof_id_type > _all_boundary_entity_ids
 The set of entities on the boundary of the domain used for determining if features intersect any boundary. More...
 
std::vector< BoundaryID > _primary_perc_bnds
 
std::vector< BoundaryID > _secondary_perc_bnds
 
std::vector< BoundaryID > _specified_bnds
 
const bool _is_elemental
 Determines if the flood counter is elements or not (nodes) More...
 
bool _is_boundary_restricted
 Indicates that this object should only run on one or more boundaries. More...
 
ConstBndElemRange * _bnd_elem_range
 Boundary element range pointer. More...
 
const bool _is_master
 Convenience variable for testing master rank. More...
 

Private Member Functions

void consolidateMergedFeatures (std::vector< std::list< FeatureData >> *saved_data=nullptr)
 This method consolidates all of the merged information from _partial_feature_sets into the _feature_sets vectors. More...
 

Static Private Member Functions

template<class T >
static void sort (std::set< T > &)
 
template<class T >
static void sort (std::vector< T > &container)
 
template<class T >
static void reserve (std::set< T > &, std::size_t)
 
template<class T >
static void reserve (std::vector< T > &container, std::size_t size)
 

Private Attributes

std::map< dof_id_type, unsigned int > _entity_id_to_var_num
 The mapping of entities to grains, in this case always the order parameter. More...
 
std::map< dof_id_type, std::vector< unsigned int > > _entity_var_to_features
 
std::vector< unsigned int > _empty_var_to_features
 
std::set< unsigned int > _variables_used
 Used as the lightweight grain counter. More...
 
std::size_t _grain_count
 Total Grain Count. More...
 
const std::size_t _n_vars
 
const int _tracking_step
 Used to emulate the tracking step of the real grain tracker object. More...
 
std::vector< unsigned int > _op_to_grains
 Order parameter to grain indices (just a reflexive vector) More...
 
std::map< unsigned int, Real > _volume
 The volume of the feature. More...
 
std::map< unsigned int, unsigned int > _vol_count
 The count of entities contributing to the volume calculation. More...
 
std::map< unsigned int, Point > _centroid
 The centroid of the feature (average of coordinates from entities participating in the volume calculation) More...
 
std::deque< const DofObject * > _entity_queue
 The data structure for maintaining entities to flood during discovery. More...
 
const bool _distribute_merge_work
 Keeps track of whether we are distributing the merge work. More...
 
const PerfID _execute_timer
 Timers. More...
 
const PerfID _merge_timer
 
const PerfID _finalize_timer
 
const PerfID _comm_and_merge
 
const PerfID _expand_halos
 
const PerfID _update_field_info
 
const PerfID _prepare_for_transfer
 
const PerfID _consolidate_merged_features
 

Detailed Description

This class is a fake grain tracker object, it will not actually track grains nor remap them but will provide the same interface as the grain tracker and can be used as a lightweight replacement when neither of those methods are needed.

You may safely use this object anytime you have at least as many order parameters as you do grains.

Definition at line 26 of file FauxGrainTracker.h.

Member Enumeration Documentation

◆ BoundaryIntersection

enum FeatureFloodCount::BoundaryIntersection : unsigned char
stronginherited

This enumeration is used to inidacate status of boundary intersections.

Enumerator
NONE 
ANY_BOUNDARY 
PRIMARY_PERCOLATION_BOUNDARY 
SECONDARY_PERCOLATION_BOUNDARY 
SPECIFIED_BOUNDARY 

Definition at line 129 of file FeatureFloodCount.h.

129  : unsigned char
130  {
131  NONE = 0x0,
132  ANY_BOUNDARY = 0x1,
133  PRIMARY_PERCOLATION_BOUNDARY = 0x2,
134  SECONDARY_PERCOLATION_BOUNDARY = 0x4,
135  SPECIFIED_BOUNDARY = 0x8
136  };

◆ FieldType

enum FeatureFloodCount::FieldType
stronginherited
Enumerator
UNIQUE_REGION 
VARIABLE_COLORING 
GHOSTED_ENTITIES 
HALOS 
CENTROID 
ACTIVE_BOUNDS 

Definition at line 103 of file FeatureFloodCount.h.

104  {
105  UNIQUE_REGION,
106  VARIABLE_COLORING,
107  GHOSTED_ENTITIES,
108  HALOS,
109  CENTROID,
110  ACTIVE_BOUNDS,
111  };

◆ Status

enum FeatureFloodCount::Status : unsigned char
stronginherited

This enumeration is used to indicate status of the grains in the _unique_grains data structure.

Enumerator
CLEAR 
MARKED 
DIRTY 
INACTIVE 

Definition at line 120 of file FeatureFloodCount.h.

120  : unsigned char
121  {
122  CLEAR = 0x0,
123  MARKED = 0x1,
124  DIRTY = 0x2,
125  INACTIVE = 0x4
126  };

Constructor & Destructor Documentation

◆ FauxGrainTracker()

FauxGrainTracker::FauxGrainTracker ( const InputParameters &  parameters)

Definition at line 29 of file FauxGrainTracker.C.

30  : FeatureFloodCount(parameters),
32  _grain_count(0),
33  _n_vars(_vars.size()),
34  _tracking_step(getParam<int>("tracking_step"))
35 {
36  // initialize faux data with identity map
37  _op_to_grains.resize(_n_vars);
38  for (MooseIndex(_op_to_grains) i = 0; i < _op_to_grains.size(); ++i)
39  _op_to_grains[i] = i;
40 
42 }

◆ ~FauxGrainTracker()

FauxGrainTracker::~FauxGrainTracker ( )
virtual

Definition at line 44 of file FauxGrainTracker.C.

44 {}

Member Function Documentation

◆ appendPeriodicNeighborNodes()

void FeatureFloodCount::appendPeriodicNeighborNodes ( FeatureData feature) const
protectedinherited

This routine adds the periodic node information to our data structure prior to packing the data this makes those periodic neighbors appear much like ghosted nodes in a multiprocessor setting.

Definition at line 1771 of file FeatureFloodCount.C.

1772 {
1773  if (_is_elemental)
1774  {
1775  for (auto entity : feature._local_ids)
1776  {
1777  Elem * elem = _mesh.elemPtr(entity);
1778 
1779  for (MooseIndex(elem->n_nodes()) node_n = 0; node_n < elem->n_nodes(); ++node_n)
1780  {
1781  auto iters = _periodic_node_map.equal_range(elem->node_id(node_n));
1782 
1783  for (auto it = iters.first; it != iters.second; ++it)
1784  {
1785  feature._periodic_nodes.insert(feature._periodic_nodes.end(), it->first);
1786  feature._periodic_nodes.insert(feature._periodic_nodes.end(), it->second);
1787  }
1788  }
1789  }
1790  }
1791  else
1792  {
1793  for (auto entity : feature._local_ids)
1794  {
1795  auto iters = _periodic_node_map.equal_range(entity);
1796 
1797  for (auto it = iters.first; it != iters.second; ++it)
1798  {
1799  feature._periodic_nodes.insert(feature._periodic_nodes.end(), it->first);
1800  feature._periodic_nodes.insert(feature._periodic_nodes.end(), it->second);
1801  }
1802  }
1803  }
1804 
1805  // TODO: Remove duplicates
1806 }

Referenced by FeatureFloodCount::prepareDataForTransfer().

◆ areFeaturesMergeable()

bool FeatureFloodCount::areFeaturesMergeable ( const FeatureData f1,
const FeatureData f2 
) const
protectedvirtualinherited

Method for determining whether two features are mergeable.

This routine exists because derived classes may need to override this function rather than use the mergeable method in the FeatureData object.

Reimplemented in PolycrystalUserObjectBase.

Definition at line 1243 of file FeatureFloodCount.C.

1244 {
1245  return f1.mergeable(f2);
1246 }

Referenced by FeatureFloodCount::mergeSets().

◆ buildFeatureIdToLocalIndices()

void FeatureFloodCount::buildFeatureIdToLocalIndices ( unsigned int  max_id)
protectedinherited

This method builds a lookup map for retrieving the right local feature (by index) given a global index or id.

max_id is passed to size the vector properly and may or may not be a globally consistent number. The assumption is that any id that is later queried from this object that is higher simply doesn't exist on the local processor.

Definition at line 665 of file FeatureFloodCount.C.

666 {
667  _feature_id_to_local_index.assign(max_id + 1, invalid_size_t);
668  for (MooseIndex(_feature_sets) feature_index = 0; feature_index < _feature_sets.size();
669  ++feature_index)
670  {
671  if (_feature_sets[feature_index]._status != Status::INACTIVE)
672  {
673  mooseAssert(_feature_sets[feature_index]._id <= max_id,
674  "Feature ID out of range(" << _feature_sets[feature_index]._id << ')');
675  _feature_id_to_local_index[_feature_sets[feature_index]._id] = feature_index;
676  }
677  }
678 }

Referenced by GrainTracker::assignGrains(), FeatureFloodCount::scatterAndUpdateRanks(), and GrainTracker::trackGrains().

◆ buildLocalToGlobalIndices()

void FeatureFloodCount::buildLocalToGlobalIndices ( std::vector< std::size_t > &  local_to_global_all,
std::vector< int > &  counts 
) const
protectedvirtualinherited

This routine populates a stacked vector of local to global indices per rank and the associated count vector for scattering the vector to the ranks.

The individual vectors can be different sizes. The ith vector will be distributed to the ith processor including the master rank. e.g. [ ... n_0 ] [ ... n_1 ] ... [ ... n_m ]

It is intended to be overridden in derived classes.

Definition at line 619 of file FeatureFloodCount.C.

621 {
622  mooseAssert(_is_master, "This method must only be called on the root processor");
623 
624  counts.assign(_n_procs, 0);
625  // Now size the individual counts vectors based on the largest index seen per processor
626  for (const auto & feature : _feature_sets)
627  for (const auto & local_index_pair : feature._orig_ids)
628  {
629  // local_index_pair.first = ranks, local_index_pair.second = local_index
630  mooseAssert(local_index_pair.first < _n_procs, "Processor ID is out of range");
631  if (local_index_pair.second >= static_cast<std::size_t>(counts[local_index_pair.first]))
632  counts[local_index_pair.first] = local_index_pair.second + 1;
633  }
634 
635  // Build the offsets vector
636  unsigned int globalsize = 0;
637  std::vector<int> offsets(_n_procs); // Type is signed for use with the MPI API
638  for (MooseIndex(offsets) i = 0; i < offsets.size(); ++i)
639  {
640  offsets[i] = globalsize;
641  globalsize += counts[i];
642  }
643 
644  // Finally populate the master vector
645  local_to_global_all.resize(globalsize, FeatureFloodCount::invalid_size_t);
646  for (const auto & feature : _feature_sets)
647  {
648  // Get the local indices from the feature and build a map
649  for (const auto & local_index_pair : feature._orig_ids)
650  {
651  auto rank = local_index_pair.first;
652  mooseAssert(rank < _n_procs, rank << ", " << _n_procs);
653 
654  auto local_index = local_index_pair.second;
655  auto stacked_local_index = offsets[rank] + local_index;
656 
657  mooseAssert(stacked_local_index < globalsize,
658  "Global index: " << stacked_local_index << " is out of range");
659  local_to_global_all[stacked_local_index] = feature._id;
660  }
661  }
662 }

Referenced by FeatureFloodCount::scatterAndUpdateRanks().

◆ clearDataStructures()

void FeatureFloodCount::clearDataStructures ( )
protectedvirtualinherited

Helper routine for clearing up data structures during initialize and prior to parallel communication.

Definition at line 330 of file FeatureFloodCount.C.

331 {
332 }

Referenced by FeatureFloodCount::communicateAndMerge().

◆ communicateAndMerge()

void FeatureFloodCount::communicateAndMerge ( )
protectedinherited

This routine handles all of the serialization, communication and deserialization of the data structures containing FeatureData objects.

The libMesh packed range routines handle the communication of the individual string buffers. Here we need to create a container to hold our type to serialize. It'll always be size one because we are sending a single byte stream of all the data to other processors. The stream need not be the same size on all processors.

Additionally we need to create a different container to hold the received byte buffers. The container type need not match the send container type. However, We do know the number of incoming buffers (num processors) so we'll go ahead and use a vector.

When we distribute merge work, we are reducing computational work by adding more communication. Each of the first _n_vars processors will receive one variable worth of information to merge. After each of those processors has merged that information, it'll be sent to the master processor where final consolidation will occur.

Send the data from all processors to the first _n_vars processors to create a complete global feature maps for each variable.

A call to gather_packed_range seems to populate the receiving buffer on all processors, not just the receiving buffer on the actual receiving processor. If we plan to call this function repeatedly, we must clear the buffers each time on all non-receiving processors. On the actual receiving processor, we'll save off the buffer for use later.

The FeatureFloodCount and derived algorithms rely on having the data structures intact on all non-zero ranks. This is because local-only information (local entities) is never communicated and thus must remain intact. However, the distributed merging will destroy that information. The easiest thing to do is to swap out the data structure while we perform the distributed merge work.

Send the data from the merging processors to the root to create a complete global feature map.

Send the data from all processors to the root to create a complete global feature map.

Definition at line 412 of file FeatureFloodCount.C.

