- from_reporterThe name(s) of the Reporter(s) on the sub-app to transfer from.
C++ Type:std::vector<ReporterName>
Unit:(no unit assumed)
Controllable:No
Description:The name(s) of the Reporter(s) on the sub-app to transfer from.
- stochastic_reporterThe name of the StochasticReporter object to transfer values to.
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:The name of the StochasticReporter object to transfer values to.
SamplerReporterTransfer
Transfers data from Reporters on the sub-application to a StochasticReporter on the main application.
Overview
This object is designed to transfer data from postprocessors, vectorpostprocessors, and reporters on the sub-application to the main application. This object must transfer data to a StochasticReporter object.
How It Works
This transfer works similar to MultiAppCloneReporterTransfer whereby creating vector reporter values whose type is based on the type of value being transferred. The name of the reporter values are <stochastic_reporter name>/<transfer name or prefix>:<sub-app reporter object name>:<sub-app reporter value name>
. In parallel, the vector that the values are being transferred into are distributed by default. For instance, main_out.json is the output in serial showing all the transferred data; while main_parallel.json, main_parallel.json.1, main_parallel.json.2, and main_parallel.json.3 are the combined data from running on 4 processors. However, this split in files can be avoided if "parallel_type" in the reporter object is set to ROOT
. This will gather all the data to the root processor, beware using this option can cause memory issues with very very large stochastic runs.
Dealing with Failed Solves
When performing stochastic analysis with many perturbations of a sub-application, it is sometimes the case where the app receives a set of parameters that makes the solve difficult to converge. With the default configuration of this object, if one of sub-applications' solve fails, the main application will abort. If it is expected that some solves might not converge and aborting the main application is not the desired behavior, the parameter "ignore_solve_not_converge" must be set to true in the MultiApps
block (see SamplerFullSolveMultiApp for more details). With this parameter set to true in the multiapp, this object will transfer whatever the last compute values are. To keep track of whether the solve converged or not, the reporter value <stochastic_reporter name>/multiapp_converged
is created. See main_out.json as an example.
Example Syntax
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
execute_on = 'INITIAL TIMESTEP_BEGIN'
ignore_solve_not_converge = true
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = storage
from_reporter = 'pp/value vpp/vec constant/str constant/int'
[]
[]
[Reporters]
[storage]
type = StochasticReporter
execute_on = 'initial timestep_end'
parallel_type = ROOT
[]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/main.i)Input Parameters
- check_multiapp_execute_onFalseWhen false the check between the multiapp and transfer execute on flags is not performed.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:When false the check between the multiapp and transfer execute on flags is not performed.
- displaced_source_meshFalseWhether or not to use the displaced mesh for the source mesh.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not to use the displaced mesh for the source mesh.
- displaced_target_meshFalseWhether or not to use the displaced mesh for the target mesh.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not to use the displaced mesh for the target mesh.
- execute_onSAME_AS_MULTIAPPThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:SAME_AS_MULTIAPP
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR_CONVERGENCE, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, SAME_AS_MULTIAPP
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- from_multi_appThe name of the MultiApp to receive data from
C++ Type:MultiAppName
Unit:(no unit assumed)
Controllable:No
Description:The name of the MultiApp to receive data from
- prefixUse the supplied string as the prefix for reporter name rather than the transfer name.
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:Use the supplied string as the prefix for reporter name rather than the transfer name.
- samplerA the Sampler object that Transfer is associated..
C++ Type:SamplerName
Unit:(no unit assumed)
Controllable:No
Description:A the Sampler object that Transfer is associated..
- to_multi_appThe name of the MultiApp to transfer the data to
C++ Type:MultiAppName
Unit:(no unit assumed)
Controllable:No
Description:The name of the MultiApp to transfer the data to
Optional Parameters
- _called_legacy_paramsTrue
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- skip_coordinate_collapsingTrueWhether to skip coordinate collapsing (translation and rotation are still performed, only XYZ, RZ etc collapsing is skipped) when performing mapping and inverse mapping coordinate transformation operations. This parameter should only be set by users who really know what they're doing.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to skip coordinate collapsing (translation and rotation are still performed, only XYZ, RZ etc collapsing is skipped) when performing mapping and inverse mapping coordinate transformation operations. This parameter should only be set by users who really know what they're doing.
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/stochastic_tools/test/tests/samplers/mcmc/main_base.i)
- (modules/stochastic_tools/test/tests/samplers/ParallelSubsetSimulation/pss_error1.i)
- (modules/stochastic_tools/examples/surrogates/poly_chaos_normal_mc.i)
- (modules/stochastic_tools/test/tests/reporters/mapping/load_main.i)
- (modules/stochastic_tools/test/tests/multiapps/user_cli_args/main_transient.i)
- (modules/stochastic_tools/test/tests/samplers/mcmc/main_des_var.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_1D.i)
- (modules/stochastic_tools/test/tests/reporters/BFActiveLearning/main_adam.i)
- (modules/stochastic_tools/test/tests/auxkernels/surrogate_aux/surrogate.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential_training.i)
- (modules/stochastic_tools/test/tests/reporters/AISActiveLearning/ais_al.i)
- (modules/stochastic_tools/examples/surrogates/poly_chaos_normal_quad.i)
- (modules/stochastic_tools/examples/sobol/main.i)
- (modules/stochastic_tools/examples/parameter_study/main.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/GP_normal_mc.i)
- (modules/stochastic_tools/test/tests/reporters/stochastic_matrix/stochastic_matrix.i)
- (modules/stochastic_tools/test/tests/multiapps/partitioning/main.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_reporter/main.i)
- (modules/stochastic_tools/test/tests/surrogates/multioutput_gp/mogp_lmc.i)
- (modules/stochastic_tools/examples/surrogates/polynomial_regression/uniform_train.i)
- (modules/stochastic_tools/examples/surrogates/nearest_point_training.i)
- (modules/stochastic_tools/test/tests/multiapps/nested_multiapp/stm.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_Matern_half_int_tuned_adam.i)
- (modules/stochastic_tools/test/tests/reporters/ActiveLearningGP/main_adam.i)
- (modules/stochastic_tools/test/tests/surrogates/load_store/train_and_evaluate.i)
- (modules/stochastic_tools/test/tests/samplers/AdaptiveImportanceSampler/ais.i)
- (modules/stochastic_tools/examples/surrogates/polynomial_regression/normal_train.i)
- (modules/stochastic_tools/test/tests/reporters/morris/morris_main.i)
- (modules/stochastic_tools/examples/parameter_study/main_time.i)
- (modules/stochastic_tools/test/tests/surrogates/load_store/train.i)
- (modules/stochastic_tools/test/tests/samplers/mcmc/main_des.i)
- (modules/stochastic_tools/test/tests/reporters/bootstrap_statistics/bca/bca_main.i)
- (modules/stochastic_tools/test/tests/multiapps/nested_multiapp/stm_batch.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential.i)
- (modules/combined/examples/stochastic/lhs_uniform.i)
- (modules/stochastic_tools/examples/surrogates/cross_validation/all_trainers_uniform_cv.i)
- (modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2d_mc.i)
- (modules/stochastic_tools/examples/surrogates/combined/trans_diff_2d/trans_diff_trainer.i)
- (modules/stochastic_tools/test/tests/reporters/directperturbation/dp_main.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_reporter/main_small.i)
- (modules/stochastic_tools/test/tests/multiapps/partitioning/main_transient.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_exponential.i)
- (modules/stochastic_tools/test/tests/reporters/stochastic_reporter/stats.i)
- (modules/stochastic_tools/test/tests/likelihoods/gaussian_derived/main.i)
- (modules/stochastic_tools/test/tests/samplers/mcmc/main_imh.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_Matern_half_int.i)
- (modules/stochastic_tools/test/tests/reporters/sobol/sobol_main.i)
- (modules/stochastic_tools/test/tests/samplers/mcmc/main_ss.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_1D_tuned.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential_tuned_adam.i)
- (modules/stochastic_tools/test/tests/multiapps/user_cli_args/main_full_solve.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_2D_tuned.i)
- (modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2d_quad.i)
- (modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2dnorm_quad_locs.i)
- (modules/stochastic_tools/test/tests/reporters/bootstrap_statistics/percentile/percentile_main.i)
- (modules/stochastic_tools/examples/surrogates/poly_chaos_uniform_quad.i)
- (modules/stochastic_tools/test/tests/surrogates/nearest_point/np_vec.i)
- (modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2d_quad_moment.i)
- (modules/stochastic_tools/test/tests/reporters/statistics/statistics_main.i)
- (modules/stochastic_tools/examples/surrogates/poly_chaos_uniform_mc.i)
- (modules/stochastic_tools/test/tests/surrogates/multioutput_gp/mogp_lmc_tuned.i)
- (modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2d_quad_locs.i)
- (modules/stochastic_tools/test/tests/multiapps/nested_multiapp/stm_small_batch.i)
- (modules/combined/examples/stochastic/poly_chaos_train_uniform.i)
- (modules/stochastic_tools/test/tests/surrogates/cross_validation/poly_reg_vec.i)
- (modules/stochastic_tools/test/tests/samplers/ParallelSubsetSimulation/pss.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_2D.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_exponential_tuned_adam.i)
- (modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2dnorm_quad.i)
- (modules/stochastic_tools/test/tests/surrogates/polynomial_regression/poly_reg_vec.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_reporter/main_batch.i)
- (modules/stochastic_tools/test/tests/multiapps/conditional_run/conditional_main.i)
- (modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2dnorm_quad_moment.i)
- (modules/stochastic_tools/examples/parameter_study/main_vector.i)
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/gold/main_out.json)
{
"reporters": {
"storage": {
"type": "StochasticReporter",
"values": {
"data:constant:int": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<int>"
},
"data:constant:str": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<std::string>"
},
"data:converged": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<bool>"
},
"data:pp:value": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<double>"
},
"data:vpp:vec": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<std::vector<double>>"
}
}
}
},
"time_steps": [
{
"storage": {
"data:constant:int": [
1,
1,
1,
1,
2,
2,
2,
2
],
"data:constant:str": [
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value"
],
"data:converged": [
false,
true,
false,
true,
false,
true,
false,
true
],
"data:pp:value": [
0.0,
0.1,
0.0,
0.2,
0.0,
0.1,
0.0,
0.2
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.0,
"time_step": 0
},
{
"storage": {
"data:constant:int": [
1,
1,
1,
1,
2,
2,
2,
2
],
"data:constant:str": [
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value"
],
"data:converged": [
false,
true,
false,
true,
false,
true,
false,
true
],
"data:pp:value": [
0.0,
0.1,
0.0,
0.2,
0.0,
0.1,
0.0,
0.2
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.01,
"time_step": 1
},
{
"storage": {
"data:constant:int": [
1,
1,
1,
1,
2,
2,
2,
2
],
"data:constant:str": [
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value"
],
"data:converged": [
false,
true,
false,
true,
false,
true,
false,
true
],
"data:pp:value": [
0.0,
0.1,
0.0,
0.2,
0.0,
0.1,
0.0,
0.2
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.02,
"time_step": 2
}
]
}
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/gold/main_parallel.json)
{
"number_of_parts": 4,
"part": 0,
"reporters": {
"storage": {
"type": "StochasticReporter",
"values": {
"data:constant:int": {
"row_begin": 0,
"row_end": 2,
"type": "std::vector<int>"
},
"data:constant:str": {
"row_begin": 0,
"row_end": 2,
"type": "std::vector<std::string>"
},
"data:converged": {
"row_begin": 0,
"row_end": 2,
"type": "std::vector<bool>"
},
"data:pp:value": {
"row_begin": 0,
"row_end": 2,
"type": "std::vector<double>"
},
"data:vpp:vec": {
"row_begin": 0,
"row_end": 2,
"type": "std::vector<std::vector<double>>"
}
}
}
},
"time_steps": [
{
"storage": {
"data:constant:int": [
1,
1
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.1
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
]
]
},
"time": 0.0,
"time_step": 0
},
{
"storage": {
"data:constant:int": [
1,
1
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.1
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
]
]
},
"time": 0.01,
"time_step": 1
},
{
"storage": {
"data:constant:int": [
1,
1
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.1
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
]
]
},
"time": 0.02,
"time_step": 2
}
]
}
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/gold/main_parallel.json.1)
{
"number_of_parts": 4,
"part": 1,
"reporters": {
"storage": {
"type": "StochasticReporter",
"values": {
"data:constant:int": {
"row_begin": 2,
"row_end": 4,
"type": "std::vector<int>"
},
"data:constant:str": {
"row_begin": 2,
"row_end": 4,
"type": "std::vector<std::string>"
},
"data:converged": {
"row_begin": 2,
"row_end": 4,
"type": "std::vector<bool>"
},
"data:pp:value": {
"row_begin": 2,
"row_end": 4,
"type": "std::vector<double>"
},
"data:vpp:vec": {
"row_begin": 2,
"row_end": 4,
"type": "std::vector<std::vector<double>>"
}
}
}
},
"time_steps": [
{
"storage": {
"data:constant:int": [
1,
1
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.2
],
"data:vpp:vec": [
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.0,
"time_step": 0
},
{
"storage": {
"data:constant:int": [
1,
1
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.2
],
"data:vpp:vec": [
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.01,
"time_step": 1
},
{
"storage": {
"data:constant:int": [
1,
1
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.2
],
"data:vpp:vec": [
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.02,
"time_step": 2
}
]
}
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/gold/main_parallel.json.2)
{
"number_of_parts": 4,
"part": 2,
"reporters": {
"storage": {
"type": "StochasticReporter",
"values": {
"data:constant:int": {
"row_begin": 4,
"row_end": 6,
"type": "std::vector<int>"
},
"data:constant:str": {
"row_begin": 4,
"row_end": 6,
"type": "std::vector<std::string>"
},
"data:converged": {
"row_begin": 4,
"row_end": 6,
"type": "std::vector<bool>"
},
"data:pp:value": {
"row_begin": 4,
"row_end": 6,
"type": "std::vector<double>"
},
"data:vpp:vec": {
"row_begin": 4,
"row_end": 6,
"type": "std::vector<std::vector<double>>"
}
}
}
},
"time_steps": [
{
"storage": {
"data:constant:int": [
2,
2
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.1
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
]
]
},
"time": 0.0,
"time_step": 0
},
{
"storage": {
"data:constant:int": [
2,
2
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.1
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
]
]
},
"time": 0.01,
"time_step": 1
},
{
"storage": {
"data:constant:int": [
2,
2
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.1
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
]
]
},
"time": 0.02,
"time_step": 2
}
]
}
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/gold/main_parallel.json.3)
{
"number_of_parts": 4,
"part": 3,
"reporters": {
"storage": {
"type": "StochasticReporter",
"values": {
"data:constant:int": {
"row_begin": 6,
"row_end": 8,
"type": "std::vector<int>"
},
"data:constant:str": {
"row_begin": 6,
"row_end": 8,
"type": "std::vector<std::string>"
},
"data:converged": {
"row_begin": 6,
"row_end": 8,
"type": "std::vector<bool>"
},
"data:pp:value": {
"row_begin": 6,
"row_end": 8,
"type": "std::vector<double>"
},
"data:vpp:vec": {
"row_begin": 6,
"row_end": 8,
"type": "std::vector<std::vector<double>>"
}
}
}
},
"time_steps": [
{
"storage": {
"data:constant:int": [
2,
2
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.2
],
"data:vpp:vec": [
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.0,
"time_step": 0
},
{
"storage": {
"data:constant:int": [
2,
2
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.2
],
"data:vpp:vec": [
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.01,
"time_step": 1
},
{
"storage": {
"data:constant:int": [
2,
2
],
"data:constant:str": [
"this_value",
"this_value"
],
"data:converged": [
false,
true
],
"data:pp:value": [
0.0,
0.2
],
"data:vpp:vec": [
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.02,
"time_step": 2
}
]
}
parallel_type
Default:DISTRIBUTED
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:DISTRIBUTED, ROOT
Controllable:No
Description:This parameter will determine how the stochastic data is gathered. It is common for outputting purposes that this parameter be set to ROOT, otherwise, many files will be produced showing the values on each processor. However, if there are lot of samples, gathering on root may be memory restrictive.
