libMesh
Public Member Functions | List of all members
libMesh::StatisticsVector< T > Class Template Reference

The StatisticsVector class is derived from the std::vector<> and therefore has all of its useful features. More...

#include <statistics.h>

Inheritance diagram for libMesh::StatisticsVector< T >:
[legend]

Public Member Functions

 StatisticsVector (dof_id_type i=0)
 Call the std::vector constructor. More...
 
 StatisticsVector (dof_id_type i, T val)
 Call the std::vector constructor, fill each entry with val. More...
 
virtual ~StatisticsVector ()
 Destructor. More...
 
virtual Real l2_norm () const
 
virtual T minimum () const
 
virtual T maximum () const
 
virtual Real mean () const
 
virtual Real median ()
 
virtual Real median () const
 A const version of the median function. More...
 
virtual Real variance () const
 
virtual Real variance (const Real known_mean) const
 
virtual Real stddev () const
 
virtual Real stddev (const Real known_mean) const
 
void normalize ()
 Divides all entries by the largest entry and stores the result. More...
 
virtual void histogram (std::vector< dof_id_type > &bin_members, unsigned int n_bins=10)
 
void plot_histogram (const processor_id_type my_procid, const std::string &filename, unsigned int n_bins)
 Generates a Matlab/Octave style file which can be used to make a plot of the histogram having the desired number of bins. More...
 
virtual void histogram (std::vector< dof_id_type > &bin_members, unsigned int n_bins=10) const
 A const version of the histogram function. More...
 
virtual std::vector< dof_id_typecut_below (Real cut) const
 
virtual std::vector< dof_id_typecut_above (Real cut) const
 

Detailed Description

template<typename T>
class libMesh::StatisticsVector< T >

The StatisticsVector class is derived from the std::vector<> and therefore has all of its useful features.

It was designed to not have any internal state, i.e. no public or private data members. Also, it was only designed for classes and types for which the operators +,*,/ have meaning, specifically floats, doubles, ints, etc. The main reason for this design decision was to allow a std::vector<> to be successfully cast to a StatisticsVector, thereby enabling its additional functionality. We do not anticipate any problems with deriving from an stl container which lacks a virtual destructor in this case.

Where manipulation of the data set was necessary (for example sorting) two versions of member functions have been implemented. The non-const versions perform sorting directly in the data set, invalidating pointers and changing the entries. const versions of the same functions are generally available, and will be automatically invoked on const StatisticsVector objects. A draw-back to the const versions is that they simply make a copy of the original object and therefore double the original memory requirement for the data set.

Most of the actual code was copied or adapted from the GNU Scientific Library (GSL). More precisely, the recursion relations for computing the mean were implemented in order to avoid possible problems with buffer overruns.

Author
John W. Peterson
Date
2002

A std::vector derived class for implementing simple statistical algorithms.

Definition at line 67 of file statistics.h.

Constructor & Destructor Documentation

◆ StatisticsVector() [1/2]

template<typename T>
libMesh::StatisticsVector< T >::StatisticsVector ( dof_id_type  i = 0)
inlineexplicit

Call the std::vector constructor.

Definition at line 75 of file statistics.h.

75 : std::vector<T> (i) {}

◆ StatisticsVector() [2/2]

template<typename T>
libMesh::StatisticsVector< T >::StatisticsVector ( dof_id_type  i,
val 
)
inline

Call the std::vector constructor, fill each entry with val.

Definition at line 80 of file statistics.h.

80 : std::vector<T> (i,val) {}

◆ ~StatisticsVector()

template<typename T>
virtual libMesh::StatisticsVector< T >::~StatisticsVector ( )
inlinevirtual

Destructor.

Virtual so we can derive from the StatisticsVector

Definition at line 85 of file statistics.h.

