Go to the source code of this file.
◆ assemble_poisson() [1/2]
void assemble_poisson |
( |
EquationSystems & |
es, |
|
|
const std::string & |
libmesh_dbg_varsystem_name |
|
) |
| |
Definition at line 332 of file introduction_ex4.C.
337 libmesh_assert_equal_to (system_name,
"Poisson");
343 PerfLog perf_log (
"Matrix Assembly");
362 FEType fe_type = dof_map.variable_type(0);
368 std::unique_ptr<FEBase> fe (FEBase::build(
dim, fe_type));
374 fe->attach_quadrature_rule (&qrule);
378 std::unique_ptr<FEBase> fe_face (FEBase::build(
dim, fe_type));
387 fe_face->attach_quadrature_rule (&qface);
393 const std::vector<Real> & JxW = fe->get_JxW();
398 const std::vector<Point> & q_point = fe->get_xyz();
401 const std::vector<std::vector<Real>> & phi = fe->get_phi();
405 const std::vector<std::vector<RealGradient>> & dphi = fe->get_dphi();
417 std::vector<dof_id_type> dof_indices;
428 perf_log.push(
"elem init");
434 dof_map.dof_indices (elem, dof_indices);
441 const unsigned int n_dofs =
442 cast_int<unsigned int>(dof_indices.size());
452 libmesh_assert_equal_to (n_dofs, phi.size());
460 Ke.
resize (n_dofs, n_dofs);
467 perf_log.pop(
"elem init");
478 perf_log.push (
"Ke");
480 for (
unsigned int qp=0; qp<qrule.n_points(); qp++)
481 for (
unsigned int i=0; i != n_dofs; i++)
482 for (
unsigned int j=0; j != n_dofs; j++)
483 Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]);
494 perf_log.push (
"Fe");
496 for (
unsigned int qp=0; qp<qrule.n_points(); qp++)
512 const Real x = q_point[qp](0);
514 const Real y = q_point[qp](1);
519 const Real z = q_point[qp](2);
523 const Real eps = 1.e-3;
543 fxy = (0.25*
pi*
pi)*sin(.5*
pi*x);
547 fxy = - (uxx + uyy + ((
dim==2) ? 0. : uzz));
551 for (
unsigned int i=0; i != n_dofs; i++)
552 Fe(i) += JxW[qp]*fxy*phi[i][qp];
562 dof_map.heterogenously_constrain_element_matrix_and_vector (Ke, Fe, dof_indices);
570 LOG_SCOPE_WITH(
"matrix insertion",
"", perf_log);
References libMesh::MeshBase::active_local_element_ptr_range(), libMesh::SparseMatrix< T >::add_matrix(), libMesh::NumericVector< T >::add_vector(), libMesh::FEGenericBase< OutputType >::build(), dim, exact_solution(), libMesh::FIFTH, libMesh::System::get_dof_map(), libMesh::EquationSystems::get_mesh(), libMesh::EquationSystems::get_system(), libMesh::ImplicitSystem::matrix, mesh, libMesh::MeshBase::mesh_dimension(), libMesh::QBase::n_points(), libMesh::pi, libMesh::PerfLog::pop(), libMesh::PerfLog::push(), libMesh::Real, libMesh::DenseVector< T >::resize(), libMesh::DenseMatrix< T >::resize(), and libMesh::ExplicitSystem::rhs.
◆ assemble_poisson() [2/2]
void assemble_poisson |
( |
EquationSystems & |
es, |
|
|
const std::string & |
system_name |
|
) |
| |
◆ exact_solution()
Real exact_solution |
( |
const Real |
x, |
|
|
const Real |
y, |
|
|
const Real |
t |
|
) |
| |
This is the exact solution that we are trying to obtain.
We will solve
and take a finite difference approximation using this function to get f. This is the well-known "method of
manufactured solutions".
Definition at line 43 of file exact_solution.C.
47 static const Real pi = acos(-1.);
49 return cos(.5*
pi*x)*sin(.5*
pi*y)*cos(.5*
pi*z);
Referenced by assemble_poisson(), and exact_solution_wrapper().
◆ exact_solution_wrapper()
void exact_solution_wrapper |
( |
DenseVector< Number > & |
output, |
|
|
const Point & |
p, |
|
|
const |
Real |
|
) |
| |
◆ main()
int main |
( |
int |
argc, |
|
|
char ** |
argv |
|
) |
| |
Definition at line 117 of file introduction_ex4.C.
