www.mooseframework.org
ADComputeFiniteStrain.C
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://www.mooseframework.org
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 #include "ADComputeFiniteStrain.h"
11 
12 #include "libmesh/quadrature.h"
13 #include "libmesh/utility.h"
14 
15 registerADMooseObject("TensorMechanicsApp", ADComputeFiniteStrain);
16 
18 
19 template <ComputeStage compute_stage>
20 MooseEnum
22 {
23  return MooseEnum("TaylorExpansion EigenSolution", "TaylorExpansion");
24 }
25 
26 template <ComputeStage compute_stage>
27 InputParameters
29 {
31  params.addClassDescription(
32  "Compute a strain increment and rotation increment for finite strains.");
33  params.addParam<MooseEnum>("decomposition_method",
35  "Methods to calculate the strain and rotation increments");
36  return params;
37 }
38 
39 template <ComputeStage compute_stage>
41  : ADComputeIncrementalStrainBase<compute_stage>(parameters),
42  _Fhat(_fe_problem.getMaxQps()),
43  _decomposition_method(
44  getParam<MooseEnum>("decomposition_method").template getEnum<DecompMethod>())
45 {
46 }
47 
48 template <ComputeStage compute_stage>
49 void
51 {
52  ADRankTwoTensor ave_Fhat;
53  for (_qp = 0; _qp < _qrule->n_points(); ++_qp)
54  {
55  // Deformation gradient
56  ADRankTwoTensor A((*_grad_disp[0])[_qp], (*_grad_disp[1])[_qp], (*_grad_disp[2])[_qp]);
57 
58  // Old Deformation gradient
59  ADRankTwoTensor Fbar(
60  (*_grad_disp_old[0])[_qp], (*_grad_disp_old[1])[_qp], (*_grad_disp_old[2])[_qp]);
61 
62  // A = gradU - gradUold
63  A -= Fbar;
64 
65  // Fbar = ( I + gradUold)
66  Fbar.addIa(1.0);
67 
68  // Incremental deformation gradient _Fhat = I + A Fbar^-1
69  _Fhat[_qp] = A * Fbar.inverse();
70  _Fhat[_qp].addIa(1.0);
71 
72  // Calculate average _Fhat for volumetric locking correction
73  if (_volumetric_locking_correction)
74  ave_Fhat += _Fhat[_qp] * _JxW[_qp] * _coord[_qp];
75  }
76 
77  if (_volumetric_locking_correction)
78  ave_Fhat /= _current_elem_volume;
79 
80  for (_qp = 0; _qp < _qrule->n_points(); ++_qp)
81  {
82  // Finalize volumetric locking correction
83  if (_volumetric_locking_correction)
84  // std::cbrt is not yet supported for dual numbers (MetaPhysicL/issues/36)
85  _Fhat[_qp] *= std::pow(ave_Fhat.det() / _Fhat[_qp].det(), 1.0 / 3.0);
86 
87  computeQpStrain();
88  }
89 
90  copyDualNumbersToValues();
91 }
92 
93 template <ComputeStage compute_stage>
94 void
96 {
97  ADRankTwoTensor total_strain_increment;
98 
99  // two ways to calculate these increments: TaylorExpansion(default) or EigenSolution
100  computeQpIncrements(total_strain_increment, _rotation_increment[_qp]);
101 
102  _strain_increment[_qp] = total_strain_increment;
103 
104  // Remove the eigenstrain increment
105  subtractEigenstrainIncrementFromStrain(_strain_increment[_qp]);
106 
107  if (_dt > 0)
108  _strain_rate[_qp] = _strain_increment[_qp] / _dt;
109  else
110  _strain_rate[_qp].zero();
111 
112  // Update strain in intermediate configuration
113  _mechanical_strain[_qp] = _mechanical_strain_old[_qp] + _strain_increment[_qp];
