libMesh
Public Types | Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | List of all members
libMesh::KellyErrorEstimator Class Reference

This class implements the Kelly error indicator which is based on the flux jumps between elements. More...

#include <kelly_error_estimator.h>

Inheritance diagram for libMesh::KellyErrorEstimator:
[legend]

Public Types

typedef std::map< std::pair< const System *, unsigned int >, ErrorVector * > ErrorMap
 When calculating many error vectors at once, we need a data structure to hold them all. More...
 

Public Member Functions

 KellyErrorEstimator ()
 Constructor. More...
 
 KellyErrorEstimator (const KellyErrorEstimator &)=delete
 This class cannot be (default) copy constructed/assigned because its base class has unique_ptr members. More...
 
KellyErrorEstimatoroperator= (const KellyErrorEstimator &)=delete
 
 KellyErrorEstimator (KellyErrorEstimator &&)=default
 Defaulted move ctor, move assignment operator, and destructor. More...
 
KellyErrorEstimatoroperator= (KellyErrorEstimator &&)=default
 
virtual ~KellyErrorEstimator ()=default
 
void attach_flux_bc_function (std::pair< bool, Real > fptr(const System &system, const Point &p, const std::string &var_name))
 Register a user function to use in computing the flux BCs. More...
 
virtual ErrorEstimatorType type () const override
 
virtual void estimate_error (const System &system, ErrorVector &error_per_cell, const NumericVector< Number > *solution_vector=nullptr, bool estimate_parent_error=false) override
 This function uses the derived class's jump error estimate formula to estimate the error on each cell. More...
 
virtual void estimate_errors (const EquationSystems &equation_systems, ErrorVector &error_per_cell, const std::map< const System *, SystemNorm > &error_norms, const std::map< const System *, const NumericVector< Number > * > *solution_vectors=nullptr, bool estimate_parent_error=false)
 This virtual function can be redefined in derived classes, but by default computes the sum of the error_per_cell for each system in the equation_systems. More...
 
virtual void estimate_errors (const EquationSystems &equation_systems, ErrorMap &errors_per_cell, const std::map< const System *, const NumericVector< Number > * > *solution_vectors=nullptr, bool estimate_parent_error=false)
 This virtual function can be redefined in derived classes, but by default it calls estimate_error repeatedly to calculate the requested error vectors. More...
 

Public Attributes

bool scale_by_n_flux_faces
 This boolean flag allows you to scale the error indicator result for each element by the number of "flux faces" the element actually has. More...
 
bool use_unweighted_quadrature_rules
 This boolean flag allows you to use "unweighted" quadrature rules (sized to exactly integrate unweighted shape functions in master element space) rather than "default" quadrature rules (sized to exactly integrate polynomials of one higher degree than mass matrix terms). More...
 
SystemNorm error_norm
 When estimating the error in a single system, the error_norm is used to control the scaling and norm choice for each variable. More...
 

Protected Member Functions

virtual void init_context (FEMContext &c) override
 An initialization function, for requesting specific data from the FE objects. More...
 
virtual void internal_side_integration () override
 The function which calculates a normal derivative jump based error term on an internal side. More...
 
virtual bool boundary_side_integration () override
 The function which calculates a normal derivative jump based error term on a boundary side. More...
 
void reinit_sides ()
 A utility function to reinit the finite element data on elements sharing a side. More...
 
float coarse_n_flux_faces_increment ()
 A utility function to correctly increase n_flux_faces for the coarse element. More...
 
void reduce_error (std::vector< ErrorVectorReal > &error_per_cell, const Parallel::Communicator &comm) const
 This method takes the local error contributions in error_per_cell from each processor and combines them to get the global error vector. More...
 

Protected Attributes

std::pair< bool, Real >(* _bc_function )(const System &system, const Point &p, const std::string &var_name)
 Pointer to function that provides BC information. More...
 
bool integrate_boundary_sides
 A boolean flag, by default false, to be set to true if integrations with boundary_side_integration() should be performed. More...
 
std::unique_ptr< FEMContextfine_context
 Context objects for integrating on the fine and coarse elements sharing a face. More...
 
std::unique_ptr< FEMContextcoarse_context
 
Real fine_error
 The fine and coarse error values to be set by each side_integration();. More...
 
Real coarse_error
 
unsigned int var
 The variable number currently being evaluated. More...
 

Detailed Description

This class implements the Kelly error indicator which is based on the flux jumps between elements.

See the JumpErrorEstimator class for most user APIs

Full BibteX reference:

* @Article{Kelly83error,
* author = {D.~W.~Kelly and J.~P.~Gago and O.~C.~Zienkiewicz and I.~Babuska},
* title  = {{A posteriori error analysis and adaptive
*            processes in the finite element method: Part I Error analysis}},
* journal = {Int. J. Num. Meth. Engng.},
* volume  = {19},
* pages   = {1593--1619},
* year    = {1983}
* }
* 
Author
Benjamin S. Kirk
Date
2003

Definition at line 59 of file kelly_error_estimator.h.

Member Typedef Documentation

◆ ErrorMap

typedef std::map<std::pair<const System *, unsigned int>, ErrorVector *> libMesh::ErrorEstimator::ErrorMap
inherited

When calculating many error vectors at once, we need a data structure to hold them all.

Definition at line 127 of file error_estimator.h.

Constructor & Destructor Documentation

◆ KellyErrorEstimator() [1/3]

libMesh::KellyErrorEstimator::KellyErrorEstimator ( )

Constructor.

Responsible for initializing the _bc_function function pointer to nullptr. Defaults to H1 seminorm; changes to system norm are ignored.

Definition at line 41 of file kelly_error_estimator.C.

41  :
43  _bc_function(nullptr)
44 {
46 }

References libMesh::ErrorEstimator::error_norm, and libMesh::H1_SEMINORM.

◆ KellyErrorEstimator() [2/3]

libMesh::KellyErrorEstimator::KellyErrorEstimator ( const KellyErrorEstimator )
delete

This class cannot be (default) copy constructed/assigned because its base class has unique_ptr members.

