- functionThe analytic solution to compare against
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:The analytic solution to compare against
- variableThe name of the variable that this object operates on
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this object operates on
ElementL2Error
The ElementL2Error computes the Euclidean distance between a field variable and an analytical function. This Postprocessor is very useful for verifying the proper function of the framework through the Method of Manufactured Solutions.
To compute the Euclidean distance between two variables, use the ElementL2Difference instead.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR_CONVERGENCE, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, TRANSFER
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_absolute_valueFalseWhether to use abolsute value of the variable or not
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to use abolsute value of the variable or not
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (test/tests/postprocessors/num_vars/num_vars.i)
- (modules/heat_transfer/test/tests/code_verification/cartesian_test_no4.i)
- (test/tests/kernels/scalar_constraint/scalar_constraint_kernel.i)
- (test/tests/time_integrators/explicit-euler/ee-2d-linear-adapt.i)
- (test/tests/mortar/continuity-3d-non-conforming/continuity_sphere_hex.i)
- (test/tests/mortar/continuity-2d-conforming/conforming.i)
- (modules/combined/examples/publications/rapid_dev/fig3.i)
- (test/tests/time_integrators/convergence/implicit_convergence.i)
- (test/tests/time_integrators/explicit-euler/ee-1d-quadratic.i)
- (test/tests/variables/fe_monomial_const/monomial-const-2d.i)
- (modules/stochastic_tools/test/tests/auxkernels/surrogate_aux/surrogate_aux.i)
- (test/tests/fvkernels/mms/skewness-correction/two_term_extrapol/advection-outflow.i)
- (test/tests/interfacekernels/1d_interface/ADMatreaction_1D_steady.i)
- (test/tests/fvkernels/mms/advection-diffusion.i)
- (test/tests/tag/2d_diffusion_dg_tag.i)
- (test/tests/fvkernels/mms/skewness-correction/adv-diff-react/skewed.i)
- (test/tests/time_integrators/bdf2/bdf2.i)
- (modules/navier_stokes/test/tests/finite_element/ins/hdg/mms/lid.i)
- (modules/heat_transfer/test/tests/code_verification/spherical_test_no5.i)
- (test/tests/variables/fe_hier/hier-3-3d.i)
- (test/tests/kernels/ad_mat_diffusion/2d_steady_state.i)
- (test/tests/postprocessors/element_h1_error_pps/element_h1_error_pp_test.i)
- (test/tests/kernels/ad_scalar_kernel_constraint/diffusion_override_scalar.i)
- (test/tests/fvkernels/mms/grad-reconstruction/rz.i)
- (test/tests/outputs/debug/show_var_residual_norms.i)
- (test/tests/mortar/convergence-studies/solution-continuity/continuity.i)
- (test/tests/time_integrators/explicit-euler/ee-1d-quadratic-neumann.i)
- (test/tests/kernels/scalar_kernel_constraint/diffusion_override_scalar.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/plane-poiseuille-flow.i)
- (test/tests/mortar/continuity-3d-non-conforming/continuity_mixed.i)
- (test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value.i)
- (test/tests/auxkernels/function_scalar_aux/function_scalar_aux.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-rc.i)
- (modules/solid_mechanics/test/tests/global_strain/global_strain_uniaxial.i)
- (test/tests/hdgkernels/diffusion/rt-mms-diffusion.i)
- (test/tests/kernels/scalar_kernel_constraint/diffusion_bipass_scalar.i)
- (test/tests/auxkernels/constant_scalar_aux/constant_scalar_aux.i)
- (test/tests/fvkernels/mms/harmonic_interpolation/diffusion.i)
- (test/tests/postprocessors/pps_interval/pps_bad_interval3.i)
- (test/tests/time_integrators/explicit-euler/ee-1d-linear.i)
- (modules/heat_transfer/test/tests/code_verification/cartesian_test_no2.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/porous-hllc.i)
- (examples/ex14_pps/ex14.i)
- (test/tests/variables/fe_hermite_convergence/hermite_converge_dirichlet.i)
- (test/tests/variables/fe_hier/hier-2-2d.i)
- (test/tests/postprocessors/pps_interval/pps_interval_mismatch.i)
- (modules/heat_transfer/test/tests/code_verification/cartesian_test_no3.i)
- (test/tests/executioners/executioner/steady.i)
- (test/tests/auxkernels/time_derivative/time_derivative.i)
- (test/tests/auxkernels/time_derivative/coupled_aux_time_derivative.i)
- (test/tests/dgkernels/3d_diffusion_dg/3d_diffusion_dg_test.i)
- (test/tests/mortar/continuity-3d-non-conforming/continuity_penalty_sphere_hex.i)
- (test/tests/variables/high_order_monomial/high_order_monomial.i)
- (test/tests/postprocessors/mms_sine/2_d_mms_sine_postprocessor_test.i)
- (test/tests/fvkernels/mms/cylindrical/advection-diffusion-reaction.i)
- (test/tests/kernels/ad_scalar_kernel_constraint/diffusion_bipass_scalar.i)
- (python/peacock/tests/common/oversample.i)
- (modules/navier_stokes/test/tests/finite_element/ins/bcs/advection_bc/2d_advection_bc.i)
- (test/tests/mortar/continuity-3d-non-conforming/continuity_non_conforming_tet.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/rotated/rotated-pp-flow.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-quadratic.i)
- (test/tests/time_integrators/tvdrk2/1d-linear.i)
- (modules/level_set/test/tests/kernels/advection/advection_mms.i)
- (test/tests/kernels/material_coupled_force/material_coupled_force.i)
- (test/tests/variables/fe_hier/hier-1-1d.i)
- (tutorials/tutorial03_verification/app/test/tests/step04_mms/2d_mms_spatial.i)
- (test/tests/mortar/convergence-studies/fv-gap-conductance/gap-conductance.i)
- (test/tests/executioners/executioner/sln-time-adapt.i)
- (test/tests/time_integrators/dirk/dirk-2d-heat.i)
- (test/tests/variables/fe_monomial_const/monomial-const-1d.i)
- (test/tests/functions/parsed/mms_transient_coupled.i)
- (modules/navier_stokes/test/tests/finite_element/ins/mms/supg/supg_adv_dominated_mms.i)
- (test/tests/kernels/ad_coupled_value/ad_aux_coupled_time_value.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-linear-adapt.i)
- (modules/level_set/test/tests/verification/1d_level_set_mms/level_set_mms.i)
- (test/tests/variables/fe_hier/hier-2-3d.i)
- (test/tests/postprocessors/nodal_var_value/nodal_var_value.i)
- (test/tests/kernels/ad_scalar_kernel_constraint/scalar_constraint_together.i)
- (test/tests/time_integrators/convergence/explicit_convergence.i)
- (test/tests/time_integrators/tvdrk2/2d-quadratic.i)
- (modules/level_set/test/tests/kernels/olsson_reinitialization/olsson_1d.i)
- (modules/heat_transfer/test/tests/verify_against_analytical/ad_2d_steady_state.i)
- (test/tests/postprocessors/pps_interval/pps_out_interval.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-linear.i)
- (test/tests/time_integrators/implicit-euler/ie_adapt.i)
- (test/tests/hdgkernels/diffusion/mms-diffusion.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/skew-correction/skewed-vortex-action.i)
- (test/tests/auxkernels/error_function_aux/error_function_aux.i)
- (modules/electromagnetics/test/tests/interfacekernels/electrostatic_contact/analytic_solution_test_two_block.i)
- (test/tests/outputs/debug/show_var_residual_norms_debug.i)
- (modules/heat_transfer/test/tests/code_verification/spherical_test_no1.i)
- (test/tests/fvkernels/mms/grad-reconstruction/mat-cartesian.i)
- (test/tests/fvkernels/mms/cylindrical/diffusion.i)
- (test/tests/postprocessors/nodal_var_value/screen_output_test.i)
- (test/tests/variables/fe_hier/hier-1-2d.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-conserved-pcnsfv-kt.i)
- (test/tests/fviks/one-var-diffusion/test.i)
- (python/mms/test/mms_spatial.i)
- (modules/navier_stokes/test/tests/finite_element/ins/scalar_adr/supg/2d_advection_error_testing.i)
- (test/tests/fvkernels/mms/non-orthogonal/extended-adr.i)
- (test/tests/fvkernels/mms/advective-outflow/advection-diffusion.i)
- (modules/navier_stokes/test/tests/finite_element/ins/hdg/mms/channel.i)
- (modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i)
- (test/tests/time_integrators/bdf2/bdf2_adapt.i)
- (test/tests/mortar/continuity-2d-conforming/conforming-2nd-order.i)
- (modules/heat_transfer/test/tests/code_verification/cylindrical_test_no2.i)
- (modules/heat_transfer/test/tests/code_verification/cylindrical_test_no4.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average-with-temp.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-linear.i)