ignore_solve_not_converge
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:True to continue main app even if a sub app's solve does not converge.
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/gold/main_out.json)
{
"reporters": {
"storage": {
"type": "StochasticReporter",
"values": {
"data:constant:int": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<int>"
},
"data:constant:str": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<std::string>"
},
"data:converged": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<bool>"
},
"data:pp:value": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<double>"
},
"data:vpp:vec": {
"row_begin": 0,
"row_end": 8,
"type": "std::vector<std::vector<double>>"
}
}
}
},
"time_steps": [
{
"storage": {
"data:constant:int": [
1,
1,
1,
1,
2,
2,
2,
2
],
"data:constant:str": [
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value"
],
"data:converged": [
false,
true,
false,
true,
false,
true,
false,
true
],
"data:pp:value": [
0.0,
0.1,
0.0,
0.2,
0.0,
0.1,
0.0,
0.2
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.0,
"time_step": 0
},
{
"storage": {
"data:constant:int": [
1,
1,
1,
1,
2,
2,
2,
2
],
"data:constant:str": [
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value"
],
"data:converged": [
false,
true,
false,
true,
false,
true,
false,
true
],
"data:pp:value": [
0.0,
0.1,
0.0,
0.2,
0.0,
0.1,
0.0,
0.2
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.01,
"time_step": 1
},
{
"storage": {
"data:constant:int": [
1,
1,
1,
1,
2,
2,
2,
2
],
"data:constant:str": [
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value",
"this_value"
],
"data:converged": [
false,
true,
false,
true,
false,
true,
false,
true
],
"data:pp:value": [
0.0,
0.1,
0.0,
0.2,
0.0,
0.1,
0.0,
0.2
],
"data:vpp:vec": [
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
1.0,
10.0,
100.0,
1000.0
],
[
2.0,
20.0,
200.0,
2000.0
],
[
2.0,
20.0,
200.0,
2000.0
]
]
},
"time": 0.02,
"time_step": 2
}
]
}
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/main.i)
[StochasticTools]
auto_create_executioner = false
[]
[Samplers]
[sample]
type = CartesianProduct
execute_on = PRE_MULTIAPP_SETUP
linear_space_items = '1 1 2
0.1 0.1 2
0 1e-8 2'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
execute_on = 'INITIAL TIMESTEP_BEGIN'
ignore_solve_not_converge = true
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = storage
from_reporter = 'pp/value vpp/vec constant/str constant/int'
[]
[]
[Controls]
[runner]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Reporters/constant/integer_values
real_val
Executioner/nl_rel_tol'
sampler = sample
[]
[]
[Reporters]
[storage]
type = StochasticReporter
execute_on = 'initial timestep_end'
parallel_type = ROOT
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
[]
[Outputs]
[out]
type = JSON
[]
[]
(modules/stochastic_tools/test/tests/samplers/mcmc/main_base.i)
[StochasticTools]
[]
[Distributions]
[left]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[right]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[]
[Likelihood]
[gaussian]
type = Gaussian
noise = 'noise_specified/noise_specified'
file_name = 'exp_0_05.csv'
log_likelihood = true
[]
[]
[Samplers]
[sample]
type = PMCMCBase
prior_distributions = 'left right'
num_parallel_proposals = 2
initial_values = '0.1 0.1'
file_name = 'confg.csv'
execute_on = PRE_MULTIAPP_SETUP
seed = 2547
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'constant'
from_multi_app = sub
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'left_bc right_bc mesh1'
[]
[]
[Reporters]
[constant]
type = StochasticReporter
[]
[noise_specified]
type = ConstantReporter
real_names = 'noise_specified'
real_values = '0.05'
[]
[mcmc_reporter]
type = PMCMCDecision
output_value = constant/reporter_transfer:average:value
sampler = sample
likelihoods = 'gaussian'
[]
[]
[Executioner]
type = Transient
num_steps = 5
[]
[Outputs]
file_base = 'mcmc_base'
[out]
type = JSON
execute_system_information_on = NONE
[]
[]
(modules/stochastic_tools/test/tests/samplers/ParallelSubsetSimulation/pss_error1.i)
[StochasticTools]
[]
[Distributions]
[mu1]
type = Normal
mean = 0.0
standard_deviation = 0.5
[]
[mu2]
type = Normal
mean = 1
standard_deviation = 0.5
[]
[]
[Samplers]
[sample]
type = MonteCarlo
num_rows = 1
distributions = 'mu1 mu2'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'BCs/left/value BCs/right/value'
[]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'constant'
from_multi_app = sub
sampler = sample
[]
[]
[Reporters]
[constant]
type = StochasticReporter
outputs = none
[]
[adaptive_MC]
type = AdaptiveMonteCarloDecision
output_value = constant/reporter_transfer:average:value
inputs = 'inputs'
sampler = sample
[]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
[out]
type = JSON
[]
[]
(modules/stochastic_tools/examples/surrogates/poly_chaos_normal_mc.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Normal
mean = 5
standard_deviation = 2
[]
[q_dist]
type = Normal
mean = 10000
standard_deviation = 500
[]
[L_dist]
type = Normal
mean = 0.03
standard_deviation = 0.01
[]
[Tinf_dist]
type = Normal
mean = 300
standard_deviation = 10
[]
[]
[Samplers]
[sample]
type = MonteCarlo
num_rows = 10000
distributions = 'k_dist q_dist L_dist Tinf_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = results
from_reporter = 'avg/value max/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[poly_chaos_avg]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 10
regression_type = integration
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = sample
response = results/data:avg:value
[]
[poly_chaos_max]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 10
regression_type = integration
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = sample
response = results/data:max:value
[]
[]
[Outputs]
file_base = poly_chaos_training
[out]
type = SurrogateTrainerOutput
trainers = 'poly_chaos_avg poly_chaos_max'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/reporters/mapping/load_main.i)
[StochasticTools]
[]
[Distributions]
[S_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[D_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[]
[Samplers]
[sample]
type = MonteCarlo
num_rows = 8
distributions = 'S_dist D_dist'
execute_on = initial
min_procs_per_row = 2
[]
[]
[MultiApps]
[worker]
type = SamplerFullSolveMultiApp
input_files = map_sub.i
sampler = sample
mode = batch-restore
min_procs_per_app = 2
[]
[]
[Transfers]
[param_transfer]
type = SamplerParameterTransfer
to_multi_app = worker
sampler = sample
parameters = 'Kernels/source_u/value BCs/right_v/value'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = worker
stochastic_reporter = results
from_reporter = 'pod_coeffs/u_pod pod_coeffs/v_pod'
sampler = sample
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Outputs]
[json]
type = JSON
execute_on = FINAL
execute_system_information_on = none
[]
file_base = map_variable
[]
(modules/stochastic_tools/test/tests/multiapps/user_cli_args/main_transient.i)
[StochasticTools]
[]
[Samplers/sample]
type = CartesianProduct
linear_space_items = '1 1 3
1 1 3'
execute_on = 'PRE_MULTIAPP_SETUP'
[]
[MultiApps/sub]
type = SamplerTransientMultiApp
sampler = sample
input_files = 'sub_transient.i'
cli_args = 'Mesh/xmax=10;Mesh/ymax=10'
[]
[Transfers]
inactive = 'param'
[param]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'Functions/fun/value Postprocessors/function_val/scale_factor'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
from_reporter = 'size/value function_val/value'
stochastic_reporter = 'storage'
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'Functions/fun/value Postprocessors/function_val/scale_factor'
[]
[]
[Reporters/storage]
type = StochasticReporter
parallel_type = ROOT
[]
[Executioner]
type = Transient
num_steps = 3
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/stochastic_tools/test/tests/samplers/mcmc/main_des_var.i)
[StochasticTools]
[]
[Distributions]
[left]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[right]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[variance]
type = Uniform
lower_bound = 0.0
upper_bound = 0.5
[]
[]
[Likelihood]
[gaussian]
type = Gaussian
noise = 'mcmc_reporter/noise'
file_name = 'exp_0_05.csv'
log_likelihood = true
[]
[]
[Samplers]
[sample]
type = AffineInvariantDES
prior_distributions = 'left right'
num_parallel_proposals = 5
file_name = 'confg.csv'
execute_on = PRE_MULTIAPP_SETUP
seed = 2547
initial_values = '0.1 0.1'
previous_state = 'mcmc_reporter/inputs'
previous_state_var = 'mcmc_reporter/variance'
prior_variance = 'variance'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'constant'
from_multi_app = sub
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'left_bc right_bc mesh1'
[]
[]
[Reporters]
[constant]
type = StochasticReporter
[]
[mcmc_reporter]
type = AffineInvariantDifferentialDecision
output_value = constant/reporter_transfer:average:value
sampler = sample
likelihoods = 'gaussian'
[]
[]
[Executioner]
type = Transient
num_steps = 5
[]
[Outputs]
file_base = 'des_5prop_var'
[out]
type = JSON
execute_system_information_on = NONE
[]
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_1D.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[L_dist]
type = Uniform
lower_bound = 0.01
upper_bound = 0.05
[]
[Tinf_dist]
type = Uniform
lower_bound = 290
upper_bound = 310
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 6
distributions = 'q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[cart_sample]
type = CartesianProduct
linear_space_items = '9000 20 100'
execute_on = initial
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[cart_avg]
type = EvaluateSurrogate
model = gauss_process_avg
sampler = cart_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = gauss_process_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
sampler = train_sample
response = results/data:avg:value
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
[]
[]
[Covariance]
[rbf]
type = SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-3 #A small amount of noise can help with numerical stability
length_factor = '0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Surrogates]
[gauss_process_avg]
type = GaussianProcessSurrogate
trainer = 'GP_avg_trainer'
[]
[]
[Outputs]
csv = true
execute_on = FINAL
[]
(modules/stochastic_tools/test/tests/reporters/BFActiveLearning/main_adam.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 5
upper_bound = 20
[]
[q_dist]
type = Uniform
lower_bound = 7000
upper_bound = 13000
[]
[Tinf_dist]
type = Uniform
lower_bound = 250
upper_bound = 350
[]
[]
[Samplers]
[mc]
type = ActiveLearningMonteCarloSampler
num_batch = 1
distributions = 'k_dist q_dist Tinf_dist'
flag_sample = 'conditional/flag_sample'
seed = 5
num_samples = 10
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub_lf]
type = SamplerFullSolveMultiApp
sampler = mc
input_files = 'sub_lf.i'
[]
[sub]
type = SamplerFullSolveMultiApp
sampler = mc
input_files = 'sub.i'
mode = batch-reset
should_run_reporter = conditional/need_sample
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[sub]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = mc
parameters = 'Materials/conductivity/prop_values Kernels/source/value BCs/right/value'
check_multiapp_execute_on = false
[]
[sub_lf]
type = SamplerParameterTransfer
to_multi_app = sub_lf
sampler = mc
parameters = 'Materials/conductivity/prop_values Kernels/source/value BCs/right/value'
check_multiapp_execute_on = false
[]
[reporter_transfer_lf]
type = SamplerReporterTransfer
from_reporter = 'avg/value'
stochastic_reporter = 'constant'
from_multi_app = sub_lf
sampler = mc
[]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'avg/value'
stochastic_reporter = 'conditional'
from_multi_app = sub
sampler = mc
[]
[]
[Reporters]
[constant]
type = StochasticReporter
[]
[conditional]
type = BiFidelityActiveLearningGPDecision
sampler = mc
parallel_type = ROOT
execute_on = 'timestep_begin'
flag_sample = 'flag_sample'
inputs = 'inputs'
gp_mean = 'gp_mean'
gp_std = 'gp_std'
n_train = 8
al_gp = GP_al_trainer
gp_evaluator = GP_eval
learning_function = 'Ufunction'
learning_function_parameter = 349.345
learning_function_threshold = 2.0
outputs_lf = constant/reporter_transfer_lf:avg:value
[]
[]
[Trainers]
[GP_al_trainer]
type = ActiveLearningGaussianProcess
covariance_function = 'covar'
standardize_params = 'true'
standardize_data = 'true'
tune_parameters = 'covar:signal_variance covar:length_factor'
num_iters = 5000
learning_rate = 0.001
show_every_nth_iteration = 1
batch_size = 200
[]
[]
[Surrogates]
[GP_eval]
type = GaussianProcessSurrogate
trainer = GP_al_trainer
[]
[]
[Covariance]
[covar]
type = SquaredExponentialCovariance
signal_variance = 1.0
noise_variance = 1e-8
length_factor = '1.0 1.0 1.0'
[]
[]
[Executioner]
type = Transient
[]
[Outputs]
file_base = 'single_proc_single_row_ufunction'
[out]
type = JSON
execute_system_information_on = none
[]
[]
(modules/stochastic_tools/test/tests/auxkernels/surrogate_aux/surrogate.i)
[StochasticTools]
[]
[Distributions]
[uniform]
type = Uniform
lower_bound = 0
upper_bound = 1
[]
[]
[Samplers]
[mc]
type = MonteCarlo
distributions = 'uniform uniform uniform uniform'
num_rows = 50
[]
[]
[GlobalParams]
sampler = mc
[]
[MultiApps]
[model]
type = SamplerFullSolveMultiApp
input_files = model.i
mode = batch-restore
no_restore = true
[]
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = model
parameters ='Postprocessors/x1/value Postprocessors/x2/value Postprocessors/x3/value Postprocessors/x4/value'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = model
stochastic_reporter = storage
from_reporter = 'val/value'
[]
[]
[Reporters]
[storage]
type = StochasticReporter
[]
[]
[Trainers]
[poly_regression]
type = PolynomialRegressionTrainer
regression_type = ols
max_degree = 2