◆ KellyErrorEstimator() [3/3]

libMesh::KellyErrorEstimator::KellyErrorEstimator ( KellyErrorEstimator &&  )
default

Defaulted move ctor, move assignment operator, and destructor.

◆ ~KellyErrorEstimator()

virtual libMesh::KellyErrorEstimator::~KellyErrorEstimator ( )
virtualdefault

Member Function Documentation

◆ attach_flux_bc_function()

void libMesh::KellyErrorEstimator::attach_flux_bc_function ( std::pair< bool, Real >   fptrconst System &system, const Point &p, const std::string &var_name)

Register a user function to use in computing the flux BCs.

Definition at line 207 of file kelly_error_estimator.C.

210 {
211  _bc_function = fptr;
212 
213  // We may be turning boundary side integration on or off
214  if (fptr)
216  else
217  integrate_boundary_sides = false;
218 }

References _bc_function, fptr(), and libMesh::JumpErrorEstimator::integrate_boundary_sides.

◆ boundary_side_integration()

bool libMesh::KellyErrorEstimator::boundary_side_integration ( )
overrideprotectedvirtual

The function which calculates a normal derivative jump based error term on a boundary side.

Returns
true if the flux bc function is in fact defined on the current side.

Reimplemented from libMesh::JumpErrorEstimator.

Definition at line 135 of file kelly_error_estimator.C.

136 {
137  const Elem & fine_elem = fine_context->get_elem();
138 
139  FEBase * fe_fine = nullptr;
140  fine_context->get_side_fe( var, fe_fine, fine_elem.dim() );
141 
142  const std::string & var_name =
143  fine_context->get_system().variable_name(var);
144 
145  std::vector<std::vector<RealGradient>> dphi_fine = fe_fine->get_dphi();
146  std::vector<Point> face_normals = fe_fine->get_normals();
147  std::vector<Real> JxW_face = fe_fine->get_JxW();
148  std::vector<Point> qface_point = fe_fine->get_xyz();
149 
150  // The reinitialization also recomputes the locations of
151  // the quadrature points on the side. By checking if the
152  // first quadrature point on the side is on a flux boundary
153  // for a particular variable, we will determine if the whole
154  // element is on a flux boundary (assuming quadrature points
155  // are strictly contained in the side).
156  if (this->_bc_function(fine_context->get_system(),
157  qface_point[0], var_name).first)
158  {
159  const Real h = fine_elem.hmax();
160 
161  // The number of quadrature points
162  const unsigned int n_qp = fe_fine->n_quadrature_points();
163 
164  // The error contribution from this face
165  Real error = 1.e-30;
166 
167  // loop over the integration points on the face.
168  for (unsigned int qp=0; qp<n_qp; qp++)
169  {
170  // Value of the imposed flux BC at this quadrature point.
171  const std::pair<bool,Real> flux_bc =
172  this->_bc_function(fine_context->get_system(),
173  qface_point[qp], var_name);
174 
175  // Be sure the BC function still thinks we're on the
176  // flux boundary.
177  libmesh_assert_equal_to (flux_bc.first, true);
178 
179  // The solution gradient from each element
180  Gradient grad_fine = fine_context->side_gradient(var, qp);
181 
182  // The difference between the desired BC and the approximate solution.
183  const Number jump = flux_bc.second - grad_fine*face_normals[qp];
184 
185  // The flux jump squared. If using complex numbers,
186  // TensorTools::norm_sq(z) returns |z|^2, where |z| is the modulus of z.
187  const Real jump2 = TensorTools::norm_sq(jump);
188 
189  // Integrate the error on the face. The error is
190  // scaled by an additional power of h, where h is
191  // the maximum side length for the element. This
192  // arises in the definition of the indicator.
193  error += JxW_face[qp]*jump2;
194 
195  } // End quadrature point loop
196 
197  fine_error = error*h*error_norm.weight(var);
198 
199  return true;
200  } // end if side on flux boundary
201  return false;
202 }

References _bc_function, libMesh::Elem::dim(), libMesh::ErrorEstimator::error_norm, libMesh::JumpErrorEstimator::fine_context, libMesh::JumpErrorEstimator::fine_error, libMesh::FEGenericBase< OutputType >::get_dphi(), libMesh::FEAbstract::get_JxW(), libMesh::FEAbstract::get_normals(), libMesh::FEAbstract::get_xyz(), libMesh::Elem::hmax(), libMesh::FEAbstract::n_quadrature_points(), libMesh::TensorTools::norm_sq(), libMesh::Real, libMesh::JumpErrorEstimator::var, and libMesh::SystemNorm::weight().

◆ coarse_n_flux_faces_increment()

float libMesh::JumpErrorEstimator::coarse_n_flux_faces_increment ( )
protectedinherited

A utility function to correctly increase n_flux_faces for the coarse element.

Definition at line 467 of file jump_error_estimator.C.

468 {
469  // Keep track of the number of internal flux sides found on each
470  // element
471  unsigned short dim = coarse_context->get_elem().dim();
472 
473  const unsigned int divisor =
474  1 << (dim-1)*(fine_context->get_elem().level() -
475  coarse_context->get_elem().level());
476 
477  // With a difference of n levels between fine and coarse elements,
478  // we compute a fractional flux face for the coarse element by adding:
479  // 1/2^n in 2D
480  // 1/4^n in 3D
481  // each time. This code will get hit 2^n times in 2D and 4^n
482  // times in 3D so that the final flux face count for the coarse
483  // element will be an integer value.
484 
485  return 1.0f / static_cast<float>(divisor);
486 }

References libMesh::JumpErrorEstimator::coarse_context, dim, and libMesh::JumpErrorEstimator::fine_context.

Referenced by libMesh::JumpErrorEstimator::estimate_error().

◆ estimate_error()

void libMesh::JumpErrorEstimator::estimate_error ( const System system,
ErrorVector error_per_cell,
const NumericVector< Number > *  solution_vector = nullptr,
bool  estimate_parent_error = false 
)
overridevirtualinherited

This function uses the derived class's jump error estimate formula to estimate the error on each cell.