413 {
414  TIME_SECTION(_comm_and_merge);
415 
416  // First we need to transform the raw data into a usable data structure
418 
426  std::vector<std::string> send_buffers(1);
427 
434  std::vector<std::string> recv_buffers, deserialize_buffers;
435 
443  {
444  auto rank = processor_id();
445  bool is_merging_processor = rank < _n_vars;
446 
447  if (is_merging_processor)
448  recv_buffers.reserve(_app.n_processors());
449 
450  for (MooseIndex(_n_vars) i = 0; i < _n_vars; ++i)
451  {
452  serialize(send_buffers[0], i);
453 
458  _communicator.gather_packed_range(i,
459  (void *)(nullptr),
460  send_buffers.begin(),
461  send_buffers.end(),
462  std::back_inserter(recv_buffers));
463 
470  if (rank == i)
471  recv_buffers.swap(deserialize_buffers);
472  else
473  recv_buffers.clear();
474  }
475 
476  // Setup a new communicator for doing merging communication operations
477  Parallel::Communicator merge_comm;
478 
479  // TODO: Update to MPI_UNDEFINED when libMesh bug is fixed.
480  _communicator.split(is_merging_processor ? 0 : 1, rank, merge_comm);
481 
482  if (is_merging_processor)
483  {
491  std::vector<std::list<FeatureData>> tmp_data(_partial_feature_sets.size());
492  tmp_data.swap(_partial_feature_sets);
493 
494  deserialize(deserialize_buffers, processor_id());
495 
496  send_buffers[0].clear();
497  recv_buffers.clear();
498  deserialize_buffers.clear();
499 
500  // Merge one variable's worth of data
501  mergeSets();
502 
503  // Now we need to serialize again to send to the master (only the processors who did work)
504  serialize(send_buffers[0]);
505 
506  // Free up as much memory as possible here before we do global communication
508 
513  merge_comm.gather_packed_range(0,
514  (void *)(nullptr),
515  send_buffers.begin(),
516  send_buffers.end(),
517  std::back_inserter(recv_buffers));
518 
519  if (_is_master)
520  {
521  // The root process now needs to deserialize all of the data
522  deserialize(recv_buffers);
523 
524  send_buffers[0].clear();
525  recv_buffers.clear();
526 
527  consolidateMergedFeatures(&tmp_data);
528  }
529  else
530  // Restore our original data on non-zero ranks
531  tmp_data.swap(_partial_feature_sets);
532  }
533  }
534 
535  // Serialized merging (master does all the work)
536  else
537  {
538  if (_is_master)
539  recv_buffers.reserve(_app.n_processors());
540 
541  serialize(send_buffers[0]);
542 
543  // Free up as much memory as possible here before we do global communication
545 
550  _communicator.gather_packed_range(0,
551  (void *)(nullptr),
552  send_buffers.begin(),
553  send_buffers.end(),
554  std::back_inserter(recv_buffers));
555 
556  if (_is_master)
557  {
558  // The root process now needs to deserialize all of the data
559  deserialize(recv_buffers);
560  recv_buffers.clear();
561 
562  mergeSets();
563 
565  }
566  }
567 
568  // Make sure that feature count is communicated to all ranks
569  _communicator.broadcast(_feature_count);
570 }

Referenced by GrainTracker::finalize(), and FeatureFloodCount::finalize().

◆ compareValueWithThreshold()

bool FeatureFloodCount::compareValueWithThreshold ( Real  entity_value,
Real  threshold 
) const
protectedinherited

This method is used to determine whether the current entity value is part of a feature or not.

Comparisons can either be greater than or less than the threshold which is controlled via input parameter.

Definition at line 1418 of file FeatureFloodCount.C.

1419 {
1420  return ((_use_less_than_threshold_comparison && (entity_value >= threshold)) ||
1421  (!_use_less_than_threshold_comparison && (entity_value <= threshold)));
1422 }

Referenced by FeatureFloodCount::isNewFeatureOrConnectedRegion().

◆ consolidateMergedFeatures()

void FeatureFloodCount::consolidateMergedFeatures ( std::vector< std::list< FeatureData >> *  saved_data = nullptr)
privateinherited

This method consolidates all of the merged information from _partial_feature_sets into the _feature_sets vectors.

Now that the merges are complete we need to adjust the centroid, and halos. Additionally, To make several of the sorting and tracking algorithms more straightforward, we will move the features into a flat vector. Finally we can count the final number of features and find the max local index seen on any processor Note: This is all occurring on rank 0 only!

IMPORTANT: FeatureFloodCount::_feature_count is set on rank 0 at this point but we can't broadcast it here because this routine is not collective.

Definition at line 1176 of file FeatureFloodCount.C.

1177 {
1178  TIME_SECTION(_consolidate_merged_features);
1179 
1187  mooseAssert(_is_master, "cosolidateMergedFeatures() may only be called on the master processor");
1188 
1189  // Offset where the current set of features with the same variable id starts in the flat vector
1190  unsigned int feature_offset = 0;
1191  // Set the member feature count to zero and start counting the actual features
1192  _feature_count = 0;
1193 
1194  for (MooseIndex(_maps_size) map_num = 0; map_num < _maps_size; ++map_num)
1195  {
1196  for (auto & feature : _partial_feature_sets[map_num])
1197  {
1198  if (saved_data)
1199  {
1200  for (auto it = (*saved_data)[map_num].begin(); it != (*saved_data)[map_num].end();
1201  /* no increment */)
1202  {
1203  if (feature.canConsolidate(*it))
1204  {
1205  feature.consolidate(std::move(*it));
1206  it = (*saved_data)[map_num].erase(it); // increment
1207  }
1208  else
1209  ++it;
1210  }
1211  }
1212 
1213  // If after merging we still have an inactive feature, discard it
1214  if (feature._status == Status::CLEAR)
1215  {
1216  // First we need to calculate the centroid now that we are doing merging all partial
1217  // features
1218  if (feature._vol_count != 0)
1219  feature._centroid /= feature._vol_count;
1220 
1221  _feature_sets.emplace_back(std::move(feature));
1222  ++_feature_count;
1223  }
1224  }
1225 
1226  // Record the feature numbers just for the current map
1227  _feature_counts_per_map[map_num] = _feature_count - feature_offset;
1228 
1229  // Now update the running feature count so we can calculate the next map's contribution
1230  feature_offset = _feature_count;
1231 
1232  // Clean up the "moved" objects
1233  _partial_feature_sets[map_num].clear();
1234  }
1235 
1240 }

Referenced by FeatureFloodCount::communicateAndMerge().

◆ deserialize()

void FeatureFloodCount::deserialize ( std::vector< std::string > &  serialized_buffers,
unsigned int  var_num = invalid_id 
)
protectedinherited

This routine takes the vector of byte buffers (one for each processor), deserializes them into a series of FeatureSet objects, and appends them to the _feature_sets data structure.

Note: It is assumed that local processor information may already be stored in the _feature_sets data structure so it is not cleared before insertion.

Usually we have the local processor data already in the _partial_feature_sets data structure. However, if we are doing distributed merge work, we also need to preserve all of the original data for use in later stages of the algorithm so it'll have been swapped out with clean buffers. This leaves us a choice, either we just duplicate the Features from the original data structure after we've swapped out the buffer, or we go ahead and unpack data that we would normally already have. So during distributed merging, that's exactly what we'll do. Later however when the master is doing the final consolidating, we'll opt to just skip the local unpacking. To tell the difference, between these two modes, we just need to see if a var_num was passed in.

Definition at line 1086 of file FeatureFloodCount.C.

1087 {
1088  // The input string stream used for deserialization
1089  std::istringstream iss;
1090 
1091  auto rank = processor_id();
1092 
1093  for (MooseIndex(serialized_buffers) proc_id = 0; proc_id < serialized_buffers.size(); ++proc_id)
1094  {
1106  if (var_num == invalid_id && proc_id == rank)
1107  continue;
1108 
1109  iss.str(serialized_buffers[proc_id]); // populate the stream with a new buffer
1110  iss.clear(); // reset the string stream state
1111 
1112  // Load the gathered data into the data structure.
1113  if (var_num == invalid_id)
1114  dataLoad(iss, _partial_feature_sets, this);
1115  else
1116  dataLoad(iss, _partial_feature_sets[var_num], this);
1117  }
1118 }

Referenced by FeatureFloodCount::communicateAndMerge().

◆ doesFeatureIntersectBoundary()

bool FauxGrainTracker::doesFeatureIntersectBoundary ( unsigned int  feature_id) const
overridevirtual

Returns a Boolean indicating whether this feature intersects any boundary.

Reimplemented from FeatureFloodCount.

Definition at line 271 of file FauxGrainTracker.C.

272 {
273  mooseDoOnce(mooseWarning("FauxGrainTracker::doesFeatureIntersectboundary() is unimplemented"));
274 
275  return false;
276 }

◆ doesFeatureIntersectSpecifiedBoundary()

bool FeatureFloodCount::doesFeatureIntersectSpecifiedBoundary ( unsigned int  feature_id) const
virtualinherited

Returns a Boolean indicating whether this feature intersects boundaries in a user-supplied list.

Reimplemented in GrainTracker.

Definition at line 850 of file FeatureFloodCount.C.

851 {
852  // TODO: This information is not parallel consistent when using FeatureFloodCounter
853 
854  // Some processors don't contain the largest feature id, in that case we just return invalid_id
855  if (feature_id >= _feature_id_to_local_index.size())
856  return false;
857 
858  auto local_index = _feature_id_to_local_index[feature_id];
859 
860  if (local_index != invalid_size_t)
861  {
862  mooseAssert(local_index < _feature_sets.size(), "local_index out of bounds");
863  return _feature_sets[local_index]._status != Status::INACTIVE
864  ? ((_feature_sets[local_index]._boundary_intersection &
867  : false;
868  }
869 
870  return false;
871 }

Referenced by FeatureVolumeVectorPostprocessor::execute().

◆ execute()

void FauxGrainTracker::execute ( )
overridevirtual

Reimplemented from FeatureFloodCount.

Definition at line 155 of file FauxGrainTracker.C.

156 {
157  Moose::perf_log.push("execute()", "FauxGrainTracker");
158 
159  for (const auto & current_elem : _mesh.getMesh().active_local_element_ptr_range())
160  {
161  // Loop over elements or nodes and populate the data structure with the first variable with a
162  // value above a threshold
163  if (_is_elemental)
164  {
165  std::vector<Point> centroid(1, current_elem->centroid());
166  _fe_problem.reinitElemPhys(current_elem, centroid, 0);
167 
168  auto entity = current_elem->id();
169  auto insert_pair =
170  moose_try_emplace(_entity_var_to_features,
171  entity,
172  std::vector<unsigned int>(_n_vars, FeatureFloodCount::invalid_id));
173  auto & vec_ref = insert_pair.first->second;
174 
175  for (MooseIndex(_vars) var_num = 0; var_num < _n_vars; ++var_num)
176  {
177  auto entity_value = _vars[var_num]->sln()[0];
178 
179  if ((_use_less_than_threshold_comparison && (entity_value >= _threshold)) ||
180  (!_use_less_than_threshold_comparison && (entity_value <= _threshold)))
181  {
182  _entity_id_to_var_num[current_elem->id()] = var_num;
183  _variables_used.insert(var_num);
184  _volume[var_num] += current_elem->volume();
185  _vol_count[var_num]++;
186  // Sum the centroid values for now, we'll average them later
187  _centroid[var_num] += current_elem->centroid();
188  vec_ref[var_num] = var_num;
189  break;
190  }
191  }
192  }
193  else
194  {
195  unsigned int n_nodes = current_elem->n_vertices();
196  for (unsigned int i = 0; i < n_nodes; ++i)
197  {
198  const Node * current_node = current_elem->node_ptr(i);
199 
200  for (MooseIndex(_vars) var_num = 0; var_num < _n_vars; ++var_num)
201  {
202  auto entity_value = _vars[var_num]->getNodalValue(*current_node);
203  if ((_use_less_than_threshold_comparison && (entity_value >= _threshold)) ||
204  (!_use_less_than_threshold_comparison && (entity_value <= _threshold)))
205  {
206  _entity_id_to_var_num[current_node->id()] = var_num;
207  _variables_used.insert(var_num);
208  break;
209  }
210  }
211  }
212  }
213  }
214 
215  _grain_count = std::max(_grain_count, _variables_used.size());
216 
217  Moose::perf_log.pop("execute()", "FauxGrainTracker");
218 }

◆ expandEdgeHalos()

void FeatureFloodCount::expandEdgeHalos ( unsigned int  num_layers_to_expand)
protectedinherited

This method expands the existing halo set by some width determined by the passed in value.

This method does NOT mask off any local IDs.

Create a copy of the halo set so that as we insert new ids into the set we don't continue to iterate on those new ids.

We have to handle disjoint halo IDs slightly differently. Once you are disjoint, you can't go back so make sure that we keep placing these IDs in the disjoint set.

Definition at line 1527 of file FeatureFloodCount.C.

1528 {
1529  if (num_layers_to_expand == 0)
1530  return;
1531 
1532  TIME_SECTION(_expand_halos);
1533 
1534  for (auto & list_ref : _partial_feature_sets)
1535  {
1536  for (auto & feature : list_ref)
1537  {
1538  for (MooseIndex(num_layers_to_expand) halo_level = 0; halo_level < num_layers_to_expand;
1539  ++halo_level)
1540  {
1545  FeatureData::container_type orig_halo_ids(feature._halo_ids);
1546  for (auto entity : orig_halo_ids)
1547  {
1548  if (_is_elemental)
1549  visitElementalNeighbors(_mesh.elemPtr(entity),
1550  &feature,
1551  /*expand_halos_only =*/true,
1552  /*disjoint_only =*/false);
1553  else
1554  visitNodalNeighbors(_mesh.nodePtr(entity),
1555  &feature,
1556  /*expand_halos_only =*/true);
1557  }
1558 
1563  FeatureData::container_type disjoint_orig_halo_ids(feature._disjoint_halo_ids);
1564  for (auto entity : disjoint_orig_halo_ids)
1565  {
1566  if (_is_elemental)
1567  visitElementalNeighbors(_mesh.elemPtr(entity),
1568 
1569  &feature,
1570  /*expand_halos_only =*/true,
1571  /*disjoint_only =*/true);
1572  else
1573  visitNodalNeighbors(_mesh.nodePtr(entity),
1574 
1575  &feature,
1576  /*expand_halos_only =*/true);
1577  }
1578  }
1579  }
1580  }
1581 }

Referenced by GrainTracker::finalize(), and PolycrystalUserObjectBase::finalize().