- (test/tests/postprocessors/mms_slope/mms_slope_test.i)
- (test/tests/executioners/executioner/steady_state_check_test.i)
- (test/tests/preconditioners/vcp/vcp_test.i)
- (test/tests/variables/fe_hermite_convergence/hermite_converge_periodic.i)
- (test/tests/variables/fe_hier/hier-3-1d.i)
- (test/tests/fvkernels/mms/diffusion.i)
- (test/tests/fvkernels/fv_adapt/steady-adapt.i)
- (python/peacock/tests/common/transient_with_date.i)
- (test/tests/fvkernels/mms/advective-outflow/advection-outflow.i)
- (modules/navier_stokes/test/tests/finite_element/ins/scalar_adr/supg/advection_error_testing.i)
- (test/tests/fvkernels/mms/grad-reconstruction/cartesian.i)
- (test/tests/time_integrators/crank-nicolson/cranic_adapt.i)
- (modules/optimization/test/tests/userobjects/adjoint_solution/adjoint.i)
- (python/peacock/tests/input_tab/InputTree/gold/transient.i)
- (modules/navier_stokes/test/tests/finite_element/ins/cg-dg-hybrid/mms/lid-driven-skewed/hybrid-skewed-vortex.i)
- (test/tests/variables/fe_hier/hier-2-1d.i)
- (test/tests/time_integrators/rk-2/2d-quadratic.i)
- (test/tests/kernels/scalar_kernel_constraint/scalar_constraint_kernel.i)
- (test/tests/postprocessors/mms_sine/3_d_mms_sine_postprocessor_test.i)
- (test/tests/fvkernels/mms/advective-outflow/kt-limited-advection.i)
- (modules/navier_stokes/test/tests/finite_element/ins/jeffery_hamel/wedge_dirichlet.i)
- (test/tests/fvkernels/mms/mass-mom-mat-advection-diffusion/input.i)
- (test/tests/misc/check_error/coupled_grad_without_declare.i)
- (test/tests/fvkernels/mms/grad-reconstruction/mat-rz.i)
- (test/tests/postprocessors/element_l2_error_pps/element_l2_error_pp_test.i)
- (test/tests/variables/fe_monomial_const/monomial-const-3d.i)
- (modules/heat_transfer/test/tests/sideset_heat_transfer/gap_thermal_ktemp_1D.i)
- (test/tests/dgkernels/3d_diffusion_dg/3d_diffusion_p_refinement.i)
- (modules/navier_stokes/test/tests/finite_element/ins/mms/supg/supg_pspg_adv_dominated_mms.i)
- (test/tests/fvkernels/mms/mat-advection-diffusion.i)
- (test/tests/kernels/ad_mat_diffusion/ad_2d_steady_state.i)
- (test/tests/dgkernels/ad_dg_diffusion/2d_diffusion_ad_dg_test.i)
- (test/tests/fvkernels/mms/cylindrical/advection.i)
- (test/tests/time_integrators/crank-nicolson/cranic.i)
- (modules/navier_stokes/test/tests/finite_element/ins/mms/supg/supg_mms_test.i)
- (test/tests/preconditioners/vcp/no_condense_test.i)
- (test/tests/fviks/one-var-diffusion/no-ik.i)
- (python/peacock/tests/common/transient.i)
- (test/tests/mortar/convergence-studies/continuity-3d/continuity.i)
- (test/tests/fvkernels/mms/skewness-correction/diffusion/skewed.i)
- (test/tests/executioners/executioner/steady-adapt.i)
- (python/peacock/tests/common/transient_big.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-hllc.i)
- (test/tests/time_integrators/dirk/dirk-2d-heat-adap.i)
- (modules/heat_transfer/test/tests/code_verification/spherical_test_no2.i)
- (modules/heat_transfer/test/tests/code_verification/cartesian_test_no1.i)
- (test/tests/postprocessors/pps_interval/pps_bad_interval2.i)
- (test/tests/bcs/penalty_dirichlet_bc/penalty_dirichlet_bc_test.i)
- (test/tests/kernels/scalar_constraint/scalar_constraint_kernel_disp.i)
- (modules/heat_transfer/test/tests/code_verification/cartesian_test_no5.i)
- (test/tests/bcs/ad_penalty_dirichlet_bc/function_penalty_dirichlet_bc_test.i)
- (modules/navier_stokes/test/tests/finite_element/ins/cg-dg-hybrid/mms/lid-driven/hybrid-cg-dg-mms.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/free-flow-hllc.i)
- (test/tests/functions/linear_combination_function/lcf_grad.i)
- (modules/stochastic_tools/test/tests/auxkernels/surrogate_aux/surrogate_array_aux.i)
- (test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value_ts_begin.i)
- (test/tests/time_steppers/dt2/dt2.i)
- (python/mms/test/mms_temporal.i)
- (test/tests/variables/fe_hier/hier-1-3d.i)
- (modules/solid_mechanics/test/tests/global_strain/global_strain_shear.i)
- (modules/solid_mechanics/test/tests/recompute_radial_return/affine_plasticity.i)
- (test/tests/nodalkernels/penalty_dirichlet/nodal_penalty_dirichlet.i)
- (test/tests/interfacekernels/1d_interface/reaction_1D_steady.i)
- (modules/heat_transfer/test/tests/code_verification/cylindrical_test_no3.i)
- (test/tests/mortar/continuity-2d-conforming/conforming_two_var.i)
- (modules/electromagnetics/test/tests/interfacekernels/electrostatic_contact/analytic_solution_test_three_block.i)
- (modules/heat_transfer/test/tests/code_verification/cylindrical_test_no1.i)
- (examples/ex14_pps/ex14_compare_solutions_2.i)
- (test/tests/auxkernels/solution_aux/thread_xda.i)
- (test/tests/fvkernels/mms/cylindrical/advection-reaction.i)
- (modules/level_set/test/tests/verification/1d_level_set_supg_mms/1d_level_set_supg_mms.i)
- (test/tests/preconditioners/pbp/pbp_adapt_test.i)
- (test/tests/variables/fe_hermite/hermite-3-2d.i)
- (test/tests/time_integrators/rk-2/1d-linear.i)
- (test/tests/materials/boundary_material/bnd_coupling_vol.i)
- (test/tests/time_integrators/explicit-euler/ee-2d-quadratic.i)
- (test/tests/fvkernels/mms/advective-outflow/limited-advection.i)
- (test/tests/dgkernels/2d_diffusion_dg/2d_diffusion_dg_test.i)
- (test/tests/variables/fe_hier/hier-3-2d.i)
- (test/tests/variables/fe_hermite/hermite-3-1d.i)
- (modules/heat_transfer/test/tests/code_verification/spherical_test_no3.i)
- (test/tests/fvkernels/mms/advective-outflow/advection.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-quadratic.i)
- (test/tests/time_steppers/postprocessor_dt/postprocessor_dt.i)
- (test/tests/vectorpostprocessors/dynamic_point_sampler/dynamic_point_sampler.i)
- (modules/heat_transfer/test/tests/code_verification/cylindrical_test_no5.i)
- (modules/heat_transfer/test/tests/verify_against_analytical/2d_steady_state.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-primitive-pcnsfv-kt.i)
- (test/tests/misc/multiple-nl-systems/test-fv.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-primitive.i)
- (test/tests/postprocessors/nodal_var_value/pps_output_test.i)
- (test/tests/indicators/laplacian_jump_indicator/biharmonic.i)
- (modules/solid_mechanics/test/tests/recompute_radial_return/cp_affine_plasticity.i)
- (test/tests/mortar/continuity-3d-non-conforming/continuity_penalty_tet.i)
- (modules/navier_stokes/test/tests/finite_element/ins/bcs/advection_bc/advection_bc.i)
- (test/tests/time_integrators/explicit-euler/ee-2d-linear.i)
- (test/tests/variables/fe_hermite/hermite-3-3d.i)
- (test/tests/mortar/continuity-3d-non-conforming/continuity_tet.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-mixed.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-quadratic-neumann.i)
- (test/tests/time_integrators/implicit-euler/ie.i)
- (modules/navier_stokes/test/tests/finite_element/ins/mms/pspg/pspg_mms_test.i)
- (test/tests/bcs/penalty_dirichlet_bc/function_penalty_dirichlet_bc_test.i)
- (test/tests/mortar/convergence-studies/gap-conductance/gap-conductance.i)
- (modules/heat_transfer/test/tests/code_verification/spherical_test_no4.i)
- (modules/heat_transfer/test/tests/sideset_heat_transfer/gap_thermal_1D.i)
- (test/tests/indicators/laplacian_jump_indicator/biharmonic_transient.i)
- (tutorials/tutorial03_verification/app/test/tests/step04_mms/2d_mms_temporal.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mms/cylindrical/2d-rc.i)
- (test/tests/fvkernels/mms/non-orthogonal/advection-diffusion-reaction.i)
- (test/tests/executioners/executioner/transient.i)
- (test/tests/bcs/ad_penalty_dirichlet_bc/penalty_dirichlet_bc_test.i)
- (test/tests/outputs/debug/show_execution_userobjects.i)
- (test/tests/utils/spline_interpolation/spline_interpolation.i)
(test/tests/postprocessors/num_vars/num_vars.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[forcing_fnu]
type = ParsedFunction
expression = -6*(x+y)+x*x+y*y
[]
[forcing_fnv]
type = ParsedFunction
expression = -4+x*x*x-x+y*y*y-y
[]
[bc_fnut]
type = ParsedFunction
expression = 3*y*y-1
[]
[bc_fnub]
type = ParsedFunction
expression = -3*y*y+1
[]
[bc_fnul]
type = ParsedFunction
expression = -3*x*x+1
[]
[bc_fnur]
type = ParsedFunction
expression = 3*x*x-1
[]