The estimated error is output in the vector error_per_cell

Conventions for assigning the direction of the normal:

  • e & f are global element ids

Case (1.) Elements are at the same level, e<f Compute the flux jump on the face and add it as a contribution to error_per_cell[e] and error_per_cell[f]


| | |

f
e —> n

Case (2.) The neighbor is at a higher level. Compute the flux jump on e's face and add it as a contribution to error_per_cell[e] and error_per_cell[f]


| | | | | | e |—> n | | | | | |--------—| f |


Implements libMesh::ErrorEstimator.

Definition at line 53 of file jump_error_estimator.C.

57 {
58  LOG_SCOPE("estimate_error()", "JumpErrorEstimator");
59 
96  // This parameter is not used when !LIBMESH_ENABLE_AMR.
97  libmesh_ignore(estimate_parent_error);
98 
99  // The current mesh
100  const MeshBase & mesh = system.get_mesh();
101 
102  // The number of variables in the system
103  const unsigned int n_vars = system.n_vars();
104 
105  // The DofMap for this system
106 #ifdef LIBMESH_ENABLE_AMR
107  const DofMap & dof_map = system.get_dof_map();
108 #endif
109 
110  // Resize the error_per_cell vector to be
111  // the number of elements, initialize it to 0.
112  error_per_cell.resize (mesh.max_elem_id());
113  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);
114 
115  // Declare a vector of floats which is as long as
116  // error_per_cell above, and fill with zeros. This vector will be
117  // used to keep track of the number of edges (faces) on each active
118  // element which are either:
119  // 1) an internal edge
120  // 2) an edge on a Neumann boundary for which a boundary condition
121  // function has been specified.
122  // The error estimator can be scaled by the number of flux edges (faces)
123  // which the element actually has to obtain a more uniform measure
124  // of the error. Use floats instead of ints since in case 2 (above)
125  // f gets 1/2 of a flux face contribution from each of his
126  // neighbors
127  std::vector<float> n_flux_faces;
129  n_flux_faces.resize(error_per_cell.size(), 0);
130 
131  // Prepare current_local_solution to localize a non-standard
132  // solution vector if necessary
133  if (solution_vector && solution_vector != system.solution.get())
134  {
135  NumericVector<Number> * newsol =
136  const_cast<NumericVector<Number> *>(solution_vector);
137  System & sys = const_cast<System &>(system);
138  newsol->swap(*sys.solution);
139  sys.update();
140  }
141 
142  fine_context = libmesh_make_unique<FEMContext>(system);
143  coarse_context = libmesh_make_unique<FEMContext>(system);
144 
145  // Don't overintegrate - we're evaluating differences of FE values,
146  // not products of them.
148  fine_context->use_unweighted_quadrature_rules(system.extra_quadrature_order);
149 
150  // Loop over all the variables we've been requested to find jumps in, to
151  // pre-request
152  for (var=0; var<n_vars; var++)
153  {
154  // Skip variables which aren't part of our norm,
155  // as well as SCALAR variables, which have no jumps
156  if (error_norm.weight(var) == 0.0 ||
157  system.variable_type(var).family == SCALAR)
158  continue;
159 
160  // FIXME: Need to generalize this to vector-valued elements. [PB]
161  FEBase * side_fe = nullptr;
162 
163  const std::set<unsigned char> & elem_dims =
164  fine_context->elem_dimensions();
165 
166  for (const auto & dim : elem_dims)
167  {
168  fine_context->get_side_fe( var, side_fe, dim );
169 
170  side_fe->get_xyz();
171  }
172  }
173 
174  this->init_context(*fine_context);
176 
177  // Iterate over all the active elements in the mesh
178  // that live on this processor.
179  for (const auto & e : mesh.active_local_element_ptr_range())
180  {
181  const dof_id_type e_id = e->id();
182 
183 #ifdef LIBMESH_ENABLE_AMR
184  // See if the parent of element e has been examined yet;
185  // if not, we may want to compute the estimator on it
186  const Elem * parent = e->parent();
187 
188  // We only can compute and only need to compute on
189  // parents with all active children
190  bool compute_on_parent = true;
191  if (!parent || !estimate_parent_error)
192  compute_on_parent = false;
193  else
194  for (auto & child : parent->child_ref_range())
195  if (!child.active())
196  compute_on_parent = false;
197 
198  if (compute_on_parent &&
199  !error_per_cell[parent->id()])
200  {
201  // Compute a projection onto the parent
202  DenseVector<Number> Uparent;
204  (*(system.solution), dof_map, parent, Uparent, false);
205 
206  // Loop over the neighbors of the parent
207  for (auto n_p : parent->side_index_range())
208  {
209  if (parent->neighbor_ptr(n_p) != nullptr) // parent has a neighbor here
210  {
211  // Find the active neighbors in this direction
212  std::vector<const Elem *> active_neighbors;
213  parent->neighbor_ptr(n_p)->
214  active_family_tree_by_neighbor(active_neighbors,
215  parent);
216  // Compute the flux to each active neighbor
217  for (std::size_t a=0,
218  n_active_neighbors = active_neighbors.size();
219  a != n_active_neighbors; ++a)
220  {
221  const Elem * f = active_neighbors[a];
222  // FIXME - what about when f->level <
223  // parent->level()??
224  if (f->level() >= parent->level())
225  {
226  fine_context->pre_fe_reinit(system, f);
227  coarse_context->pre_fe_reinit(system, parent);
228  libmesh_assert_equal_to
229  (coarse_context->get_elem_solution().size(),
230  Uparent.size());
231  coarse_context->get_elem_solution() = Uparent;
232 
233  this->reinit_sides();
234 
235  // Loop over all significant variables in the system
236  for (var=0; var<n_vars; var++)
237  if (error_norm.weight(var) != 0.0 &&
238  system.variable_type(var).family != SCALAR)
239  {
241 
242  error_per_cell[fine_context->get_elem().id()] +=
243  static_cast<ErrorVectorReal>(fine_error);
244  error_per_cell[coarse_context->get_elem().id()] +=