◆ expandPointHalos()

void FeatureFloodCount::expandPointHalos ( )
protectedinherited

This method takes all of the partial features and expands the local, ghosted, and halo sets around those regions to account for the diffuse interface.

Rather than using any kind of recursion here, we simply expand the region by all "point" neighbors from the actual grain cells since all point neighbors will contain contributions to the region.

To expand the feature element region to the actual flooded region (nodal basis) we need to add in all point neighbors of the current local region for each feature. This is because the elemental variable influence spreads from the elemental data out exactly one element from every mesh point.

Definition at line 1465 of file FeatureFloodCount.C.

1466 {
1467  const auto & node_to_elem_map = _mesh.nodeToActiveSemilocalElemMap();
1468  FeatureData::container_type expanded_local_ids;
1469  auto my_processor_id = processor_id();
1470 
1477  for (auto & list_ref : _partial_feature_sets)
1478  {
1479  for (auto & feature : list_ref)
1480  {
1481  expanded_local_ids.clear();
1482 
1483  for (auto entity : feature._local_ids)
1484  {
1485  const Elem * elem = _mesh.elemPtr(entity);
1486  mooseAssert(elem, "elem pointer is NULL");
1487 
1488  // Get the nodes on a current element so that we can add in point neighbors
1489  auto n_nodes = elem->n_vertices();
1490  for (MooseIndex(n_nodes) i = 0; i < n_nodes; ++i)
1491  {
1492  const Node * current_node = elem->node_ptr(i);
1493 
1494  auto elem_vector_it = node_to_elem_map.find(current_node->id());
1495  if (elem_vector_it == node_to_elem_map.end())
1496  mooseError("Error in node to elem map");
1497 
1498  const auto & elem_vector = elem_vector_it->second;
1499 
1500  std::copy(elem_vector.begin(),
1501  elem_vector.end(),
1502  std::insert_iterator<FeatureData::container_type>(expanded_local_ids,
1503  expanded_local_ids.end()));
1504 
1505  // Now see which elements need to go into the ghosted set
1506  for (auto entity : elem_vector)
1507  {
1508  const Elem * neighbor = _mesh.elemPtr(entity);
1509  mooseAssert(neighbor, "neighbor pointer is NULL");
1510 
1511  if (neighbor->processor_id() != my_processor_id)
1512  feature._ghosted_ids.insert(feature._ghosted_ids.end(), elem->id());
1513  }
1514  }
1515  }
1516 
1517  // Replace the existing local ids with the expanded local ids
1518  feature._local_ids.swap(expanded_local_ids);
1519 
1520  // Copy the expanded local_ids into the halo_ids container
1521  feature._halo_ids = feature._local_ids;
1522  }
1523  }
1524 }

◆ featureCentroid()

Point FeatureFloodCount::featureCentroid ( unsigned int  feature_id) const
virtualinherited

Returns the centroid of the designated feature (only supported without periodic boundaries)

Definition at line 900 of file FeatureFloodCount.C.

901 {
902  if (feature_id >= _feature_id_to_local_index.size())
903  return invalid_id;
904 
905  auto local_index = _feature_id_to_local_index[feature_id];
906 
907  Real invalid_coord = std::numeric_limits<Real>::max();
908  Point p(invalid_coord, invalid_coord, invalid_coord);
909  if (local_index != invalid_size_t)
910  {
911  mooseAssert(local_index < _feature_sets.size(), "local_index out of bounds");
912  p = _feature_sets[local_index]._centroid;
913  }
914  return p;
915 }

Referenced by FeatureVolumeVectorPostprocessor::execute().

◆ finalize()

void FauxGrainTracker::finalize ( )
overridevirtual

Convert elements of the maps into simple values or vector of Real. libMesh's _communicator.sum() does not work on std::maps

Reimplemented from FeatureFloodCount.

Definition at line 221 of file FauxGrainTracker.C.

222 {
223  Moose::perf_log.push("finalize()", "FauxGrainTracker");
224 
225  _communicator.set_union(_variables_used);
226  _communicator.set_union(_entity_id_to_var_num);
227 
228  if (_is_elemental)
229  for (MooseIndex(_vars) var_num = 0; var_num < _n_vars; ++var_num)
230  {
235  unsigned int vol_count;
236  std::vector<Real> grain_data(4);
237 
238  const auto count = _vol_count.find(var_num);
239  if (count != _vol_count.end())
240  vol_count = count->second;
241 
242  const auto vol = _volume.find(var_num);
243  if (vol != _volume.end())
244  grain_data[0] = vol->second;
245 
246  const auto centroid = _centroid.find(var_num);
247  if (centroid != _centroid.end())
248  {
249  grain_data[1] = centroid->second(0);
250  grain_data[2] = centroid->second(1);
251  grain_data[3] = centroid->second(2);
252  }
253  // combine centers & volumes from all MPI ranks
254  gatherSum(vol_count);
255  gatherSum(grain_data);
256  _volume[var_num] = grain_data[0];
257  _centroid[var_num] = {grain_data[1], grain_data[2], grain_data[3]};
258  _centroid[var_num] /= vol_count;
259  }
260 
261  Moose::perf_log.pop("finalize()", "FauxGrainTracker");
262 }

◆ flood()

bool FeatureFloodCount::flood ( const DofObject *  dof_object,
std::size_t  current_index 
)
protectedinherited

This method will check if the current entity is above the supplied threshold and "mark" it.

It will then inspect neighboring entities that are above the connecting threshold and add them to the current feature.

Returns
Boolean indicating whether a new feature was found while exploring the current entity.

If we reach this point (i.e. we haven't continued to the next queue entry), we've found a new mesh entity that's part of a feature. We need to mark the entity as visited at this point (and not before!) to avoid infinite recursion. If you mark the node too early you risk not coloring in a whole feature any time a "connecting threshold" is used since we may have already visited this entity earlier but it was in-between two thresholds.

See if this particular entity cell contributes to the centroid calculation. We only deal with elemental floods and only count it if it's owned by the current processor to avoid skewing the result.

Definition at line 1294 of file FeatureFloodCount.C.

1296 {
1297  // if (dof_object == nullptr || dof_object == libMesh::remote_elem)
1298  // return false;
1299  mooseAssert(dof_object, "DOF object is nullptr");
1300  mooseAssert(_entity_queue.empty(), "Entity queue is not empty when starting a feature");
1301 
1302  // Kick off the exploration of a new feature
1303  _entity_queue.push_front(dof_object);
1304 
1305  bool return_value = false;
1306  FeatureData * feature = nullptr;
1307  while (!_entity_queue.empty())
1308  {
1309  const DofObject * curr_dof_object = _entity_queue.back();
1310  const Elem * elem = _is_elemental ? static_cast<const Elem *>(curr_dof_object) : nullptr;
1311  _entity_queue.pop_back();
1312 
1313  // Retrieve the id of the current entity
1314  auto entity_id = curr_dof_object->id();
1315 
1316  // Has this entity already been marked? - if so move along
1317  if (current_index != invalid_size_t &&
1318  _entities_visited[current_index].find(entity_id) != _entities_visited[current_index].end())
1319  continue;
1320 
1321  // Are we outside of the range we should be working in?
1322  if (_is_elemental && !_dof_map.is_evaluable(*elem))
1323  continue;
1324 
1325  // See if the current entity either starts a new feature or continues an existing feature
1326  auto new_id = invalid_id; // Writable reference to hold an optional id;
1327  Status status =
1328  Status::INACTIVE; // Status is inactive until we find an entity above the starting threshold
1329 
1330  // Make sure that the Assembly object has the right element and subdomain information set
1331  // since we are moving through the mesh in a manual fashion.
1332  if (_is_elemental)
1333  _fe_problem.setCurrentSubdomainID(elem, 0);
1334 
1335  if (!isNewFeatureOrConnectedRegion(curr_dof_object, current_index, feature, status, new_id))
1336  {
1337  // If we have an active feature, we just found a halo entity
1338  if (feature)
1339  feature->_halo_ids.insert(feature->_halo_ids.end(), entity_id);
1340  continue;
1341  }
1342 
1343  mooseAssert(current_index != invalid_size_t, "current_index is invalid");
1344 
1353  return_value = true;
1354  _entities_visited[current_index].insert(entity_id);
1355 
1356  auto map_num = _single_map_mode ? decltype(current_index)(0) : current_index;
1357 
1358  // New Feature (we need to create it and add it to our data structure)
1359  if (!feature)
1360  {
1361  _partial_feature_sets[map_num].emplace_back(
1362  current_index, _feature_count++, processor_id(), status);
1363 
1364  // Get a handle to the feature we will update (always the last feature in the data structure)
1365  feature = &_partial_feature_sets[map_num].back();
1366 
1367  // If new_id is valid, we'll set it in the feature here.
1368  if (new_id != invalid_id)
1369  feature->_id = new_id;
1370  }
1371 
1372  // Insert the current entity into the local ids data structure
1373  feature->_local_ids.insert(feature->_local_ids.end(), entity_id);
1374 
1380  if (_is_elemental && processor_id() == curr_dof_object->processor_id())
1381  {
1382  // Keep track of how many elements participate in the centroid averaging
1383  feature->_vol_count++;
1384 
1385  // Sum the centroid values for now, we'll average them later
1386  feature->_centroid += elem->centroid();
1387 
1388  // // Does the volume intersect the boundary?
1389  // if (_all_boundary_entity_ids.find(elem->id()) != _all_boundary_entity_ids.end())
1390  // feature->_intersects_boundary = true;
1391  }
1392 
1393  if (_is_elemental)
1395  feature,
1396  /*expand_halos_only =*/false,
1397  /*disjoint_only =*/false);
1398  else
1399  visitNodalNeighbors(static_cast<const Node *>(curr_dof_object),
1400  feature,
1401  /*expand_halos_only =*/false);
1402  }
1403 
1404  return return_value;
1405 }

Referenced by FeatureFloodCount::execute(), and PolycrystalUserObjectBase::execute().

◆ getConnectingThreshold()

Real FeatureFloodCount::getConnectingThreshold ( std::size_t  current_index) const
protectedvirtualinherited

Return the "connecting" comparison threshold to use when inspecting an entity during the flood stage.

Definition at line 1412 of file FeatureFloodCount.C.

1413 {
1415 }

Referenced by FeatureFloodCount::isNewFeatureOrConnectedRegion().

◆ getCoupledVars()

const std::vector<MooseVariable *>& FeatureFloodCount::getCoupledVars ( ) const
inlineinherited

Returns a const vector to the coupled variable pointers.

Definition at line 98 of file FeatureFloodCount.h.

98 { return _vars; }

Referenced by AverageGrainVolume::AverageGrainVolume(), and FeatureVolumeVectorPostprocessor::FeatureVolumeVectorPostprocessor().

◆ getEntityValue()

Real FauxGrainTracker::getEntityValue ( dof_id_type  entity_id,
FeatureFloodCount::FieldType  field_type,
std::size_t  var_idx 
) const
overridevirtual

Reimplemented from FeatureFloodCount.

Definition at line 47 of file FauxGrainTracker.C.

50 {
51  if (var_idx == FeatureFloodCount::invalid_size_t)
52  var_idx = 0;
53 
54  mooseAssert(var_idx < _n_vars, "Index out of range");
55 
56  switch (field_type)
57  {
60  {
61  auto entity_it = _entity_id_to_var_num.find(entity_id);
62 
63  if (entity_it != _entity_id_to_var_num.end())
64  return entity_it->second;
65  else
66  return -1;
67  break;
68  }
69 
71  {
72  if (_periodic_node_map.size())
73  mooseDoOnce(mooseWarning(
74  "Centroids are not correct when using periodic boundaries, contact the MOOSE team"));
75 
76  // If this element contains the centroid of one of features, return it's index
77  const auto * elem_ptr = _mesh.elemPtr(entity_id);
78  for (MooseIndex(_vars) var_num = 0; var_num < _n_vars; ++var_num)
79  {
80  const auto centroid = _centroid.find(var_num);
81  if (centroid != _centroid.end())
82  if (elem_ptr->contains_point(centroid->second))
83  return 1;
84  }
85 
86  return 0;
87  }
88 
89  // We don't want to error here because this should be a drop in replacement for the real grain
90  // tracker.
91  // Instead we'll just return zero and continue
92  default:
93  return 0;
94  }
95 
96  return 0;
97 }

◆ getFeatures()

const std::vector<FeatureData>& FeatureFloodCount::getFeatures ( ) const
inlineinherited

Return a constant reference to the vector of all discovered features.

Definition at line 340 of file FeatureFloodCount.h.

340 { return _feature_sets; }

Referenced by GrainTracker::prepopulateState().

◆ getFeatureVar()

unsigned int FauxGrainTracker::getFeatureVar ( unsigned int  feature_id) const
overridevirtual

Returns the variable representing the passed in feature.

Reimplemented from FeatureFloodCount.

Definition at line 113 of file FauxGrainTracker.C.

114 {
115  return feature_id;
116 }

◆ getFECoupledVars()

const std::vector<MooseVariableFEBase *>& FeatureFloodCount::getFECoupledVars ( ) const
inlineinherited

Returns a const vector to the coupled MooseVariableFEBase pointers.