114  _total_strain[_qp] = _total_strain_old[_qp] + total_strain_increment;
115 
116  // Rotate strain to current configuration
117  _mechanical_strain[_qp] =
118  _rotation_increment[_qp] * _mechanical_strain[_qp] * _rotation_increment[_qp].transpose();
119  _total_strain[_qp] =
120  _rotation_increment[_qp] * _total_strain[_qp] * _rotation_increment[_qp].transpose();
121 
122  if (_global_strain)
123  _total_strain[_qp] += (*_global_strain)[_qp];
124 }
125 
126 template <ComputeStage compute_stage>
127 void
128 ADComputeFiniteStrain<compute_stage>::computeQpIncrements(ADRankTwoTensor & total_strain_increment,
129  ADRankTwoTensor & rotation_increment)
130 {
131  switch (_decomposition_method)
132  {
133  case DecompMethod::TaylorExpansion:
134  {
135  // inverse of _Fhat
136  const ADRankTwoTensor invFhat = _Fhat[_qp].inverse();
137 
138  // A = I - _Fhat^-1
139  ADRankTwoTensor A(RankTwoTensorType<compute_stage>::type::initIdentity);
140  A -= invFhat;
141 
142  // Cinv - I = A A^T - A - A^T;
143  ADRankTwoTensor Cinv_I = A * A.transpose() - A - A.transpose();
144 
145  // strain rate D from Taylor expansion, Chat = (-1/2(Chat^-1 - I) + 1/4*(Chat^-1 - I)^2 + ...
146  total_strain_increment = -Cinv_I * 0.5 + Cinv_I * Cinv_I * 0.25;
147 
148  const ADReal a[3] = {invFhat(1, 2) - invFhat(2, 1),
149  invFhat(2, 0) - invFhat(0, 2),
150  invFhat(0, 1) - invFhat(1, 0)};
151 
152  const auto q = (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]) / 4.0;
153  const auto trFhatinv_1 = invFhat.trace() - 1.0;
154  const auto p = trFhatinv_1 * trFhatinv_1 / 4.0;
155 
156  // cos theta_a
157  const ADReal C1_squared =
158  p + 3.0 * Utility::pow<2>(p) * (1.0 - (p + q)) / Utility::pow<2>(p + q) -
159  2.0 * Utility::pow<3>(p) * (1.0 - (p + q)) / Utility::pow<3>(p + q);
160  mooseAssert(C1_squared >= 0.0,
161  "Cannot take square root of a negative number. This may happen when elements "
162  "become heavily distorted.");
163  const ADReal C1 = std::sqrt(C1_squared);
164 
165  ADReal C2;
166  if (q > 0.01)
167  // (1-cos theta_a)/4q
168  C2 = (1.0 - C1) / (4.0 * q);
169  else
170  // alternate form for small q
171  C2 = 0.125 + q * 0.03125 * (Utility::pow<2>(p) - 12.0 * (p - 1.0)) / Utility::pow<2>(p) +
172  Utility::pow<2>(q) * (p - 2.0) * (Utility::pow<2>(p) - 10.0 * p + 32.0) /
173  Utility::pow<3>(p) +
174  Utility::pow<3>(q) *
175  (1104.0 - 992.0 * p + 376.0 * Utility::pow<2>(p) - 72.0 * Utility::pow<3>(p) +
176  5.0 * Utility::pow<4>(p)) /
177  (512.0 * Utility::pow<4>(p));
178 
179  const ADReal C3_test =
180  (p * q * (3.0 - q) + Utility::pow<3>(p) + Utility::pow<2>(q)) / Utility::pow<3>(p + q);
181  mooseAssert(C3_test >= 0.0,
182  "Cannot take square root of a negative number. This may happen when elements "
183  "become heavily distorted.");
184  const ADReal C3 = 0.5 * std::sqrt(C3_test); // sin theta_a/(2 sqrt(q))
185 
186  // Calculate incremental rotation. Note that this value is the transpose of that from Rashid,
187  // 93, so we transpose it before storing
188  ADRankTwoTensor R_incr;