245  static_cast<ErrorVectorReal>(coarse_error);
246  }
247 
248  // Keep track of the number of internal flux
249  // sides found on each element
251  {
252  n_flux_faces[fine_context->get_elem().id()]++;
253  n_flux_faces[coarse_context->get_elem().id()] +=
255  }
256  }
257  }
258  }
259  else if (integrate_boundary_sides)
260  {
261  fine_context->pre_fe_reinit(system, parent);
262  libmesh_assert_equal_to
263  (fine_context->get_elem_solution().size(),
264  Uparent.size());
265  fine_context->get_elem_solution() = Uparent;
266  fine_context->side = cast_int<unsigned char>(n_p);
267  fine_context->side_fe_reinit();
268 
269  // If we find a boundary flux for any variable,
270  // let's just count it as a flux face for all
271  // variables. Otherwise we'd need to keep track of
272  // a separate n_flux_faces and error_per_cell for
273  // every single var.
274  bool found_boundary_flux = false;
275 
276  for (var=0; var<n_vars; var++)
277  if (error_norm.weight(var) != 0.0 &&
278  system.variable_type(var).family != SCALAR)
279  {
280  if (this->boundary_side_integration())
281  {
282  error_per_cell[fine_context->get_elem().id()] +=
283  static_cast<ErrorVectorReal>(fine_error);
284  found_boundary_flux = true;
285  }
286  }
287 
288  if (scale_by_n_flux_faces && found_boundary_flux)
289  n_flux_faces[fine_context->get_elem().id()]++;
290  }
291  }
292  }
293 #endif // #ifdef LIBMESH_ENABLE_AMR
294 
295  // If we do any more flux integration, e will be the fine element
296  fine_context->pre_fe_reinit(system, e);
297 
298  // Loop over the neighbors of element e
299  for (auto n_e : e->side_index_range())
300  {
301  if ((e->neighbor_ptr(n_e) != nullptr) ||
303  {
304  fine_context->side = cast_int<unsigned char>(n_e);
305  fine_context->side_fe_reinit();
306  }
307 
308  if (e->neighbor_ptr(n_e) != nullptr) // e is not on the boundary
309  {
310  const Elem * f = e->neighbor_ptr(n_e);
311  const dof_id_type f_id = f->id();
312 
313  // Compute flux jumps if we are in case 1 or case 2.
314  if ((f->active() && (f->level() == e->level()) && (e_id < f_id))
315  || (f->level() < e->level()))
316  {
317  // f is now the coarse element
318  coarse_context->pre_fe_reinit(system, f);
319 
320  this->reinit_sides();
321 
322  // Loop over all significant variables in the system
323  for (var=0; var<n_vars; var++)
324  if (error_norm.weight(var) != 0.0 &&
325  system.variable_type(var).family != SCALAR)
326  {
328 
329  error_per_cell[fine_context->get_elem().id()] +=
330  static_cast<ErrorVectorReal>(fine_error);
331  error_per_cell[coarse_context->get_elem().id()] +=
332  static_cast<ErrorVectorReal>(coarse_error);
333  }
334 
335  // Keep track of the number of internal flux
336  // sides found on each element
338  {
339  n_flux_faces[fine_context->get_elem().id()]++;
340  n_flux_faces[coarse_context->get_elem().id()] +=
342  }
343  } // end if (case1 || case2)
344  } // if (e->neighbor(n_e) != nullptr)
345 
346  // Otherwise, e is on the boundary. If it happens to
347  // be on a Dirichlet boundary, we need not do anything.
348  // On the other hand, if e is on a Neumann (flux) boundary
349  // with grad(u).n = g, we need to compute the additional residual
350  // (h * \int |g - grad(u_h).n|^2 dS)^(1/2).
351  // We can only do this with some knowledge of the boundary
352  // conditions, i.e. the user must have attached an appropriate
353  // BC function.
354  else if (integrate_boundary_sides)
355  {
356  bool found_boundary_flux = false;
357 
358  for (var=0; var<n_vars; var++)
359  if (error_norm.weight(var) != 0.0 &&
360  system.variable_type(var).family != SCALAR)
361  if (this->boundary_side_integration())
362  {
363  error_per_cell[fine_context->get_elem().id()] +=
364  static_cast<ErrorVectorReal>(fine_error);
365  found_boundary_flux = true;
366  }
367 
368  if (scale_by_n_flux_faces && found_boundary_flux)
369  n_flux_faces[fine_context->get_elem().id()]++;
370  } // end if (e->neighbor_ptr(n_e) == nullptr)
371  } // end loop over neighbors
372  } // End loop over active local elements
373 
374 
375  // Each processor has now computed the error contributions
376  // for its local elements. We need to sum the vector
377  // and then take the square-root of each component. Note
378  // that we only need to sum if we are running on multiple
379  // processors, and we only need to take the square-root
380  // if the value is nonzero. There will in general be many
381  // zeros for the inactive elements.
382 
383  // First sum the vector of estimated error values
384  this->reduce_error(error_per_cell, system.comm());
385 
386  // Compute the square-root of each component.
387  for (auto i : index_range(error_per_cell))
388  if (error_per_cell[i] != 0.)
389  error_per_cell[i] = std::sqrt(error_per_cell[i]);
390 
391 
392  if (this->scale_by_n_flux_faces)
393  {
394  // Sum the vector of flux face counts
395  this->reduce_error(n_flux_faces, system.comm());
396 
397  // Sanity check: Make sure the number of flux faces is
398  // always an integer value
399 #ifdef DEBUG
400  for (const auto & val : n_flux_faces)
401  libmesh_assert_equal_to (val, static_cast<float>(static_cast<unsigned int>(val)));
402 #endif
403 
404  // Scale the error by the number of flux faces for each element
405  for (auto i : index_range(n_flux_faces))
406  {
407  if (n_flux_faces[i] == 0.0) // inactive or non-local element
408  continue;
409 
410  error_per_cell[i] /= static_cast<ErrorVectorReal>(n_flux_faces[i]);
411  }
412  }
413 
414  // If we used a non-standard solution before, now is the time to fix
415  // the current_local_solution
416  if (solution_vector && solution_vector != system.solution.get())
417  {
418  NumericVector<Number> * newsol =
419  const_cast<NumericVector<Number> *>(solution_vector);
420  System & sys = const_cast<System &>(system);
421  newsol->swap(*sys.solution);
422  sys.update();
423  }
424 }