[slnu]
type = ParsedGradFunction
expression = x*x*x-x+y*y*y-y
grad_x = 3*x*x-1
grad_y = 3*y*y-1
[]
[slnv]
type = ParsedGradFunction
expression = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[]
[]
[Variables]
[u]
order = THIRD
family = HIERARCHIC
[]
[v]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diff1]
type = Diffusion
variable = u
[]
[diff2]
type = Diffusion
variable = v
[]
[forceu]
type = BodyForce
variable = u
function = forcing_fnu
[]
[forcev]
type = BodyForce
variable = v
function = forcing_fnv
[]
[]
[BCs]
[bc_ut]
type = FunctionDirichletBC
variable = u
boundary = top
function = bc_fnut
[]
[bc_ub]
type = FunctionDirichletBC
variable = u
boundary = bottom
function = bc_fnub
[]
[bc_ul]
type = FunctionDirichletBC
variable = u
boundary = left
function = bc_fnul
[]
[bc_ur]
type = FunctionDirichletBC
variable = u
boundary = right
function = bc_fnur
[]
[bc_v]
type = FunctionDirichletBC
variable = v
function = slnv
boundary = 'top left right bottom'
[]
[]
[Preconditioning]
[prec]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_vars'
[dofs]
type = NumDOFs
[]
[h]
type = AverageElementSize
[]
[L2u]
type = ElementL2Error
variable = u
function = slnu
[]
[L2v]
type = ElementL2Error
variable = v
function = slnv
[]
[H1error]
type = ElementH1Error
variable = u
function = solution
[]
[H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[]
[num_vars]
type = NumVars
system = 'NL'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_rel_tol = 1e-15
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/heat_transfer/test/tests/code_verification/cartesian_test_no4.i)
# Problem I.4
#
# An infinite plate with constant thermal conductivity k and internal
# heat generation q. The left boundary is exposed to a constant heat flux q0.
# The right boundary is exposed to a fluid with constant temperature uf and
# heat transfer coefficient h, which results in the convective boundary condition.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'q q0 k L uf h'
symbol_values = '1200 200 1 1 100 10.0'
expression = 'uf + (q0 + L * q)/h + 0.5 * ( 2 * q0 + q * (L + x)) * (L-x) / k'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./ui]
type = NeumannBC
boundary = left
variable = u
value = 200
[../]
[./uo]
type = CoupledConvectiveHeatFluxBC
boundary = right
variable = u
htc = 10.0
T_infinity = 100
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 1.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/kernels/scalar_constraint/scalar_constraint_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = 'x*x+y*y'
[../]
[./ffn]
type = ParsedFunction
expression = -4
[../]
[./bottom_bc_fn]
type = ParsedFunction
expression = -2*y
[../]
[./right_bc_fn]
type = ParsedFunction
expression = 2*x
[../]
[./top_bc_fn]
type = ParsedFunction
expression = 2*y
[../]
[./left_bc_fn]
type = ParsedFunction
expression = -2*x
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[./lambda]
family = SCALAR
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffnk]
type = BodyForce
variable = u
function = ffn
[../]
[./sk_lm]
type = ScalarLagrangeMultiplier
variable = u
lambda = lambda
[../]
[]
[ScalarKernels]
[./constraint]
type = AverageValueConstraint
variable = lambda
pp_name = pp
value = 2.666666666666666
[../]
[]
[BCs]
[./bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bottom_bc_fn
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = right_bc_fn
[../]
[./top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = top_bc_fn
[../]
[./left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = left_bc_fn
[../]
[]
[Postprocessors]
[./pp]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./pc]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-9
l_tol = 1.e-10
nl_max_its = 10
# This example builds an indefinite matrix, so "-pc_type hypre -pc_hypre_type boomeramg" cannot
# be used reliably on this problem. ILU(0) seems to do OK in both serial and parallel in my testing,
# I have not seen any zero pivot issues.
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'bjacobi ilu'
# This is a linear problem, so we don't need to recompute the
# Jacobian. This isn't a big deal for a Steady problems, however, as
# there is only one solve.
solve_type = 'LINEAR'
[]
[Outputs]
exodus = true
hide = lambda
[]
(test/tests/time_integrators/explicit-euler/ee-2d-linear-adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = (x+y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
lumping = true
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
implicit = true
[../]
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
[./Markers]
[./box]
bottom_left = '-0.4 -0.4 0'
inside = refine
top_right = '0.4 0.4 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
start_time = 0.0
num_steps = 4
dt = 0.005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/mortar/continuity-3d-non-conforming/continuity_sphere_hex.i)
[Mesh]
second_order = false
[file]
type = FileMeshGenerator
file = spheres_hex8.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
new_block_id = 11
new_block_name = "secondary"
sidesets = '101'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
new_block_id = 12
new_block_name = "primary"
sidesets = '102'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[T]
block = '1 2'
[]
[lambda]
block = 'secondary'
[]
[]
[BCs]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_soln_primal
variable = T
boundary = '1 2'
[]
[]
[Kernels]
[conduction]
type = Diffusion
variable = T
block = '1 2'
[]
[sink]
type = Reaction
variable = T
block = '1 2'
[]
[forcing_function]
type = BodyForce
variable = T
function = forcing_function
block = '1 2'
[]
[]
[Functions]
[forcing_function]
type = ParsedFunction
expression = 'x^2 + y^2 + z^2 - 6'
[]
[exact_soln_primal]
type = ParsedFunction
expression = 'x^2 + y^2 + z^2'
[]
[exact_soln_lambda]
type = ParsedFunction
expression = '4'
[]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[mortar]
type = EqualValueConstraint
primary_boundary = 2
secondary_boundary = 1
primary_subdomain = '12'
secondary_subdomain = '11'
variable = lambda
secondary_variable = T
correct_edge_dropping = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type -snes_linesearch_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu basic NONZERO 1e-15'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[L2lambda]
type = ElementL2Error
variable = lambda
function = exact_soln_lambda
execute_on = 'timestep_end'
block = 'secondary'
[]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = '1 2'
[]
[h]
type = AverageElementSize
block = '1 2'
[]
[]
(test/tests/mortar/continuity-2d-conforming/conforming.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-conf.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Functions]
[./exact_sln]
type = ParsedFunction
expression= y
[../]
[./ffn]
type = ParsedFunction
expression= 0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[Constraints]
[./ced]
type = EqualValueConstraint
variable = lm
secondary_variable = u
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '1 2 3 4'
function = exact_sln
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = exact_sln
block = '1 2'
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
l_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/publications/rapid_dev/fig3.i)
#
# Fig. 3 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Comparison of an analytical (ca) and numerical (c) phase field interface
# profile. Supply the L parameter on the command line to gather the data for
# the inset plot.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = ${L}
xmin = -30
xmax = 30
[]
[Functions]
[./solution]
type = ParsedFunction
expression = 0.5*(1+tanh(x/2^0.5))
[../]
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = solution
#type = FunctionIC
#function = if(x>0,1,0)
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./diff]
[../]
[./ca]
[./InitialCondition]
type = FunctionIC
function = '0.5*(1+tanh(x/2^0.5))'
[../]
[../]
[]
[AuxKernels]
[./diff]
type = ParsedAux
variable = diff
expression = c-ca
coupled_variables = 'c ca'
[../]
[]
[Materials]
[./F]
type = DerivativeParsedMaterial
property_name = F
expression = 'c^2*(1-c)^2'
coupled_variables = c
[../]
[]
[Kernels]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = 1
