www.mooseframework.org
ADComputeRSphericalIncrementalStrain.C
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://www.mooseframework.org
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
11 #include "Assembly.h"
12 #include "FEProblem.h"
13 #include "MooseMesh.h"
14 
15 #include "libmesh/quadrature.h"
16 
18 
20 
21 template <ComputeStage compute_stage>
22 InputParameters
24 {
26  params.addClassDescription(
27  "Compute a strain increment for incremental strains in 1D spherical symmetry problems.");
28  return params;
29 }
30 
31 template <ComputeStage compute_stage>
33  const InputParameters & parameters)
34  : ADComputeIncrementalSmallStrain<compute_stage>(parameters),
35  _disp_old_0(coupledValueOld("displacements", 0))
36 {
37 }
38 
39 template <ComputeStage compute_stage>
40 void
42 {
44 
45  const auto & subdomainIDs = _mesh.meshSubdomains();
46  for (auto subdomainID : subdomainIDs)
47  if (_fe_problem.getCoordSystem(subdomainID) != Moose::COORD_RSPHERICAL)
48  mooseError("The coordinate system must be set to RSPHERICAL for 1D R spherical simulations.");
49 }
50 
51 template <ComputeStage compute_stage>
52 void
54  ADRankTwoTensor & total_strain_increment)
55 {
56  // Deformation gradient calculation in cylindrical coordinates
57  ADRankTwoTensor A; // Deformation gradient
58  RankTwoTensor Fbar; // Old Deformation gradient
59 
60  // Step through calculating the current and old deformation gradients
61  // Only diagonal components are nonzero because this is a 1D material
62  // Note: x_disp is the radial displacement
63  A(0, 0) = (*_grad_disp[0])[_qp](0);
64  Fbar(0, 0) = (*_grad_disp_old[0])[_qp](0);
65 
66  // The polar and azimuthal strains are functions of radial displacement
67  if (!MooseUtils::relativeFuzzyEqual(_q_point[_qp](0), 0.0))
68  {
69  A(1, 1) = (*_disp[0])[_qp] / _q_point[_qp](0);
70  Fbar(1, 1) = _disp_old_0[_qp] / _q_point[_qp](0);
71  }
72 
73  // The polar and azimuthal strains are equivalent in this 1D problem
74  A(2, 2) = A(1, 1);
75  Fbar(2, 2) = Fbar(1, 1);
76 
77  // very nearly A = gradU - gradUold, adapted to cylindrical coords
78  A -= Fbar;
79 
80  total_strain_increment = 0.5 * (A + A.transpose());
81 }
ADComputeRSphericalIncrementalStrain::initialSetup
virtual void initialSetup() override
Definition: ADComputeRSphericalIncrementalStrain.C:41
ADComputeIncrementalSmallStrain::validParams
static InputParameters validParams()
Definition: ADComputeIncrementalSmallStrain.C:19
ADComputeRSphericalIncrementalStrain
ADComputeRSphericalIncrementalStrain defines a strain increment only for small strains in 1D spherica...
Definition: ADComputeRSphericalIncrementalStrain.h:15
registerADMooseObject
registerADMooseObject("TensorMechanicsApp", ADComputeRSphericalIncrementalStrain)
defineADLegacyParams
defineADLegacyParams(ADComputeRSphericalIncrementalStrain)
ADComputeRSphericalIncrementalStrain.h
ADComputeRSphericalIncrementalStrain::validParams
static InputParameters validParams()
Definition: ADComputeRSphericalIncrementalStrain.C:23
ADComputeRSphericalIncrementalStrain::ADComputeRSphericalIncrementalStrain
ADComputeRSphericalIncrementalStrain(const InputParameters &parameters)
Definition: ADComputeRSphericalIncrementalStrain.C:32
ADComputeIncrementalSmallStrain
ADComputeIncrementalSmallStrain defines a strain increment and rotation increment (=1),...
Definition: ADComputeIncrementalSmallStrain.h:19
ADComputeIncrementalStrainBase::initialSetup
void initialSetup() override
Definition: ADComputeIncrementalStrainBase.C:41
RankTwoTensorTempl< Real >
ADComputeRSphericalIncrementalStrain::computeTotalStrainIncrement
virtual void computeTotalStrainIncrement(ADRankTwoTensor &total_strain_increment) override
Computes the current and old deformation gradients with the assumptions for 1D spherical symmetry geo...
Definition: ADComputeRSphericalIncrementalStrain.C:53