85 {}

Member Function Documentation

◆ cut_above()

template<typename T >
std::vector< dof_id_type > libMesh::StatisticsVector< T >::cut_above ( Real  cut) const
virtual
Returns
A vector of dof_id_types which corresponds to the indices of every member of the data set above the cutoff value cut.

I chose not to combine these two functions since the interface is cleaner with one passed parameter instead of two.

Reimplemented in libMesh::ErrorVector.

Definition at line 350 of file statistics.C.

351 {
352  LOG_SCOPE ("cut_above()", "StatisticsVector");
353 
354  const dof_id_type n = cast_int<dof_id_type>(this->size());
355 
356  std::vector<dof_id_type> cut_indices;
357  cut_indices.reserve(n/2); // Arbitrary
358 
359  for (dof_id_type i=0; i<n; i++)
360  if ((*this)[i] > cut)
361  cut_indices.push_back(i);
362 
363  return cut_indices;
364 }

◆ cut_below()

template<typename T >
std::vector< dof_id_type > libMesh::StatisticsVector< T >::cut_below ( Real  cut) const
virtual
Returns
A vector of dof_id_types which corresponds to the indices of every member of the data set below the cutoff value "cut".

Reimplemented in libMesh::ErrorVector.

Definition at line 326 of file statistics.C.

327 {
328  LOG_SCOPE ("cut_below()", "StatisticsVector");
329 
330  const dof_id_type n = cast_int<dof_id_type>(this->size());
331 
332  std::vector<dof_id_type> cut_indices;
333  cut_indices.reserve(n/2); // Arbitrary
334 
335  for (dof_id_type i=0; i<n; i++)
336  {
337  if ((*this)[i] < cut)
338  {
339  cut_indices.push_back(i);
340  }
341  }
342 
343  return cut_indices;
344 }

Referenced by main().

◆ histogram() [1/2]

template<typename T >
void libMesh::StatisticsVector< T >::histogram ( std::vector< dof_id_type > &  bin_members,
unsigned int  n_bins = 10 
)
virtual
Returns
A histogram with n_bins bins for the data set.

For simplicity, the bins are assumed to be of uniform size. Upon return, the bin_members vector will contain unsigned integers which give the number of members in each bin. WARNING: This non-const function sorts the vector, changing its order. Source: GNU Scientific Library.

Definition at line 179 of file statistics.C.

181 {
182  // Must have at least 1 bin
183  libmesh_assert (n_bins>0);
184 
185  const dof_id_type n = cast_int<dof_id_type>(this->size());
186 
187  std::sort(this->begin(), this->end());
188 
189  // The StatisticsVector can hold both integer and float types.
190  // We will define all the bins, etc. using Reals.
191  Real min = static_cast<Real>(this->minimum());
192  Real max = static_cast<Real>(this->maximum());
193  Real bin_size = (max - min) / static_cast<Real>(n_bins);
194 
195  LOG_SCOPE ("histogram()", "StatisticsVector");
196 
197  std::vector<Real> bin_bounds(n_bins+1);
198  for (auto i : index_range(bin_bounds))
199  bin_bounds[i] = min + Real(i) * bin_size;
200 
201  // Give the last bin boundary a little wiggle room: we don't want
202  // it to be just barely less than the max, otherwise our bin test below
203  // may fail.
204  bin_bounds.back() += 1.e-6 * bin_size;
205 
206  // This vector will store the number of members each bin has.
207  bin_members.resize(n_bins);
208 
209  dof_id_type data_index = 0;
210  for (auto j : index_range(bin_members)) // bin vector indexing
211  {
212  // libMesh::out << "(debug) Filling bin " << j << std::endl;
213 
214  for (dof_id_type i=data_index; i<n; i++) // data vector indexing
215  {
216  //libMesh::out << "(debug) Processing index=" << i << std::endl;
217  Real current_val = static_cast<Real>( (*this)[i] );
218 
219  // There may be entries in the vector smaller than the value
220  // reported by this->minimum(). (e.g. inactive elements in an
221  // ErrorVector.) We just skip entries like that.
222  if (current_val < min)
223  {
224  // libMesh::out << "(debug) Skipping entry v[" << i << "]="
225  // << (*this)[i]
226  // << " which is less than the min value: min="
227  // << min << std::endl;
228  continue;
229  }
230 
231  if (current_val > bin_bounds[j+1]) // if outside the current bin (bin[j] is bounded
232  // by bin_bounds[j] and bin_bounds[j+1])
233  {
234  // libMesh::out.precision(16);
235  // libMesh::out.setf(std::ios_base::fixed);
236  // libMesh::out << "(debug) (*this)[i]= " << (*this)[i]
237  // << " is greater than bin_bounds[j+1]="
238  // << bin_bounds[j+1] << std::endl;
239  data_index = i; // start searching here for next bin
240  break; // go to next bin
241  }
242 
243  // Otherwise, increment current bin's count
244  bin_members[j]++;
245  // libMesh::out << "(debug) Binned index=" << i << std::endl;
246  }
247  }
248 
249 #ifdef DEBUG
250  // Check the number of binned entries
251  const dof_id_type n_binned = std::accumulate(bin_members.begin(),
252  bin_members.end(),
253  static_cast<dof_id_type>(0),
254  std::plus<dof_id_type>());
255 
256  if (n != n_binned)
257  {
258  libMesh::out << "Warning: The number of binned entries, n_binned="
259  << n_binned
260  << ", did not match the total number of entries, n="
261  << n << "." << std::endl;
262  }
263 #endif
264 }