response = storage/data:val:value
[]
[]
[Outputs]
[trainer]
type = SurrogateTrainerOutput
trainers = poly_regression
[]
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential_training.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 10
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a squared exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
[]
[]
[Covariance]
[covar]
type=SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
file_base = gauss_process_training
[out]
type = SurrogateTrainerOutput
trainers = 'GP_avg_trainer'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/reporters/AISActiveLearning/ais_al.i)
[StochasticTools]
[]
[Distributions]
[mu1]
type = Normal
mean = 0.0
standard_deviation = 0.5
[]
[mu2]
type = Normal
mean = 1
standard_deviation = 0.5
[]
[]
[Samplers]
[sample]
type = AISActiveLearning
distributions = 'mu1 mu2'
proposal_std = '1.0 1.0'
output_limit = 0.65
num_samples_train = 15
num_importance_sampling_steps = 5
std_factor = 0.9
initial_values = '-0.103 1.239'
inputs_reporter = 'adaptive_MC/inputs'
use_absolute_value = true
flag_sample = 'conditional/flag_sample'
seed = 9874
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
mode = batch-reset
should_run_reporter = conditional/need_sample
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'BCs/left/value BCs/right/value'
to_control = 'stochastic'
[]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'conditional'
from_multi_app = sub
sampler = sample
[]
[]
[Reporters]
[conditional]
type = ActiveLearningGPDecision
sampler = sample
parallel_type = ROOT
execute_on = 'initial timestep_begin'
flag_sample = 'flag_sample'
inputs = 'inputs'
gp_mean = 'gp_mean'
gp_std = 'gp_std'
n_train = 5
al_gp = GP_al_trainer
gp_evaluator = GP_eval
learning_function = 'Ufunction'
learning_function_parameter = 0.65
learning_function_threshold = 2.0
[]
[adaptive_MC]
type = AdaptiveMonteCarloDecision
output_value = conditional/gp_mean
inputs = 'inputs'
sampler = sample
gp_decision = conditional
[]
[ais_stats]
type = AdaptiveImportanceStats
output_value = conditional/gp_mean
sampler = sample
flag_sample = 'conditional/flag_sample'
[]
[]
[Trainers]
[GP_al_trainer]
type = ActiveLearningGaussianProcess
covariance_function = 'covar'
standardize_params = 'true'
standardize_data = 'true'
tune_parameters = 'covar:signal_variance covar:length_factor'
num_iters = 2000
learning_rate = 0.005
[]
[]
[Surrogates]
[GP_eval]
type = GaussianProcessSurrogate
trainer = GP_al_trainer
[]
[]
[Covariance]
[covar]
type = SquaredExponentialCovariance
signal_variance = 1.0
noise_variance = 1e-8
length_factor = '1.0 1.0'
[]
[]
[Executioner]
type = Transient
[]
[Outputs]
file_base = 'ais_al'
[out]
type = JSON
execute_system_information_on = NONE
[]
[]
(modules/stochastic_tools/examples/surrogates/poly_chaos_normal_quad.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Normal
mean = 5
standard_deviation = 2
[]
[q_dist]
type = Normal
mean = 10000
standard_deviation = 500
[]
[L_dist]
type = Normal
mean = 0.03
standard_deviation = 0.01
[]
[Tinf_dist]
type = Normal
mean = 300
standard_deviation = 10
[]
[]
[Samplers]
[sample]
type = Quadrature
order = 10
distributions = 'k_dist q_dist L_dist Tinf_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = results
from_reporter = 'avg/value max/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[poly_chaos_avg]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 10
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = sample
response = results/data:avg:value
[]
[poly_chaos_max]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 10
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = sample
response = results/data:max:value
[]
[]
[Outputs]
file_base = poly_chaos_training
[out]
type = SurrogateTrainerOutput
trainers = 'poly_chaos_avg poly_chaos_max'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/examples/sobol/main.i)
[StochasticTools]
[]
[Distributions]
[gamma]
type = Uniform
lower_bound = 0.5
upper_bound = 2.5
[]
[q_0]
type = Weibull
location = -110
scale = 20
shape = 1
[]
[T_0]
type = Normal
mean = 300
standard_deviation = 45
[]
[s]
type = Normal
mean = 100
standard_deviation = 25
[]
[]
[Samplers]
[hypercube_a]
type = LatinHypercube
num_rows = 10000
distributions = 'gamma q_0 T_0 s'
seed = 2011
[]
[hypercube_b]
type = LatinHypercube
num_rows = 10000
distributions = 'gamma q_0 T_0 s'
seed = 2013
[]
[sobol]
type = Sobol
sampler_a = hypercube_a
sampler_b = hypercube_b
[]
[]
[MultiApps]
[runner]
type = SamplerFullSolveMultiApp
sampler = sobol
input_files = 'diffusion.i'
mode = batch-restore
[]
[]
[Transfers]
[parameters]
type = SamplerParameterTransfer
to_multi_app = runner
sampler = sobol
parameters = 'Materials/constant/prop_values Kernels/source/value BCs/right/value BCs/left/value'
[]
[results]
type = SamplerReporterTransfer
from_multi_app = runner
sampler = sobol
stochastic_reporter = results
from_reporter = 'T_avg/value q_left/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
outputs = none
[]
[stats]
type = StatisticsReporter
reporters = 'results/results:T_avg:value results/results:q_left:value'
compute = 'mean'
ci_method = 'percentile'
ci_levels = '0.05 0.95'
[]
[sobol]
type = SobolReporter
sampler = sobol
reporters = 'results/results:T_avg:value results/results:q_left:value'
ci_levels = '0.05 0.95'
[]
[]
[Outputs]
execute_on = 'FINAL'
[out]
type = JSON
[]
[]
(modules/stochastic_tools/examples/parameter_study/main.i)
[StochasticTools]
[]
[Distributions]
[gamma]
type = Uniform
lower_bound = 0.5
upper_bound = 2.5
[]
[q_0]
type = Weibull
location = -110
scale = 20
shape = 1
[]
[T_0]
type = Normal
mean = 300
standard_deviation = 45
[]
[s]
type = Normal
mean = 100
standard_deviation = 25
[]
[]
[Samplers]
[hypercube]
type = LatinHypercube
num_rows = 5000
distributions = 'gamma q_0 T_0 s'
[]
[]
[MultiApps]
[runner]
type = SamplerFullSolveMultiApp
sampler = hypercube
input_files = 'diffusion.i'
mode = batch-restore
[]
[]
[Transfers]
[parameters]
type = SamplerParameterTransfer
to_multi_app = runner
sampler = hypercube
parameters = 'Materials/constant/prop_values Kernels/source/value BCs/right/value BCs/left/value'
[]
[results]
type = SamplerReporterTransfer
from_multi_app = runner
sampler = hypercube
stochastic_reporter = results
from_reporter = 'T_avg/value q_left/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[stats]
type = StatisticsReporter
reporters = 'results/results:T_avg:value results/results:q_left:value'
compute = 'mean stddev'
ci_method = 'percentile'
ci_levels = '0.05 0.95'
[]
[]
[Outputs]
execute_on = 'FINAL'
[out]
type = JSON
[]
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/GP_normal_mc.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 0
upper_bound = 20
[]
[q_dist]
type = Uniform
lower_bound = 7000
upper_bound = 13000
[]
[L_dist]
type = Uniform
lower_bound = 0.0
upper_bound = 0.1
[]
[Tinf_dist]
type = Uniform
lower_bound = 270
upper_bound = 330
[]
[]
[Samplers]
[sample]
type = MonteCarlo
num_rows = 500
distributions = 'k_dist q_dist L_dist Tinf_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[GP_avg]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = sample
response = results/data:avg:value
tune_parameters = 'rbf:signal_variance rbf:length_factor'
tuning_min = ' 1e-9 1e-3'
tuning_max = ' 100 100'
num_iters = 200
learning_rate = 0.005
[]
[]
[Covariance]
[rbf]
type=SquaredExponentialCovariance
noise_variance = 1e-3 #A small amount of noise can help with numerical stability
signal_variance = 1
length_factor = '0.038971 0.038971 0.038971 0.038971' #Select a length factor for each parameter
[]
[]
[Outputs]
file_base = GP_training_normal
[out]
type = SurrogateTrainerOutput
trainers = 'GP_avg'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/reporters/stochastic_matrix/stochastic_matrix.i)
[StochasticTools]
[]
[Samplers]
[sample]
type = InputMatrix
matrix = '11 12 13 14;
21 22 23 24;
31 32 33 34;
41 42 43 44;
51 52 53 54'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'Functions/afun/value Functions/bfun/value Functions/cfun/value Functions/dfun/value'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
from_reporter = val/value
stochastic_reporter = matrix
[]
[]
[Reporters]
[matrix]
type = StochasticMatrix
sampler = sample
sampler_column_names = 'a b c d'
parallel_type = ROOT
[]
[]
[Outputs]
execute_on = timestep_end
csv = true
[]
(modules/stochastic_tools/test/tests/multiapps/partitioning/main.i)
[StochasticTools]
[]
[Samplers/sample]
type = CartesianProduct
linear_space_items = '0 1 5'
execute_on = PRE_MULTIAPP_SETUP
[]
[GlobalParams]
sampler = sample
[]
[MultiApps/sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
[]
[Controls/cli]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Postprocessors/pp1/scale_factor'
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = sub
parameters = 'Postprocessors/pp2/scale_factor'
[]
[rep]
type = SamplerReporterTransfer
from_multi_app = sub
stochastic_reporter = reporter
from_reporter = 'pp1/value'
[]
[pp]
type = SamplerPostprocessorTransfer
from_multi_app = sub
to_vector_postprocessor = vpp
from_postprocessor = 'pp2'
[]
[]
[VectorPostprocessors/vpp]
type = StochasticResults
[]
[Reporters]
[reporter]
type = StochasticReporter
outputs = none
[]
[check]
type = TestReporterPartitioning
sampler = sample
reporters = 'reporter/rep:pp1:value vpp/pp:pp2'
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/main.i)
[StochasticTools]
auto_create_executioner = false
[]
[Samplers]
[sample]
type = CartesianProduct
execute_on = PRE_MULTIAPP_SETUP
linear_space_items = '1 1 2
0.1 0.1 2
0 1e-8 2'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
execute_on = 'INITIAL TIMESTEP_BEGIN'
ignore_solve_not_converge = true
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = storage
from_reporter = 'pp/value vpp/vec constant/str constant/int'
[]
[]
[Controls]
[runner]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Reporters/constant/integer_values
real_val
Executioner/nl_rel_tol'
sampler = sample
[]
[]
[Reporters]
[storage]
type = StochasticReporter
execute_on = 'initial timestep_end'
parallel_type = ROOT
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
[]
[Outputs]
[out]
type = JSON
[]
[]
(modules/stochastic_tools/test/tests/surrogates/multioutput_gp/mogp_lmc.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Normal
mean = 15.0
standard_deviation = 2.0
[]
[bc_dist]
type = Normal
mean = 1000.0
standard_deviation = 100.0
[]
[]
[Samplers]
[train]
type = LatinHypercube
num_rows = 10
distributions = 'k_dist bc_dist'
execute_on = PRE_MULTIAPP_SETUP
seed = 100
[]
[test]
type = LatinHypercube
num_rows = 5
distributions = 'k_dist bc_dist'
seed = 101
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
mode = batch-reset
sampler = train
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train
param_names = 'Materials/conductivity/prop_values BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train
stochastic_reporter = results
from_reporter = 'T_vec/T'
[]
[]
[Reporters]
[results]
type = StochasticReporter
outputs = none
[]
[eval_test]
type = EvaluateSurrogate
model = mogp
response_type = vector_real
parallel_type = ROOT
execute_on = timestep_end
sampler = test
evaluate_std = true
[]
[]
[Trainers]
[mogp_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'lmc'
standardize_params = 'true'
standardize_data = 'true'
sampler = train
response_type = vector_real
response = results/data:T_vec:T
[]
[]
[Covariance]
[covar]
type = SquaredExponentialCovariance
signal_variance = 2.76658083
noise_variance = 0.0
length_factor = '3.67866381 2.63421705'
[]
[lmc]
type = LMC
covariance_functions = covar
num_outputs = 2
num_latent_funcs = 1
[]
[]
[Surrogates]
[mogp]
type = GaussianProcessSurrogate
trainer = mogp_trainer
[]
[]
[VectorPostprocessors]
[train_params]
type = SamplerData
sampler = train
execute_on = final
[]
[test_params]
type = SamplerData
sampler = test
execute_on = final
[]
[hyperparams]
type = GaussianProcessData
gp_name = mogp
execute_on = final
[]
[]
[Outputs]
[out]
type = JSON
execute_on = final
vectorpostprocessors_as_reporters = true
execute_system_information_on = NONE
[]
[]
(modules/stochastic_tools/examples/surrogates/polynomial_regression/uniform_train.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[L_dist]
type = Uniform
lower_bound = 0.01
upper_bound = 0.05
[]
[Tinf_dist]
type = Uniform
lower_bound = 290
upper_bound = 310
[]
[]
[Samplers]
[pc_sampler]
type = Quadrature
order = 8
distributions = 'k_dist q_dist L_dist Tinf_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[pr_sampler]
type = LatinHypercube
distributions = 'k_dist q_dist L_dist Tinf_dist'
num_rows = 6560
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[pc_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = pc_sampler
[]
[pr_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = pr_sampler
[]
[]
[Controls]
[pc_cmdline]
type = MultiAppSamplerControl
multi_app = pc_sub
sampler = pc_sampler
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[pr_cmdline]
type = MultiAppSamplerControl
multi_app = pr_sub
sampler = pr_sampler
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[pc_data]
type = SamplerReporterTransfer
from_multi_app = pc_sub
sampler = pc_sampler
stochastic_reporter = results
from_reporter = 'max/value'
[]
[pr_data]
type = SamplerReporterTransfer
from_multi_app = pr_sub
sampler = pr_sampler
stochastic_reporter = results
from_reporter = 'max/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[pc_max]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 8
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = pc_sampler
response = results/pc_data:max:value
[]
[pr_max]
type = PolynomialRegressionTrainer
regression_type = "ols"
execute_on = timestep_end
max_degree = 4
sampler = pr_sampler
response = results/pr_data:max:value
[]