Definition at line 101 of file FeatureFloodCount.h.

101 { return _fe_vars; }

Referenced by AverageGrainVolume::AverageGrainVolume().

◆ getGrainCentroid()

Point FauxGrainTracker::getGrainCentroid ( unsigned int  grain_id) const
overridevirtual

Returns the centroid for the given grain number.

Implements GrainTrackerInterface.

Definition at line 131 of file FauxGrainTracker.C.

132 {
133  const auto grain_center = _centroid.find(grain_index);
134  mooseAssert(grain_center != _centroid.end(),
135  "Grain " << grain_index << " does not exist in data structure");
136 
137  return grain_center->second;
138 }

◆ getNewGrainIDs()

std::vector< unsigned int > GrainTrackerInterface::getNewGrainIDs ( ) const
virtualinherited

This method returns all of the new ids generated in an invocation of the GrainTracker.

Reimplemented in GrainTracker.

Definition at line 80 of file GrainTrackerInterface.C.

81 {
82  return std::vector<unsigned int>();
83 }

◆ getNumberActiveFeatures()

std::size_t FeatureFloodCount::getNumberActiveFeatures ( ) const
inherited

Return the number of active features.

Definition at line 791 of file FeatureFloodCount.C.

792 {
793  // Note: This value is parallel consistent, see FeatureFloodCount::communicateAndMerge()
794  return _feature_count;
795 }

Referenced by AverageGrainVolume::getValue().

◆ getNumberActiveGrains()

std::size_t FauxGrainTracker::getNumberActiveGrains ( ) const
overridevirtual

Returns the number of active grains current stored in the GrainTracker.

This value is the same value reported when the GrainTracker (FeatureFloodObject) is used as a Postprocessor.

Note: This value will count each piece of a split grain (often encountered in EBSD data sets).

Implements GrainTrackerInterface.

Definition at line 119 of file FauxGrainTracker.C.

120 {
121  return _variables_used.size();
122 }

◆ getThreshold()

Real FeatureFloodCount::getThreshold ( std::size_t  current_index) const
protectedvirtualinherited

Return the starting comparison threshold to use when inspecting an entity during the flood stage.

Reimplemented in GrainTracker.

Definition at line 1407 of file FeatureFloodCount.C.

1408 {
1409  return _step_threshold;
1410 }

Referenced by FeatureFloodCount::isNewFeatureOrConnectedRegion().

◆ getTotalFeatureCount()

std::size_t FauxGrainTracker::getTotalFeatureCount ( ) const
overridevirtual

Returns the total feature count (active and inactive ids, useful for sizing vectors)

Since the FeatureFloodCount object doesn't maintain any information about features between invocations. The maximum id in use is simply the number of features.

Reimplemented from FeatureFloodCount.

Definition at line 125 of file FauxGrainTracker.C.

126 {
127  return _grain_count;
128 }

◆ getValue()

Real FauxGrainTracker::getValue ( )
overridevirtual

Reimplemented from FeatureFloodCount.

Definition at line 265 of file FauxGrainTracker.C.

266 {
267  return static_cast<Real>(_variables_used.size());
268 }

◆ getVarToFeatureVector()

const std::vector< unsigned int > & FauxGrainTracker::getVarToFeatureVector ( dof_id_type  elem_id) const
overridevirtual

Returns a list of active unique feature ids for a particular element.

The vector is indexed by variable number with each entry containing either an invalid size_t type (no feature active at that location) or a feature id if the variable is non-zero at that location.

Reimplemented from FeatureFloodCount.

Definition at line 100 of file FauxGrainTracker.C.

101 {
102  const auto pos = _entity_var_to_features.find(elem_id);
103  if (pos != _entity_var_to_features.end())
104  {
105  mooseAssert(pos->second.size() == _n_vars, "Variable to feature vector not sized properly");
106  return pos->second;
107  }
108  else
109  return _empty_var_to_features;
110 }

◆ initialize()

void FauxGrainTracker::initialize ( )
overridevirtual

Reimplemented from FeatureFloodCount.

Definition at line 141 of file FauxGrainTracker.C.

142 {
143  _entity_id_to_var_num.clear();
144  _entity_var_to_features.clear();
145  _variables_used.clear();
146  if (_is_elemental)
147  {
148  _volume.clear();
149  _vol_count.clear();
150  _centroid.clear();
151  }
152 }

◆ initialSetup()

void FeatureFloodCount::initialSetup ( )
overridevirtualinherited

Size the empty var to features vector to the number of coupled variables. This empty vector (but properly sized) vector is returned for elements that are queried but are not in the structure (which also shouldn't happen). The user is warned in this case but this helps avoid extra bounds checking in user code and avoids segfaults.

Reimplemented in PolycrystalUserObjectBase.

Definition at line 277 of file FeatureFloodCount.C.

278 {
279  // We need one map per coupled variable for normal runs to support overlapping features
280  _entities_visited.resize(_vars.size());
281 
282  // Get a pointer to the PeriodicBoundaries buried in libMesh
283  _pbs = _fe_problem.getNonlinearSystemBase().dofMap().get_periodic_boundaries();
284 
285  meshChanged();
286 
295 }

Referenced by PolycrystalUserObjectBase::initialSetup().

◆ isBoundaryEntity()

template<typename T >
bool FeatureFloodCount::isBoundaryEntity ( const T *  entity) const
protectedinherited

Returns a Boolean indicating whether the entity is on one of the desired boundaries.

Definition at line 1810 of file FeatureFloodCount.C.

1811 {
1812  mooseAssert(_bnd_elem_range, "Boundary Element Range is nullptr");
1813 
1814  if (entity)
1815  for (const auto & belem : *_bnd_elem_range)
1816  // Only works for Elements
1817  if (belem->_elem->id() == entity->id() && hasBoundary(belem->_bnd_id))
1818  return true;
1819 
1820  return false;
1821 }

Referenced by FeatureFloodCount::visitNeighborsHelper().

◆ isElemental()

bool FeatureFloodCount::isElemental ( ) const
inlineinherited

Definition at line 117 of file FeatureFloodCount.h.

117 { return _is_elemental; }

Referenced by FeatureFloodCountAux::FeatureFloodCountAux().

◆ isFeaturePercolated()

bool FeatureFloodCount::isFeaturePercolated ( unsigned int  feature_id) const
virtualinherited

Returns a Boolean indicating whether this feature is percolated (e.g.

intersects at least two different boundaries from sets supplied by the user)

Reimplemented in GrainTracker.

Definition at line 874 of file FeatureFloodCount.C.

875 {
876  // TODO: This information is not parallel consistent when using FeatureFloodCounter
877 
878  // Some processors don't contain the largest feature id, in that case we just return invalid_id
879  if (feature_id >= _feature_id_to_local_index.size())
880  return false;
881 
882  auto local_index = _feature_id_to_local_index[feature_id];
883 
884  if (local_index != invalid_size_t)
885  {
886  mooseAssert(local_index < _feature_sets.size(), "local_index out of bounds");
887  bool primary = ((_feature_sets[local_index]._boundary_intersection &
890  bool secondary = ((_feature_sets[local_index]._boundary_intersection &
893  return _feature_sets[local_index]._status != Status::INACTIVE ? (primary && secondary) : false;
894  }
895 
896  return false;
897 }

Referenced by FeatureVolumeVectorPostprocessor::execute().

◆ isNewFeatureOrConnectedRegion()

bool FeatureFloodCount::isNewFeatureOrConnectedRegion ( const DofObject *  dof_object,
std::size_t &  current_index,
FeatureData *&  feature,
Status status,
unsigned int &  new_id 
)
protectedvirtualinherited

Method called during the recursive flood routine that should return whether or not the current entity is part of the current feature (if one is being explored), or if it's the start of a new feature.

If the value is only above the connecting threshold, it's still part of a feature but possibly part of one that we'll discard if there is never any starting threshold encountered.

Reimplemented in PolycrystalUserObjectBase.

Definition at line 1425 of file FeatureFloodCount.C.

1430 {
1431  // Get the value of the current variable for the current entity
1432  Real entity_value;
1433  if (_is_elemental)
1434  {
1435  const Elem * elem = static_cast<const Elem *>(dof_object);
1436  std::vector<Point> centroid(1, elem->centroid());
1437  _subproblem.reinitElemPhys(elem, centroid, 0, /* suppress_displaced_init = */ true);
1438  entity_value = _vars[current_index]->sln()[0];
1439  }
1440  else
1441  entity_value = _vars[current_index]->getNodalValue(*static_cast<const Node *>(dof_object));
1442 
1443  // If the value compares against our starting threshold, this is definitely part of a feature
1444  // we'll keep
1445  if (compareValueWithThreshold(entity_value, getThreshold(current_index)))
1446  {
1447  Status * status_ptr = &status;
1448 
1449  if (feature)
1450  status_ptr = &feature->_status;
1451 
1452  // Update an existing feature's status or clear the flag on the passed in status
1453  *status_ptr &= ~Status::INACTIVE;
1454  return true;
1455  }
1456 
1461  return compareValueWithThreshold(entity_value, getConnectingThreshold(current_index));
1462 }

Referenced by FeatureFloodCount::flood().

◆ mergeSets()

void FeatureFloodCount::mergeSets ( )
protectedvirtualinherited

This routine is called on the master rank only and stitches together the partial feature pieces seen on any processor.

Insert the new entity at the end of the list so that it may be checked against all other partial features again.

Now remove both halves the merged features: it2 contains the "moved" feature cell just inserted at the back of the list, it1 contains the mostly empty other half. We have to be careful about the order in which these two elements are deleted. We delete it2 first since we don't care where its iterator points after the deletion. We are going to break out of this loop anyway. If we delete it1 first, it may end up pointing at the same location as it2 which after the second deletion would cause both of the iterators to be invalidated.

Reimplemented in PolycrystalUserObjectBase.

Definition at line 1121 of file FeatureFloodCount.C.

1122 {
1123  TIME_SECTION(_merge_timer);
1124 
1125  // When working with _distribute_merge_work all of the maps will be empty except for one
1126  for (MooseIndex(_maps_size) map_num = 0; map_num < _maps_size; ++map_num)
1127  {
1128  for (auto it1 = _partial_feature_sets[map_num].begin();
1129  it1 != _partial_feature_sets[map_num].end();
1130  /* No increment on it1 */)
1131  {
1132  bool merge_occured = false;
1133  for (auto it2 = _partial_feature_sets[map_num].begin();
1134  it2 != _partial_feature_sets[map_num].end();
1135  ++it2)
1136  {
1137  if (it1 != it2 && areFeaturesMergeable(*it1, *it2))
1138  {
1139  it2->merge(std::move(*it1));
1140 
1145  _partial_feature_sets[map_num].emplace_back(std::move(*it2));
1146 
1156  _partial_feature_sets[map_num].erase(it2);
1157  it1 = _partial_feature_sets[map_num].erase(it1); // it1 is incremented here!
1158 
1159  // A merge occurred, this is used to determine whether or not we increment the outer
1160  // iterator
1161  merge_occured = true;
1162 
1163  // We need to start the list comparison over for the new it1 so break here
1164  break;
1165  }
1166  } // it2 loop
1167 
1168  if (!merge_occured) // No merges so we need to manually increment the outer iterator
1169  ++it1;
1170 
1171  } // it1 loop
1172  } // map loop
1173 }

Referenced by FeatureFloodCount::communicateAndMerge().

◆ meshChanged()

void FeatureFloodCount::meshChanged ( )
overridevirtualinherited

We need to build a set containing all of the boundary entities to compare against. This will be elements for elemental flooding. Volumes for nodal flooding is not supported

Reimplemented in GrainTracker.

Definition at line 335 of file FeatureFloodCount.C.

336 {
337  _point_locator = _mesh.getMesh().sub_point_locator();
338 
339  _mesh.buildPeriodicNodeMap(_periodic_node_map, _var_number, _pbs);
340 
341  // Build a new node to element map
342  _nodes_to_elem_map.clear();
343  MeshTools::build_nodes_to_elem_map(_mesh.getMesh(), _nodes_to_elem_map);
344 
350  _all_boundary_entity_ids.clear();
351  if (_is_elemental)
352  for (auto elem_it = _mesh.bndElemsBegin(), elem_end = _mesh.bndElemsEnd(); elem_it != elem_end;
353  ++elem_it)
354  _all_boundary_entity_ids.insert((*elem_it)->_elem->id());
355 }

Referenced by FeatureFloodCount::initialSetup(), and GrainTracker::meshChanged().

◆ numCoupledVars()

std::size_t FeatureFloodCount::numCoupledVars ( ) const
inlineinherited

Returns the number of coupled varaibles.

Definition at line 89 of file FeatureFloodCount.h.

89 { return _n_vars; }

◆ prepareDataForTransfer()

void FeatureFloodCount::prepareDataForTransfer ( )
protectedinherited

This routine uses the local flooded data to build up the local feature data structures (_feature_sets).

This routine does not perform any communication so the _feature_sets data structure will only contain information from the local processor after calling this routine. Any existing data in the _feature_sets structure is destroyed by calling this routine.

_feature_sets layout: The outer vector is sized to one when _single_map_mode == true, otherwise it is sized for the number of coupled variables. The inner list represents the flooded regions (local only after this call but fully populated after parallel communication and stitching).

If using a vector container, we need to sort all of the data structures for later operations such as checking for intersection and merging. The following "sort" function does nothing when invoked on a std::set.

Save off the min entity id present in the feature to uniquely identify the feature regardless of n_procs

Definition at line 1017 of file FeatureFloodCount.C.