Referenced by libMesh::StatisticsVector< ErrorVectorReal >::histogram(), and main().

◆ histogram() [2/2]

template<typename T >
void libMesh::StatisticsVector< T >::histogram ( std::vector< dof_id_type > &  bin_members,
unsigned int  n_bins = 10 
) const
virtual

A const version of the histogram function.

Definition at line 314 of file statistics.C.

316 {
317  StatisticsVector<T> sv = (*this);
318 
319  return sv.histogram(bin_members, n_bins);
320 }

◆ l2_norm()

template<typename T >
Real libMesh::StatisticsVector< T >::l2_norm ( ) const
virtual
Returns
The l2 norm of the data set.

Definition at line 37 of file statistics.C.

38 {
39  Real normsq = 0.;
40  const dof_id_type n = cast_int<dof_id_type>(this->size());
41  for (dof_id_type i = 0; i != n; ++i)
42  normsq += ((*this)[i] * (*this)[i]);
43 
44  return std::sqrt(normsq);
45 }

Referenced by assemble_and_solve(), and main().

◆ maximum()

template<typename T >
T libMesh::StatisticsVector< T >::maximum ( ) const
virtual
Returns
The maximum value in the data set.

Definition at line 62 of file statistics.C.

63 {
64  LOG_SCOPE ("maximum()", "StatisticsVector");
65 
66  const T max = *(std::max_element(this->begin(), this->end()));
67 
68  return max;
69 }

Referenced by assemble_and_solve(), and main().

◆ mean()

template<typename T >
Real libMesh::StatisticsVector< T >::mean ( ) const
virtual
Returns
The mean value of the data set using a recurrence relation.

Source: GNU Scientific Library

Reimplemented in libMesh::ErrorVector.

Definition at line 75 of file statistics.C.

76 {
77  LOG_SCOPE ("mean()", "StatisticsVector");
78 
79  const dof_id_type n = cast_int<dof_id_type>(this->size());
80 
81  Real the_mean = 0;
82 
83  for (dof_id_type i=0; i<n; i++)
84  {
85  the_mean += ( static_cast<Real>((*this)[i]) - the_mean ) /
86  static_cast<Real>(i + 1);
87  }
88 
89  return the_mean;
90 }

Referenced by main(), and libMesh::StatisticsVector< ErrorVectorReal >::variance().