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = 1
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[Postprocessors]
[./L2]
type = ElementL2Error
function = solution
variable = c
[../]
[]
[VectorPostprocessors]
[./c]
type = LineValueSampler
variable = 'c ca diff'
start_point = '-10 0 0'
end_point = '10 0 0'
num_points = 200
sort_by = x
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
end_time = 1e+6
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 5
iteration_window = 1
[../]
[]
[Outputs]
csv = true
execute_on = final
[]
(test/tests/time_integrators/convergence/implicit_convergence.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
preset = false
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = 0.0
end_time = 1.0
dt = 0.0625
[./TimeIntegrator]
type = ImplicitMidpoint
[../]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
[]
(test/tests/time_integrators/explicit-euler/ee-1d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 20
elem_type = EDGE3
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x*x-2*t
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
# lumping = true
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1'
function = exact_fn
implicit = true
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
l_tol = 1e-12
start_time = 0.0
num_steps = 20
dt = 0.00005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/variables/fe_monomial_const/monomial-const-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 100
ny = 100
elem_type = QUAD4
[]
[Functions]
[./bc_fn]
type=ParsedFunction
expression=0
[../]
[./bc_fnt]
type = ParsedFunction
expression = 0
[../]
[./bc_fnb]
type = ParsedFunction
expression = 0
[../]
[./bc_fnl]
type = ParsedFunction
expression = 0
[../]
[./bc_fnr]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
# type = ParsedFunction
# expression = 0
type = MTPiecewiseConst2D
[../]
[./solution]
type = MTPiecewiseConst2D
[../]
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
# Note: MOOSE's DirichletBCs do not work properly with shape functions that do not
# have DOFs at the element edges. This test works because the solution
# has been designed to be zero at the boundary which is satisfied by the IC
# Ticket #1352
active = ''
[./bc_all]
type=FunctionDirichletBC
variable = u
boundary = 'top bottom left right'
function = bc_fn
[../]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1.e-10
[./Adaptivity]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/stochastic_tools/test/tests/auxkernels/surrogate_aux/surrogate_aux.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 10
[]
[]
[Surrogates]
[surrogate]
type = PolynomialRegressionSurrogate
filename = surrogate_trainer_poly_regression.rd
[]
[]
[AuxVariables]
[u]
family = MONOMIAL
order = CONSTANT
[]
[var]
family = MONOMIAL
order = CONSTANT
[]
[reference]
family = MONOMIAL
order = CONSTANT
[]
[]
[ICs]
[var_ic]
type = FunctionIC
variable = var
function = funz
[]
[]
[Functions]
[funx]
type = ParsedFunction
expression = 'x'
[]
[funz]
type = ParsedFunction
expression = 'z'
[]
[funt]
type = ParsedFunction
expression = 't'
[]
[reference]
type = ParsedFunction
expression = '1 + x + c + z + t +
x*x + x*c + x*z + x*t +
c*c + c*z + c*t +
z*z + z*t +
t*t'
symbol_names = c
symbol_values = 3.14
[]
[]
[Postprocessors]
[pp]
type = FunctionValuePostprocessor
function = funt
point = '0 0 0'
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[AuxKernels]
[u_aux]
type = SurrogateModelAuxKernel
variable = u
model = surrogate
parameters = 'funx 3.14 var pp'
scalar_parameters = 'funx pp'
coupled_variables = 'var'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Postprocessors]
[diff]
type = ElementL2Error
variable = u
function = reference
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 10
[]
[UserObjects]
[terminator]
type = Terminator
expression = 'diff > 1e-8'
error_level = ERROR
[]
[]
(test/tests/fvkernels/mms/skewness-correction/two_term_extrapol/advection-outflow.i)
diff=1
a=1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[../]
[]
[Variables]
[./v]
type = MooseVariableFVReal
face_interp_method = 'skewness-corrected'
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
[../]
[./diffusion]
type = FVDiffusion
variable = v
coeff = coeff
[../]
[./body]
type = FVBodyForce
variable = v
function = 'forcing'
[../]
[]
[FVBCs]
[left]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = v
[]
[top]
type = FVNeumannBC
boundary = 'top'
value = 0
variable = v
[]
[bottom]
type = FVNeumannBC
boundary = 'bottom'
value = 0
variable = v
[]
[right]
type = FVConstantScalarOutflowBC
variable = v
velocity = '${a} 0 0'
boundary = 'right'
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '${diff}'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(x)'
[]
[forcing]
type = ParsedFunction
expression = 'cos(x) - sin(x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -snes_linesearch_minlambda'
petsc_options_value = 'hypre boomeramg 1e-9'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/interfacekernels/1d_interface/ADMatreaction_1D_steady.i)
# Steady-state test for the ADMatInterfaceReaction kernel.
#
# Specie M transport from domain 1 (0<=x<=1) to domain 2 (1<x<=2),
# u and v are concentrations in domain 1 and domain 2.
#
# Diffusion in both domains can be described by Ficks law and diffusion
# kernel is applied.
#
# Specie M has different diffusity in different domains, here set as D1=4, D2=2.
#
# Dirichlet boundary conditions are applied, i.e., u(0)=1, v(2)=0
#
# At the interface consider the following
#
# (a) Fluxes are matched from both domains (InterfaceDiffusion kernel)
#
# (b) First-order reaction is R = kf*u - kb*v = 0
#
# This results in the interfacial conditions
#
# -D1 du = -D2 dv
# kf*u = kb*v
#
# Analytical solution is
# u = -0.2*u+1, 0<=u<=1
# v = -0.4*v+0.8, 1<v<=2
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'subdomain1'
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
block = '0'
[]
[v]
order = FIRST
family = LAGRANGE
block = '1'
[]
[]
[Kernels]
[diff_u]
type = MatDiffusion
variable = u
block = '0'
diffusivity = D
[]
[diff_v]
type = MatDiffusion
variable = v
block = '1'
diffusivity = D
[]
[]
[InterfaceKernels]
[interface]
type = InterfaceDiffusion
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
D = D
D_neighbor = D
[]
[interface_reaction]
type = ADMatInterfaceReaction
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
forward_rate = forward_rate
backward_rate = backward_rate
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = ADDirichletBC
variable = v
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = 'ADGenericConstantMaterial'
block = '0'
prop_names = 'forward_rate backward_rate'
prop_values = '1.0 2.0'
[]
[block01]
type = 'GenericConstantMaterial'
block = '0'
prop_names = 'D'
prop_values = '4'
[]
[block1]
type = 'ADGenericConstantMaterial'
block = '1'
prop_names = 'forward_rate backward_rate'
prop_values = '1.0 2.0'
[]
[block11]
type = 'GenericConstantMaterial'
block = '1'
prop_names = 'D'
prop_values = '2'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_rel_tol = 1e-10
[]
[Outputs]
print_linear_residuals = true
execute_on = 'FINAL'
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[elemental_error_u]
type = ElementL2Error
function = -0.2*x+1
variable = 'u'
block = '0'
[]
[elemental_error_v]
type = ElementL2Error
function = -0.4*x+0.8
variable = 'v'
block = '1'
[]
[]
(test/tests/fvkernels/mms/advection-diffusion.i)
diff=1.1
a=1.1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = -0.6
xmax = 0.6
nx = 64
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
[../]
[./diffusion]
type = FVDiffusion
variable = v
coeff = coeff
[../]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[boundary]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '${diff}'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = '3*x^2 + 2*x + 1'
[]
[forcing]
type = ParsedFunction
expression = '-${diff}*6 + ${a} * (6*x + 2)'
# expression = '-${diff}*6'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/tag/2d_diffusion_dg_tag.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 1
[../]
[../]
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = MONOMIAL
[../]
