www.mooseframework.org
ComputeFiniteStrain.C
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://www.mooseframework.org
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 #include "ComputeFiniteStrain.h"
11 #include "Assembly.h"
12 
13 #include "libmesh/quadrature.h"
14 #include "libmesh/utility.h"
15 
16 MooseEnum
18 {
19  return MooseEnum("TaylorExpansion EigenSolution", "TaylorExpansion");
20 }
21 
22 registerMooseObject("TensorMechanicsApp", ComputeFiniteStrain);
23 
25 
26 InputParameters
28 {
29  InputParameters params = ComputeIncrementalStrainBase::validParams();
30  params.addClassDescription(
31  "Compute a strain increment and rotation increment for finite strains.");
32  params.addParam<MooseEnum>("decomposition_method",
34  "Methods to calculate the strain and rotation increments");
35  return params;
36 }
37 
38 ComputeFiniteStrain::ComputeFiniteStrain(const InputParameters & parameters)
39  : ComputeIncrementalStrainBase(parameters),
40  _Fhat(_fe_problem.getMaxQps()),
41  _decomposition_method(getParam<MooseEnum>("decomposition_method").getEnum<DecompMethod>())
42 {
43 }
44 
45 void
47 {
48  RankTwoTensor ave_Fhat;
49  Real ave_dfgrd_det = 0.0;
50  for (_qp = 0; _qp < _qrule->n_points(); ++_qp)
51  {
52  // Deformation gradient
53  RankTwoTensor A((*_grad_disp[0])[_qp],
54  (*_grad_disp[1])[_qp],
55  (*_grad_disp[2])[_qp]); // Deformation gradient
56  RankTwoTensor Fbar((*_grad_disp_old[0])[_qp],
57  (*_grad_disp_old[1])[_qp],
58  (*_grad_disp_old[2])[_qp]); // Old Deformation gradient
59 
60  _deformation_gradient[_qp] = A;
61  _deformation_gradient[_qp].addIa(1.0); // Gauss point deformation gradient
62 
63  // A = gradU - gradUold
64  A -= Fbar;
65 
66  // Fbar = ( I + gradUold)
67  Fbar.addIa(1.0);
68 
69  // Incremental deformation gradient _Fhat = I + A Fbar^-1
70  _Fhat[_qp] = A * Fbar.inverse();
71  _Fhat[_qp].addIa(1.0);
72 
74  {
75  // Calculate average _Fhat for volumetric locking correction
76  ave_Fhat += _Fhat[_qp] * _JxW[_qp] * _coord[_qp];
77 
78  // Average deformation gradient
79  ave_dfgrd_det += _deformation_gradient[_qp].det() * _JxW[_qp] * _coord[_qp];
80  }
81  }
82 
84  {
85  // needed for volumetric locking correction
86  ave_Fhat /= _current_elem_volume;
87  // average deformation gradient
88  ave_dfgrd_det /= _current_elem_volume;
89  }
90 
91  for (_qp = 0; _qp < _qrule->n_points(); ++_qp)
92  {
94  {
95  // Finalize volumetric locking correction
96  _Fhat[_qp] *= std::cbrt(ave_Fhat.det() / _Fhat[_qp].det());
97  _deformation_gradient[_qp] *= std::cbrt(ave_dfgrd_det / _deformation_gradient[_qp].det());
98  }
99 
100  computeQpStrain();
101  }
102 }
103 
104 void
106 {
107  RankTwoTensor total_strain_increment;
108 
109  // two ways to calculate these increments: TaylorExpansion(default) or EigenSolution
110  computeQpIncrements(total_strain_increment, _rotation_increment[_qp]);
111 
112  _strain_increment[_qp] = total_strain_increment;
113 
114  // Remove the eigenstrain increment
116 
117  if (_dt > 0)
118  _strain_rate[_qp] = _strain_increment[_qp] / _dt;
119  else
120  _strain_rate[_qp].zero();
121 
122  // Update strain in intermediate configuration
124  _total_strain[_qp] = _total_strain_old[_qp] + total_strain_increment;
125 
126  // Rotate strain to current configuration
127  _mechanical_strain[_qp] =
128  _rotation_increment[_qp] * _mechanical_strain[_qp] * _rotation_increment[_qp].transpose();
129  _total_strain[_qp] =
130  _rotation_increment[_qp] * _total_strain[_qp] * _rotation_increment[_qp].transpose();
131 
132  if (_global_strain)
133  _total_strain[_qp] += (*_global_strain)[_qp];
134 }
135 
136 void
138  RankTwoTensor & rotation_increment)
139 {
140  switch (_decomposition_method)
141  {
143  {
144  // inverse of _Fhat
145  const RankTwoTensor invFhat = _Fhat[_qp].inverse();
146 
147  // A = I - _Fhat^-1
148  RankTwoTensor A(RankTwoTensor::initIdentity);
149  A -= invFhat;
150 
151  // Cinv - I = A A^T - A - A^T;
152  RankTwoTensor Cinv_I = A * A.transpose() - A - A.transpose();
153 
154  // strain rate D from Taylor expansion, Chat = (-1/2(Chat^-1 - I) + 1/4*(Chat^-1 - I)^2 + ...