◆ median() [1/2]

template<typename T >
Real libMesh::StatisticsVector< T >::median ( )
virtual
Returns
The median (e.g. the middle) value of the data set.

This function modifies the original data by sorting, so it can't be called on const objects. Source: GNU Scientific Library.

Reimplemented in libMesh::ErrorVector.

Definition at line 96 of file statistics.C.

97 {
98  const dof_id_type n = cast_int<dof_id_type>(this->size());
99 
100  if (n == 0)
101  return 0.;
102 
103  LOG_SCOPE ("median()", "StatisticsVector");
104 
105  std::sort(this->begin(), this->end());
106 
107  const dof_id_type lhs = (n-1) / 2;
108  const dof_id_type rhs = n / 2;
109 
110  Real the_median = 0;
111 
112 
113  if (lhs == rhs)
114  {
115  the_median = static_cast<Real>((*this)[lhs]);
116  }
117 
118  else
119  {
120  the_median = ( static_cast<Real>((*this)[lhs]) +
121  static_cast<Real>((*this)[rhs]) ) / 2.0;
122  }
123 
124  return the_median;
125 }

Referenced by libMesh::ErrorVector::median(), and libMesh::StatisticsVector< ErrorVectorReal >::median().

◆ median() [2/2]

template<typename T >
Real libMesh::StatisticsVector< T >::median ( ) const
virtual

A const version of the median function.

Requires twice the memory of original data set but does not change the original.

Reimplemented in libMesh::ErrorVector.

Definition at line 131 of file statistics.C.

132 {
133  StatisticsVector<T> sv = (*this);
134 
135  return sv.median();
136 }

◆ minimum()

template<typename T >
T libMesh::StatisticsVector< T >::minimum ( ) const
virtual
Returns
The minimum value in the data set.

Reimplemented in libMesh::ErrorVector.

Definition at line 49 of file statistics.C.

50 {
51  LOG_SCOPE ("minimum()", "StatisticsVector");
52 
53  const T min = *(std::min_element(this->begin(), this->end()));
54 
55  return min;
56 }

◆ normalize()

template<typename T >
void libMesh::StatisticsVector< T >::normalize ( )

Divides all entries by the largest entry and stores the result.

Definition at line 165 of file statistics.C.

166 {
167  const dof_id_type n = cast_int<dof_id_type>(this->size());
168  const Real max = this->maximum();
169 
170  for (dof_id_type i=0; i<n; i++)
171  (*this)[i] = static_cast<T>((*this)[i] / max);
172 }

◆ plot_histogram()

template<typename T >
void libMesh::StatisticsVector< T >::plot_histogram ( const processor_id_type  my_procid,
const std::string &  filename,
unsigned int  n_bins 
)

Generates a Matlab/Octave style file which can be used to make a plot of the histogram having the desired number of bins.

Uses the histogram(...) function in this class WARNING: The histogram(...) function is non-const, and changes the order of the vector.

Definition at line 271 of file statistics.C.

274 {
275  // First generate the histogram with the desired number of bins
276  std::vector<dof_id_type> bin_members;
277  this->histogram(bin_members, n_bins);
278 
279  // The max, min and bin size are used to generate x-axis values.
280  T min = this->minimum();
281  T max = this->maximum();
282  T bin_size = (max - min) / static_cast<T>(n_bins);
283 
284  // On processor 0: Write histogram to file
285  if (my_procid==0)
286  {
287  std::ofstream out_stream (filename.c_str());
288 
289  out_stream << "clear all\n";
290  out_stream << "clf\n";
291  //out_stream << "x=linspace(" << min << "," << max << "," << n_bins+1 << ");\n";
292 
293  // abscissa values are located at the center of each bin.
294  out_stream << "x=[";
295  for (auto i : index_range(bin_members))
296  {
297  out_stream << min + (Real(i)+0.5)*bin_size << " ";
298  }
299  out_stream << "];\n";
300 
301  out_stream << "y=[";
302  for (auto bmi : bin_members)
303  {
304  out_stream << bmi << " ";
305  }
306  out_stream << "];\n";
307  out_stream << "bar(x,y);\n";
308  }
309 }

◆ stddev() [1/2]

template<typename T>
virtual Real libMesh::StatisticsVector< T >::stddev ( ) const
inlinevirtual
Returns
The standard deviation of the data set, which is simply the square-root of the variance.