[./tag_variable2]
order = FIRST
family = MONOMIAL
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = u
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = TagMatrixAux
variable = tag_variable2
v = u
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[./abs]
type = Reaction
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[DGKernels]
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Postprocessors]
[./h]
type = AverageElementSize
[../]
[./dofs]
type = NumDOFs
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/skewness-correction/adv-diff-react/skewed.i)
a=1.1
diff=1.1
[Mesh]
[gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[]
[]
[Variables]
[v]
initial_condition = 1
type = MooseVariableFVReal
face_interp_method = 'skewness-corrected'
[]
[]
[FVKernels]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[advection]
type = FVAdvection
variable = v
velocity = '${a} ${fparse 2*a} 0'
advected_interp_method = 'average'
[]
[reaction]
type = FVReaction
variable = v
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
[]
[]
(test/tests/time_integrators/bdf2/bdf2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/hdg/mms/lid.i)
mu=1.1
rho=1.1
[GlobalParams]
variable = face_vel_x
u = vel_x
v = vel_y
grad_u = grad_vel_x
grad_v = grad_vel_y
face_u = face_vel_x
face_v = face_vel_y
pressure = p
enclosure_lm = lm
mu = ${mu}
rho = ${rho}
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = TRI6
[]
[]
[Variables]
[face_vel_x]
family = SIDE_HIERARCHIC
[]
[face_vel_y]
family = SIDE_HIERARCHIC
[]
[p]
family = L2_LAGRANGE
[]
[lm]
family = SCALAR
[]
[]
[AuxVariables]
[vel_x]
family = L2_LAGRANGE
[]
[vel_y]
family = L2_LAGRANGE
[]
[grad_vel_x]
family = L2_LAGRANGE_VEC
[]
[grad_vel_y]
family = L2_LAGRANGE_VEC
[]
[]
[HDGKernels]
[ns]
type = NavierStokesHDGKernel
body_force_x = forcing_u
body_force_y = forcing_v
pressure_mms_forcing_function = forcing_p
[]
[]
[HDGBCs]
[exact]
type = NavierStokesHDGVelocityDirichletBC
boundary = 'left right bottom top'
dirichlet_u = 'exact_u'
dirichlet_v = 'exact_v'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(y)*cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = 'mu*sin(y)*cos((1/2)*x*pi) + (1/4)*pi^2*mu*sin(y)*cos((1/2)*x*pi) - 1/2*pi*rho*sin(x)*sin(y)*sin((1/2)*y*pi)*cos((1/2)*x*pi) + rho*sin(x)*cos(y)*cos((1/2)*x*pi)*cos((1/2)*y*pi) - pi*rho*sin(y)^2*sin((1/2)*x*pi)*cos((1/2)*x*pi) + sin(y)*cos(x)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin(x)*cos((1/2)*y*pi)'
[]
[forcing_v]
type = ParsedFunction
expression = 'mu*sin(x)*cos((1/2)*y*pi) + (1/4)*pi^2*mu*sin(x)*cos((1/2)*y*pi) - pi*rho*sin(x)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 1/2*pi*rho*sin(x)*sin(y)*sin((1/2)*x*pi)*cos((1/2)*y*pi) + rho*sin(y)*cos(x)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + sin(x)*cos(y)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin(x)*sin(y)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*sin(x)*sin((1/2)*y*pi) - 1/2*pi*sin(y)*sin((1/2)*x*pi)'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'basic'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = vel_x
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
variable = vel_y
function = exact_v
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = p
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/heat_transfer/test/tests/code_verification/spherical_test_no5.i)
# Problem III.5
#
# A solid sphere has a spatially dependent internal heating. It has a constant thermal
# conductivity. It is exposed to a constant temperature on its boundary.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./volumetric_heat]
type = ParsedFunction
symbol_names = 'q ro beta'
symbol_values = '1200 1 0.1'
expression = 'q * (1-beta*(x/ro)^2)'
[../]
[./exact]
type = ParsedFunction
symbol_names = 'uf q k ro beta'
symbol_values = '300 1200 1 1 0.1'
expression = 'uf + (q*ro^2/(6*k)) * ( (1-(x/ro)^2) - 0.3*beta*(1-(x/ro)^4) )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = volumetric_heat
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = 'right'
variable = u
value = 300
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 1.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/variables/fe_hier/hier-3-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 1
ny = 1
nz = 1
elem_type = HEX27
# This problem only has 1 element, so using DistributedMesh in parallel
# isn't really an option, and we don't care that much about DistributedMesh
# in serial.
parallel_type = replicated
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
expression = 3*y*y
[../]
[./bc_fnb]
type = ParsedFunction
expression = -3*y*y
[../]
[./bc_fnl]
type = ParsedFunction
expression = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
expression = 3*x*x
[../]
[./bc_fnk]
type = ParsedFunction
expression = -3*z*z
[../]
[./bc_fnf]
type = ParsedFunction
expression = 3*z*z
[../]
[./forcing_fn]
type = ParsedFunction
expression = -6*x-6*y-6*z+(x*x*x)+(y*y*y)+(z*z*z)
[../]
[./solution]
type = ParsedGradFunction
expression = (x*x*x)+(y*y*y)+(z*z*z)
grad_x = 3*x*x
grad_y = 3*y*y
grad_z = 3*z*z
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[./bc_front]
type = FunctionNeumannBC
variable = u
boundary = 'front'
function = bc_fnf
[../]
[./bc_back]
type = FunctionNeumannBC
variable = u
boundary = 'back'
function = bc_fnk
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/kernels/ad_mat_diffusion/2d_steady_state.i)
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = T
diffusivity = 1
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'left right bottom'
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/element_h1_error_pps/element_h1_error_pp_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 2
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
active = 'forcing_func u_func'
[forcing_func]
type = ParsedFunction
expression = alpha*alpha*pi*pi*sin(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[]
[u_func]
type = ParsedGradFunction
expression = sin(alpha*pi*x)
grad_x = alpha*pi*cos(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[]
[]
[Kernels]
active = 'diff forcing'
[diff]
type = Diffusion
variable = u
[]
[forcing]
type = BodyForce
variable = u
function = forcing_func
[]
[]
[BCs]
active = 'left right'
[left]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[]
[]
[Executioner]
type = Steady
[Adaptivity]
refine_fraction = 1.0
coarsen_fraction = 0.0
max_h_level = 10
steps = 4
[]
[]
[Postprocessors]
[dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[]
[h1_error]
type = ElementH1Error
variable = u
function = u_func
execute_on = 'initial timestep_end'
[]
[h1_semi]
type = ElementH1SemiError
variable = u
function = u_func
execute_on = 'initial timestep_end'
[]
[l2_error]
type = ElementL2Error
variable = u
function = u_func
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(test/tests/kernels/ad_scalar_kernel_constraint/diffusion_override_scalar.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[exact_fn]
type = ParsedFunction
value = 'x*x+y*y'
[]
[ffn]
type = ParsedFunction
value = -4
[]
[bottom_bc_fn]
type = ParsedFunction
value = -2*y
[]
[right_bc_fn]
type = ParsedFunction
value = 2*x
[]
[top_bc_fn]
type = ParsedFunction
value = 2*y
[]
[left_bc_fn]
type = ParsedFunction
value = -2*x
[]
[]
[Variables]
[u]
family = LAGRANGE
order = SECOND
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[Kernels]
# Make sure that we can derive from the scalar base class
# but actually not assign a scalar variable
[diff]
type = ADDiffusionNoScalar
variable = u
scalar_variable = lambda
[]
[ffnk]
type = ADBodyForce
variable = u
function = ffn
[]
[sk_lm]
type = ADScalarLMKernel
variable = u
kappa = lambda
pp_name = pp
value = 2.666666666666666
[]
[]
[Problem]
kernel_coverage_check = false
error_on_jacobian_nonzero_reallocation = true
[]
[BCs]
[bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bottom_bc_fn
[]
[right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = right_bc_fn
[]
[top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = top_bc_fn
[]
[left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = left_bc_fn
[]
[]
[Postprocessors]
# integrate the volume of domain since original objects set
# int(phi)=V0, rather than int(phi-V0)=0
[pp]