1018 {
1019  TIME_SECTION(_prepare_for_transfer);
1020 
1021  MeshBase & mesh = _mesh.getMesh();
1022 
1023  FeatureData::container_type local_ids_no_ghost, set_difference;
1024 
1025  for (auto & list_ref : _partial_feature_sets)
1026  {
1027  for (auto & feature : list_ref)
1028  {
1029  // See if the feature intersects a boundary or perhaps one of the percolation boundaries.
1030  updateBoundaryIntersections(feature);
1031 
1032  // Periodic node ids
1033  appendPeriodicNeighborNodes(feature);
1034 
1040  FeatureFloodCount::sort(feature._ghosted_ids);
1041  FeatureFloodCount::sort(feature._local_ids);
1042  FeatureFloodCount::sort(feature._halo_ids);
1043  FeatureFloodCount::sort(feature._disjoint_halo_ids);
1044  FeatureFloodCount::sort(feature._periodic_nodes);
1045 
1046  // Now extend the bounding box by the halo region
1047  if (_is_elemental)
1048  feature.updateBBoxExtremes(mesh);
1049  else
1050  {
1051  for (auto & halo_id : feature._halo_ids)
1052  updateBBoxExtremesHelper(feature._bboxes[0], mesh.point(halo_id));
1053  }
1054 
1055  mooseAssert(!feature._local_ids.empty(), "local entity ids cannot be empty");
1056 
1061  feature._min_entity_id = *feature._local_ids.begin();
1062  }
1063  }
1064 }

Referenced by FeatureFloodCount::communicateAndMerge().

◆ reserve() [1/2]

template<class T >
static void FeatureFloodCount::reserve ( std::set< T > &  ,
std::size_t   
)
inlinestaticprivateinherited

Definition at line 748 of file FeatureFloodCount.h.

750  {
751  // Sets are trees, no reservations necessary

Referenced by FeatureFloodCount::FeatureData::consolidate(), FeatureFloodCount::FeatureData::merge(), and FeatureFloodCount::FeatureData::updateBBoxExtremes().

◆ reserve() [2/2]

template<class T >
static void FeatureFloodCount::reserve ( std::vector< T > &  container,
std::size_t  size 
)
inlinestaticprivateinherited

Definition at line 754 of file FeatureFloodCount.h.

756  {
757  container.reserve(size);

◆ scatterAndUpdateRanks()

void FeatureFloodCount::scatterAndUpdateRanks ( )
protectedinherited

Calls buildLocalToGlobalIndices to build the individual local to global indicies for each rank and scatters that information to all ranks.

Finally, the non-master ranks update their own data structures to reflect the global mappings.

On non-root processors we can't maintain the full _feature_sets data structure since we don't have all of the global information. We'll move the items from the partial feature sets into a flat structure maintaining order and update the internal IDs with the proper global ID.

Important: Make sure we clear the local status if we received a valid global index for this feature. It's possible that we have a status of INVALID on the local processor because there was never any starting threshold found. However, the root processor wouldn't have sent an index if it didn't find a starting threshold connected to our local piece.

Definition at line 717 of file FeatureFloodCount.C.

718 {
719  // local to global map (one per processor)
720  std::vector<int> counts;
721  std::vector<std::size_t> local_to_global_all;
722  if (_is_master)
723  buildLocalToGlobalIndices(local_to_global_all, counts);
724 
725  // Scatter local_to_global indices to all processors and store in class member variable
726  _communicator.scatter(local_to_global_all, counts, _local_to_global_feature_map);
727 
728  std::size_t largest_global_index = std::numeric_limits<std::size_t>::lowest();
729  if (!_is_master)
730  {
732 
739  for (auto & list_ref : _partial_feature_sets)
740  {
741  for (auto & feature : list_ref)
742  {
743  mooseAssert(feature._orig_ids.size() == 1, "feature._orig_ids length doesn't make sense");
744 
745  auto global_index = FeatureFloodCount::invalid_size_t;
746  auto local_index = feature._orig_ids.begin()->second;
747 
748  if (local_index < _local_to_global_feature_map.size())
749  global_index = _local_to_global_feature_map[local_index];
750 
751  if (global_index != FeatureFloodCount::invalid_size_t)
752  {
753  if (global_index > largest_global_index)
754  largest_global_index = global_index;
755 
756  // Set the correct global index
757  feature._id = global_index;
758 
766  feature._status &= ~Status::INACTIVE;
767 
768  // Move the feature into the correct place
769  _feature_sets[local_index] = std::move(feature);
770  }
771  }
772  }
773  }
774  else
775  {
776  for (auto global_index : local_to_global_all)
777  if (global_index != FeatureFloodCount::invalid_size_t && global_index > largest_global_index)
778  largest_global_index = global_index;
779  }
780 
781  buildFeatureIdToLocalIndices(largest_global_index);
782 }

Referenced by GrainTracker::assignGrains(), FeatureFloodCount::finalize(), and GrainTracker::trackGrains().

◆ serialize()

void FeatureFloodCount::serialize ( std::string &  serialized_buffer,
unsigned int  var_num = invalid_id 
)
protectedinherited

This routines packs the _partial_feature_sets data into a structure suitable for parallel communication operations.

Definition at line 1067 of file FeatureFloodCount.C.

1068 {
1069  // stream for serializing the _partial_feature_sets data structure to a byte stream
1070  std::ostringstream oss;
1071 
1072  mooseAssert(var_num == invalid_id || var_num < _partial_feature_sets.size(),
1073  "var_num out of range");
1074 
1075  // Serialize everything
1076  if (var_num == invalid_id)
1077  dataStore(oss, _partial_feature_sets, this);
1078  else
1079  dataStore(oss, _partial_feature_sets[var_num], this);
1080 
1081  // Populate the passed in string pointer with the string stream's buffer contents
1082  serialized_buffer.assign(oss.str());
1083 }

Referenced by FeatureFloodCount::communicateAndMerge().

◆ setsIntersect()

template<class InputIterator >
static bool FeatureFloodCount::setsIntersect ( InputIterator  first1,
InputIterator  last1,
InputIterator  first2,
InputIterator  last2 
)
inlinestaticprotectedinherited

This method detects whether two sets intersect without building a result set.

It exits as soon as any intersection is detected.

Definition at line 543 of file FeatureFloodCount.h.

547  {
548  while (first1 != last1 && first2 != last2)
549  {
550  if (*first1 == *first2)
551  return true;
552 
553  if (*first1 < *first2)
554  ++first1;
555  else if (*first1 > *first2)
556  ++first2;
557  }
558  return false;
559  }

Referenced by FeatureFloodCount::FeatureData::ghostedIntersect(), FeatureFloodCount::FeatureData::halosIntersect(), and FeatureFloodCount::FeatureData::periodicBoundariesIntersect().

◆ sort() [1/2]

template<class T >
static void FeatureFloodCount::sort ( std::set< T > &  )
inlinestaticprivateinherited

Definition at line 736 of file FeatureFloodCount.h.

738  {
739  // Sets are already sorted, do nothing

Referenced by FeatureFloodCount::prepareDataForTransfer().

◆ sort() [2/2]

template<class T >
static void FeatureFloodCount::sort ( std::vector< T > &  container)
inlinestaticprivateinherited

Definition at line 742 of file FeatureFloodCount.h.

744  {
745  std::sort(container.begin(), container.end());

◆ sortAndLabel()

void FeatureFloodCount::sortAndLabel ( )
protectedinherited

Sort and assign ids to features based on their position in the container after sorting.

Perform a sort to give a parallel unique sorting to the identified features. We use the "min_entity_id" inside each feature to assign it's position in the sorted vector.

Sanity check. Now that we've sorted the flattened vector of features we need to make sure that the counts vector still lines up appropriately with each feature's _var_index.

Definition at line 573 of file FeatureFloodCount.C.

574 {
575  mooseAssert(_is_master, "sortAndLabel can only be called on the master");
576 
582  std::sort(_feature_sets.begin(), _feature_sets.end());
583 
584 #ifndef NDEBUG
585 
590  unsigned int feature_offset = 0;
591  for (MooseIndex(_maps_size) map_num = 0; map_num < _maps_size; ++map_num)
592  {
593  // Skip empty map checks
594  if (_feature_counts_per_map[map_num] == 0)
595  continue;
596 
597  // Check the begin and end of the current range
598  auto range_front = feature_offset;
599  auto range_back = feature_offset + _feature_counts_per_map[map_num] - 1;
600 
601  mooseAssert(range_front <= range_back && range_back < _feature_count,
602  "Indexing error in feature sets");
603 
604  if (!_single_map_mode && (_feature_sets[range_front]._var_index != map_num ||
605  _feature_sets[range_back]._var_index != map_num))
606  mooseError("Error in _feature_sets sorting, map index: ", map_num);
607 
608  feature_offset += _feature_counts_per_map[map_num];
609  }
610 #endif
611 
612  // Label the features with an ID based on the sorting (processor number independent value)
613  for (MooseIndex(_feature_sets) i = 0; i < _feature_sets.size(); ++i)
614  if (_feature_sets[i]._id == invalid_id)
615  _feature_sets[i]._id = i;
616 }

Referenced by GrainTracker::assignGrains(), and FeatureFloodCount::finalize().

◆ updateBoundaryIntersections()

void FeatureFloodCount::updateBoundaryIntersections ( FeatureData feature) const
protectedinherited

Update the feature's attributes to indicate boundary intersections.

Definition at line 1724 of file FeatureFloodCount.C.

1725 {
1726  if (_is_elemental)
1727  {
1728  for (auto entity : feature._local_ids)
1729  {
1730  // See if this feature is on a boundary if we haven't already figured that out
1731  if ((feature._boundary_intersection & BoundaryIntersection::ANY_BOUNDARY) ==
1733  {
1734  Elem * elem = _mesh.elemPtr(entity);
1735  if (elem && elem->on_boundary())
1736  feature._boundary_intersection |= BoundaryIntersection::ANY_BOUNDARY;
1737  }
1738 
1739  // Now see if the feature touches the primary and/or secondary boundary IDs if we haven't
1740  // figured that out already
1741  if ((feature._boundary_intersection & BoundaryIntersection::PRIMARY_PERCOLATION_BOUNDARY) ==
1743  {
1744  for (auto primary_id : _primary_perc_bnds)
1745  if (_mesh.isBoundaryElem(entity, primary_id))
1746  feature._boundary_intersection |= BoundaryIntersection::PRIMARY_PERCOLATION_BOUNDARY;
1747  }
1748 
1749  if ((feature._boundary_intersection & BoundaryIntersection::SECONDARY_PERCOLATION_BOUNDARY) ==
1751  {
1752  for (auto secondary_id : _secondary_perc_bnds)
1753  if (_mesh.isBoundaryElem(entity, secondary_id))
1754  feature._boundary_intersection |= BoundaryIntersection::SECONDARY_PERCOLATION_BOUNDARY;
1755  }
1756 
1757  // See if the feature contacts any of the user-specified boundaries if we haven't
1758  // done so already
1759  if ((feature._boundary_intersection & BoundaryIntersection::SPECIFIED_BOUNDARY) ==
1761  {
1762  for (auto specified_id : _specified_bnds)
1763  if (_mesh.isBoundaryElem(entity, specified_id))
1764  feature._boundary_intersection |= BoundaryIntersection::SPECIFIED_BOUNDARY;
1765  }
1766  }
1767  }
1768 }

Referenced by FeatureFloodCount::prepareDataForTransfer().

◆ updateFieldInfo()

void FeatureFloodCount::updateFieldInfo ( )
protectedvirtualinherited

This method is used to populate any of the data structures used for storing field data (nodal or elemental).

It is called at the end of finalize and can make use of any of the data structures created during the execution of this postprocessor.

Reimplemented in GrainTracker.

Definition at line 1249 of file FeatureFloodCount.C.

1250 {
1251  for (MooseIndex(_feature_sets) i = 0; i < _feature_sets.size(); ++i)
1252  {
1253  auto & feature = _feature_sets[i];
1254 
1255  // If the developer has requested _condense_map_info we'll make sure we only update the zeroth
1256  // map
1257  auto map_index = (_single_map_mode || _condense_map_info) ? decltype(feature._var_index)(0)
1258  : feature._var_index;
1259 
1260  // Loop over the entity ids of this feature and update our local map
1261  for (auto entity : feature._local_ids)
1262  {
1263  _feature_maps[map_index][entity] = static_cast<int>(feature._id);
1264 
1265  if (_var_index_mode)
1266  _var_index_maps[map_index][entity] = feature._var_index;
1267 
1268  // Fill in the data structure that keeps track of all features per elem
1270  {
1271  auto insert_pair = moose_try_emplace(
1272  _entity_var_to_features, entity, std::vector<unsigned int>(_n_vars, invalid_id));
1273  auto & vec_ref = insert_pair.first->second;
1274  vec_ref[feature._var_index] = feature._id;
1275  }
1276  }
1277 
1278  if (_compute_halo_maps)
1279  // Loop over the halo ids to update cells with halo information
1280  for (auto entity : feature._halo_ids)
1281  _halo_ids[map_index][entity] = static_cast<int>(feature._id);
1282 
1283  // Loop over the ghosted ids to update cells with ghost information
1284  for (auto entity : feature._ghosted_ids)
1285  _ghosted_entity_ids[entity] = 1;
1286 
1287  // TODO: Fixme
1288  if (!_global_numbering)
1289  mooseError("Local numbering currently disabled");
1290  }
1291 }

Referenced by FeatureFloodCount::finalize().

◆ updateRegionOffsets()

void FeatureFloodCount::updateRegionOffsets ( )
protectedinherited

This routine updates the _region_offsets variable which is useful for quickly determining the proper global number for a feature when using multimap mode.