155  total_strain_increment = -Cinv_I * 0.5 + Cinv_I * Cinv_I * 0.25;
156 
157  const Real a[3] = {invFhat(1, 2) - invFhat(2, 1),
158  invFhat(2, 0) - invFhat(0, 2),
159  invFhat(0, 1) - invFhat(1, 0)};
160 
161  Real q = (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]) / 4.0;
162  Real trFhatinv_1 = invFhat.trace() - 1.0;
163  const Real p = trFhatinv_1 * trFhatinv_1 / 4.0;
164 
165  // cos theta_a
166  const Real C1_squared = p +
167  3.0 * Utility::pow<2>(p) * (1.0 - (p + q)) / Utility::pow<2>(p + q) -
168  2.0 * Utility::pow<3>(p) * (1.0 - (p + q)) / Utility::pow<3>(p + q);
169  mooseAssert(C1_squared >= 0.0,
170  "Cannot take square root of a negative number. This may happen when elements "
171  "become heavily distorted.");
172  const Real C1 = std::sqrt(C1_squared);
173 
174  Real C2;
175  if (q > 0.01)
176  // (1-cos theta_a)/4q
177  C2 = (1.0 - C1) / (4.0 * q);
178  else
179  // alternate form for small q
180  C2 = 0.125 + q * 0.03125 * (Utility::pow<2>(p) - 12.0 * (p - 1.0)) / Utility::pow<2>(p) +
181  Utility::pow<2>(q) * (p - 2.0) * (Utility::pow<2>(p) - 10.0 * p + 32.0) /
182  Utility::pow<3>(p) +
183  Utility::pow<3>(q) *
184  (1104.0 - 992.0 * p + 376.0 * Utility::pow<2>(p) - 72.0 * Utility::pow<3>(p) +
185  5.0 * Utility::pow<4>(p)) /
186  (512.0 * Utility::pow<4>(p));
187 
188  const Real C3_test =
189  (p * q * (3.0 - q) + Utility::pow<3>(p) + Utility::pow<2>(q)) / Utility::pow<3>(p + q);
190  mooseAssert(C3_test >= 0.0,
191  "Cannot take square root of a negative number. This may happen when elements "
192  "become heavily distorted.");
193  const Real C3 = 0.5 * std::sqrt(C3_test); // sin theta_a/(2 sqrt(q))
194 
195  // Calculate incremental rotation. Note that this value is the transpose of that from Rashid,
196  // 93, so we transpose it before storing
197  RankTwoTensor R_incr;
198  R_incr.addIa(C1);
199  for (unsigned int i = 0; i < 3; ++i)
200  for (unsigned int j = 0; j < 3; ++j)
201  R_incr(i, j) += C2 * a[i] * a[j];
202 
203  R_incr(0, 1) += C3 * a[2];
204  R_incr(0, 2) -= C3 * a[1];
205  R_incr(1, 0) -= C3 * a[2];
206  R_incr(1, 2) += C3 * a[0];
207  R_incr(2, 0) += C3 * a[1];
208  R_incr(2, 1) -= C3 * a[0];
209 
210  rotation_increment = R_incr.transpose();
211  break;
212  }
213 
215  {
216  std::vector<Real> e_value(3);
217  RankTwoTensor e_vector, N1, N2, N3;
218 
219  RankTwoTensor Chat = _Fhat[_qp].transpose() * _Fhat[_qp];
220  Chat.symmetricEigenvaluesEigenvectors(e_value, e_vector);
221 
222  const Real lambda1 = std::sqrt(e_value[0]);
223  const Real lambda2 = std::sqrt(e_value[1]);
224  const Real lambda3 = std::sqrt(e_value[2]);
225 
226  N1.vectorOuterProduct(e_vector.column(0), e_vector.column(0));
227  N2.vectorOuterProduct(e_vector.column(1), e_vector.column(1));
228  N3.vectorOuterProduct(e_vector.column(2), e_vector.column(2));
229 
230  const RankTwoTensor Uhat = N1 * lambda1 + N2 * lambda2 + N3 * lambda3;
231  const RankTwoTensor invUhat(Uhat.inverse());
232 
233  rotation_increment = _Fhat[_qp] * invUhat;
234 
235  total_strain_increment =
236  N1 * std::log(lambda1) + N2 * std::log(lambda2) + N3 * std::log(lambda3);
237  break;
238  }
239 
240  default:
241  mooseError("ComputeFiniteStrain Error: Pass valid decomposition type: TaylorExpansion or "
242  "EigenSolution.");
243  }
244 }
ComputeFiniteStrain::_decomposition_method
const DecompMethod _decomposition_method
Definition: ComputeFiniteStrain.h:46
ComputeIncrementalStrainBase::_strain_rate
MaterialProperty< RankTwoTensor > & _strain_rate
Definition: ComputeIncrementalStrainBase.h:38
ComputeStrainBase::_current_elem_volume
const Real & _current_elem_volume
Definition: ComputeStrainBase.h:56
ComputeFiniteStrain::DecompMethod::EigenSolution
ComputeIncrementalStrainBase::subtractEigenstrainIncrementFromStrain
void subtractEigenstrainIncrementFromStrain(RankTwoTensor &strain)
Definition: ComputeIncrementalStrainBase.C:59
ComputeFiniteStrain
ComputeFiniteStrain defines a strain increment and rotation increment, for finite strains.