type = FunctionElementIntegral
function = 1
execute_on = initial
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-9
l_tol = 1.e-10
nl_max_its = 10
# This example builds an indefinite matrix, so "-pc_type hypre -pc_hypre_type boomeramg" cannot
# be used reliably on this problem. ILU(0) seems to do OK in both serial and parallel in my testing,
# I have not seen any zero pivot issues.
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'bjacobi ilu'
# This is a linear problem, so we don't need to recompute the
# Jacobian. This isn't a big deal for a Steady problems, however, as
# there is only one solve.
solve_type = 'LINEAR'
[]
[Outputs]
# exodus = true
csv = true
hide = lambda
[]
(test/tests/fvkernels/mms/grad-reconstruction/rz.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
[../]
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[../]
[]
[FVKernels]
[./advection]
type = FVElementalAdvection
variable = v
velocity = '${a} ${a} 0'
[../]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[diri]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-a*sin(x)*sin(y) + diff*sin(x)*cos(y) + sin(x)*cos(y) + (x*a*cos(x)*cos(y) + a*sin(x)*cos(y))/x - (-x*diff*sin(x)*cos(y) + diff*cos(x)*cos(y))/x'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/outputs/debug/show_var_residual_norms.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[forcing_fnu]
type = ParsedFunction
expression = -5.8*(x+y)+x*x*x-x+y*y*y-y
[]
[forcing_fnv]
type = ParsedFunction
expression = -4
[]
[slnu]
type = ParsedGradFunction
expression = x*x*x-x+y*y*y-y
grad_x = 3*x*x-1
grad_y = 3*y*y-1
[]
[slnv]
type = ParsedGradFunction
expression = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[]
#NeumannBC functions
[bc_fnut]
type = ParsedFunction
expression = 3*y*y-1
[]
[bc_fnub]
type = ParsedFunction
expression = -3*y*y+1
[]
[bc_fnul]
type = ParsedFunction
expression = -3*x*x+1
[]
[bc_fnur]
type = ParsedFunction
expression = 3*x*x-1
[]
[]
[Variables]
[u]
order = THIRD
family = HIERARCHIC
[]
[v]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff1 diff2 test1 forceu forcev react'
[diff1]
type = Diffusion
variable = u
[]
[test1]
type = CoupledConvection
variable = u
velocity_vector = v
[]
[diff2]
type = Diffusion
variable = v
[]
[react]
type = Reaction
variable = u
[]
[forceu]
type = BodyForce
variable = u
function = forcing_fnu
[]
[forcev]
type = BodyForce
variable = v
function = forcing_fnv
[]
[]
[BCs]
active = 'bc_u_tb bc_v bc_ul bc_ur bc_ut bc_ub'
[bc_u]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[]
[bc_v]
type = FunctionDirichletBC
variable = v
function = slnv
boundary = 'left right top bottom'
[]
[bc_u_lr]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[]
[bc_u_tb]
type = CoupledKernelGradBC
variable = u
var2 = v
vel = '0.1 0.1'
boundary = 'top bottom left right'
[]
[bc_ul]
type = FunctionNeumannBC
variable = u
function = bc_fnul
boundary = 'left'
[]
[bc_ur]
type = FunctionNeumannBC
variable = u
function = bc_fnur
boundary = 'right'
[]
[bc_ut]
type = FunctionNeumannBC
variable = u
function = bc_fnut
boundary = 'top'
[]
[bc_ub]
type = FunctionNeumannBC
variable = u
function = bc_fnub
boundary = 'bottom'
[]
[]
[Preconditioning]
active = ' '
[prec]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'L2u L2v'
[dofs]
type = NumDOFs
[]
[h]
type = AverageElementSize
[]
[L2u]
type = ElementL2Error
variable = u
function = slnu
[]
[L2v]
type = ElementL2Error
variable = v
function = slnv
[]
[H1error]
type = ElementH1Error
variable = u
function = solution
[]
[H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-15
nl_abs_tol = 1e-13
[]
[Outputs]
execute_on = 'timestep_end'
[debug] # This is a test, use the [Debug] block to enable this
type = VariableResidualNormsDebugOutput
[]
[]
(test/tests/mortar/convergence-studies/solution-continuity/continuity.i)
[Mesh]
second_order = true
[./left_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[../]
[./left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3'
new_boundary = 'lb_bottom lb_right lb_top lb_left'
[../]
[./left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[../]
[./right_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 1
xmax = 2
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[../]
[./right_block_id]
type = SubdomainIDGenerator
input = right_block
subdomain_id = 2
[../]
[right_block_change_boundary_id]
type = RenameBoundaryGenerator
input = right_block_id
old_boundary = '0 1 2 3'
new_boundary = '100 101 102 103'
[]
[./combined]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_change_boundary_id'
[../]
[./block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'left_block right_block'
[../]
[right_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = rb_right
block = right_block
normal = '1 0 0'
[]
[right_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_right_sideset
new_boundary = rb_left
block = right_block
normal = '-1 0 0'
[]
[right_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_left_sideset
new_boundary = rb_top
block = right_block
normal = '0 1 0'
[]
[right_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_top_sideset
new_boundary = rb_bottom
block = right_block
normal = '0 -1 0'
[]
[secondary]
input = right_bottom_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'lb_right'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'rb_left'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[./T]
block = 'left_block right_block'
order = SECOND
[../]
[./lambda]
block = 'secondary_lower'
[../]
[]
[BCs]
[./neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_soln_primal
variable = T
boundary = 'lb_bottom lb_top lb_left rb_bottom rb_right rb_top'
[../]
[]
[Kernels]
[./conduction]
type = Diffusion
variable = T
block = 'left_block right_block'
[../]
[./sink]
type = Reaction
variable = T
block = 'left_block right_block'
[../]
[./forcing_function]
type = BodyForce
variable = T
function = forcing_function
block = 'left_block right_block'
[../]
[]
[Functions]
[./forcing_function]
type = ParsedFunction
expression = ''
[../]
[./exact_soln_primal]
type = ParsedFunction
expression = ''
[../]
[exact_soln_lambda]
type = ParsedFunction
expression = ''
[]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[./mortar]
type = EqualValueConstraint
primary_boundary = rb_left
secondary_boundary = lb_right
primary_subdomain = primary_lower
secondary_subdomain = secondary_lower
secondary_variable = T
variable = lambda
delta = 0.4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -snes_linesearch_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu basic mumps'
[]
[Outputs]
csv = true
[dofmap]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[L2lambda]
type = ElementL2Error
variable = lambda
function = exact_soln_lambda
execute_on = 'timestep_end'
block = 'secondary_lower'
[]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = 'left_block right_block'
[]
[h]
type = AverageElementSize
block = 'left_block right_block'
[]
[]
(test/tests/time_integrators/explicit-euler/ee-1d-quadratic-neumann.i)
[GlobalParams]
implicit = false
[]
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 10
elem_type = EDGE3
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x*x-2*t+t*x*x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x*x
[../]
[./left_bc_fn]
type = ParsedFunction
expression = -t*2*x
[../]
[./right_bc_fn]
type = ParsedFunction
expression = t*2*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./abs]
type = Reaction
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./left]
type = FunctionNeumannBC
variable = u
boundary = '0'
function = left_bc_fn
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = '1'
function = right_bc_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
l_tol = 1e-12
start_time = 0.0
num_steps = 10
dt = 0.001
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/kernels/scalar_kernel_constraint/diffusion_override_scalar.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[exact_fn]
type = ParsedFunction
value = 'x*x+y*y'
[]
[ffn]
type = ParsedFunction
value = -4
[]
[bottom_bc_fn]
type = ParsedFunction
value = -2*y
[]
[right_bc_fn]
type = ParsedFunction
value = 2*x
[]
[top_bc_fn]
type = ParsedFunction
value = 2*y
[]
[left_bc_fn]
type = ParsedFunction
value = -2*x
[]
[]
[Variables]
[u]
family = LAGRANGE
order = SECOND
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[Kernels]
# Make sure that we can derive from the scalar base class
# but actually not assign a scalar variable
[diff]
type = DiffusionNoScalar
variable = u
scalar_variable = lambda
[]
[ffnk]
type = BodyForce
variable = u
function = ffn
[]
[sk_lm]
type = ScalarLMKernel
variable = u
kappa = lambda
pp_name = pp
value = 2.666666666666666
[]
[]
[Problem]
kernel_coverage_check = false
error_on_jacobian_nonzero_reallocation = true
[]
[BCs]
[bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bottom_bc_fn
[]
[right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = right_bc_fn
[]
[top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = top_bc_fn
[]
[left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = left_bc_fn
[]
[]
[Postprocessors]
# integrate the volume of domain since original objects set
# int(phi)=V0, rather than int(phi-V0)=0
[pp]