◆ visitElementalNeighbors()

void FeatureFloodCount::visitElementalNeighbors ( const Elem *  elem,
FeatureData feature,
bool  expand_halos_only,
bool  disjoint_only 
)
protectedinherited

Retrieve only the active neighbors for each side of this element, append them to the list of active neighbors

If the current element (passed into this method) doesn't have a connected neighbor but does have a topological neighbor, this might be a new disjoint region that we'll need to represent with a separate bounding box. To find out for sure, we'll need see if the new neighbors are present in any of the halo or disjoint halo sets. If they are not present, this is a new region.

This neighbor is NULL which means we need to expand the bounding box here in case this grain is up against multiple domain edges so we don't end up with a degenerate bounding box.

Definition at line 1584 of file FeatureFloodCount.C.

1588 {
1589  mooseAssert(elem, "Elem is NULL");
1590 
1591  std::vector<const Elem *> all_active_neighbors;
1592  MeshBase & mesh = _mesh.getMesh();
1593 
1594  // Loop over all neighbors (at the the same level as the current element)
1595  for (MooseIndex(elem->n_neighbors()) i = 0; i < elem->n_neighbors(); ++i)
1596  {
1597  const Elem * neighbor_ancestor = nullptr;
1598  bool topological_neighbor = false;
1599 
1604  neighbor_ancestor = elem->neighbor_ptr(i);
1605  if (neighbor_ancestor)
1606  {
1607  if (neighbor_ancestor == libMesh::remote_elem)
1608  continue;
1609 
1610  neighbor_ancestor->active_family_tree_by_neighbor(all_active_neighbors, elem, false);
1611  }
1612  else
1613  {
1614  neighbor_ancestor = elem->topological_neighbor(i, mesh, *_point_locator, _pbs);
1615 
1623  if (neighbor_ancestor)
1624  {
1625  neighbor_ancestor->active_family_tree_by_topological_neighbor(
1626  all_active_neighbors, elem, mesh, *_point_locator, _pbs, false);
1627 
1628  topological_neighbor = true;
1629  }
1630  else
1631  {
1637  updateBBoxExtremesHelper(feature->_bboxes[0], *elem);
1638  }
1639  }
1640 
1641  visitNeighborsHelper(elem,
1642  all_active_neighbors,
1643  feature,
1644  expand_halos_only,
1645  topological_neighbor,
1646  disjoint_only);
1647 
1648  all_active_neighbors.clear();
1649  }
1650 }

Referenced by FeatureFloodCount::expandEdgeHalos(), and FeatureFloodCount::flood().

◆ visitNeighborsHelper()

template<typename T >
void FeatureFloodCount::visitNeighborsHelper ( const T *  curr_entity,
std::vector< const T * >  neighbor_entities,
FeatureData feature,
bool  expand_halos_only,
bool  topological_neighbor,
bool  disjoint_only 
)
protectedinherited

The actual logic for visiting neighbors is abstracted out here.

This method is templated to handle the Nodal and Elemental cases together.

Only recurse where we own this entity and it's a topologically connected entity. We shouldn't even attempt to flood to the periodic boundary because we won't have solution information and if we are using DistributedMesh we probably won't have geometric information either.

When we only recurse on entities we own, we can never get more than one away from a local entity which should be in the ghosted zone.

Premark neighboring entities with a halo mark. These entities may or may not end up being part of the feature. We will not update the _entities_visited data structure here.

Definition at line 1667 of file FeatureFloodCount.C.

1673 {
1674  // Loop over all active element neighbors
1675  for (const auto neighbor : neighbor_entities)
1676  {
1677  if (neighbor && (!_is_boundary_restricted || isBoundaryEntity(neighbor)))
1678  {
1679  if (expand_halos_only)
1680  {
1681  auto entity_id = neighbor->id();
1682 
1683  if (topological_neighbor || disjoint_only)
1684  feature->_disjoint_halo_ids.insert(feature->_disjoint_halo_ids.end(), entity_id);
1685  else if (feature->_local_ids.find(entity_id) == feature->_local_ids.end())
1686  feature->_halo_ids.insert(feature->_halo_ids.end(), entity_id);
1687  }
1688  else
1689  {
1690  auto my_processor_id = processor_id();
1691 
1692  if (!topological_neighbor && neighbor->processor_id() != my_processor_id)
1693  feature->_ghosted_ids.insert(feature->_ghosted_ids.end(), curr_entity->id());
1694 
1704  if (curr_entity->processor_id() == my_processor_id ||
1705  neighbor->processor_id() == my_processor_id)
1706  {
1713  if (topological_neighbor || disjoint_only)
1714  feature->_disjoint_halo_ids.insert(feature->_disjoint_halo_ids.end(), neighbor->id());
1715  else
1716  _entity_queue.push_front(neighbor);
1717  }
1718  }
1719  }
1720  }
1721 }

Referenced by FeatureFloodCount::visitElementalNeighbors(), and FeatureFloodCount::visitNodalNeighbors().

◆ visitNodalNeighbors()

void FeatureFloodCount::visitNodalNeighbors ( const Node *  node,
FeatureData feature,
bool  expand_halos_only 
)
protectedinherited

These two routines are utility routines used by the flood routine and by derived classes for visiting neighbors.

Since the logic is different for the elemental versus nodal case it's easier to split them up.

Definition at line 1653 of file FeatureFloodCount.C.

1656 {
1657  mooseAssert(node, "Node is NULL");
1658 
1659  std::vector<const Node *> all_active_neighbors;
1660  MeshTools::find_nodal_neighbors(_mesh.getMesh(), *node, _nodes_to_elem_map, all_active_neighbors);
1661 
1662  visitNeighborsHelper(node, all_active_neighbors, feature, expand_halos_only, false, false);
1663 }

Referenced by FeatureFloodCount::expandEdgeHalos(), and FeatureFloodCount::flood().

Member Data Documentation

◆ _all_boundary_entity_ids

std::unordered_set<dof_id_type> FeatureFloodCount::_all_boundary_entity_ids
protectedinherited

The set of entities on the boundary of the domain used for determining if features intersect any boundary.

Definition at line 711 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::meshChanged().

◆ _bnd_elem_range

ConstBndElemRange* FeatureFloodCount::_bnd_elem_range
protectedinherited

Boundary element range pointer.

Definition at line 729 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::execute(), and FeatureFloodCount::isBoundaryEntity().

◆ _centroid

std::map<unsigned int, Point> FauxGrainTracker::_centroid
private

The centroid of the feature (average of coordinates from entities participating in the volume calculation)

Definition at line 78 of file FauxGrainTracker.h.

Referenced by execute(), finalize(), getEntityValue(), getGrainCentroid(), and initialize().

◆ _comm_and_merge

const PerfID FeatureFloodCount::_comm_and_merge
privateinherited

Definition at line 775 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::communicateAndMerge().

◆ _compute_halo_maps

const bool FeatureFloodCount::_compute_halo_maps
protectedinherited

Indicates whether or not to communicate halo map information with all ranks.

Definition at line 604 of file FeatureFloodCount.h.

Referenced by GrainTracker::communicateHaloMap(), GrainTracker::meshChanged(), GrainTracker::updateFieldInfo(), and FeatureFloodCount::updateFieldInfo().

◆ _compute_var_to_feature_map

const bool FeatureFloodCount::_compute_var_to_feature_map
protectedinherited

Indicates whether or not the var to feature map is populated.

Definition at line 607 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::getVarToFeatureVector(), GrainTracker::updateFieldInfo(), and FeatureFloodCount::updateFieldInfo().

◆ _condense_map_info

const bool FeatureFloodCount::_condense_map_info
protectedinherited

◆ _connecting_threshold

const Real FeatureFloodCount::_connecting_threshold
protectedinherited

The threshold above (or below) which neighboring entities are flooded (where regions can be extended but not started)

Definition at line 577 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::initialize().

◆ _consolidate_merged_features

const PerfID FeatureFloodCount::_consolidate_merged_features
privateinherited

Definition at line 779 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::consolidateMergedFeatures().

◆ _distribute_merge_work

const bool FeatureFloodCount::_distribute_merge_work
privateinherited

Keeps track of whether we are distributing the merge work.

Definition at line 769 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::communicateAndMerge().

◆ _dof_map

const DofMap& FeatureFloodCount::_dof_map
protectedinherited

Reference to the dof_map containing the coupled variables.

Definition at line 569 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::flood().

◆ _element_average_value

const PostprocessorValue& FeatureFloodCount::_element_average_value
protectedinherited

Average value of the domain which can optionally be used to find features in a field.

Definition at line 692 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::initialize().

◆ _empty_var_to_features

std::vector<unsigned int> FauxGrainTracker::_empty_var_to_features
private

Definition at line 54 of file FauxGrainTracker.h.

Referenced by FauxGrainTracker(), and getVarToFeatureVector().

◆ _entities_visited

std::vector<std::set<dof_id_type> > FeatureFloodCount::_entities_visited
protectedinherited

This variable keeps track of which nodes have been visited during execution.

We don't use the _feature_map for this since we don't want to explicitly store data for all the unmarked nodes in a serialized datastructures. This keeps our overhead down since this variable never needs to be communicated.

Definition at line 631 of file FeatureFloodCount.h.

Referenced by PolycrystalUserObjectBase::execute(), FeatureFloodCount::flood(), FeatureFloodCount::initialize(), FeatureFloodCount::initialSetup(), and PolycrystalUserObjectBase::isNewFeatureOrConnectedRegion().

◆ _entity_id_to_var_num

std::map<dof_id_type, unsigned int> FauxGrainTracker::_entity_id_to_var_num
private

The mapping of entities to grains, in this case always the order parameter.

Definition at line 51 of file FauxGrainTracker.h.

Referenced by execute(), finalize(), getEntityValue(), and initialize().

◆ _entity_queue

std::deque<const DofObject *> FeatureFloodCount::_entity_queue
privateinherited

The data structure for maintaining entities to flood during discovery.

Definition at line 766 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::flood(), and FeatureFloodCount::visitNeighborsHelper().

◆ _entity_var_to_features

std::map<dof_id_type, std::vector<unsigned int> > FauxGrainTracker::_entity_var_to_features
private

Definition at line 53 of file FauxGrainTracker.h.

Referenced by execute(), getVarToFeatureVector(), and initialize().

◆ _execute_timer

const PerfID FeatureFloodCount::_execute_timer
privateinherited

Timers.

Definition at line 772 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::execute().

◆ _expand_halos

const PerfID FeatureFloodCount::_expand_halos
privateinherited

Definition at line 776 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::expandEdgeHalos().

◆ _fe_vars

std::vector<MooseVariableFEBase *> FeatureFloodCount::_fe_vars
protectedinherited

The vector of coupled in variables.

Definition at line 564 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::FeatureFloodCount(), and FeatureFloodCount::getFECoupledVars().

◆ _feature_count

unsigned int FeatureFloodCount::_feature_count
protectedinherited

◆ _feature_counts_per_map

std::vector<unsigned int> FeatureFloodCount::_feature_counts_per_map
protectedinherited

The number of features seen by this object per map.

Definition at line 645 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::consolidateMergedFeatures(), FeatureFloodCount::sortAndLabel(), and GrainTracker::trackGrains().

◆ _feature_id_to_local_index

std::vector<std::size_t> FeatureFloodCount::_feature_id_to_local_index
protectedinherited

◆ _feature_maps

std::vector<std::map<dof_id_type, int> > FeatureFloodCount::_feature_maps
protectedinherited

The feature maps contain the raw flooded node information and eventually the unique grain numbers.

We have a vector of them so we can create one per variable if that level of detail is desired.

Definition at line 678 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::getEntityValue(), FeatureFloodCount::initialize(), GrainTracker::updateFieldInfo(), and FeatureFloodCount::updateFieldInfo().

◆ _feature_sets

std::vector<FeatureData>& FeatureFloodCount::_feature_sets
protectedinherited

The data structure used to hold the globally unique features.

The sorting of the vector is implementation defined and may not correspond to anything useful. The ID of each feature should be queried from the FeatureData objects.

Definition at line 662 of file FeatureFloodCount.h.

Referenced by GrainTracker::assignGrains(), GrainTracker::attemptGrainRenumber(), GrainTracker::broadcastAndUpdateGrainData(), FeatureFloodCount::buildFeatureIdToLocalIndices(), PolycrystalUserObjectBase::buildGrainAdjacencyMatrix(), FeatureFloodCount::buildLocalToGlobalIndices(), GrainTracker::communicateHaloMap(), GrainTracker::computeMinDistancesFromGrain(), FeatureFloodCount::consolidateMergedFeatures(), FeatureFloodCount::doesFeatureIntersectBoundary(), GrainTracker::doesFeatureIntersectBoundary(), FeatureFloodCount::doesFeatureIntersectSpecifiedBoundary(), GrainTracker::doesFeatureIntersectSpecifiedBoundary(), FeatureFloodCount::featureCentroid(), PolycrystalUserObjectBase::finalize(), FeatureFloodCount::getEntityValue(), FeatureFloodCount::getFeatures(), FeatureFloodCount::getFeatureVar(), GrainTracker::getGrainCentroid(), GrainTracker::initialize(), FeatureFloodCount::initialize(), GrainTracker::isFeaturePercolated(), FeatureFloodCount::isFeaturePercolated(), GrainTracker::newGrainCreated(), GrainTracker::prepopulateState(), GrainTracker::remapGrains(), FeatureFloodCount::scatterAndUpdateRanks(), FeatureFloodCount::sortAndLabel(), GrainTracker::trackGrains(), GrainTracker::updateFieldInfo(), and FeatureFloodCount::updateFieldInfo().