References libMesh::Elem::active(), libMesh::ElemInternal::active_family_tree_by_neighbor(), libMesh::JumpErrorEstimator::boundary_side_integration(), libMesh::Elem::child_ref_range(), libMesh::JumpErrorEstimator::coarse_context, libMesh::JumpErrorEstimator::coarse_error, libMesh::JumpErrorEstimator::coarse_n_flux_faces_increment(), libMesh::FEGenericBase< OutputType >::coarsened_dof_values(), libMesh::ParallelObject::comm(), dim, libMesh::ErrorEstimator::error_norm, libMesh::System::extra_quadrature_order, libMesh::FEType::family, libMesh::JumpErrorEstimator::fine_context, libMesh::JumpErrorEstimator::fine_error, libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::FEAbstract::get_xyz(), libMesh::DofObject::id(), libMesh::index_range(), libMesh::JumpErrorEstimator::init_context(), libMesh::JumpErrorEstimator::integrate_boundary_sides, libMesh::JumpErrorEstimator::internal_side_integration(), libMesh::Elem::level(), libMesh::libmesh_ignore(), mesh, n_vars, libMesh::System::n_vars(), libMesh::Elem::neighbor_ptr(), libMesh::Elem::parent(), libMesh::ErrorEstimator::reduce_error(), libMesh::JumpErrorEstimator::reinit_sides(), libMesh::SCALAR, libMesh::JumpErrorEstimator::scale_by_n_flux_faces, libMesh::Elem::side_index_range(), libMesh::DenseVector< T >::size(), libMesh::System::solution, std::sqrt(), libMesh::NumericVector< T >::swap(), libMesh::JumpErrorEstimator::use_unweighted_quadrature_rules, libMesh::JumpErrorEstimator::var, libMesh::System::variable_type(), and libMesh::SystemNorm::weight().

Referenced by assemble_and_solve(), and main().

◆ estimate_errors() [1/2]

void libMesh::ErrorEstimator::estimate_errors ( const EquationSystems equation_systems,
ErrorMap errors_per_cell,
const std::map< const System *, const NumericVector< Number > * > *  solution_vectors = nullptr,
bool  estimate_parent_error = false 
)
virtualinherited

This virtual function can be redefined in derived classes, but by default it calls estimate_error repeatedly to calculate the requested error vectors.

FIXME: This is a default implementation - derived classes should reimplement it for efficiency.

Currently this function ignores the error_norm.weight() values because it calculates each variable's error individually, unscaled.

The user selects which errors get computed by filling a map with error vectors: If errors_per_cell[&system][v] exists, it will be filled with the error values in variable v of system

Reimplemented in libMesh::UniformRefinementEstimator.

Definition at line 93 of file error_estimator.C.

97 {
98  SystemNorm old_error_norm = this->error_norm;
99 
100  // Find the requested error values from each system
101  for (auto s : IntRange<unsigned int>(0, equation_systems.n_systems()))
102  {
103  const System & sys = equation_systems.get_system(s);
104 
105  unsigned int n_vars = sys.n_vars();
106 
107  for (unsigned int v = 0; v != n_vars; ++v)
108  {
109  // Only fill in ErrorVectors the user asks for
110  if (errors_per_cell.find(std::make_pair(&sys, v)) ==
111  errors_per_cell.end())
112  continue;
113 
114  // Calculate error in only one variable
115  std::vector<Real> weights(n_vars, 0.0);
116  weights[v] = 1.0;
117  this->error_norm =
118  SystemNorm(std::vector<FEMNormType>(n_vars, old_error_norm.type(v)),
119  weights);
120 
121  const NumericVector<Number> * solution_vector = nullptr;
122  if (solution_vectors &&
123  solution_vectors->find(&sys) != solution_vectors->end())
124  solution_vector = solution_vectors->find(&sys)->second;
125 
126  this->estimate_error
127  (sys, *errors_per_cell[std::make_pair(&sys, v)],
128  solution_vector, estimate_parent_error);
129  }
130  }
131 
132  // Restore our old state before returning
133  this->error_norm = old_error_norm;
134 }

References libMesh::ErrorEstimator::error_norm, libMesh::ErrorEstimator::estimate_error(), libMesh::EquationSystems::get_system(), libMesh::EquationSystems::n_systems(), n_vars, libMesh::System::n_vars(), and libMesh::SystemNorm::type().

◆ estimate_errors() [2/2]

void libMesh::ErrorEstimator::estimate_errors ( const EquationSystems equation_systems,
ErrorVector error_per_cell,
const std::map< const System *, SystemNorm > &  error_norms,
const std::map< const System *, const NumericVector< Number > * > *  solution_vectors = nullptr,
bool  estimate_parent_error = false 
)
virtualinherited

This virtual function can be redefined in derived classes, but by default computes the sum of the error_per_cell for each system in the equation_systems.

Currently this function ignores the error_norm member variable, and uses the function argument error_norms instead.

This function is named estimate_errors instead of estimate_error because otherwise C++ can get confused.

Reimplemented in libMesh::UniformRefinementEstimator.

Definition at line 47 of file error_estimator.C.

52 {
53  SystemNorm old_error_norm = this->error_norm;
54 
55  // Sum the error values from each system
56  for (auto s : IntRange<unsigned int>(0, equation_systems.n_systems()))
57  {
58  ErrorVector system_error_per_cell;
59  const System & sys = equation_systems.get_system(s);
60  if (error_norms.find(&sys) == error_norms.end())
61  this->error_norm = old_error_norm;
62  else
63  this->error_norm = error_norms.find(&sys)->second;
64 
65  const NumericVector<Number> * solution_vector = nullptr;
66  if (solution_vectors &&
67  solution_vectors->find(&sys) != solution_vectors->end())
68  solution_vector = solution_vectors->find(&sys)->second;
69 
70  this->estimate_error(sys, system_error_per_cell,
71  solution_vector, estimate_parent_error);
72 
73  if (s)
74  {
75  libmesh_assert_equal_to (error_per_cell.size(), system_error_per_cell.size());
76  for (auto i : index_range(error_per_cell))
77  error_per_cell[i] += system_error_per_cell[i];
78  }
79  else
80  error_per_cell = system_error_per_cell;
81  }
82 
83  // Restore our old state before returning
84  this->error_norm = old_error_norm;
85 }

References libMesh::ErrorEstimator::error_norm, libMesh::ErrorEstimator::estimate_error(), libMesh::EquationSystems::get_system(), libMesh::index_range(), and libMesh::EquationSystems::n_systems().