Definition: ComputeFiniteStrain.h:22
ComputeIncrementalStrainBase::_mechanical_strain_old
const MaterialProperty< RankTwoTensor > & _mechanical_strain_old
Definition: ComputeIncrementalStrainBase.h:44
ComputeIncrementalStrainBase::_grad_disp_old
std::vector< const VariableGradient * > _grad_disp_old
Definition: ComputeIncrementalStrainBase.h:36
ComputeFiniteStrain::_Fhat
std::vector< RankTwoTensor > _Fhat
Definition: ComputeFiniteStrain.h:37
ComputeIncrementalStrainBase::_rotation_increment
MaterialProperty< RankTwoTensor > & _rotation_increment
Definition: ComputeIncrementalStrainBase.h:40
ComputeFiniteStrain::computeProperties
void computeProperties() override
Definition: ComputeFiniteStrain.C:46
ComputeStrainBase::_mechanical_strain
MaterialProperty< RankTwoTensor > & _mechanical_strain
Definition: ComputeStrainBase.h:46
ComputeIncrementalStrainBase::_total_strain_old
const MaterialProperty< RankTwoTensor > & _total_strain_old
Definition: ComputeIncrementalStrainBase.h:45
ComputeFiniteStrain::computeQpStrain
virtual void computeQpStrain()
Definition: ComputeFiniteStrain.C:105
ComputeIncrementalStrainBase::_deformation_gradient
MaterialProperty< RankTwoTensor > & _deformation_gradient
Definition: ComputeIncrementalStrainBase.h:42
ComputeFiniteStrain.h
ComputeFiniteStrain::ComputeFiniteStrain
ComputeFiniteStrain(const InputParameters &parameters)
Definition: ComputeFiniteStrain.C:38
ComputeStrainBase::_global_strain
const MaterialProperty< RankTwoTensor > * _global_strain
Definition: ComputeStrainBase.h:53
ComputeIncrementalStrainBase
ComputeIncrementalStrainBase is the base class for strain tensors using incremental formulations.
Definition: ComputeIncrementalStrainBase.h:22
ComputeFiniteStrain::computeQpIncrements
virtual void computeQpIncrements(RankTwoTensor &e, RankTwoTensor &r)
Definition: ComputeFiniteStrain.C:137
defineLegacyParams
defineLegacyParams(ComputeFiniteStrain)
ComputeFiniteStrain::DecompMethod
DecompMethod
Definition: ComputeFiniteStrain.h:40
RankTwoTensorTempl< Real >
ComputeStrainBase::_total_strain
MaterialProperty< RankTwoTensor > & _total_strain
Definition: ComputeStrainBase.h:48
ComputeFiniteStrain::DecompMethod::TaylorExpansion
ComputeFiniteStrain::validParams
static InputParameters validParams()
Definition: ComputeFiniteStrain.C:27
registerMooseObject
registerMooseObject("TensorMechanicsApp", ComputeFiniteStrain)
ComputeStrainBase::_volumetric_locking_correction
const bool _volumetric_locking_correction
Definition: ComputeStrainBase.h:55
ComputeIncrementalStrainBase::validParams
static InputParameters validParams()
Definition: ComputeIncrementalStrainBase.C:16
ComputeIncrementalStrainBase::_strain_increment
MaterialProperty< RankTwoTensor > & _strain_increment
Definition: ComputeIncrementalStrainBase.h:39
ComputeFiniteStrain::decompositionType
static MooseEnum decompositionType()
Definition: ComputeFiniteStrain.C:17
ComputeStrainBase::_grad_disp
std::vector< const VariableGradient * > _grad_disp
Definition: ComputeStrainBase.h:42