◆ _finalize_timer

const PerfID FeatureFloodCount::_finalize_timer
privateinherited

Definition at line 774 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::finalize().

◆ _ghosted_entity_ids

std::map<dof_id_type, int> FeatureFloodCount::_ghosted_entity_ids
protectedinherited

The map for holding reconstructed ghosted element information.

Definition at line 695 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::getEntityValue(), FeatureFloodCount::initialize(), GrainTracker::updateFieldInfo(), and FeatureFloodCount::updateFieldInfo().

◆ _global_numbering

const bool FeatureFloodCount::_global_numbering
protectedinherited

This variable is used to indicate whether or not we identify features with unique numbers on multiple maps.

Definition at line 597 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::updateFieldInfo().

◆ _grain_count

std::size_t FauxGrainTracker::_grain_count
private

Total Grain Count.

Definition at line 60 of file FauxGrainTracker.h.

Referenced by execute(), and getTotalFeatureCount().

◆ _halo_ids

std::vector<std::map<dof_id_type, int> > FeatureFloodCount::_halo_ids
protectedinherited

The data structure for looking up halos around features.

The outer vector is for splitting out the information per variable. The inner map holds the actual halo information

Definition at line 701 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::FeatureData::clear(), GrainTracker::communicateHaloMap(), FeatureFloodCount::getEntityValue(), FeatureFloodCount::FeatureData::halosIntersect(), FeatureFloodCount::initialize(), FeatureFloodCount::FeatureData::merge(), GrainTracker::updateFieldInfo(), and FeatureFloodCount::updateFieldInfo().

◆ _is_boundary_restricted

bool FeatureFloodCount::_is_boundary_restricted
protectedinherited

Indicates that this object should only run on one or more boundaries.

Definition at line 726 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::execute(), FeatureFloodCount::FeatureFloodCount(), and FeatureFloodCount::visitNeighborsHelper().

◆ _is_elemental

const bool FeatureFloodCount::_is_elemental
protectedinherited

◆ _is_master

const bool FeatureFloodCount::_is_master
protectedinherited

◆ _local_to_global_feature_map

std::vector<std::size_t> FeatureFloodCount::_local_to_global_feature_map
protectedinherited

The vector recording the local to global feature indices.

Definition at line 681 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::scatterAndUpdateRanks().

◆ _maps_size

const std::size_t FeatureFloodCount::_maps_size
protectedinherited

◆ _merge_timer

const PerfID FeatureFloodCount::_merge_timer
privateinherited

Definition at line 773 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::mergeSets().

◆ _mesh

MooseMesh& FeatureFloodCount::_mesh
protectedinherited

◆ _n_procs

const processor_id_type FeatureFloodCount::_n_procs
protectedinherited

Convenience variable holding the number of processors in this simulation.

Definition at line 623 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::buildLocalToGlobalIndices(), and GrainTracker::communicateHaloMap().

◆ _n_vars

const std::size_t FauxGrainTracker::_n_vars
private

◆ _nodes_to_elem_map

std::vector<std::vector<const Elem *> > FeatureFloodCount::_nodes_to_elem_map
protectedinherited

The data structure used to find neighboring elements give a node ID.

Definition at line 642 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::meshChanged(), and FeatureFloodCount::visitNodalNeighbors().

◆ _op_to_grains

std::vector<unsigned int> FauxGrainTracker::_op_to_grains
private

Order parameter to grain indices (just a reflexive vector)

Definition at line 69 of file FauxGrainTracker.h.

Referenced by FauxGrainTracker().

◆ _partial_feature_sets

std::vector<std::list<FeatureData> > FeatureFloodCount::_partial_feature_sets
protectedinherited

The data structure used to hold partial and communicated feature data, during the discovery and merging phases.

The outer vector is indexed by map number (often variable number). The inner list is an unordered list of partially discovered features.

Definition at line 655 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::communicateAndMerge(), FeatureFloodCount::consolidateMergedFeatures(), FeatureFloodCount::deserialize(), FeatureFloodCount::expandEdgeHalos(), FeatureFloodCount::expandPointHalos(), FeatureFloodCount::flood(), FeatureFloodCount::initialize(), PolycrystalUserObjectBase::mergeSets(), FeatureFloodCount::mergeSets(), FeatureFloodCount::prepareDataForTransfer(), GrainTracker::prepopulateState(), FeatureFloodCount::scatterAndUpdateRanks(), and FeatureFloodCount::serialize().

◆ _pbs

PeriodicBoundaries* FeatureFloodCount::_pbs
protectedinherited

◆ _periodic_node_map

std::multimap<dof_id_type, dof_id_type> FeatureFloodCount::_periodic_node_map
protectedinherited

The data structure which is a list of nodes that are constrained to other nodes based on the imposed periodic boundary conditions.

Definition at line 707 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::appendPeriodicNeighborNodes(), getEntityValue(), FeatureFloodCount::getEntityValue(), and FeatureFloodCount::meshChanged().

◆ _point_locator

std::unique_ptr<PointLocatorBase> FeatureFloodCount::_point_locator
protectedinherited

◆ _prepare_for_transfer

const PerfID FeatureFloodCount::_prepare_for_transfer
privateinherited

Definition at line 778 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::prepareDataForTransfer().

◆ _primary_perc_bnds

std::vector<BoundaryID> FeatureFloodCount::_primary_perc_bnds
protectedinherited

◆ _secondary_perc_bnds

std::vector<BoundaryID> FeatureFloodCount::_secondary_perc_bnds
protectedinherited

◆ _single_map_mode

const bool FeatureFloodCount::_single_map_mode
protectedinherited

This variable is used to indicate whether or not multiple maps are used during flooding.

Definition at line 591 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::flood(), PolycrystalUserObjectBase::PolycrystalUserObjectBase(), FeatureFloodCount::sortAndLabel(), GrainTracker::updateFieldInfo(), and FeatureFloodCount::updateFieldInfo().

◆ _specified_bnds

std::vector<BoundaryID> FeatureFloodCount::_specified_bnds
protectedinherited

◆ _step_connecting_threshold

Real FeatureFloodCount::_step_connecting_threshold
protectedinherited

◆ _step_threshold

Real FeatureFloodCount::_step_threshold
protectedinherited

◆ _threshold

const Real FeatureFloodCount::_threshold
protectedinherited

The threshold above (or below) where an entity may begin a new region (feature)

Definition at line 572 of file FeatureFloodCount.h.

Referenced by execute(), and FeatureFloodCount::initialize().

◆ _tracking_step

const int FauxGrainTracker::_tracking_step
private

Used to emulate the tracking step of the real grain tracker object.

Definition at line 66 of file FauxGrainTracker.h.

◆ _update_field_info

const PerfID FeatureFloodCount::_update_field_info
privateinherited

Definition at line 777 of file FeatureFloodCount.h.

◆ _use_less_than_threshold_comparison

const bool FeatureFloodCount::_use_less_than_threshold_comparison
protectedinherited

Use less-than when comparing values against the threshold value.

True by default. If false, then greater-than comparison is used instead.

Definition at line 614 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::compareValueWithThreshold(), and execute().

◆ _var_index_maps

std::vector<std::map<dof_id_type, int> > FeatureFloodCount::_var_index_maps
protectedinherited

This map keeps track of which variables own which nodes.

We need a vector of them for multimap mode where multiple variables can own a single mode.

Note: This map is only populated when "show_var_coloring" is set to true.

Definition at line 639 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::FeatureFloodCount(), FeatureFloodCount::getEntityValue(), FeatureFloodCount::initialize(), GrainTracker::updateFieldInfo(), and FeatureFloodCount::updateFieldInfo().

◆ _var_index_mode

const bool FeatureFloodCount::_var_index_mode
protectedinherited

This variable is used to indicate whether the maps will contain unique region information or just the variable numbers owning those regions.

Definition at line 601 of file FeatureFloodCount.h.

Referenced by FeatureFloodCount::FeatureFloodCount(), FeatureFloodCount::getEntityValue(), FeatureFloodCount::initialize(), GrainTracker::updateFieldInfo(), and FeatureFloodCount::updateFieldInfo().

◆ _var_number

unsigned long FeatureFloodCount::_var_number
protectedinherited

This variable is used to build the periodic node map.

Assumption: We are going to assume that either all variables are periodic or none are. This assumption can be relaxed at a later time if necessary.

Definition at line 588 of file FeatureFloodCount.h.

Referenced by GrainTracker::centroidRegionDistance(), and FeatureFloodCount::meshChanged().

◆ _variables_used

std::set<unsigned int> FauxGrainTracker::_variables_used
private

Used as the lightweight grain counter.

Definition at line 57 of file FauxGrainTracker.h.

Referenced by execute(), finalize(), getNumberActiveGrains(), getValue(), and initialize().

◆ _vars

std::vector<MooseVariable *> FeatureFloodCount::_vars
protectedinherited

◆ _vol_count

std::map<unsigned int, unsigned int> FauxGrainTracker::_vol_count
private

The count of entities contributing to the volume calculation.

Definition at line 75 of file FauxGrainTracker.h.

Referenced by execute(), finalize(), and initialize().

◆ _volatile_feature_sets

std::vector<FeatureData> FeatureFloodCount::_volatile_feature_sets
protectedinherited

Derived objects (e.g.

the GrainTracker) may require restartable data to track information across time steps. The FeatureFloodCounter however does not. This container is here so that we have the flexabilty to switch between volatile and non-volatile storage. The _feature_sets data structure can conditionally refer to this structure or a MOOSE-provided structure, which is backed up.

Definition at line 671 of file FeatureFloodCount.h.

◆ _volume

std::map<unsigned int, Real> FauxGrainTracker::_volume
private

The volume of the feature.

Definition at line 72 of file FauxGrainTracker.h.

Referenced by execute(), finalize(), and initialize().

◆ invalid_id

const unsigned int FeatureFloodCount::invalid_id = std::numeric_limits<unsigned int>::max()
staticinherited

◆ invalid_size_t

const std::size_t FeatureFloodCount::invalid_size_t = std::numeric_limits<std::size_t>::max()
staticinherited

