AdvectiveFluxCalculatorConstantVelocity

The AdvectiveFluxCalculatorConstantVelocity computes , and that are used in the Kuzmin-Turek (Kuzmin and Turek, 2004) numerical stabilization scheme, when the velocity is constant and uniform over the mesh. is a measure of advective flux between neighbouring nodes, while and quantify how much antidiffusion to allow around the nodes. See A worked example of Kuzmin-Turek stabilization for many explicit details, and numerical diffusion for example of how the Kuzmin-Turek scheme compares with other numerical schemes.

Input Parameters

  • uThe variable that is being advected

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The variable that is being advected

  • velocityVelocity vector

    C++ Type:libMesh::VectorValue<double>

    Unit:(no unit assumed)

    Controllable:No

    Description:Velocity vector

Required Parameters

  • allowable_MB_wastage5This object will issue a memory warning if the internal node-numbering data structure wastes more than allowable_MB_wastage megabytes. This data structure uses sequential node-numbering which is optimized for speed rather than memory efficiency

    Default:5

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:This object will issue a memory warning if the internal node-numbering data structure wastes more than allowable_MB_wastage megabytes. This data structure uses sequential node-numbering which is optimized for speed rather than memory efficiency

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • execute_onLINEARThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

    Default:LINEAR

    C++ Type:ExecFlagEnum

    Unit:(no unit assumed)

    Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR_CONVERGENCE, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

  • flux_limiter_typeVanLeerType of flux limiter to use. 'None' means that no antidiffusion will be added in the Kuzmin-Turek scheme

    Default:VanLeer

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:MinMod, VanLeer, MC, superbee, None

    Controllable:No

    Description:Type of flux limiter to use. 'None' means that no antidiffusion will be added in the Kuzmin-Turek scheme

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

    Default:0

    C++ Type:int

    Unit:(no unit assumed)

    Controllable:No

    Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

Input Files

References

  1. D. Kuzmin and S. Turek. High-resolution FEM-TVD shcemes based on a fully multidimensional flux limiter. Journal of Computational Physics, 198:131–158, 2004.[BibTeX]