◆ init_context()

void libMesh::KellyErrorEstimator::init_context ( FEMContext c)
overrideprotectedvirtual

An initialization function, for requesting specific data from the FE objects.

Reimplemented from libMesh::JumpErrorEstimator.

Definition at line 59 of file kelly_error_estimator.C.

60 {
61  const unsigned int n_vars = c.n_vars();
62  for (unsigned int v=0; v<n_vars; v++)
63  {
64  // Possibly skip this variable
65  if (error_norm.weight(v) == 0.0) continue;
66 
67  // FIXME: Need to generalize this to vector-valued elements. [PB]
68  FEBase * side_fe = nullptr;
69 
70  const std::set<unsigned char> & elem_dims =
71  c.elem_dimensions();
72 
73  for (const auto & dim : elem_dims)
74  {
75  fine_context->get_side_fe( v, side_fe, dim );
76 
77  // We'll need gradients on both sides for flux jump computation
78  side_fe->get_dphi();
79 
80  // But we only need normal vectors from one side
81  if (&c != coarse_context.get())
82  side_fe->get_normals();
83  }
84  }
85 }

References libMesh::JumpErrorEstimator::coarse_context, dim, libMesh::FEMContext::elem_dimensions(), libMesh::ErrorEstimator::error_norm, libMesh::JumpErrorEstimator::fine_context, libMesh::FEGenericBase< OutputType >::get_dphi(), libMesh::FEAbstract::get_normals(), libMesh::DiffContext::n_vars(), n_vars, and libMesh::SystemNorm::weight().

◆ internal_side_integration()

void libMesh::KellyErrorEstimator::internal_side_integration ( )
overrideprotectedvirtual

The function which calculates a normal derivative jump based error term on an internal side.

Implements libMesh::JumpErrorEstimator.

Definition at line 90 of file kelly_error_estimator.C.

91 {
92  const Elem & coarse_elem = coarse_context->get_elem();
93  const Elem & fine_elem = fine_context->get_elem();
94 
95  FEBase * fe_fine = nullptr;
96  fine_context->get_side_fe( var, fe_fine, fine_elem.dim() );
97 
98  FEBase * fe_coarse = nullptr;
99  coarse_context->get_side_fe( var, fe_coarse, fine_elem.dim() );
100 
101  Real error = 1.e-30;
102  unsigned int n_qp = fe_fine->n_quadrature_points();
103 
104  std::vector<std::vector<RealGradient>> dphi_coarse = fe_coarse->get_dphi();
105  std::vector<std::vector<RealGradient>> dphi_fine = fe_fine->get_dphi();
106  std::vector<Point> face_normals = fe_fine->get_normals();
107  std::vector<Real> JxW_face = fe_fine->get_JxW();
108 
109  for (unsigned int qp=0; qp != n_qp; ++qp)
110  {
111  // Calculate solution gradients on fine and coarse elements
112  // at this quadrature point
113  Gradient
114  grad_fine = fine_context->side_gradient(var, qp),
115  grad_coarse = coarse_context->side_gradient(var, qp);
116 
117  // Find the jump in the normal derivative
118  // at this quadrature point
119  const Number jump = (grad_fine - grad_coarse)*face_normals[qp];
120  const Real jump2 = TensorTools::norm_sq(jump);
121 
122  // Accumulate the jump integral
123  error += JxW_face[qp] * jump2;
124  }
125 
126  // Add the h-weighted jump integral to each error term
127  fine_error =
128  error * fine_elem.hmax() * error_norm.weight(var);
129  coarse_error =
130  error * coarse_elem.hmax() * error_norm.weight(var);
131 }

References libMesh::JumpErrorEstimator::coarse_context, libMesh::JumpErrorEstimator::coarse_error, libMesh::Elem::dim(), libMesh::ErrorEstimator::error_norm, libMesh::JumpErrorEstimator::fine_context, libMesh::JumpErrorEstimator::fine_error, libMesh::FEGenericBase< OutputType >::get_dphi(), libMesh::FEAbstract::get_JxW(), libMesh::FEAbstract::get_normals(), libMesh::Elem::hmax(), libMesh::FEAbstract::n_quadrature_points(), libMesh::TensorTools::norm_sq(), libMesh::Real, libMesh::JumpErrorEstimator::var, and libMesh::SystemNorm::weight().

◆ operator=() [1/2]

KellyErrorEstimator& libMesh::KellyErrorEstimator::operator= ( const KellyErrorEstimator )
delete

◆ operator=() [2/2]

KellyErrorEstimator& libMesh::KellyErrorEstimator::operator= ( KellyErrorEstimator &&  )
default

◆ reduce_error()

void libMesh::ErrorEstimator::reduce_error ( std::vector< ErrorVectorReal > &  error_per_cell,
const Parallel::Communicator &  comm 
) const
protectedinherited

This method takes the local error contributions in error_per_cell from each processor and combines them to get the global error vector.

Definition at line 32 of file error_estimator.C.

34 {
35  // This function must be run on all processors at once
36  // parallel_object_only();
37 
38  // Each processor has now computed the error contributions
39  // for its local elements. We may need to sum the vector to
40  // recover the error for each element.
41 
42  comm.sum(error_per_cell);
43 }

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::WeightedPatchRecoveryErrorEstimator::estimate_error(), libMesh::PatchRecoveryErrorEstimator::estimate_error(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), and libMesh::ExactErrorEstimator::estimate_error().

◆ reinit_sides()

void libMesh::JumpErrorEstimator::reinit_sides ( )
protectedinherited

A utility function to reinit the finite element data on elements sharing a side.