[]
[Outputs]
[pc_out]
type = SurrogateTrainerOutput
trainers = 'pc_max'
execute_on = FINAL
[]
[pr_out]
type = SurrogateTrainerOutput
trainers = 'pr_max'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/examples/surrogates/nearest_point_training.i)
[StochasticTools]
[]
[Samplers]
[grid]
type = CartesianProduct
execute_on = PRE_MULTIAPP_SETUP
# Grid spacing:
# k: 1.45 2.35 3.25 4.15 5.05 5.95 6.85 7.75 8.65 9.55
# q: 9100 9300 9500 9700 9900 10100 10300 10500 10700 10900
# L: 0.012 0.016 0.020 0.024 0.028 0.032 0.036 0.040 0.044 0.048
# Tinf: 291 293 295 297 299 301 303 305 307 309
linear_space_items = '1.45 0.9 10
9100 200 10
0.012 0.004 10
291 2 10'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = grid
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = grid
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = grid
stochastic_reporter = results
from_reporter = 'avg/value max/value'
[]
[]
[Reporters]
[results]
type = StochasticMatrix
sampler = grid
outputs = none
[]
[]
[Trainers]
[nearest_point_avg]
type = NearestPointTrainer
execute_on = timestep_end
sampler = grid
predictors = 'results/grid_0'
predictor_cols = '1 2 3'
response = results/data:avg:value
[]
[nearest_point_max]
type = NearestPointTrainer
execute_on = timestep_end
sampler = grid
response = results/data:max:value
[]
[]
[Outputs]
[out]
type = SurrogateTrainerOutput
trainers = 'nearest_point_avg nearest_point_max'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/multiapps/nested_multiapp/stm.i)
[StochasticTools]
[]
[Samplers/sample]
type = CartesianProduct
execute_on = PRE_MULTIAPP_SETUP
linear_space_items = '0 1 2
2 1 2
4 1 2
6 1 2
8 1 2'
[]
[GlobalParams]
sampler = sample
[]
[MultiApps]
[main]
type = SamplerFullSolveMultiApp
input_files = main.i
[]
[]
[Controls]
[cli]
type = MultiAppSamplerControl
multi_app = main
param_names = 'BCs/left/value sub:BCs/left/value sub:subsub:BCs/left/value sub:subsub0:BCs/right/value sub:subsub1:BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = main
stochastic_reporter = storage
from_reporter = 'val/value receive/sub_val receive/subsub0_left_val receive/subsub1_left_val receive/subsub0_right_val receive/subsub1_right_val'
[]
[]
[Reporters/storage]
type = StochasticReporter
parallel_type = ROOT
[]
[Outputs]
csv = true
execute_on = timestep_end
perf_graph = true
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_Matern_half_int_tuned_adam.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 20
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[test_sample]
type = MonteCarlo
num_rows = 100
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[samp_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = test_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a squared exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
tune_parameters = 'covar:signal_variance covar:length_factor'
num_iters = 1000
batch_size = 20
learning_rate = 0.005
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcessSurrogate
trainer = GP_avg_trainer
[]
[]
[Covariance]
[covar]
type = MaternHalfIntCovariance
p = 2 #Define the exponential factor
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '1.0 1.0' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
file_base = 'GP_Matern_half_int_tuned_adam'
[]
[]
(modules/stochastic_tools/test/tests/reporters/ActiveLearningGP/main_adam.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 5
upper_bound = 20
[]
[q_dist]
type = Uniform
lower_bound = 7000
upper_bound = 13000
[]
[Tinf_dist]
type = Uniform
lower_bound = 250
upper_bound = 350
[]
[]
[Samplers]
[mc]
type = ActiveLearningMonteCarloSampler
num_batch = 1
distributions = 'k_dist q_dist Tinf_dist'
flag_sample = 'conditional/flag_sample'
seed = 5
num_samples = 20
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
sampler = mc
input_files = 'sub.i'
mode = batch-reset
should_run_reporter = conditional/need_sample
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[sub]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = mc
parameters = 'Materials/conductivity/prop_values Kernels/source/value BCs/right/value'
to_control = 'stochastic'
check_multiapp_execute_on = false
[]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'avg/value'
stochastic_reporter = 'conditional'
from_multi_app = sub
sampler = mc
[]
[]
[Reporters]
[conditional]
type = ActiveLearningGPDecision
sampler = mc
parallel_type = ROOT
execute_on = 'timestep_begin'
flag_sample = 'flag_sample'
inputs = 'inputs'
gp_mean = 'gp_mean'
gp_std = 'gp_std'
n_train = 6
al_gp = GP_al_trainer
gp_evaluator = GP_eval
learning_function = 'Ufunction'
learning_function_parameter = 349.345
learning_function_threshold = 2.0
[]
[]
[Trainers]
[GP_al_trainer]
type = ActiveLearningGaussianProcess
covariance_function = 'covar'
standardize_params = 'true'
standardize_data = 'true'
tune_parameters = 'covar:signal_variance covar:length_factor'
num_iters = 1000
learning_rate = 0.005
[]
[]
[Surrogates]
[GP_eval]
type = GaussianProcessSurrogate
trainer = GP_al_trainer
[]
[]
[Covariance]
[covar]
type = SquaredExponentialCovariance
signal_variance = 1.0
noise_variance = 1e-4
length_factor = '1.0 1.0 1.0'
[]
[]
[Executioner]
type = Transient
[]
[Outputs]
file_base = 'single_proc_single_row_ufunction'
[out]
type = JSON
execute_system_information_on = none
[]
[]
(modules/stochastic_tools/test/tests/surrogates/load_store/train_and_evaluate.i)
[StochasticTools]
[]
[Distributions]
[D_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[S_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[]
[Samplers]
[quadrature]
type = Quadrature
distributions = 'D_dist S_dist'
execute_on = INITIAL
order = 5
[]
[]
[MultiApps]
[quad_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = quadrature
mode = batch-restore
[]
[]
[Transfers]
[quad]
type = SamplerParameterTransfer
to_multi_app = quad_sub
sampler = quadrature
parameters = 'Materials/diffusivity/prop_values Materials/xs/prop_values'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = quad_sub
sampler = quadrature
stochastic_reporter = storage
from_reporter = avg/value
[]
[]
[Reporters]
[storage]
type = StochasticReporter
parallel_type = ROOT
outputs = none
[]
[pc_data]
type = PolynomialChaosReporter
pc_name = poly_chaos
include_data = true
execute_on = final
[]
[]
[Trainers]
[poly_chaos]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 5
distributions = 'D_dist S_dist'
sampler = quadrature
response = storage/data:avg:value
[]
[]
[Surrogates]
[poly_chaos]
type = PolynomialChaos
trainer = poly_chaos
[]
[]
[Outputs/out]
type = JSON
execute_on = FINAL
[]
(modules/stochastic_tools/test/tests/samplers/AdaptiveImportanceSampler/ais.i)
[StochasticTools]
[]
[Distributions]
[mu1]
type = Normal
mean = 0.0
standard_deviation = 0.5
[]
[mu2]
type = Normal
mean = 1
standard_deviation = 0.5
[]
[]
[Samplers]
[sample]
type = AdaptiveImportance
distributions = 'mu1 mu2'
proposal_std = '1.0 1.0'
output_limit = 0.65
num_samples_train = 30
num_importance_sampling_steps = 30
std_factor = 0.9
initial_values = '-0.103 1.239'
inputs_reporter = 'adaptive_MC/inputs'
use_absolute_value = true
seed = 1012
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'BCs/left/value BCs/right/value'
[]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'constant'
from_multi_app = sub
sampler = sample
[]
[]
[Reporters]
[constant]
type = StochasticReporter
[]
[adaptive_MC]
type = AdaptiveMonteCarloDecision
output_value = constant/reporter_transfer:average:value
inputs = 'inputs'
sampler = sample
[]
[ais_stats]
type = AdaptiveImportanceStats
output_value = constant/reporter_transfer:average:value
sampler = sample
[]
[]
[Executioner]
type = Transient
[]
[Outputs]
[out]
type = JSON
[]
[]
(modules/stochastic_tools/examples/surrogates/polynomial_regression/normal_train.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Normal
mean = 5
standard_deviation = 2
[]
[q_dist]
type = Normal
mean = 10000
standard_deviation = 500
[]
[L_dist]
type = Normal
mean = 0.03
standard_deviation = 0.01
[]
[Tinf_dist]
type = Normal
mean = 300
standard_deviation = 10
[]
[]
[Samplers]
[pc_sampler]
type = Quadrature
order = 8
distributions = 'k_dist q_dist L_dist Tinf_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[pr_sampler]
type = LatinHypercube
distributions = 'k_dist q_dist L_dist Tinf_dist'
num_rows = 6560
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[pc_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = pc_sampler
[]
[pr_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = pr_sampler
[]
[]
[Controls]
[pc_cmdline]
type = MultiAppSamplerControl
multi_app = pc_sub
sampler = pc_sampler
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[pr_cmdline]
type = MultiAppSamplerControl
multi_app = pr_sub
sampler = pr_sampler
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[pc_data]
type = SamplerReporterTransfer
from_multi_app = pc_sub
sampler = pc_sampler
stochastic_reporter = results
from_reporter = 'max/value'
[]
[pr_data]
type = SamplerReporterTransfer
from_multi_app = pr_sub
sampler = pr_sampler
stochastic_reporter = results
from_reporter = 'max/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[pc_max]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 8
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = pc_sampler
response = results/pc_data:max:value
[]
[pr_max]
type = PolynomialRegressionTrainer
execute_on = timestep_end
regression_type = "ols"
max_degree = 4
sampler = pr_sampler
response = results/pr_data:max:value
[]
[]
[Outputs]
[pc_out]
type = SurrogateTrainerOutput
trainers = 'pc_max'
execute_on = FINAL
[]
[pr_out]
type = SurrogateTrainerOutput
trainers = 'pr_max'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/reporters/morris/morris_main.i)
[StochasticTools]
[]
[Distributions/uniform]
type = Uniform
lower_bound = 0
upper_bound = 1
[]
[Samplers/morris]
type = MorrisSampler
distributions = 'uniform uniform uniform uniform uniform uniform'
trajectories = 10
levels = 4
execute_on = PRE_MULTIAPP_SETUP
[]
[GlobalParams]
sampler = morris
[]
[MultiApps/sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
mode = batch-reset
[]
[Controls/param]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'x0 x1 x2 x3 x4 x5'
[]
[Transfers/data]
type = SamplerReporterTransfer
from_multi_app = sub
from_reporter = 'const/gf const/gfa const/gf_vec'
stochastic_reporter = storage
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = NONE
[]
[morris]
type = MorrisReporter
reporters = 'storage/data:const:gf storage/data:const:gfa storage/data:const:gf_vec'
ci_levels = '0.1 0.9'
ci_replicates = 1000
execute_on = FINAL
[]
[]
[Outputs]
[out]
type = JSON
execute_on = FINAL
[]
[]
(modules/stochastic_tools/examples/parameter_study/main_time.i)
[StochasticTools]
[]
[Distributions]
[gamma]
type = Uniform
lower_bound = 0.5
upper_bound = 2.5
[]
[q_0]
type = Weibull
location = -110
scale = 20
shape = 1
[]
[T_0]
type = Normal
mean = 300
standard_deviation = 45
[]
[s]
type = Normal
mean = 100
standard_deviation = 25
[]
[]
[Samplers]
[hypercube]
type = LatinHypercube
num_rows = 5000
distributions = 'gamma q_0 T_0 s'
[]
[]
[MultiApps]
[runner]
type = SamplerTransientMultiApp
sampler = hypercube
input_files = 'diffusion_time.i'
mode = batch-restore
[]
[]
[Transfers]
[parameters]
type = SamplerParameterTransfer
to_multi_app = runner
sampler = hypercube
parameters = 'Materials/constant/prop_values Kernels/source/value BCs/right/value BCs/left/value'
[]
[results]
type = SamplerReporterTransfer
from_multi_app = runner
sampler = hypercube
stochastic_reporter = results
from_reporter = 'T_avg/value q_left/value T_vec/T'
[]
[x_transfer]
type = MultiAppReporterTransfer
from_multi_app = runner
subapp_index = 0
from_reporters = T_vec/x
to_reporters = const/x
[]
[]
[Reporters]
[results]
type = StochasticReporter
outputs = none
[]
[stats]
type = StatisticsReporter
reporters = 'results/results:T_avg:value results/results:q_left:value results/results:T_vec:T'
compute = 'mean stddev'
ci_method = 'percentile'
ci_levels = '0.05 0.95'
[]
[const]
type = ConstantReporter
real_vector_names = 'x'
real_vector_values = '0'
[]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.25
[]
[Outputs]
execute_on = timestep_end
[out]
type = JSON
[]
[]
(modules/stochastic_tools/test/tests/surrogates/load_store/train.i)
[StochasticTools]
[]
[Distributions]
[D_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[S_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[]
[Samplers]
[quadrature]
type = Quadrature
distributions = 'D_dist S_dist'
execute_on = INITIAL
order = 5
[]
[]
[MultiApps]
[quad_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = quadrature
mode = batch-restore
[]
[]
[Transfers]
[quad]
type = SamplerParameterTransfer
to_multi_app = quad_sub
sampler = quadrature
parameters = 'Materials/diffusivity/prop_values Materials/xs/prop_values'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = quad_sub
sampler = quadrature
stochastic_reporter = storage
from_reporter = avg/value
[]
[]
[Reporters]
[storage]
type = StochasticReporter
parallel_type = ROOT
[]
[]
[Trainers]
[poly_chaos]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 5
distributions = 'D_dist S_dist'
sampler = quadrature
response = storage/data:avg:value
[]
[]
[Outputs]
[out]
type = SurrogateTrainerOutput
trainers = 'poly_chaos'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/samplers/mcmc/main_des.i)
[StochasticTools]
[]
[Distributions]
[left]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[right]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[]
[Likelihood]
[gaussian]
type = Gaussian
noise = 'noise_specified/noise_specified'
file_name = 'exp_0_05.csv'
log_likelihood = true
[]
[]
[Samplers]
[sample]
type = AffineInvariantDES
prior_distributions = 'left right'
num_parallel_proposals = 5
file_name = 'confg.csv'