The documentation for this class was generated from the following files:
FeatureFloodCount::_var_index_mode
const bool _var_index_mode
This variable is used to indicate whether the maps will contain unique region information or just the...
Definition: FeatureFloodCount.h:601
FeatureFloodCount::_condense_map_info
const bool _condense_map_info
Definition: FeatureFloodCount.h:593
GrainTrackerInterface
This class defines the interface for the GrainTracking objects.
Definition: GrainTrackerInterface.h:24
FeatureFloodCount::_secondary_perc_bnds
std::vector< BoundaryID > _secondary_perc_bnds
Definition: FeatureFloodCount.h:718
FeatureFloodCount::FieldType::UNIQUE_REGION
FeatureFloodCount::invalid_size_t
static const std::size_t invalid_size_t
Definition: FeatureFloodCount.h:93
FeatureFloodCount::_mesh
MooseMesh & _mesh
A reference to the mesh.
Definition: FeatureFloodCount.h:581
FeatureFloodCount::prepareDataForTransfer
void prepareDataForTransfer()
This routine uses the local flooded data to build up the local feature data structures (_feature_sets...
Definition: FeatureFloodCount.C:1017
FeatureFloodCount::FeatureFloodCount
FeatureFloodCount(const InputParameters &parameters)
Definition: FeatureFloodCount.C:194
FeatureFloodCount::BoundaryIntersection::SECONDARY_PERCOLATION_BOUNDARY
FauxGrainTracker::_grain_count
std::size_t _grain_count
Total Grain Count.
Definition: FauxGrainTracker.h:60
FeatureFloodCount::_merge_timer
const PerfID _merge_timer
Definition: FeatureFloodCount.h:773
FeatureFloodCount::FeatureData::container_type
std::set< dof_id_type > container_type
The primary underlying container type used to hold the data in each FeatureData.
Definition: FeatureFloodCount.h:149
FeatureFloodCount::FieldType::CENTROID
FeatureFloodCount::_comm_and_merge
const PerfID _comm_and_merge
Definition: FeatureFloodCount.h:775
FeatureFloodCount::Status
Status
This enumeration is used to indicate status of the grains in the _unique_grains data structure.
Definition: FeatureFloodCount.h:120
FeatureFloodCount::_entities_visited
std::vector< std::set< dof_id_type > > _entities_visited
This variable keeps track of which nodes have been visited during execution.
Definition: FeatureFloodCount.h:631
FauxGrainTracker::_centroid
std::map< unsigned int, Point > _centroid
The centroid of the feature (average of coordinates from entities participating in the volume calcula...
Definition: FauxGrainTracker.h:78
FeatureFloodCount::getThreshold
virtual Real getThreshold(std::size_t current_index) const
Return the starting comparison threshold to use when inspecting an entity during the flood stage.
Definition: FeatureFloodCount.C:1407
FauxGrainTracker::_entity_var_to_features
std::map< dof_id_type, std::vector< unsigned int > > _entity_var_to_features
Definition: FauxGrainTracker.h:53
FeatureFloodCount::areFeaturesMergeable
virtual bool areFeaturesMergeable(const FeatureData &f1, const FeatureData &f2) const
Method for determining whether two features are mergeable.
Definition: FeatureFloodCount.C:1243
FeatureFloodCount::isBoundaryEntity
bool isBoundaryEntity(const T *entity) const
Returns a Boolean indicating whether the entity is on one of the desired boundaries.
Definition: FeatureFloodCount.C:1810
FeatureFloodCount::visitNodalNeighbors
void visitNodalNeighbors(const Node *node, FeatureData *feature, bool expand_halos_only)
These two routines are utility routines used by the flood routine and by derived classes for visiting...
Definition: FeatureFloodCount.C:1653
FeatureFloodCount::_is_master
const bool _is_master
Convenience variable for testing master rank.
Definition: FeatureFloodCount.h:732
FeatureFloodCount::buildLocalToGlobalIndices
virtual void buildLocalToGlobalIndices(std::vector< std::size_t > &local_to_global_all, std::vector< int > &counts) const
This routine populates a stacked vector of local to global indices per rank and the associated count ...
Definition: FeatureFloodCount.C:619
FeatureFloodCount::_specified_bnds
std::vector< BoundaryID > _specified_bnds
Definition: FeatureFloodCount.h:720
FeatureFloodCount::Status::CLEAR
FeatureFloodCount::BoundaryIntersection::SPECIFIED_BOUNDARY
dataLoad
void dataLoad(std::istream &stream, FeatureFloodCount::FeatureData &feature, void *context)
Definition: FeatureFloodCount.C:64
FeatureFloodCount::consolidateMergedFeatures
void consolidateMergedFeatures(std::vector< std::list< FeatureData >> *saved_data=nullptr)
This method consolidates all of the merged information from _partial_feature_sets into the _feature_s...
Definition: FeatureFloodCount.C:1176
FeatureFloodCount::sort
static void sort(std::set< T > &)
Definition: FeatureFloodCount.h:736
FeatureFloodCount::appendPeriodicNeighborNodes
void appendPeriodicNeighborNodes(FeatureData &feature) const
This routine adds the periodic node information to our data structure prior to packing the data this ...
Definition: FeatureFloodCount.C:1771
FeatureFloodCount::_step_connecting_threshold
Real _step_connecting_threshold
Definition: FeatureFloodCount.h:578
FeatureFloodCount::_consolidate_merged_features
const PerfID _consolidate_merged_features
Definition: FeatureFloodCount.h:779
FeatureFloodCount::visitNeighborsHelper
void visitNeighborsHelper(const T *curr_entity, std::vector< const T * > neighbor_entities, FeatureData *feature, bool expand_halos_only, bool topological_neighbor, bool disjoint_only)
The actual logic for visiting neighbors is abstracted out here.
Definition: FeatureFloodCount.C:1667
FeatureFloodCount::_var_number
unsigned long _var_number
This variable is used to build the periodic node map.
Definition: FeatureFloodCount.h:588
FauxGrainTracker::_variables_used
std::set< unsigned int > _variables_used
Used as the lightweight grain counter.
Definition: FauxGrainTracker.h:57
FeatureFloodCount::_feature_sets
std::vector< FeatureData > & _feature_sets
The data structure used to hold the globally unique features.
Definition: FeatureFloodCount.h:662
FeatureFloodCount::_entity_var_to_features
std::map< dof_id_type, std::vector< unsigned int > > _entity_var_to_features
Definition: FeatureFloodCount.h:713
FeatureFloodCount::_global_numbering
const bool _global_numbering
This variable is used to indicate whether or not we identify features with unique numbers on multiple...
Definition: FeatureFloodCount.h:597
FeatureFloodCount::_nodes_to_elem_map
std::vector< std::vector< const Elem * > > _nodes_to_elem_map
The data structure used to find neighboring elements give a node ID.
Definition: FeatureFloodCount.h:642
FeatureFloodCount::_single_map_mode
const bool _single_map_mode
This variable is used to indicate whether or not multiple maps are used during flooding.
Definition: FeatureFloodCount.h:591
FeatureFloodCount::_point_locator
std::unique_ptr< PointLocatorBase > _point_locator
Definition: FeatureFloodCount.h:689
FeatureFloodCount::_use_less_than_threshold_comparison
const bool _use_less_than_threshold_comparison
Use less-than when comparing values against the threshold value.
Definition: FeatureFloodCount.h:614
FeatureFloodCount::_ghosted_entity_ids
std::map< dof_id_type, int > _ghosted_entity_ids
The map for holding reconstructed ghosted element information.
Definition: FeatureFloodCount.h:695
FeatureFloodCount::_maps_size
const std::size_t _maps_size
Convenience variable holding the size of all the datastructures size by the number of maps.
Definition: FeatureFloodCount.h:620
FeatureFloodCount::_partial_feature_sets
std::vector< std::list< FeatureData > > _partial_feature_sets
The data structure used to hold partial and communicated feature data, during the discovery and mergi...
Definition: FeatureFloodCount.h:655
FeatureFloodCount::_dof_map
const DofMap & _dof_map
Reference to the dof_map containing the coupled variables.
Definition: FeatureFloodCount.h:569
FeatureFloodCount::_fe_vars
std::vector< MooseVariableFEBase * > _fe_vars
The vector of coupled in variables.
Definition: FeatureFloodCount.h:564
FauxGrainTracker::_tracking_step
const int _tracking_step
Used to emulate the tracking step of the real grain tracker object.
Definition: FauxGrainTracker.h:66
FauxGrainTracker::_op_to_grains
std::vector< unsigned int > _op_to_grains
Order parameter to grain indices (just a reflexive vector)
Definition: FauxGrainTracker.h:69
FeatureFloodCount::_is_elemental
const bool _is_elemental
Determines if the flood counter is elements or not (nodes)
Definition: FeatureFloodCount.h:723
updateBBoxExtremesHelper
void updateBBoxExtremesHelper(BoundingBox &bbox, const Point &node)
Definition: FeatureFloodCount.C:2205
FeatureFloodCount::_empty_var_to_features
std::vector< unsigned int > _empty_var_to_features
Definition: FeatureFloodCount.h:715
FeatureFloodCount::visitElementalNeighbors
void visitElementalNeighbors(const Elem *elem, FeatureData *feature, bool expand_halos_only, bool disjoint_only)
Definition: FeatureFloodCount.C:1584
FeatureFloodCount::_vars
std::vector< MooseVariable * > _vars
The vector of coupled in variables cast to MooseVariable.
Definition: FeatureFloodCount.h:566
FeatureFloodCount::_halo_ids
std::vector< std::map< dof_id_type, int > > _halo_ids
The data structure for looking up halos around features.
Definition: FeatureFloodCount.h:701
FeatureFloodCount::invalid_id
static const unsigned int invalid_id
Definition: FeatureFloodCount.h:94
FeatureFloodCount::mergeSets
virtual void mergeSets()
This routine is called on the master rank only and stitches together the partial feature pieces seen ...
Definition: FeatureFloodCount.C:1121
FeatureFloodCount::_pbs
PeriodicBoundaries * _pbs
A pointer to the periodic boundary constraints object.
Definition: FeatureFloodCount.h:687
FeatureFloodCount::clearDataStructures
virtual void clearDataStructures()
Helper routine for clearing up data structures during initialize and prior to parallel communication.
Definition: FeatureFloodCount.C:330
FeatureFloodCount::Status::INACTIVE
FauxGrainTracker::_vol_count
std::map< unsigned int, unsigned int > _vol_count
The count of entities contributing to the volume calculation.
Definition: FauxGrainTracker.h:75
FeatureFloodCount::_feature_maps
std::vector< std::map< dof_id_type, int > > _feature_maps
The feature maps contain the raw flooded node information and eventually the unique grain numbers.
Definition: FeatureFloodCount.h:678
FeatureFloodCount::compareValueWithThreshold
bool compareValueWithThreshold(Real entity_value, Real threshold) const
This method is used to determine whether the current entity value is part of a feature or not.
Definition: FeatureFloodCount.C:1418
FeatureFloodCount::deserialize
void deserialize(std::vector< std::string > &serialized_buffers, unsigned int var_num=invalid_id)
This routine takes the vector of byte buffers (one for each processor), deserializes them into a seri...
Definition: FeatureFloodCount.C:1086
FeatureFloodCount::_feature_id_to_local_index
std::vector< std::size_t > _feature_id_to_local_index
The vector recording the grain_id to local index (several indices will contain invalid_size_t)
Definition: FeatureFloodCount.h:684
FeatureFloodCount::_distribute_merge_work
const bool _distribute_merge_work
Keeps track of whether we are distributing the merge work.
Definition: FeatureFloodCount.h:769
FeatureFloodCount::_compute_halo_maps
const bool _compute_halo_maps
Indicates whether or not to communicate halo map information with all ranks.
Definition: FeatureFloodCount.h:604
FeatureFloodCount::BoundaryIntersection::ANY_BOUNDARY
FauxGrainTracker::_entity_id_to_var_num
std::map< dof_id_type, unsigned int > _entity_id_to_var_num
The mapping of entities to grains, in this case always the order parameter.
Definition: FauxGrainTracker.h:51
FeatureFloodCount::getConnectingThreshold
virtual Real getConnectingThreshold(std::size_t current_index) const
Return the "connecting" comparison threshold to use when inspecting an entity during the flood stage.
Definition: FeatureFloodCount.C:1412
FauxGrainTracker::_empty_var_to_features
std::vector< unsigned int > _empty_var_to_features
Definition: FauxGrainTracker.h:54
FeatureFloodCount::_feature_count
unsigned int _feature_count
The number of features seen by this object (same as summing _feature_counts_per_map)
Definition: FeatureFloodCount.h:648
FeatureFloodCount::_threshold
const Real _threshold
The threshold above (or below) where an entity may begin a new region (feature)
Definition: FeatureFloodCount.h:572
FauxGrainTracker::_n_vars
const std::size_t _n_vars
Definition: FauxGrainTracker.h:63
FeatureFloodCount::_is_boundary_restricted
bool _is_boundary_restricted
Indicates that this object should only run on one or more boundaries.
Definition: FeatureFloodCount.h:726
FeatureFloodCount::isNewFeatureOrConnectedRegion
virtual bool isNewFeatureOrConnectedRegion(const DofObject *dof_object, std::size_t &current_index, FeatureData *&feature, Status &status, unsigned int &new_id)
Method called during the recursive flood routine that should return whether or not the current entity...
Definition: FeatureFloodCount.C:1425
FeatureFloodCount::FieldType::VARIABLE_COLORING
FeatureFloodCount::_bnd_elem_range
ConstBndElemRange * _bnd_elem_range
Boundary element range pointer.
Definition: FeatureFloodCount.h:729
FeatureFloodCount::buildFeatureIdToLocalIndices
void buildFeatureIdToLocalIndices(unsigned int max_id)
This method builds a lookup map for retrieving the right local feature (by index) given a global inde...
Definition: FeatureFloodCount.C:665
FeatureFloodCount::BoundaryIntersection::NONE
FauxGrainTracker::_volume
std::map< unsigned int, Real > _volume
The volume of the feature.
Definition: FauxGrainTracker.h:72
FeatureFloodCount::_entity_queue
std::deque< const DofObject * > _entity_queue
The data structure for maintaining entities to flood during discovery.
Definition: FeatureFloodCount.h:766
FeatureFloodCount::_compute_var_to_feature_map
const bool _compute_var_to_feature_map
Indicates whether or not the var to feature map is populated.
Definition: FeatureFloodCount.h:607
FeatureFloodCount::_periodic_node_map
std::multimap< dof_id_type, dof_id_type > _periodic_node_map
The data structure which is a list of nodes that are constrained to other nodes based on the imposed ...
Definition: FeatureFloodCount.h:707
FeatureFloodCount::_all_boundary_entity_ids
std::unordered_set< dof_id_type > _all_boundary_entity_ids
The set of entities on the boundary of the domain used for determining if features intersect any boun...
Definition: FeatureFloodCount.h:711
FeatureFloodCount::_step_threshold
Real _step_threshold
Definition: FeatureFloodCount.h:573
FeatureFloodCount::_prepare_for_transfer
const PerfID _prepare_for_transfer
Definition: FeatureFloodCount.h:778
dataStore
void dataStore(std::ostream &stream, FeatureFloodCount::FeatureData &feature, void *context)
Definition: FeatureFloodCount.C:33
FeatureFloodCount::_n_procs
const processor_id_type _n_procs
Convenience variable holding the number of processors in this simulation.
Definition: FeatureFloodCount.h:623
FeatureFloodCount::_var_index_maps
std::vector< std::map< dof_id_type, int > > _var_index_maps
This map keeps track of which variables own which nodes.
Definition: FeatureFloodCount.h:639
FeatureFloodCount::_expand_halos
const PerfID _expand_halos
Definition: FeatureFloodCount.h:776
FeatureFloodCount::_n_vars
const std::size_t _n_vars
Definition: FeatureFloodCount.h:617
FeatureFloodCount::_local_to_global_feature_map
std::vector< std::size_t > _local_to_global_feature_map
The vector recording the local to global feature indices.
Definition: FeatureFloodCount.h:681
FeatureFloodCount::updateBoundaryIntersections
void updateBoundaryIntersections(FeatureData &feature) const
Update the feature's attributes to indicate boundary intersections.
Definition: FeatureFloodCount.C:1724
FeatureFloodCount::meshChanged
virtual void meshChanged() override
Definition: FeatureFloodCount.C:335
FeatureFloodCount::_feature_counts_per_map
std::vector< unsigned int > _feature_counts_per_map
The number of features seen by this object per map.
Definition: FeatureFloodCount.h:645
FeatureFloodCount::BoundaryIntersection::PRIMARY_PERCOLATION_BOUNDARY
FeatureFloodCount::_primary_perc_bnds
std::vector< BoundaryID > _primary_perc_bnds
Definition: FeatureFloodCount.h:717
FeatureFloodCount::serialize
void serialize(std::string &serialized_buffer, unsigned int var_num=invalid_id)
This routines packs the _partial_feature_sets data into a structure suitable for parallel communicati...
Definition: FeatureFloodCount.C:1067