type = FunctionElementIntegral
function = 1
execute_on = initial
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-9
l_tol = 1.e-10
nl_max_its = 10
# This example builds an indefinite matrix, so "-pc_type hypre -pc_hypre_type boomeramg" cannot
# be used reliably on this problem. ILU(0) seems to do OK in both serial and parallel in my testing,
# I have not seen any zero pivot issues.
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'bjacobi ilu'
# This is a linear problem, so we don't need to recompute the
# Jacobian. This isn't a big deal for a Steady problems, however, as
# there is only one solve.
solve_type = 'LINEAR'
[]
[Outputs]
# exodus = true
csv = true
hide = lambda
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/plane-poiseuille-flow.i)
mu = 0.5
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'average'
two_term_boundary_expansion = true
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 10
ny = 2
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = '0.5*(1.0 - y^2)/mu'
symbol_names = 'mu'
symbol_values = '${mu}'
[]
[exact_rhou]
type = ParsedFunction
expression = '0.5*rho*(1.0 - y^2)/mu'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = '0'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = '0.0'
[]
[exact_rhov]
type = ParsedFunction
expression = '0'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '0'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = '10.0 - x'
[]
[forcing_p]
type = ParsedFunction
expression = '0'
symbol_names = 'rho mu'
symbol_values = '${rho} ${mu}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu NONZERO superlu_dist'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/mortar/continuity-3d-non-conforming/continuity_mixed.i)
[Mesh]
second_order = false
[file]
type = FileMeshGenerator
file = mixed_mesh.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
new_block_id = 11
new_block_name = "secondary"
sidesets = '101'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
new_block_id = 12
new_block_name = "primary"
sidesets = '102'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[T]
block = '1 2'
[]
[lambda]
block = 'secondary'
[]
[]
[BCs]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_soln_primal
variable = T
boundary = '1 2'
[]
[]
[Kernels]
[conduction]
type = Diffusion
variable = T
block = '1 2'
[]
[sink]
type = Reaction
variable = T
block = '1 2'
[]
[forcing_function]
type = BodyForce
variable = T
function = forcing_function
block = '1 2'
[]
[]
[Functions]
[forcing_function]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi) + 3*pi^2*sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_primal]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_lambda]
type = ParsedFunction
expression = 'pi*sin(pi*y)*sin(pi*z)*cos(pi*x)'
[]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[mortar]
type = EqualValueConstraint
primary_boundary = 2
secondary_boundary = 1
primary_subdomain = '12'
secondary_subdomain = '11'
variable = lambda
secondary_variable = T
delta = 0.1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type -snes_linesearch_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu basic NONZERO 1e-15'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[L2lambda]
type = ElementL2Error
variable = lambda
function = exact_soln_lambda
execute_on = 'timestep_end'
block = 'secondary'
[]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = '1 2'
[]
[h]
type = AverageElementSize
block = '1 2'
[]
[]
(test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value.i)
[Mesh]
file = square-2x2-nodeids.e
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = AverageNodalVariableValue
variable = u
boundary = 10
[../]
[./node4]
type = AverageNodalVariableValue
variable = v
boundary = 13
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_avg_nodal_var_value
exodus = true
[]
(test/tests/auxkernels/function_scalar_aux/function_scalar_aux.i)
#
# Testing a solution that is second order in space and first order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[AuxVariables]
[./x]
family = SCALAR
order = FIRST
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./x_fn]
type = ParsedFunction
expression = t
[../]
[]
[AuxScalarKernels]
[./x_saux]
type = FunctionScalarAux
variable = x
function = x_fn
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/cylindrical/2d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 'exact_v'
[]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 'exact_v'
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 'exact_p'
[]
[axis-u]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[axis-v]
type = INSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(x*pi)^2*sin((1/2)*y*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin(x*pi)^2*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = '(1/4)*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) - pi*sin(x*pi)*cos((1/2)*y*pi) + (4*x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)^2*cos(x*pi) + rho*sin(x*pi)^4*sin((1/2)*y*pi)^2)/x + (-x*pi*rho*sin(x*pi)^2*sin((1/2)*y*pi)*sin(y*pi)*cos(x*pi) + (1/2)*x*pi*rho*sin(x*pi)^2*cos(x*pi)*cos((1/2)*y*pi)*cos(y*pi))/x - (-2*x*pi^2*mu*sin(x*pi)^2*sin((1/2)*y*pi) + 2*x*pi^2*mu*sin((1/2)*y*pi)*cos(x*pi)^2 + 2*pi*mu*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'cos(x*pi)*cos(y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*cos(x*pi)*cos(y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = 'pi^2*mu*cos(x*pi)*cos(y*pi) - 2*pi*rho*sin(y*pi)*cos(x*pi)^2*cos(y*pi) - 1/2*pi*sin((1/2)*y*pi)*cos(x*pi) - (-x*pi^2*mu*cos(x*pi)*cos(y*pi) - pi*mu*sin(x*pi)*cos(y*pi))/x + (-x*pi*rho*sin(x*pi)^3*sin((1/2)*y*pi)*cos(y*pi) + 2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi)^2*cos(y*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi)*cos(x*pi)*cos(y*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'cos(x*pi)*cos((1/2)*y*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-pi*rho*sin(y*pi)*cos(x*pi) + (2*x*pi*rho*sin(x*pi)*sin((1/2)*y*pi)*cos(x*pi) + rho*sin(x*pi)^2*sin((1/2)*y*pi))/x'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
[]
[Outputs]
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/solid_mechanics/test/tests/global_strain/global_strain_uniaxial.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[SolidMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '5e9 0 0 0 0 0'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err_e00]
type = ElementL2Error
variable = e00
function = 0.07142857 #strain_xx = C1111/sigma_xx
[../]
[./l2err_e11]
type = ElementL2Error
variable = e11
function = -0.07142857*0.33 #strain_yy = -nu*strain_xx
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/hdgkernels/diffusion/rt-mms-diffusion.i)
[GlobalParams]
variable = face_u
u = u
grad_u = grad_u
face_u = face_u
diffusivity = 1
tau = 0
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
elem_type = TRI6
[]
[]
[Variables]
[face_u]
family = SIDE_HIERARCHIC
[]
[]
[AuxVariables]
[u]
family = MONOMIAL
order = CONSTANT
[]
[grad_u]
family = L2_RAVIART_THOMAS
[]
[]
[HDGKernels]
[diff]
type = DiffusionHDGKernel
source = 'forcing'
[]
[]
[HDGBCs]
[all]
type = DiffusionHDGDirichletBC
boundary = 'left right top bottom'
functor = 'exact'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(.5*pi*x)*sin(.5*pi*y)'
[]
[forcing]
type = ParsedFunction
expression = '.5*pi*.5*pi*cos(.5*pi*x)*sin(.5*pi*y) + .5*pi*.5*pi*cos(.5*pi*x)*sin(.5*pi*y)'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'basic'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/kernels/scalar_kernel_constraint/diffusion_bipass_scalar.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[exact_fn]
type = ParsedFunction
value = 'x*x+y*y'
[]
[ffn]
type = ParsedFunction
value = -4
[]
[bottom_bc_fn]
type = ParsedFunction
value = -2*y
[]
[right_bc_fn]
type = ParsedFunction
value = 2*x
[]
[top_bc_fn]
type = ParsedFunction
value = 2*y
[]
[left_bc_fn]
type = ParsedFunction
value = -2*x
[]
[]
[Variables]
[u]
family = LAGRANGE
order = SECOND
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[Kernels]
# Make sure that we can derive from the scalar base class
# but actually not assign a scalar variable
[diff]
type = DiffusionNoScalar
variable = u
[]
[ffnk]
type = BodyForce
variable = u
function = ffn
[]
[sk_lm]
type = ScalarLMKernel
variable = u
kappa = lambda
pp_name = pp
value = 2.666666666666666
[]
[]
[Problem]
kernel_coverage_check = false
error_on_jacobian_nonzero_reallocation = true
[]
[BCs]
[bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bottom_bc_fn
[]
[right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = right_bc_fn
[]
[top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = top_bc_fn
[]
[left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = left_bc_fn
[]
[]
[Postprocessors]
# integrate the volume of domain since original objects set
# int(phi)=V0, rather than int(phi-V0)=0
[pp]