execute_on = PRE_MULTIAPP_SETUP
seed = 2547
initial_values = '0.1 0.1'
previous_state = 'mcmc_reporter/inputs'
previous_state_var = 'mcmc_reporter/variance'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'constant'
from_multi_app = sub
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'left_bc right_bc mesh1'
[]
[]
[Reporters]
[constant]
type = StochasticReporter
[]
[noise_specified]
type = ConstantReporter
real_names = 'noise_specified'
real_values = '0.05'
[]
[mcmc_reporter]
type = AffineInvariantDifferentialDecision
output_value = constant/reporter_transfer:average:value
sampler = sample
likelihoods = 'gaussian'
[]
[]
[Executioner]
type = Transient
num_steps = 5
[]
[Outputs]
file_base = 'des_5prop'
[out]
type = JSON
execute_system_information_on = NONE
[]
[]
(modules/stochastic_tools/test/tests/reporters/bootstrap_statistics/bca/bca_main.i)
[StochasticTools]
[]
[Distributions]
[n0]
type = Normal
mean = 0
standard_deviation = 1
[]
[n1]
type = Normal
mean = 1
standard_deviation = 1
[]
[n2]
type = Normal
mean = 2
standard_deviation = 0.5
[]
[n3]
type = Normal
mean = 3
standard_deviation = 0.33333333333
[]
[n4]
type = Normal
mean = 4
standard_deviation = 0.25
[]
[]
[Samplers/sample]
type = MonteCarlo
distributions = 'n0 n1 n2 n3 n4'
num_rows = 100
execute_on = PRE_MULTIAPP_SETUP
[]
[GlobalParams]
sampler = sample
[]
[MultiApps/sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
mode = batch-reset
[]
[Controls/param]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Reporters/const/real_vector_values[0,1,2,3,4]'
[]
[Transfers/data]
type = SamplerReporterTransfer
from_multi_app = sub
from_reporter = 'const/num_vec'
stochastic_reporter = storage
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = none
[]
[stats]
type = StatisticsReporter
reporters = storage/data:const:num_vec
compute = 'mean stddev'
ci_method = 'bca'
ci_levels = '0.025 0.05 0.1 0.16 0.5 0.84 0.9 0.95 0.975'
ci_replicates = 10000
ci_seed = 1945
execute_on = FINAL
[]
[]
[Outputs]
execute_on = FINAL
[out]
type = JSON
[]
[]
(modules/stochastic_tools/test/tests/multiapps/nested_multiapp/stm_batch.i)
[StochasticTools]
[]
[Samplers/sample]
type = CartesianProduct
linear_space_items = '0 1 2
2 1 2
4 1 2
6 1 2
8 1 2'
[]
[GlobalParams]
sampler = sample
[]
[MultiApps]
[main]
type = SamplerFullSolveMultiApp
input_files = main.i
[]
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = main
parameters = 'BCs/left/value sub:BCs/left/value sub:subsub:BCs/left/value sub:subsub0:BCs/right/value sub:subsub1:BCs/right/value'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = main
stochastic_reporter = storage
from_reporter = 'val/value receive/sub_val receive/subsub0_left_val receive/subsub1_left_val receive/subsub0_right_val receive/subsub1_right_val'
[]
[]
[Reporters/storage]
type = StochasticReporter
parallel_type = ROOT
[]
[Outputs]
csv = true
execute_on = timestep_end
perf_graph = true
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 10
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[test_sample]
type = MonteCarlo
num_rows = 100
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[samp_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = test_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a squared exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcessSurrogate
trainer = GP_avg_trainer
[]
[]
[Covariance]
[covar]
type = SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/combined/examples/stochastic/lhs_uniform.i)
[StochasticTools]
[]
[Distributions]
[cond_inner]
type = Uniform
lower_bound = 20
upper_bound = 30
[]
[cond_outer]
type = Uniform
lower_bound = 90
upper_bound = 110
[]
[heat_source]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[alpha_inner]
type = Uniform
lower_bound = 1e-6
upper_bound = 3e-6
[]
[alpha_outer]
type = Uniform
lower_bound = 5e-7
upper_bound = 1.5e-6
[]
[ymod_inner]
type = Uniform
lower_bound = 2e5
upper_bound = 2.2e5
[]
[ymod_outer]
type = Uniform
lower_bound = 3e5
upper_bound = 3.2e5
[]
[prat_inner]
type = Uniform
lower_bound = 0.29
upper_bound = 0.31
[]
[prat_outer]
type = Uniform
lower_bound = 0.19
upper_bound = 0.21
[]
[]
[Samplers]
[sample]
type = LatinHypercube
num_rows = 100000
distributions = 'cond_inner cond_outer heat_source alpha_inner alpha_outer ymod_inner ymod_outer prat_inner prat_outer'
execute_on = INITIAL
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = graphite_ring_thermomechanics.i
sampler = sample
mode = batch-reset
[]
[]
[Transfers]
[sub]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'Materials/cond_inner/prop_values Materials/cond_outer/prop_values
Postprocessors/heat_source/scale_factor
Materials/thermal_strain_inner/thermal_expansion_coeff Materials/thermal_strain_outer/thermal_expansion_coeff
Materials/elasticity_tensor_inner/youngs_modulus Materials/elasticity_tensor_outer/youngs_modulus
Materials/elasticity_tensor_inner/poissons_ratio Materials/elasticity_tensor_outer/poissons_ratio'
check_multiapp_execute_on = false
[]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = storage
from_reporter = 'temp_center_inner/value temp_center_outer/value temp_end_inner/value temp_end_outer/value
dispx_center_inner/value dispx_center_outer/value dispx_end_inner/value dispx_end_outer/value
dispz_inner/value dispz_outer/value'
[]
[]
[Reporters]
[storage]
type = StochasticReporter
parallel_type = ROOT
[]
[stats]
type = StatisticsReporter
reporters = 'storage/data:temp_center_inner:value storage/data:temp_center_outer:value storage/data:temp_end_inner:value storage/data:temp_end_outer:value
storage/data:dispx_center_inner:value storage/data:dispx_center_outer:value storage/data:dispx_end_inner:value storage/data:dispx_end_outer:value
storage/data:dispz_inner:value storage/data:dispz_outer:value'
compute = 'mean stddev'
ci_method = 'percentile'
ci_levels = '0.05 0.95'
[]
[]
[Outputs]
[out]
type = JSON
[]
execute_on = TIMESTEP_END
[]
(modules/stochastic_tools/examples/surrogates/cross_validation/all_trainers_uniform_cv.i)
[StochasticTools]
[]
[GlobalParams]
sampler = cv_sampler
response = results/response_data:max:value
cv_type = "k_fold"
cv_splits = 5
cv_n_trials = 100
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[L_dist]
type = Uniform
lower_bound = 0.01
upper_bound = 0.05
[]
[Tinf_dist]
type = Uniform
lower_bound = 290
upper_bound = 310
[]
[]
[Samplers]
[cv_sampler]
type = LatinHypercube
distributions = 'k_dist q_dist L_dist Tinf_dist'
num_rows = 1000
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[cv_sub]
type = SamplerFullSolveMultiApp
input_files = all_sub.i
mode = batch-reset
[]
[]
[Controls]
[pr_cmdline]
type = MultiAppSamplerControl
multi_app = cv_sub
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[response_data]
type = SamplerReporterTransfer
from_multi_app = cv_sub
stochastic_reporter = results
from_reporter = 'max/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
outputs = none
[]
[cv_scores]
type = CrossValidationScores
models = 'pr_surr pc_surr np_surr gp_surr ann_surr'
execute_on = FINAL
[]
[]
[Trainers]
[pr_max]
type = PolynomialRegressionTrainer
regression_type = "ols"
max_degree = 3
cv_surrogate = "pr_surr"
execute_on = timestep_end
[]
[pc_max]
type = PolynomialChaosTrainer
order = 3
distributions = "k_dist q_dist L_dist Tinf_dist"
cv_surrogate = "pc_surr"
execute_on = timestep_end
[]
[np_max]
type = NearestPointTrainer
cv_surrogate = "np_surr"
execute_on = timestep_end
[]
[gp_max]
type = GaussianProcessTrainer
covariance_function = 'rbf'
standardize_params = 'true'
standardize_data = 'true'
cv_surrogate = "gp_surr"
execute_on = timestep_end
[]
[ann_max]
type = LibtorchANNTrainer
num_epochs = 100
num_batches = 5
num_neurons_per_layer = '64'
learning_rate = 1e-2
rel_loss_tol = 1e-4
filename = mynet.pt
read_from_file = false
print_epoch_loss = 0
activation_function = 'relu'
cv_surrogate = "ann_surr"
standardize_input = false
standardize_output = false
[]
[]
[Covariance]
[rbf]
type = SquaredExponentialCovariance
noise_variance = 3.79e-6
signal_variance = 1 #Use a signal variance of 1 in the kernel
length_factor = '5.34471 1.41191 5.90721 2.83723' #Select a length factor for each parameter
[]
[]
[Surrogates]
[pr_surr]
type = PolynomialRegressionSurrogate
trainer = pr_max
[]
[pc_surr]
type = PolynomialChaos
trainer = pc_max
[]
[np_surr]
type = NearestPointSurrogate
trainer = np_max
[]
[gp_surr]
type = GaussianProcessSurrogate
trainer = gp_max
[]
[ann_surr]
type = LibtorchANNSurrogate
trainer = ann_max
[]
[]
[Outputs]
[out]
type = JSON
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2d_mc.i)
[StochasticTools]
[]
[Distributions]
[D_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[S_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[]
[Samplers]
[sample]
type = MonteCarlo
num_rows = 100
distributions = 'D_dist S_dist'
execute_on = initial
[]
[]
[MultiApps]
[quad_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
mode = batch-restore
[]
[]
[Transfers]
[quad]
type = SamplerParameterTransfer
to_multi_app = quad_sub
sampler = sample
parameters = 'Materials/diffusivity/prop_values Materials/xs/prop_values'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = quad_sub
sampler = sample
stochastic_reporter = storage
from_reporter = avg/value
[]
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = none
[]
[pc_samp]
type = EvaluateSurrogate
model = poly_chaos
sampler = sample
parallel_type = ROOT
execute_on = final
[]
[]
[Surrogates]
[poly_chaos]
type = PolynomialChaos
trainer = poly_chaos
[]
[]
[Trainers]
[poly_chaos]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 5
distributions = 'D_dist S_dist'
sampler = sample
response = storage/data:avg:value
regression_type = integration
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/examples/surrogates/combined/trans_diff_2d/trans_diff_trainer.i)
[StochasticTools]
[]
[Distributions]
[C_dist]
type = Uniform
lower_bound = 0.01
upper_bound = 0.02
[]
[f_dist]
type = Uniform
lower_bound = 15
upper_bound = 25
[]
[init_dist]
type = Uniform
lower_bound = 270
upper_bound = 330
[]
[]
[Samplers]
[sample]
type = Quadrature
order = 5
distributions = 'C_dist f_dist init_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[runner]
type = SamplerFullSolveMultiApp
input_files = 'trans_diff_sub.i'
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = runner
sampler = sample
param_names = 'Materials/diff_coeff/constant_expressions Functions/src_func/vals Variables/T/initial_condition'
[]
[]
[Transfers]
[results]
type = SamplerReporterTransfer
from_multi_app = runner
sampler = sample
stochastic_reporter = trainer_results
from_reporter = 'time_max/value time_min/value'
[]
[]
[Reporters]
[trainer_results]
type = StochasticReporter
[]
[]
[Trainers]
[pc_max]
type = PolynomialChaosTrainer
execute_on = final
order = 5
distributions = 'C_dist f_dist init_dist'
sampler = sample
response = trainer_results/results:time_max:value
[]
[pc_min]
type = PolynomialChaosTrainer
execute_on = final
order = 5
distributions = 'C_dist f_dist init_dist'
sampler = sample
response = trainer_results/results:time_min:value
[]
[np_max]
type = NearestPointTrainer
execute_on = final
sampler = sample
response = trainer_results/results:time_max:value
[]
[np_min]
type = NearestPointTrainer
execute_on = final
sampler = sample
response = trainer_results/results:time_min:value
[]
[pr_max]
type = PolynomialRegressionTrainer
regression_type = "ols"
execute_on = final
max_degree = 4
sampler = sample
response = trainer_results/results:time_max:value
[]
[pr_min]
type = PolynomialRegressionTrainer
regression_type = "ols"
execute_on = final
max_degree = 4
sampler = sample
response = trainer_results/results:time_min:value
[]
[]
[Outputs]
[out]
type = SurrogateTrainerOutput
trainers = 'pc_max pc_min np_max np_min pr_max pr_min'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/reporters/directperturbation/dp_main.i)
[StochasticTools]
[]
[Samplers]
[directperturbation]
type = DirectPerturbationSampler
nominal_parameter_values = '0.1 0.2 0.3'
relative_perturbation_intervals = '0.1 0.2 0.3'
perturbation_method = central_difference
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[runner]
type = SamplerFullSolveMultiApp
input_files = sub.i
mode = batch-reset
sampler = directperturbation
[]
[]
[Controls]
[param_control]
type = MultiAppSamplerControl
multi_app = runner
param_names = 'x y z'
sampler = directperturbation
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = runner
from_reporter = 'const/f1 const/f2 const/f3 const/f_combined'
stochastic_reporter = storage
sampler = directperturbation
[]
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = NONE
[]
[sensitivities]
type = DirectPerturbationReporter
reporters = 'storage/data:const:f1 storage/data:const:f2 storage/data:const:f3 storage/data:const:f_combined'
execute_on = FINAL
sampler = directperturbation
[]
[]
[Outputs]
[out]
type = JSON
execute_on = FINAL
execute_system_information_on = NONE
[]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/main_small.i)
[StochasticTools]
[]
[Samplers]
[sample]
type = CartesianProduct
execute_on = PRE_MULTIAPP_SETUP
linear_space_items = '0 1 3'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
ignore_solve_not_converge = true
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = storage
from_reporter = 'pp/value'
[]
[]
[Controls]
[runner]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'BCs/left/value'
sampler = sample
[]
[]
[Reporters]
[storage]
type = StochasticReporter
parallel_type = ROOT
[]
[]
[Outputs]
[out]
type = JSON
execute_on = timestep_end
[]
[]
(modules/stochastic_tools/test/tests/multiapps/partitioning/main_transient.i)
[StochasticTools]
[]
[Samplers/sample]
type = CartesianProduct
linear_space_items = '0 1 5'
execute_on = PRE_MULTIAPP_SETUP
[]
[GlobalParams]
sampler = sample
[]
[MultiApps/sub]