Definition at line 154 of file statistics.h.

155  { return std::sqrt(this->variance()); }

◆ stddev() [2/2]

template<typename T>
virtual Real libMesh::StatisticsVector< T >::stddev ( const Real  known_mean) const
inlinevirtual
Returns
Computes the standard deviation of the data set, which is simply the square-root of the variance.

This method can be used for efficiency when the mean has already been computed.

Definition at line 164 of file statistics.h.

165  { return std::sqrt(this->variance(known_mean)); }

◆ variance() [1/2]

template<typename T>
virtual Real libMesh::StatisticsVector< T >::variance ( ) const
inlinevirtual
Returns
The variance of the data set.

Uses a recurrence relation to prevent data overflow for large sums.

Note
The variance is equal to the standard deviation squared. Source: GNU Scientific Library.

Reimplemented in libMesh::ErrorVector.

Definition at line 134 of file statistics.h.

135  { return this->variance(this->mean()); }

Referenced by libMesh::StatisticsVector< ErrorVectorReal >::stddev(), and libMesh::StatisticsVector< ErrorVectorReal >::variance().

◆ variance() [2/2]

template<typename T >
Real libMesh::StatisticsVector< T >::variance ( const Real  known_mean) const
virtual
Returns
The variance of the data set where the mean is provided.

This is useful for efficiency when you have already calculated the mean. Uses a recurrence relation to prevent data overflow for large sums.

Note
The variance is equal to the standard deviation squared. Source: GNU Scientific Library.

Reimplemented in libMesh::ErrorVector.

Definition at line 142 of file statistics.C.

143 {
144  const dof_id_type n = cast_int<dof_id_type>(this->size());
145 
146  LOG_SCOPE ("variance()", "StatisticsVector");
147 
148  Real the_variance = 0;
149 
150  for (dof_id_type i=0; i<n; i++)
151  {
152  const Real delta = ( static_cast<Real>((*this)[i]) - mean_in );
153  the_variance += (delta * delta - the_variance) /
154  static_cast<Real>(i + 1);
155  }
156 
157  if (n > 1)
158  the_variance *= static_cast<Real>(n) / static_cast<Real>(n - 1);
159 
160  return the_variance;
161 }

The documentation for this class was generated from the following files:
libMesh::dof_id_type
uint8_t dof_id_type
Definition: id_types.h:67
libMesh::index_range
IntRange< std::size_t > index_range(const std::vector< T > &vec)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:106
libMesh::StatisticsVector::variance
virtual Real variance() const
Definition: statistics.h:134
end
IterBase * end
Also have a polymorphic pointer to the end object, this prevents iterating past the end.
Definition: variant_filter_iterator.h:343
std::sqrt
MetaPhysicL::DualNumber< T, D > sqrt(const MetaPhysicL::DualNumber< T, D > &in)
libMesh::StatisticsVector::mean
virtual Real mean() const
Definition: statistics.C:75
libMesh::StatisticsVector::histogram
virtual void histogram(std::vector< dof_id_type > &bin_members, unsigned int n_bins=10)
Definition: statistics.C:179
libMesh::libmesh_assert
libmesh_assert(ctx)
libMesh::StatisticsVector::minimum
virtual T minimum() const
Definition: statistics.C:49
libMesh::Real
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Definition: libmesh_common.h:121
libMesh::out
OStreamProxy out
libMesh::StatisticsVector::maximum
virtual T maximum() const
Definition: statistics.C:62