124 "--enable-petsc, --enable-trilinos, or --enable-eigen");
130 GetPot command_line (argc, argv);
137 libmesh_error_msg(
"Usage:\n" <<
"\t " << argv[0] <<
" -d 2(3)" <<
" -n 15");
146 for (
int i=1; i<argc; i++)
156 if (command_line.search(1,
"-d"))
157 dim = command_line.next(
dim);
160 libmesh_example_requires(
dim <= LIBMESH_DIM,
"2D/3D support");
163 #ifndef LIBMESH_ENABLE_DIRICHLET
164 libmesh_example_requires(
false,
"--enable-dirichlet");
170 if (command_line.search(1,
"-n"))
171 ps = command_line.next(ps);
174 std::string order =
"SECOND";
175 if (command_line.search(2,
"-Order",
"-o"))
176 order = command_line.next(order);
179 std::string family =
"LAGRANGE";
180 if (command_line.search(2,
"-FEFamily",
"-f"))
181 family = command_line.next(family);
184 if ((family ==
"MONOMIAL") || (family ==
"XYZ"))
185 libmesh_error_msg(
"ex4 currently requires a C^0 (or higher) FE basis.");
197 Real halfwidth =
dim > 1 ? 1. : 0.;
198 Real halfheight =
dim > 2 ? 1. : 0.;
200 if ((family ==
"LAGRANGE") && (order ==
"FIRST"))
209 -halfwidth, halfwidth,
210 -halfheight, halfheight,
222 -halfwidth, halfwidth,
223 -halfheight, halfheight,
245 Utility::string_to_enum<Order> (order),
246 Utility::string_to_enum<FEFamily>(family));
257 std::set<boundary_id_type> boundary_ids;
259 boundary_ids.insert(0);
260 boundary_ids.insert(1);
264 boundary_ids.insert(2);
265 boundary_ids.insert(3);
270 boundary_ids.insert(4);
271 boundary_ids.insert(5);
275 std::vector<unsigned int> variables(1);
276 variables[0] = u_var;
282 #ifdef LIBMESH_ENABLE_DIRICHLET
289 (boundary_ids, variables, exact_solution_object);
297 equation_systems.init();
300 equation_systems.print_info();
310 GnuPlotIO plot(
mesh,
"Introduction Example 4, 1D", GnuPlotIO::GRID_ON);
311 plot.write_equation_systems(
"gnuplot_script", equation_systems);
313 #ifdef LIBMESH_HAVE_EXODUS_API
317 "out_3.e" :
"out_2.e", equation_systems);
319 #endif // #ifdef LIBMESH_HAVE_EXODUS_API
References libMesh::DofMap::add_dirichlet_boundary(), libMesh::EquationSystems::add_system(), libMesh::System::add_variable(), assemble_poisson(), libMesh::System::attach_assemble_function(), libMesh::MeshTools::Generation::build_cube(), libMesh::default_solver_package(), dim, libMesh::EDGE2, libMesh::EDGE3, exact_solution_wrapper(), libMesh::System::get_dof_map(), libMesh::GnuPlotIO::GRID_ON, libMesh::HEX27, libMesh::HEX8, libMesh::TriangleWrapper::init(), libMesh::EquationSystems::init(), libMesh::INVALID_SOLVER_PACKAGE, mesh, libMesh::out, libMesh::EquationSystems::print_info(), libMesh::MeshBase::print_info(), libMesh::QUAD4, libMesh::QUAD9, libMesh::Real, libMesh::LinearImplicitSystem::solve(), and libMesh::MeshOutput< MT >::write_equation_systems().
The Mesh class is a thin wrapper, around the ReplicatedMesh class by default.
const MeshBase & get_mesh() const
NumericVector< Number > * rhs
The system matrix.
This class implements specific orders of Gauss quadrature.
void add_dirichlet_boundary(const DirichletBoundary &dirichlet_boundary)
Adds a copy of the specified Dirichlet boundary to the system.
virtual SimpleRange< element_iterator > active_local_element_ptr_range()=0
const T_sys & get_system(const std::string &name) const
virtual void solve() override
Assembles & solves the linear system A*x=b.
SolverPackage default_solver_package()
unsigned int mesh_dimension() const
The ExodusII_IO class implements reading meshes in the ExodusII file format from Sandia National Labs...
Real exact_solution(const Real x, const Real y, const Real z=0.)
This is the exact solution that we are trying to obtain.
void resize(const unsigned int new_m, const unsigned int new_n)
Resize the matrix.
void init(triangulateio &t)
Initializes the fields of t to nullptr/0 as necessary.
void attach_assemble_function(void fptr(EquationSystems &es, const std::string &name))
Register a user function to use in assembling the system matrix and RHS.
virtual void add_vector(const T *v, const std::vector< numeric_index_type > &dof_indices)
Computes , where v is a pointer and each dof_indices[i] specifies where to add value v[i].
This is the MeshBase class.
unsigned int add_variable(const std::string &var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Wraps a function pointer into a FunctionBase object.
The PerfLog class allows monitoring of specific events.
SparseMatrix< Number > * matrix
The system matrix.
void assemble_poisson(EquationSystems &es, const std::string &system_name)
The LibMeshInit class, when constructed, initializes the dependent libraries (e.g.
void exact_solution_wrapper(DenseVector< Number > &output, const Point &p, const Real)
This is the EquationSystems class.
virtual void write_equation_systems(const std::string &, const EquationSystems &, const std::set< std::string > *system_names=nullptr)
This method implements writing a mesh with data to a specified file where the data is taken from the ...
void resize(const unsigned int n)
Resize the vector.
virtual void add_matrix(const DenseMatrix< T > &dm, const std::vector< numeric_index_type > &rows, const std::vector< numeric_index_type > &cols)=0
Add the full matrix dm to the SparseMatrix.
class FEType hides (possibly multiple) FEFamily and approximation orders, thereby enabling specialize...
This class handles the numbering of degrees of freedom on a mesh.
void print_info(std::ostream &os=libMesh::out) const
Prints relevant information about the mesh.
This class allows one to associate Dirichlet boundary values with a given set of mesh boundary ids an...
const DofMap & get_dof_map() const
This class implements writing meshes using GNUplot, designed for use only with 1D meshes.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Manages consistently variables, degrees of freedom, coefficient vectors, matrices and linear solvers ...