Definition at line 429 of file jump_error_estimator.C.

430 {
431  fine_context->side_fe_reinit();
432 
433  unsigned short dim = fine_context->get_elem().dim();
434  libmesh_assert_equal_to(dim, coarse_context->get_elem().dim());
435 
436  FEBase * fe_fine = nullptr;
437  fine_context->get_side_fe( 0, fe_fine, dim );
438 
439  // Get the physical locations of the fine element quadrature points
440  std::vector<Point> qface_point = fe_fine->get_xyz();
441 
442  // Find the master quadrature point locations on the coarse element
443  FEBase * fe_coarse = nullptr;
444  coarse_context->get_side_fe( 0, fe_coarse, dim );
445 
446  std::vector<Point> qp_coarse;
447 
448  FEMap::inverse_map (coarse_context->get_elem().dim(),
449  &coarse_context->get_elem(), qface_point,
450  qp_coarse);
451 
452  // The number of variables in the system
453  const unsigned int n_vars = fine_context->n_vars();
454 
455  // Calculate all coarse element shape functions at those locations
456  for (unsigned int v=0; v<n_vars; v++)
457  if (error_norm.weight(v) != 0.0 &&
458  fine_context->get_system().variable_type(v).family != SCALAR)
459  {
460  coarse_context->get_side_fe( v, fe_coarse, dim );
461  fe_coarse->reinit (&coarse_context->get_elem(), &qp_coarse);
462  }
463 }

References libMesh::JumpErrorEstimator::coarse_context, dim, libMesh::ErrorEstimator::error_norm, libMesh::JumpErrorEstimator::fine_context, libMesh::FEMap::inverse_map(), n_vars, libMesh::FEAbstract::reinit(), libMesh::SCALAR, and libMesh::SystemNorm::weight().

Referenced by libMesh::JumpErrorEstimator::estimate_error().

◆ type()

ErrorEstimatorType libMesh::KellyErrorEstimator::type ( ) const
overridevirtual
Returns
The type for the ErrorEstimator subclass.

Implements libMesh::ErrorEstimator.

Definition at line 51 of file kelly_error_estimator.C.

52 {
53  return KELLY;
54 }

References libMesh::KELLY.

Member Data Documentation

◆ _bc_function

std::pair<bool,Real>(* libMesh::KellyErrorEstimator::_bc_function) (const System &system, const Point &p, const std::string &var_name)
protected

Pointer to function that provides BC information.

Definition at line 119 of file kelly_error_estimator.h.

Referenced by attach_flux_bc_function(), and boundary_side_integration().

◆ coarse_context

std::unique_ptr<FEMContext> libMesh::JumpErrorEstimator::coarse_context
protectedinherited

◆ coarse_error

Real libMesh::JumpErrorEstimator::coarse_error
protectedinherited

◆ error_norm

SystemNorm libMesh::ErrorEstimator::error_norm
inherited

When estimating the error in a single system, the error_norm is used to control the scaling and norm choice for each variable.

Not all estimators will support all norm choices. The default scaling is for all variables to be weighted equally. The default norm choice depends on the error estimator.

Part of this functionality was supported via component_scale and sobolev_order in older libMesh versions, and a small part was supported via component_mask in even older versions. Hopefully the encapsulation here will allow us to avoid changing this API again.

Definition at line 164 of file error_estimator.h.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::AdjointRefinementEstimator::AdjointRefinementEstimator(), libMesh::DiscontinuityMeasure::boundary_side_integration(), boundary_side_integration(), libMesh::DiscontinuityMeasure::DiscontinuityMeasure(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::ErrorEstimator::estimate_errors(), libMesh::ExactErrorEstimator::ExactErrorEstimator(), libMesh::ExactErrorEstimator::find_squared_element_error(), libMesh::LaplacianErrorEstimator::init_context(), libMesh::DiscontinuityMeasure::init_context(), init_context(), libMesh::LaplacianErrorEstimator::internal_side_integration(), libMesh::DiscontinuityMeasure::internal_side_integration(), internal_side_integration(), KellyErrorEstimator(), libMesh::LaplacianErrorEstimator::LaplacianErrorEstimator(), main(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::PatchRecoveryErrorEstimator(), libMesh::JumpErrorEstimator::reinit_sides(), and libMesh::UniformRefinementEstimator::UniformRefinementEstimator().

◆ fine_context

std::unique_ptr<FEMContext> libMesh::JumpErrorEstimator::fine_context
protectedinherited

◆ fine_error

Real libMesh::JumpErrorEstimator::fine_error
protectedinherited

◆ integrate_boundary_sides

bool libMesh::JumpErrorEstimator::integrate_boundary_sides
protectedinherited

A boolean flag, by default false, to be set to true if integrations with boundary_side_integration() should be performed.

Definition at line 152 of file jump_error_estimator.h.

Referenced by libMesh::DiscontinuityMeasure::attach_essential_bc_function(), attach_flux_bc_function(), and libMesh::JumpErrorEstimator::estimate_error().

◆ scale_by_n_flux_faces

bool libMesh::JumpErrorEstimator::scale_by_n_flux_faces
inherited

This boolean flag allows you to scale the error indicator result for each element by the number of "flux faces" the element actually has.

This tends to weight more evenly cells which are on the boundaries and thus have fewer contributions to their flux. The value is initialized to false, simply set it to true if you want to use the feature.

Definition at line 99 of file jump_error_estimator.h.

Referenced by libMesh::JumpErrorEstimator::estimate_error().

◆ use_unweighted_quadrature_rules

bool libMesh::JumpErrorEstimator::use_unweighted_quadrature_rules
inherited

This boolean flag allows you to use "unweighted" quadrature rules (sized to exactly integrate unweighted shape functions in master element space) rather than "default" quadrature rules (sized to exactly integrate polynomials of one higher degree than mass matrix terms).

The results with the former, lower-order rules will be somewhat less accurate in many cases but will be much cheaper to compute.

The value is initialized to false, simply set it to true if you want to use the feature.

Definition at line 113 of file jump_error_estimator.h.