type = SamplerTransientMultiApp
input_files = sub_transient.i
[]
[Controls/cli]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Postprocessors/pp1/scale_factor'
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = sub
parameters = 'Postprocessors/pp2/scale_factor'
[]
[rep]
type = SamplerReporterTransfer
from_multi_app = sub
stochastic_reporter = reporter
from_reporter = 'pp1/value'
[]
[pp]
type = SamplerPostprocessorTransfer
from_multi_app = sub
to_vector_postprocessor = vpp
from_postprocessor = 'pp2'
[]
[]
[VectorPostprocessors/vpp]
type = StochasticResults
[]
[Reporters]
[reporter]
type = StochasticReporter
outputs = none
[]
[check]
type = TestReporterPartitioning
sampler = sample
reporters = 'reporter/rep:pp1:value vpp/pp:pp2'
[]
[]
[Executioner]
type = Transient
num_steps = 3
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_exponential.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 10
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[test_sample]
type = MonteCarlo
num_rows = 100
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[samp_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = test_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose an exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcessSurrogate
trainer = GP_avg_trainer
[]
[]
[Covariance]
[covar]
type = ExponentialCovariance
gamma = 1 #Define the exponential factor
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.551133 0.551133' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/reporters/stochastic_reporter/stats.i)
[StochasticTools]
auto_create_executioner = false
[]
[Samplers]
[sample]
type = CartesianProduct
execute_on = PRE_MULTIAPP_SETUP
linear_space_items = '0 1 3
0.0 0.1 5'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = storage
from_reporter = 'pp/value constant/int'
[]
[]
[Controls]
[runner]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Reporters/constant/integer_values
Postprocessors/pp/default'
sampler = sample
[]
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = "none"
[]
[stats]
type = StatisticsReporter
reporters = 'storage/data:pp:value storage/data:constant:int'
compute = mean
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
[]
[Outputs]
[out]
type = JSON
[]
[]
(modules/stochastic_tools/test/tests/likelihoods/gaussian_derived/main.i)
[StochasticTools]
[]
[Distributions]
[mu1]
type = Normal
mean = 0.0
standard_deviation = 0.5
[]
[]
[Samplers]
[sample]
type = MonteCarlo
distributions = 'mu1 mu1'
num_rows = 3
seed = 2547
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'BCs/left/value BCs/right/value'
# to_control = 'stochastic'
[]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'constant'
from_multi_app = sub
sampler = sample
[]
[]
[Reporters]
[constant]
type = StochasticReporter
[]
[noise_specified]
type = ConstantReporter
real_names = 'noise_specified'
real_values = '0.2'
[]
[likelihoodtest]
type = TestLikelihood
likelihoods = 'gaussian'
model_pred = constant/reporter_transfer:average:value
sampler = sample
[]
[]
[Likelihood]
[gaussian]
type = Gaussian
noise = 'noise_specified/noise_specified'
file_name = 'exp1.csv'
log_likelihood=true
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base ='loglikelihood_scalar'
[out]
type = JSON
execute_system_information_on = NONE
[]
[]
(modules/stochastic_tools/test/tests/samplers/mcmc/main_imh.i)
[StochasticTools]
[]
[Distributions]
[left]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[right]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[]
[Likelihood]
[gaussian]
type = Gaussian
noise = 'noise_specified/noise_specified'
file_name = 'exp_0_05.csv'
log_likelihood = true
[]
[]
[Samplers]
[sample]
type = IndependentGaussianMH
prior_distributions = 'left right'
# previous_state = 'mcmc_reporter/inputs'
num_parallel_proposals = 5
file_name = 'confg.csv'
execute_on = PRE_MULTIAPP_SETUP
seed = 2547
std_prop = '0.05 0.05'
initial_values = '0.1 0.1'
seed_inputs = 'mcmc_reporter/seed_input'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'constant'
from_multi_app = sub
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'left_bc right_bc mesh1'
[]
[]
[Reporters]
[constant]
type = StochasticReporter
[]
[noise_specified]
type = ConstantReporter
real_names = 'noise_specified'
real_values = '0.05'
[]
[mcmc_reporter]
type = IndependentMHDecision
output_value = constant/reporter_transfer:average:value
sampler = sample
likelihoods = 'gaussian'
[]
[]
[Executioner]
type = Transient
num_steps = 5
[]
[Outputs]
file_base = 'imh_5prop'
[out]
type = JSON
execute_system_information_on = NONE
[]
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_Matern_half_int.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 10
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[test_sample]
type = MonteCarlo
num_rows = 100
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[samp_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = test_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a Matern with half-integer argument for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcessSurrogate
trainer = GP_avg_trainer
[]
[]
[Covariance]
[covar]
type = MaternHalfIntCovariance
p = 2 #Define the exponential factor
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.551133 0.551133' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/reporters/sobol/sobol_main.i)
[StochasticTools]
[]
[Distributions/uniform]
type = Uniform
lower_bound = 0
upper_bound = 1
[]
[Samplers]
[sample]
type = MonteCarlo
distributions = 'uniform uniform uniform uniform uniform uniform'
num_rows = 10
seed = 0
execute_on = PRE_MULTIAPP_SETUP
[]
[resample]
type = MonteCarlo
distributions = 'uniform uniform uniform uniform uniform uniform'
num_rows = 10
seed = 1
execute_on = PRE_MULTIAPP_SETUP
[]
[sobol]
type = Sobol
sampler_a = sample
sampler_b = resample
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[GlobalParams]
sampler = sobol
[]
[MultiApps/sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
mode = batch-reset
[]
[Controls/param]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'x0 x1 x2 x3 x4 x5'
[]
[Transfers/data]
type = SamplerReporterTransfer
from_multi_app = sub
from_reporter = 'const/gf const/gfa const/gf_vec'
stochastic_reporter = storage
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = NONE
[]
[sobol]
type = SobolReporter
reporters = 'storage/data:const:gf storage/data:const:gfa storage/data:const:gf_vec'
ci_levels = '0.1 0.9'
ci_replicates = 1000
execute_on = FINAL
[]
[]
[Outputs]
execute_on = FINAL
[out]
type = JSON
[]
[]
(modules/stochastic_tools/test/tests/samplers/mcmc/main_ss.i)
[StochasticTools]
[]
[Distributions]
[left]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[right]
type = Normal
mean = 0.0
standard_deviation = 1.0
[]
[]
[Likelihood]
[gaussian]
type = Gaussian
noise = 'noise_specified/noise_specified'
file_name = 'exp_0_05.csv'
log_likelihood = true
[]
[]
[Samplers]
[sample]
type = AffineInvariantStretchSampler
prior_distributions = 'left right'
num_parallel_proposals = 5
file_name = 'confg.csv'
execute_on = PRE_MULTIAPP_SETUP
seed = 2547
initial_values = '0.1 0.1'
previous_state = 'mcmc_reporter/inputs'
previous_state_var = 'mcmc_reporter/variance'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'constant'
from_multi_app = sub
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'left_bc right_bc mesh1'
[]
[]
[Reporters]
[constant]
type = StochasticReporter
[]
[noise_specified]
type = ConstantReporter
real_names = 'noise_specified'
real_values = '0.05'
[]
[mcmc_reporter]
type = AffineInvariantStretchDecision
output_value = constant/reporter_transfer:average:value
sampler = sample
likelihoods = 'gaussian'
[]
[]
[Executioner]
type = Transient
num_steps = 5
[]
[Outputs]
file_base = 'ss_5prop'
[out]
type = JSON
execute_system_information_on = NONE
[]
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_1D_tuned.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[L_dist]
type = Uniform
lower_bound = 0.01
upper_bound = 0.05
[]
[Tinf_dist]
type = Uniform
lower_bound = 290
upper_bound = 310
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 6
distributions = 'q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[cart_sample]
type = CartesianProduct
linear_space_items = '9000 20 100'
execute_on = initial
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
response = results/data:avg:value
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
tune_parameters = 'rbf:signal_variance rbf:length_factor'
tuning_min = ' 1e-9 1e-9'
tuning_max = ' 1e16 1e16'
num_iters = 10000
batch_size = 6
learning_rate = 0.0005
show_every_nth_iteration = 1
[]
[]
[Covariance]
[rbf]
type = SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-3 #A small amount of noise can help with numerical stability
length_factor = '0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Surrogates]
[gauss_process_avg]
type = GaussianProcessSurrogate
trainer = 'GP_avg_trainer'
[]
[]
# # Computing statistics
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'gauss_process_avg'
execute_on = final
[]
[]
[Reporters]
[cart_avg]
type = EvaluateSurrogate
model = gauss_process_avg
sampler = cart_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = gauss_process_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[Outputs]
csv = true
execute_on = FINAL
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_squared_exponential_tuned_adam.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 20
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
seed = 100
[]
[test_sample]
type = MonteCarlo
num_rows = 100
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
seed = 100
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[samp_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = test_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[data]
type = SamplerData
sampler = test_sample
execute_on = 'initial timestep_end'
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a squared exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
tune_parameters = 'covar:signal_variance covar:length_factor'
num_iters = 1000
batch_size = 20
learning_rate = 0.005
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcessSurrogate
trainer = GP_avg_trainer
[]
[]
[Covariance]
[covar]
type = SquaredExponentialCovariance
signal_variance = 1.0 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '1.0 1.0' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/multiapps/user_cli_args/main_full_solve.i)
[StochasticTools]
[]
[Samplers/sample]
type = CartesianProduct
linear_space_items = '1 1 3
1 1 3'
execute_on = 'PRE_MULTIAPP_SETUP'
[]
[MultiApps/sub]
type = SamplerFullSolveMultiApp
sampler = sample
input_files = 'sub_steady.i'
cli_args = 'Mesh/xmax=10;Mesh/ymax=10'
[]
[Transfers]
inactive = 'param'
[param]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'Functions/fun/value Postprocessors/function_val/scale_factor'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
from_reporter = 'size/value function_val/value'
stochastic_reporter = 'storage'
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'Functions/fun/value Postprocessors/function_val/scale_factor'
[]
[]
[Reporters/storage]
type = StochasticReporter
parallel_type = ROOT
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_2D_tuned.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 50
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[cart_sample]
type = CartesianProduct
linear_space_items = '1 0.09 10
9000 20 10 '
execute_on = initial
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
tune_parameters = 'rbf:signal_variance rbf:length_factor'
tuning_min = '1e-9 1e-9'
tuning_max = '1e16 1e16'
batch_size = 50
num_iters = 5000
learning_rate = 5e-3
[]
[]
[Covariance]
[rbf]
type = SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-3 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcessSurrogate
trainer = 'GP_avg_trainer'
[]
[]
[Reporters]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[cart_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = cart_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2d_quad.i)
[StochasticTools]
[]
[Distributions]
[D_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[S_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[]
[Samplers]
[sample]
type = MonteCarlo
num_rows = 100
distributions = 'D_dist S_dist'
execute_on = timestep_end
[]
[quadrature]
type = Quadrature
distributions = 'D_dist S_dist'
execute_on = INITIAL
order = 5
[]
[]
[MultiApps]
[quad_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = quadrature
mode = batch-restore
[]
[]
[Transfers]
[quad]
type = SamplerParameterTransfer
to_multi_app = quad_sub
sampler = quadrature
parameters = 'Materials/diffusivity/prop_values Materials/xs/prop_values'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = quad_sub
sampler = quadrature
stochastic_reporter = storage
from_reporter = avg/value
[]
[]
[Reporters]
[storage]
type = StochasticReporter
[]
[pc_samp]
type = EvaluateSurrogate
model = poly_chaos
sampler = sample
parallel_type = ROOT
execute_on = final
[]
[]
[Surrogates]
[poly_chaos]
type = PolynomialChaos
trainer = poly_chaos
[]
[]
[Trainers]
[poly_chaos]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 5
distributions = 'D_dist S_dist'
sampler = quadrature
response = storage/data:avg:value
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2dnorm_quad_locs.i)
[StochasticTools]
[]
[Distributions]
[D_dist]
type = Normal
mean = 5
standard_deviation = 0.5
[]
[S_dist]
type = Normal
mean = 8
standard_deviation = 0.7
[]
[]
[Samplers]
[grid]
type = CartesianProduct
linear_space_items = '2.5 0.5 10 3 1 10'
[]
[quadrature]
type = Quadrature
distributions = 'D_dist S_dist'
execute_on = INITIAL
order = 5
[]
[]
[MultiApps]
[quad_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = quadrature
