- level_set_varThe name of level set variable used to represent the interface
C++ Type:VariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of level set variable used to represent the interface
- variableThe name of the variable that this UserObject operates on
C++ Type:VariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this UserObject operates on
NodeValueAtXFEMInterface
Obtain field values and gradients on the interface.
Overview
The values of field variables on either side of a moving interface are often needed to define the interface velocity. These variables and their gradients might be discontinuous across the interface. The fact that the interface does not lie on the standard quadrature points makes it difficult to get the quantities on the interface using existing functions in MOOSE.
NodeValueAtXFEMInterface
provides functions to return the value of a field variable and its gradient on both the positive and negative sides of the interface. It is run on the nodes of the cutting mesh. Typically a node in the cut mesh lies within an element of the finite element mesh, and its location is determined by PointLocator
. The value of a field variable at the node location will be obtained by an interpolation of element's (and the overlapping element's) node values and shape functions. The NodeValueAtXFEMInterface
object is used by the XFEMMovingInterfaceVelocityBase
derived class to calculate the velocity of the interface for moving interface problems.
Example Input File Syntax
[UserObjects]
[value_uo]
type = NodeValueAtXFEMInterface
variable = 'u'
interface_mesh_cut_userobject = 'cut_mesh'
execute_on = TIMESTEP_END
level_set_var = ls
[]
[]
(modules/xfem/test/tests/moving_interface/phase_transition_2d.i)Input Parameters
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- interface_mesh_cut_userobjectName of InterfaceMeshCutUserObject that provides cut locations to this UserObject.
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:Name of InterfaceMeshCutUserObject that provides cut locations to this UserObject.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.