Referenced by libMesh::JumpErrorEstimator::estimate_error(), and main().

◆ var

unsigned int libMesh::JumpErrorEstimator::var
protectedinherited

The documentation for this class was generated from the following files:
libMesh::JumpErrorEstimator::reinit_sides
void reinit_sides()
A utility function to reinit the finite element data on elements sharing a side.
Definition: jump_error_estimator.C:429
libMesh::JumpErrorEstimator::coarse_context
std::unique_ptr< FEMContext > coarse_context
Definition: jump_error_estimator.h:158
libMesh::dof_id_type
uint8_t dof_id_type
Definition: id_types.h:67
libMesh::Number
Real Number
Definition: libmesh_common.h:195
libMesh::JumpErrorEstimator::integrate_boundary_sides
bool integrate_boundary_sides
A boolean flag, by default false, to be set to true if integrations with boundary_side_integration() ...
Definition: jump_error_estimator.h:152
libMesh::JumpErrorEstimator::init_context
virtual void init_context(FEMContext &c)
An initialization function, to give derived classes a chance to request specific data from the FE obj...
Definition: jump_error_estimator.C:47
libMesh::JumpErrorEstimator::JumpErrorEstimator
JumpErrorEstimator()
Constructor.
Definition: jump_error_estimator.h:55
libMesh::ErrorEstimator::error_norm
SystemNorm error_norm
When estimating the error in a single system, the error_norm is used to control the scaling and norm ...
Definition: error_estimator.h:164
n_vars
unsigned int n_vars
Definition: adaptivity_ex3.C:116
libMesh::index_range
IntRange< std::size_t > index_range(const std::vector< T > &vec)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:106
libMesh::JumpErrorEstimator::var
unsigned int var
The variable number currently being evaluated.
Definition: jump_error_estimator.h:168
libMesh::H1_SEMINORM
Definition: enum_norm_type.h:43
libMesh::JumpErrorEstimator::fine_error
Real fine_error
The fine and coarse error values to be set by each side_integration();.
Definition: jump_error_estimator.h:163
std::sqrt
MetaPhysicL::DualNumber< T, D > sqrt(const MetaPhysicL::DualNumber< T, D > &in)
mesh
MeshBase & mesh
Definition: mesh_communication.C:1257
libMesh::SystemNorm::weight
Real weight(unsigned int var) const
Definition: system_norm.C:133
libMesh::JumpErrorEstimator::scale_by_n_flux_faces
bool scale_by_n_flux_faces
This boolean flag allows you to scale the error indicator result for each element by the number of "f...
Definition: jump_error_estimator.h:99
libMesh::JumpErrorEstimator::coarse_n_flux_faces_increment
float coarse_n_flux_faces_increment()
A utility function to correctly increase n_flux_faces for the coarse element.
Definition: jump_error_estimator.C:467
dim
unsigned int dim
Definition: adaptivity_ex3.C:113
libMesh::KELLY
Definition: enum_error_estimator_type.h:39
libMesh::JumpErrorEstimator::boundary_side_integration
virtual bool boundary_side_integration()
The function, to be implemented by derived classes, which calculates an error term on a boundary side...
Definition: jump_error_estimator.h:146
libMesh::JumpErrorEstimator::coarse_error
Real coarse_error
Definition: jump_error_estimator.h:163
libMesh::ErrorEstimator::estimate_error
virtual void estimate_error(const System &system, ErrorVector &error_per_cell, const NumericVector< Number > *solution_vector=nullptr, bool estimate_parent_error=false)=0
This pure virtual function must be redefined in derived classes to compute the error for each active ...
libMesh::FEMap::inverse_map
static Point inverse_map(const unsigned int dim, const Elem *elem, const Point &p, const Real tolerance=TOLERANCE, const bool secure=true)
Definition: fe_map.C:1622
libMesh::JumpErrorEstimator::fine_context
std::unique_ptr< FEMContext > fine_context
Context objects for integrating on the fine and coarse elements sharing a face.
Definition: jump_error_estimator.h:158
libMesh::FEBase
FEGenericBase< Real > FEBase
Definition: exact_error_estimator.h:39
libMesh::libmesh_ignore
void libmesh_ignore(const Args &...)
Definition: libmesh_common.h:526
libMesh::FEGenericBase::coarsened_dof_values
static void coarsened_dof_values(const NumericVector< Number > &global_vector, const DofMap &dof_map, const Elem *coarse_elem, DenseVector< Number > &coarse_dofs, const unsigned int var, const bool use_old_dof_indices=false)
Creates a local projection on coarse_elem, based on the DoF values in global_vector for it's children...
Definition: fe_base.C:822
libMesh::ElemInternal::active_family_tree_by_neighbor
void active_family_tree_by_neighbor(T elem, std::vector< T > &family, T neighbor_in, bool reset=true)
Definition: elem_internal.h:320
libMesh::Gradient
NumberVectorValue Gradient
Definition: exact_solution.h:58
libMesh::JumpErrorEstimator::internal_side_integration
virtual void internal_side_integration()=0
The function, to be implemented by derived classes, which calculates an error term on an internal sid...
libMesh::TensorTools::norm_sq
T norm_sq(std::complex< T > a)
Definition: tensor_tools.h:85
libMesh::ErrorEstimator::reduce_error
void reduce_error(std::vector< ErrorVectorReal > &error_per_cell, const Parallel::Communicator &comm) const
This method takes the local error contributions in error_per_cell from each processor and combines th...
Definition: error_estimator.C:32
libMesh::JumpErrorEstimator::use_unweighted_quadrature_rules
bool use_unweighted_quadrature_rules
This boolean flag allows you to use "unweighted" quadrature rules (sized to exactly integrate unweigh...
Definition: jump_error_estimator.h:113
libMesh::SCALAR
Definition: enum_fe_family.h:58
libMesh::Real
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Definition: libmesh_common.h:121
fptr
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
libMesh::KellyErrorEstimator::_bc_function
std::pair< bool, Real >(* _bc_function)(const System &system, const Point &p, const std::string &var_name)
Pointer to function that provides BC information.
Definition: kelly_error_estimator.h:119