mode = batch-restore
[]
[]
[Transfers]
[quad]
type = SamplerParameterTransfer
to_multi_app = quad_sub
sampler = quadrature
parameters = 'Materials/diffusivity/prop_values Materials/xs/prop_values'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = quad_sub
sampler = quadrature
stochastic_reporter = storage
from_reporter = avg/value
[]
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = none
[]
[local_sense]
type = PolynomialChaosReporter
pc_name = poly_chaos
local_sensitivity_sampler = grid
local_sensitivity_points = '3.14159 3.14159 2.7182 3.14159 3.14159 2.7182 2.7182 2.7182'
execute_on = final
[]
[]
[Surrogates]
[poly_chaos]
type = PolynomialChaos
trainer = poly_chaos
[]
[]
[Trainers]
[poly_chaos]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 5
distributions = 'D_dist S_dist'
sampler = quadrature
response = storage/data:avg:value
[]
[]
[Outputs]
[out]
type = JSON
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/reporters/bootstrap_statistics/percentile/percentile_main.i)
[StochasticTools]
[]
[Distributions]
[n0]
type = Normal
mean = 0
standard_deviation = 1
[]
[n1]
type = Normal
mean = 1
standard_deviation = 1
[]
[n2]
type = Normal
mean = 2
standard_deviation = 0.5
[]
[n3]
type = Normal
mean = 3
standard_deviation = 0.33333333333
[]
[n4]
type = Normal
mean = 4
standard_deviation = 0.25
[]
[]
[Samplers/sample]
type = MonteCarlo
distributions = 'n0 n1 n2 n3 n4'
num_rows = 100
execute_on = PRE_MULTIAPP_SETUP
[]
[GlobalParams]
sampler = sample
[]
[MultiApps/sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
mode = batch-reset
[]
[Controls/param]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Reporters/const/real_vector_values[0,1,2,3,4]'
[]
[Transfers/data]
type = SamplerReporterTransfer
from_multi_app = sub
from_reporter = 'const/num_vec'
stochastic_reporter = storage
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = none
[]
[stats]
type = StatisticsReporter
reporters = storage/data:const:num_vec
compute = 'mean stddev'
ci_method = 'percentile'
ci_levels = '0.025 0.05 0.1 0.16 0.5 0.84 0.9 0.95 0.975'
ci_replicates = 10000
ci_seed = 1945
execute_on = FINAL
[]
[]
[Outputs]
execute_on = FINAL
[out]
type = JSON
[]
[]
(modules/stochastic_tools/examples/surrogates/poly_chaos_uniform_quad.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[L_dist]
type = Uniform
lower_bound = 0.01
upper_bound = 0.05
[]
[Tinf_dist]
type = Uniform
lower_bound = 290
upper_bound = 310
[]
[]
[Samplers]
[sample]
type = Quadrature
order = 10
distributions = 'k_dist q_dist L_dist Tinf_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = results
from_reporter = 'avg/value max/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[poly_chaos_avg]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 10
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = sample
response = results/data:avg:value
[]
[poly_chaos_max]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 10
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = sample
response = results/data:max:value
[]
[]
[Outputs]
file_base = poly_chaos_training
[out]
type = SurrogateTrainerOutput
trainers = 'poly_chaos_avg poly_chaos_max'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/nearest_point/np_vec.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Normal
mean = 5
standard_deviation = 2
[]
[L_dist]
type = Normal
mean = 0.03
standard_deviation = 0.01
[]
[]
[Samplers]
[sample]
type = LatinHypercube
num_rows = 10
distributions = 'k_dist L_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[GlobalParams]
sampler = sample
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub_vector.i
mode = batch-reset
execute_on = initial
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Materials/conductivity/prop_values L'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
stochastic_reporter = results
from_reporter = 'T_vec/T T_vec/x'
[]
[]
[Reporters]
[results]
type = StochasticReporter
outputs = none
[]
[eval]
type = EvaluateSurrogate
model = np_surrogate
response_type = vector_real
parallel_type = ROOT
execute_on = timestep_end
[]
[]
[Trainers]
[np]
type = NearestPointTrainer
response = results/data:T_vec:T
response_type = vector_real
execute_on = initial
[]
[]
[Surrogates]
[np_surrogate]
type = NearestPointSurrogate
trainer = np
[]
[]
[Outputs]
[out]
type = JSON
execute_on = timestep_end
[]
[]
(modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2d_quad_moment.i)
[StochasticTools]
[]
[Distributions]
[D_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[S_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[]
[Samplers]
[quadrature]
type = Quadrature
distributions = 'D_dist S_dist'
execute_on = INITIAL
order = 5
[]
[]
[MultiApps]
[quad_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = quadrature
mode = batch-restore
[]
[]
[Transfers]
[quad]
type = SamplerParameterTransfer
to_multi_app = quad_sub
sampler = quadrature
parameters = 'Materials/diffusivity/prop_values Materials/xs/prop_values'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = quad_sub
sampler = quadrature
stochastic_reporter = storage
from_reporter = avg/value
[]
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = none
[]
[pc_moments]
type = PolynomialChaosReporter
pc_name = poly_chaos
statistics = 'mean stddev skewness kurtosis'
execute_on = final
[]
[]
[Surrogates]
[poly_chaos]
type = PolynomialChaos
trainer = poly_chaos
[]
[]
[Trainers]
[poly_chaos]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 5
distributions = 'D_dist S_dist'
sampler = quadrature
response = storage/data:avg:value
[]
[]
[Outputs]
[out]
type = JSON
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/reporters/statistics/statistics_main.i)
[StochasticTools]
[]
[Samplers/sample]
type = CartesianProduct
linear_space_items = '1 1 6'
execute_on = PRE_MULTIAPP_SETUP
[]
[GlobalParams]
sampler = sample
[]
[MultiApps/sub]
type = SamplerFullSolveMultiApp
input_files = constant_sub.i
mode = batch-reset
[]
[Controls/param]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'val'
[]
[Transfers/data]
type = SamplerReporterTransfer
from_multi_app = sub
from_reporter = 'const/num const/int const/vec'
stochastic_reporter = 'storage'
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = none
[]
[stats]
type = StatisticsReporter
reporters = 'storage/data:const:num storage/data:const:int storage/data:const:vec'
compute = 'min max sum mean stddev norm2 ratio stderr median'
[]
[]
[Outputs]
execute_on = FINAL
[out]
type = JSON
[]
[]
(modules/stochastic_tools/examples/surrogates/poly_chaos_uniform_mc.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[L_dist]
type = Uniform
lower_bound = 0.01
upper_bound = 0.05
[]
[Tinf_dist]
type = Uniform
lower_bound = 290
upper_bound = 310
[]
[]
[Samplers]
[sample]
type = MonteCarlo
num_rows = 10000
distributions = 'k_dist q_dist L_dist Tinf_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value Mesh/xmax BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = results
from_reporter = 'avg/value max/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[]
[Trainers]
[poly_chaos_avg]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 10
regression_type = integration
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = sample
response = results/data:avg:value
[]
[poly_chaos_max]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 10
regression_type = integration
distributions = 'k_dist q_dist L_dist Tinf_dist'
sampler = sample
response = results/data:max:value
[]
[]
[Outputs]
file_base = poly_chaos_training
[out]
type = SurrogateTrainerOutput
trainers = 'poly_chaos_avg poly_chaos_max'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/multioutput_gp/mogp_lmc_tuned.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Normal
mean = 15.0
standard_deviation = 2.0
[]
[bc_dist]
type = Normal
mean = 1000.0
standard_deviation = 100.0
[]
[]
[Samplers]
[train]
type = LatinHypercube
num_rows = 10
distributions = 'k_dist bc_dist'
execute_on = PRE_MULTIAPP_SETUP
seed = 100
[]
[test]
type = LatinHypercube
num_rows = 5
distributions = 'k_dist bc_dist'
seed = 101
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
mode = batch-reset
sampler = train
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train
param_names = 'Materials/conductivity/prop_values BCs/right/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train
stochastic_reporter = results
from_reporter = 'T_vec/T'
[]
[]
[Reporters]
[results]
type = StochasticReporter
outputs = none
[]
[eval_test]
type = EvaluateSurrogate
model = mogp
response_type = vector_real
parallel_type = ROOT
execute_on = timestep_end
sampler = test
evaluate_std = true
[]
[]
[Trainers]
[mogp_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'lmc'
standardize_params = 'true'
standardize_data = 'true'
sampler = train
response_type = vector_real
response = results/data:T_vec:T
tune_parameters = 'lmc:acoeff_0 lmc:lambda_0 covar:signal_variance covar:length_factor'
tuning_min = '1e-9 1e-9 1e-9 1e-9'
tuning_max = '1e16 1e16 1e16 1e16'
num_iters = 1000
batch_size = 10
learning_rate = 0.0005
show_every_nth_iteration = 1
[]
[]
[Covariance]
[covar]
type = SquaredExponentialCovariance
signal_variance = 2.76658083
noise_variance = 0.0
length_factor = '3.67866381 2.63421705'
[]
[lmc]
type = LMC
covariance_functions = covar
num_outputs = 2
num_latent_funcs = 1
[]
[]
[Surrogates]
[mogp]
type = GaussianProcessSurrogate
trainer = mogp_trainer
[]
[]
[VectorPostprocessors]
[train_params]
type = SamplerData
sampler = train
execute_on = final
[]
[test_params]
type = SamplerData
sampler = test
execute_on = final
[]
[hyperparams]
type = GaussianProcessData
gp_name = mogp
execute_on = final
[]
[]
[Outputs]
[out]
type = JSON
execute_on = final
vectorpostprocessors_as_reporters = true
execute_system_information_on = NONE
[]
[surr]
type = SurrogateTrainerOutput
execute_on = FINAL
trainers = "mogp_trainer"
[]
[]
(modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2d_quad_locs.i)
[StochasticTools]
[]
[Distributions]
[D_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[S_dist]
type = Uniform
lower_bound = 2.5
upper_bound = 7.5
[]
[]
[Samplers]
[grid]
type = CartesianProduct
linear_space_items = '2.5 0.5 10 2.5 0.5 10'
[]
[quadrature]
type = Quadrature
distributions = 'D_dist S_dist'
execute_on = INITIAL
order = 5
[]
[]
[MultiApps]
[quad_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = quadrature
mode = batch-restore
[]
[]
[Transfers]
[quad]
type = SamplerParameterTransfer
to_multi_app = quad_sub
sampler = quadrature
parameters = 'Materials/diffusivity/prop_values Materials/xs/prop_values'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = quad_sub
sampler = quadrature
stochastic_reporter = storage
from_reporter = avg/value
[]
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = none
[]
[local_sense]
type = PolynomialChaosReporter
pc_name = poly_chaos
local_sensitivity_sampler = grid
local_sensitivity_points = '3.14159 3.14159 2.7182 3.14159 3.14159 2.7182 2.7182 2.7182'
execute_on = final
[]
[]
[Surrogates]
[poly_chaos]
type = PolynomialChaos
trainer = poly_chaos
[]
[]
[Trainers]
[poly_chaos]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 5
distributions = 'D_dist S_dist'
sampler = quadrature
response = storage/data:avg:value
[]
[]
[Outputs]
[out]
type = JSON
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/multiapps/nested_multiapp/stm_small_batch.i)
[StochasticTools]
[]
[Samplers/sample]
type = InputMatrix
matrix = '0 4 8 12 16;
1 5 9 13 17;
2 6 10 14 18;
3 7 11 15 19'
[]
[GlobalParams]
sampler = sample
[]
[MultiApps]
[main]
type = SamplerFullSolveMultiApp
input_files = main.i
[]
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = main
parameters = 'BCs/left/value sub:BCs/left/value sub:subsub:BCs/left/value sub:subsub0:BCs/right/value sub:subsub1:BCs/right/value'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = main
stochastic_reporter = storage
from_reporter = 'val/value receive/sub_val receive/subsub0_left_val receive/subsub1_left_val receive/subsub0_right_val receive/subsub1_right_val'
[]
[]
[Reporters/storage]
type = StochasticReporter
parallel_type = ROOT
[]
(modules/combined/examples/stochastic/poly_chaos_train_uniform.i)
[StochasticTools]
[]
[Distributions]
[cond_inner]
type = Uniform
lower_bound = 20
upper_bound = 30
[]
[cond_outer]
type = Uniform
lower_bound = 90
upper_bound = 110
[]
[heat_source]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[alpha_inner]
type = Uniform
lower_bound = 1e-6
upper_bound = 3e-6
[]
[alpha_outer]
type = Uniform
lower_bound = 5e-7
upper_bound = 1.5e-6
[]
[ymod_inner]
type = Uniform
lower_bound = 2e5
upper_bound = 2.2e5
[]
[ymod_outer]
type = Uniform
lower_bound = 3e5
upper_bound = 3.2e5
[]
[prat_inner]
type = Uniform
lower_bound = 0.29
upper_bound = 0.31
[]
[prat_outer]
type = Uniform
lower_bound = 0.19
upper_bound = 0.21
[]
[]
[GlobalParams]
distributions = 'cond_inner cond_outer heat_source alpha_inner alpha_outer ymod_inner ymod_outer prat_inner prat_outer'
[]
[Samplers]
[sample]
type = Quadrature
sparse_grid = smolyak
order = 5
execute_on = INITIAL
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = graphite_ring_thermomechanics.i
sampler = sample
mode = batch-reset
[]
[]
[Transfers]
[sub]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'Materials/cond_inner/prop_values Materials/cond_outer/prop_values
Postprocessors/heat_source/scale_factor
Materials/thermal_strain_inner/thermal_expansion_coeff Materials/thermal_strain_outer/thermal_expansion_coeff
Materials/elasticity_tensor_inner/youngs_modulus Materials/elasticity_tensor_outer/youngs_modulus
Materials/elasticity_tensor_inner/poissons_ratio Materials/elasticity_tensor_outer/poissons_ratio'
check_multiapp_execute_on = false
[]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = storage