189  R_incr.addIa(C1);
190  for (unsigned int i = 0; i < 3; ++i)
191  for (unsigned int j = 0; j < 3; ++j)
192  R_incr(i, j) += C2 * a[i] * a[j];
193 
194  R_incr(0, 1) += C3 * a[2];
195  R_incr(0, 2) -= C3 * a[1];
196  R_incr(1, 0) -= C3 * a[2];
197  R_incr(1, 2) += C3 * a[0];
198  R_incr(2, 0) += C3 * a[1];
199  R_incr(2, 1) -= C3 * a[0];
200 
201  rotation_increment = R_incr.transpose();
202  break;
203  }
204 
205  case DecompMethod::EigenSolution:
206  {
207  std::vector<ADReal> e_value(3);
208  ADRankTwoTensor e_vector, N1, N2, N3;
209 
210  const auto Chat = _Fhat[_qp].transpose() * _Fhat[_qp];
211  Chat.symmetricEigenvaluesEigenvectors(e_value, e_vector);
212 
213  const auto lambda1 = std::sqrt(e_value[0]);
214  const auto lambda2 = std::sqrt(e_value[1]);
215  const auto lambda3 = std::sqrt(e_value[2]);
216 
217  N1.vectorOuterProduct(e_vector.column(0), e_vector.column(0));
218  N2.vectorOuterProduct(e_vector.column(1), e_vector.column(1));
219  N3.vectorOuterProduct(e_vector.column(2), e_vector.column(2));
220 
221  const auto Uhat = N1 * lambda1 + N2 * lambda2 + N3 * lambda3;
222  const ADRankTwoTensor invUhat(Uhat.inverse());
223 
224  rotation_increment = _Fhat[_qp] * invUhat;
225 
226  total_strain_increment =
227  N1 * std::log(lambda1) + N2 * std::log(lambda2) + N3 * std::log(lambda3);
228  break;
229  }
230 
231  default:
232  mooseError("ADComputeFiniteStrain Error: Pass valid decomposition type: TaylorExpansion or "
233  "EigenSolution.");
234  }
235 }
pow
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
Definition: ExpressionBuilder.h:673
ADComputeFiniteStrain::computeProperties
void computeProperties() override
Definition: ADComputeFiniteStrain.C:50
ADComputeFiniteStrain.h
ADComputeFiniteStrain::validParams
static InputParameters validParams()
Definition: ADComputeFiniteStrain.C:28
ADComputeIncrementalStrainBase::validParams
static InputParameters validParams()
Definition: ADComputeIncrementalStrainBase.C:17
ADComputeFiniteStrain::DecompMethod
DecompMethod
Definition: ADComputeFiniteStrain.h:47
ADComputeFiniteStrain::computeQpStrain
virtual void computeQpStrain()
Definition: ADComputeFiniteStrain.C:95
registerADMooseObject
registerADMooseObject("TensorMechanicsApp", ADComputeFiniteStrain)
ADComputeFiniteStrain
ADComputeFiniteStrain defines a strain increment and rotation increment, for finite strains.
Definition: ADComputeFiniteStrain.h:21
ADComputeFiniteStrain::decompositionType
static MooseEnum decompositionType()
Definition: ADComputeFiniteStrain.C:21
defineADLegacyParams
defineADLegacyParams(ADComputeFiniteStrain)
ADComputeIncrementalStrainBase
ADComputeIncrementalStrainBase is the base class for strain tensors using incremental formulations.
Definition: ADComputeIncrementalStrainBase.h:26
ADComputeFiniteStrain::computeQpIncrements
virtual void computeQpIncrements(ADRankTwoTensor &e, ADRankTwoTensor &r)
Definition: ADComputeFiniteStrain.C:128
ADComputeFiniteStrain::ADComputeFiniteStrain
ADComputeFiniteStrain(const InputParameters &parameters)
Definition: ADComputeFiniteStrain.C:40