from_reporter = 'temp_center_inner/value temp_center_outer/value temp_end_inner/value temp_end_outer/value
dispx_center_inner/value dispx_center_outer/value dispx_end_inner/value dispx_end_outer/value
dispz_inner/value dispz_outer/value'
[]
[]
[Reporters]
[storage]
type = StochasticReporter
[]
[]
[Trainers]
[temp_center_inner]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:temp_center_inner:value
[]
[temp_center_outer]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:temp_center_outer:value
[]
[temp_end_inner]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:temp_end_inner:value
[]
[temp_end_outer]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:temp_end_outer:value
[]
[dispx_center_inner]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:dispx_center_inner:value
[]
[dispx_center_outer]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:dispx_center_outer:value
[]
[dispx_end_inner]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:dispx_end_inner:value
[]
[dispx_end_outer]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:dispx_end_outer:value
[]
[dispz_inner]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:dispz_inner:value
[]
[dispz_outer]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 4
sampler = sample
response = storage/data:dispz_outer:value
[]
[]
[Outputs]
[out]
type = SurrogateTrainerOutput
trainers = 'temp_center_inner temp_center_outer temp_end_inner temp_end_outer
dispx_center_inner dispx_center_outer dispx_end_inner dispx_end_outer
dispz_inner dispz_outer'
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/cross_validation/poly_reg_vec.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Normal
mean = 5
standard_deviation = 2
[]
[L_dist]
type = Normal
mean = 0.03
standard_deviation = 0.01
[]
[]
[Samplers]
[sample]
type = LatinHypercube
num_rows = 10
distributions = 'k_dist L_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[GlobalParams]
sampler = sample
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub_vector.i
mode = batch-reset
execute_on = initial
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Materials/conductivity/prop_values L'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
stochastic_reporter = results
from_reporter = 'T_vec/T T_vec/x'
[]
[]
[Reporters]
[results]
type = StochasticReporter
outputs = none
[]
[cv_scores]
type = CrossValidationScores
models = pr_surrogate
execute_on = FINAL
[]
[]
[Trainers]
[pr_trainer]
type = PolynomialRegressionTrainer
regression_type = "ols"
sampler = sample
response = results/data:T_vec:T
response_type = vector_real
execute_on = timestep_end
max_degree = 1
cv_type = "k_fold"
cv_splits = 2
cv_n_trials = 3
cv_surrogate = pr_surrogate
cv_seed = 1
[]
[]
[Surrogates]
[pr_surrogate]
type = PolynomialRegressionSurrogate
trainer = pr_trainer
[]
[]
[Outputs]
[out]
type = JSON
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/samplers/ParallelSubsetSimulation/pss.i)
[StochasticTools]
[]
[Distributions]
[mu1]
type = Normal
mean = 0.0
standard_deviation = 0.5
[]
[mu2]
type = Normal
mean = 1
standard_deviation = 0.5
[]
[]
[Samplers]
[sample]
type = ParallelSubsetSimulation
distributions = 'mu1 mu2'
num_samplessub = 20
num_subsets = 6
num_parallel_chains = 2
output_reporter = 'constant/reporter_transfer:average:value'
inputs_reporter = 'adaptive_MC/inputs'
seed = 1012
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
[]
[]
[Transfers]
[param]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'BCs/left/value BCs/right/value'
[]
[reporter_transfer]
type = SamplerReporterTransfer
from_reporter = 'average/value'
stochastic_reporter = 'constant'
from_multi_app = sub
sampler = sample
[]
[]
[Reporters]
[constant]
type = StochasticReporter
outputs = none
[]
[adaptive_MC]
type = AdaptiveMonteCarloDecision
output_value = constant/reporter_transfer:average:value
inputs = 'inputs'
sampler = sample
[]
[]
[Executioner]
type = Transient
[]
[Outputs]
[out]
type = JSON
[]
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/gaussian_process_uniform_2D.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 50
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[cart_sample]
type = CartesianProduct
linear_space_items = '1 0.09 100
9000 20 100 '
execute_on = initial
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[cart_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = cart_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'rbf'
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
[]
[]
[Covariance]
[rbf]
type = SquaredExponentialCovariance
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '0.38971 0.38971' #Select a length factor for each parameter (k and q)
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcessSurrogate
trainer = 'GP_avg_trainer'
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/GP_exponential_tuned_adam.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Uniform
lower_bound = 1
upper_bound = 10
[]
[q_dist]
type = Uniform
lower_bound = 9000
upper_bound = 11000
[]
[]
[Samplers]
[train_sample]
type = MonteCarlo
num_rows = 20
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[test_sample]
type = MonteCarlo
num_rows = 100
distributions = 'k_dist q_dist'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = train_sample
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
sampler = train_sample
param_names = 'Materials/conductivity/prop_values Kernels/source/value'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = train_sample
stochastic_reporter = results
from_reporter = 'avg/value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
parallel_type = ROOT
[]
[samp_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = test_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[train_avg]
type = EvaluateSurrogate
model = GP_avg
sampler = train_sample
evaluate_std = 'true'
parallel_type = ROOT
execute_on = final
[]
[]
[VectorPostprocessors]
[hyperparams]
type = GaussianProcessData
gp_name = 'GP_avg'
execute_on = final
[]
[]
[Trainers]
[GP_avg_trainer]
type = GaussianProcessTrainer
execute_on = timestep_end
covariance_function = 'covar' #Choose a squared exponential for the kernel
standardize_params = 'true' #Center and scale the training params
standardize_data = 'true' #Center and scale the training data
sampler = train_sample
response = results/data:avg:value
tune_parameters = 'covar:signal_variance covar:length_factor'
num_iters = 1000
batch_size = 20
learning_rate = 0.005
[]
[]
[Surrogates]
[GP_avg]
type = GaussianProcessSurrogate
trainer = GP_avg_trainer
[]
[]
[Covariance]
[covar]
type = ExponentialCovariance
gamma = 2 #Define the exponential factor
signal_variance = 1 #Use a signal variance of 1 in the kernel
noise_variance = 1e-6 #A small amount of noise can help with numerical stability
length_factor = '1.0 1.0' #Select a length factor for each parameter (k and q)
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2dnorm_quad.i)
[StochasticTools]
[]
[Distributions]
[D_dist]
type = Normal
mean = 5
standard_deviation = 0.5
[]
[S_dist]
type = Normal
mean = 8
standard_deviation = 0.7
[]
[]
[Samplers]
[sample]
type = MonteCarlo
num_rows = 100
distributions = 'D_dist S_dist'
execute_on = timestep_end
[]
[quadrature]
type = Quadrature
distributions = 'D_dist S_dist'
execute_on = INITIAL
order = 5
[]
[]
[MultiApps]
[quad_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = quadrature
mode = batch-restore
[]
[]
[Transfers]
[quad]
type = SamplerParameterTransfer
to_multi_app = quad_sub
sampler = quadrature
parameters = 'Materials/diffusivity/prop_values Materials/xs/prop_values'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = quad_sub
sampler = quadrature
stochastic_reporter = storage
from_reporter = avg/value
[]
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = none
[]
[pc_samp]
type = EvaluateSurrogate
model = poly_chaos
sampler = sample
parallel_type = ROOT
execute_on = final
[]
[]
[Surrogates]
[poly_chaos]
type = PolynomialChaos
trainer = poly_chaos
[]
[]
[Trainers]
[poly_chaos]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 5
distributions = 'D_dist S_dist'
sampler = quadrature
response = storage/data:avg:value
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/stochastic_tools/test/tests/surrogates/polynomial_regression/poly_reg_vec.i)
[StochasticTools]
[]
[Distributions]
[k_dist]
type = Normal
mean = 5
standard_deviation = 2
[]
[L_dist]
type = Normal
mean = 0.03
standard_deviation = 0.01
[]
[]
[Samplers]
[sample]
type = LatinHypercube
num_rows = 10
distributions = 'k_dist L_dist'
execute_on = PRE_MULTIAPP_SETUP
min_procs_per_row = 2
[]
[]
[GlobalParams]
sampler = sample
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub_vector.i
mode = batch-reset
execute_on = initial
min_procs_per_app = 2
[]
[]
[Controls]
[cmdline]
type = MultiAppSamplerControl
multi_app = sub
param_names = 'Materials/conductivity/prop_values L'
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
stochastic_reporter = results
from_reporter = 'T_vec/T T_vec/x'
[]
[]
[Reporters]
[results]
type = StochasticReporter
outputs = none
[]
[eval]
type = EvaluateSurrogate
model = pr_surrogate
response_type = vector_real
parallel_type = ROOT
execute_on = timestep_end
[]
[]
[Trainers]
[pr]
type = PolynomialRegressionTrainer
regression_type = ols
max_degree = 2
response = results/data:T_vec:T
response_type = vector_real
execute_on = initial
[]
[]
[Surrogates]
[pr_surrogate]
type = PolynomialRegressionSurrogate
trainer = pr
[]
[]
[Outputs]
[out]
type = JSON
execute_on = timestep_end
[]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/main_batch.i)
[StochasticTools]
[]
[Samplers]
[sample]
type = CartesianProduct
linear_space_items = '0.0 0.1 10'
[]
[]
[MultiApps]
[sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = sample
mode = batch-restore
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = sub
sampler = sample
stochastic_reporter = storage
from_reporter = 'pp/value constant/str'
[]
[runner]
type = SamplerParameterTransfer
to_multi_app = sub
sampler = sample
parameters = 'BCs/left/value'
[]
[]
[Reporters]
[storage]
type = StochasticReporter
parallel_type = ROOT
[]
[]
[Outputs]
[out]
type = JSON
execute_on = timestep_end
[]
[]
(modules/stochastic_tools/test/tests/multiapps/conditional_run/conditional_main.i)
[StochasticTools]
[]
[Samplers]
[cart]
type = CartesianProduct
linear_space_items = '1 1 3
1 1 3'
execute_on = PRE_MULTIAPP_SETUP
[]
[]
[MultiApps]
[runner]
type = SamplerFullSolveMultiApp
sampler = cart
input_files = 'sub.i'
mode = batch-reset
should_run_reporter = conditional/need_sample
[]
[]
[Transfers]
[data]
type = SamplerReporterTransfer
from_multi_app = runner
sampler = cart
from_reporter = 'average/value'
stochastic_reporter = conditional
[]
[]
[Controls]
[cmdline]
type = MultiAppCommandLineControl
multi_app = runner
sampler = cart
param_names = 'BCs/left/value BCs/right/value'
[]
[]
[Reporters]
[conditional]
type = ConditionalSampleReporter
sampler = cart
default_value = 999
function = 'val1 * val2 >= t'
sampler_vars = 'val1 val2'
sampler_var_indices = '0 1'
parallel_type = ROOT
execute_on = 'initial timestep_begin'
[]
[]
[Executioner]
type = Transient
num_steps = 4
[]
[Outputs]
execute_on = timestep_end
[out]
type = JSON
[]
[]
(modules/stochastic_tools/test/tests/surrogates/poly_chaos/main_2dnorm_quad_moment.i)
[StochasticTools]
[]
[Distributions]
[D_dist]
type = Normal
mean = 5
standard_deviation = 0.5
[]
[S_dist]
type = Normal
mean = 8
standard_deviation = 0.7
[]
[]
[Samplers]
[quadrature]
type = Quadrature
distributions = 'D_dist S_dist'
execute_on = INITIAL
order = 5
[]
[]
[MultiApps]
[quad_sub]
type = SamplerFullSolveMultiApp
input_files = sub.i
sampler = quadrature
mode = batch-restore
[]
[]
[Transfers]
[quad]
type = SamplerParameterTransfer
to_multi_app = quad_sub
sampler = quadrature
parameters = 'Materials/diffusivity/prop_values Materials/xs/prop_values'
[]
[data]
type = SamplerReporterTransfer
from_multi_app = quad_sub
sampler = quadrature
stochastic_reporter = storage
from_reporter = avg/value
[]
[]
[Reporters]
[storage]
type = StochasticReporter
outputs = none
[]
[pc_moments]
type = PolynomialChaosReporter
pc_name = poly_chaos
statistics = 'mean stddev skewness kurtosis'
execute_on = final
[]
[]
[Surrogates]
[poly_chaos]
type = PolynomialChaos
trainer = poly_chaos
[]
[]
[Trainers]
[poly_chaos]
type = PolynomialChaosTrainer
execute_on = timestep_end
order = 5
distributions = 'D_dist S_dist'
sampler = quadrature
response = storage/data:avg:value
[]
[]
[Outputs]
[out]
type = JSON
execute_on = FINAL
[]
[]
(modules/stochastic_tools/examples/parameter_study/main_vector.i)
[StochasticTools]
[]
[Distributions]
[gamma]
type = Uniform
lower_bound = 0.5
upper_bound = 2.5
[]
[q_0]
type = Weibull
location = -110
scale = 20
shape = 1
[]
[T_0]
type = Normal
mean = 300
standard_deviation = 45
[]
[s]
type = Normal
mean = 100
standard_deviation = 25
[]
[]
[Samplers]
[hypercube]
type = LatinHypercube
num_rows = 5000
distributions = 'gamma q_0 T_0 s'
[]
[]
[MultiApps]
[runner]
type = SamplerFullSolveMultiApp
sampler = hypercube
input_files = 'diffusion_vector.i'
mode = batch-restore
[]
[]
[Transfers]
[parameters]
type = SamplerParameterTransfer
to_multi_app = runner
sampler = hypercube
parameters = 'Materials/constant/prop_values Kernels/source/value BCs/right/value BCs/left/value'
[]
[results]
type = SamplerReporterTransfer
from_multi_app = runner
sampler = hypercube
stochastic_reporter = results
from_reporter = 'acc/T_avg:value acc/q_left:value'
[]
[]
[Reporters]
[results]
type = StochasticReporter
outputs = none
[]
[stats]
type = StatisticsReporter
reporters = 'results/results:acc:T_avg:value results/results:acc:q_left:value'
compute = 'mean stddev'
ci_method = 'percentile'
ci_levels = '0.05 0.95'
[]
[]
[Outputs]
execute_on = 'FINAL'
[out]
type = JSON
[]
[]