type = FunctionElementIntegral
function = 1
execute_on = initial
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-9
l_tol = 1.e-10
nl_max_its = 10
# This example builds an indefinite matrix, so "-pc_type hypre -pc_hypre_type boomeramg" cannot
# be used reliably on this problem
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
# This is a linear problem, so we don't need to recompute the
# Jacobian. This isn't a big deal for a Steady problems, however, as
# there is only one solve.
solve_type = 'LINEAR'
[]
[Outputs]
# exodus = true
csv = true
hide = lambda
[]
(test/tests/auxkernels/constant_scalar_aux/constant_scalar_aux.i)
#
# Testing a solution that is second order in space and first order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[AuxVariables]
[./x]
family = SCALAR
order = FIRST
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[ICs]
[./ic_x]
type = ScalarConstantIC
variable = x
value = 11
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[AuxScalarKernels]
[./const_x]
type = ConstantScalarAux
variable = x
value = 11
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/harmonic_interpolation/diffusion.i)
d1 = 1
d2 = 10
[Mesh]
[gen_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
elem_type = TRI3
[]
[subdomain]
type = ParsedSubdomainMeshGenerator
input = gen_mesh
combinatorial_geometry = 'y > 0.5'
block_id = 1
[]
[]
[Variables]
[v]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = 'diff_coeff'
coeff_interp_method = average
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'if (y < 0.5, 1 + x + 3*y*y*y, (11*d2-3*d1)/ (8*d2) + x + 3*d1/d2*y*y*y)'
symbol_names = 'd1 d2'
symbol_values = '${d1} ${d2}'
[]
[forcing]
type = ParsedFunction
expression = '-d1*18*y'
symbol_names = 'd1'
symbol_values = '${d1}'
[]
[]
[Materials]
[diff_coeff]
type = ADPiecewiseByBlockFunctorMaterial
prop_name = 'diff_coeff'
subdomain_to_prop_value = '0 ${d1}
1 ${d2}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
exodus = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
[]
[]
(test/tests/postprocessors/pps_interval/pps_bad_interval3.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ignore_bad
time_step_interval = 2
exodus = true
[]
(test/tests/time_integrators/explicit-euler/ee-1d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 200
elem_type = EDGE2
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
lumping = true
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1'
function = exact_fn
implicit = true
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 20
dt = 0.00005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(modules/heat_transfer/test/tests/code_verification/cartesian_test_no2.i)
# Problem I.2
#
# An infinite plate with a thermal conductivity that varies linearly with
# temperature. Each boundary is exposed to a constant temperature.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'L beta ki ko ui uo'
symbol_values = '1 1e-3 5.3 5 300 0'
expression = 'uo+(ko/beta)* ( (1 + L*beta*(ki+ko)*(ui-uo)*((L-x)/(ko*L)^2) )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '5 + 1e-3 * (u-0)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/porous-hllc.i)
eps=0.9
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = 1.1
nx = 2
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Variables]
[rho]
type = MooseVariableFVReal
[]
[rho_ud]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[]
[ICs]
[rho]
type = FunctionIC
variable = rho
function = 'exact_rho'
[]
[rho_ud]
type = FunctionIC
variable = rho_ud
function = 'exact_rho_ud'
[]
[rho_et]
type = FunctionIC
variable = rho_et
function = 'exact_rho_et'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVMassHLLC
variable = rho
fp = fp
[]
[mass_fn]
type = FVBodyForce
variable = rho
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVMomentumHLLC
variable = rho_ud
momentum_component = x
fp = fp
[]
[momentum_fn]
type = FVBodyForce
variable = rho_ud
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVFluidEnergyHLLC
variable = rho_et
fp = fp
[]
[energy_fn]
type = FVBodyForce
variable = rho_et
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_in]
variable = rho
type = PCNSFVHLLCSpecifiedMassFluxAndTemperatureMassBC
boundary = left
temperature = 'exact_T'
superficial_rhou = 'exact_rho_ud'
[]
[momentum_in]
variable = rho_ud
type = PCNSFVHLLCSpecifiedMassFluxAndTemperatureMomentumBC
boundary = left
temperature = 'exact_T'
superficial_rhou = 'exact_rho_ud'
momentum_component = 'x'
[]
[energy_in]
variable = rho_et
type = PCNSFVHLLCSpecifiedMassFluxAndTemperatureFluidEnergyBC
boundary = left
temperature = 'exact_T'
superficial_rhou = 'exact_rho_ud'
[]
[mass_out]
variable = rho
type = PCNSFVHLLCSpecifiedPressureMassBC
boundary = right
pressure = 'exact_p'
[]
[momentum_out]
variable = rho_ud
type = PCNSFVHLLCSpecifiedPressureMomentumBC
boundary = right
pressure = 'exact_p'
momentum_component = 'x'
[]
[energy_out]
variable = rho_et
type = PCNSFVHLLCSpecifiedPressureFluidEnergyBC
boundary = right
pressure = 'exact_p'
[]
[]
[Materials]
[var_mat]
type = PorousConservedVarMaterial
rho = rho
superficial_rhou = rho_ud
rho_et = rho_et
porosity = porosity
[]
[porosity]
type = GenericConstantMaterial
prop_names = 'porosity'
prop_values = '${eps}'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
expression = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
expression = '-3.83667087618017*eps*sin(1.1*x)'
symbol_names = 'eps'
symbol_values = '${eps}'
[]
[exact_rho_ud]
type = ParsedFunction
expression = '3.48788261470924*eps*cos(1.1*x)'
symbol_names = 'eps'
symbol_values = '${eps}'
[]
[forcing_rho_ud]
type = ParsedFunction
expression = 'eps*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x)) + 3.48788261470924*eps*sin(x)*cos(1.1*x)^2/cos(x)^2 - 7.67334175236034*eps*sin(1.1*x)*cos(1.1*x)/cos(x)'
symbol_names = 'eps'
symbol_values = '${eps}'
[]
[exact_rho_et]
type = ParsedFunction
expression = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
expression = '1.0*eps*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 1.1*eps*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 1.0*eps*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
symbol_names = 'eps'
symbol_values = '${eps}'
[]
[exact_T]
type = ParsedFunction
expression = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
symbol_names = 'eps'
symbol_values = '${eps}'
[]
[exact_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
symbol_names = 'eps'
symbol_values = '${eps}'
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = none
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho]
type = ElementL2Error
variable = rho
function = exact_rho
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_ud]
variable = rho_ud
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_et]
variable = rho_et
function = exact_rho_et
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(examples/ex14_pps/ex14.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 32
ny = 32
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[forced]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
# A ParsedFunction allows us to supply analytic expressions directly in the input file
[exact]
type = ParsedFunction
expression = sin(alpha*pi*x)
symbol_names = alpha
symbol_values = 16
[]
# This function is an actual compiled function
[force]
type = ExampleFunction
alpha = 16
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = forced
[]
# This Kernel can take a function name to use
[forcing]
type = ADBodyForce
variable = forced
function = force
[]
[]
[BCs]
# The BC can take a function name to use
[all]
type = FunctionDirichletBC
variable = forced
boundary = 'bottom right top left'
function = exact
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[h]
type = AverageElementSize
[]
[error]
type = ElementL2Error
variable = forced
function = exact
[]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/variables/fe_hermite_convergence/hermite_converge_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in PeriodicBCs.
parallel_type = replicated
[]
[Functions]
[./bc_fn]
type = ParsedGradFunction
value = -sin(pi*x)*sin(pi*y)
grad_x = -pi*cos(pi*x)*sin(pi*y)
grad_y = -pi*sin(pi*x)*cos(pi*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = -2*pi*pi*sin(pi*x)*sin(pi*y)-sin(pi*x)*sin(pi*y)
[../]
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionPenaltyDirichletBC
variable = u
boundary = 'bottom right top left'
function = bc_fn
penalty = 1e10
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = bc_fn
[../]
[./H1error]
type = ElementH1Error
variable = u
function = bc_fn
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = bc_fn
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
# We use higher-order quadrature to ensure that the forcing function
# is integrated accurately.
[./Quadrature]
order=ELEVENTH
[../]
[]
[Adaptivity]
steps = 2
marker = uniform
[./Markers]
[./uniform]
type = UniformMarker
mark = refine
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
print_mesh_changed_info = true
[]
(test/tests/variables/fe_hier/hier-2-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
expression = 2*y
[../]
[./bc_fnb]
type = ParsedFunction
expression = -2*y
[../]
[./bc_fnl]
type = ParsedFunction
expression = -2*x
[../]
[./bc_fnr]
type = ParsedFunction
expression = 2*x
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+x*x+y*y
[../]
[./solution]
type = ParsedGradFunction
expression = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/postprocessors/pps_interval/pps_interval_mismatch.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
time_step_interval = 4
exodus = true
[./console]
type = Console
time_step_interval = 3
[../]
[]
(modules/heat_transfer/test/tests/code_verification/cartesian_test_no3.i)
# Problem I.3
#
# The thermal conductivity of an infinite plate varies linearly with
# temperature: k = ko(1+beta*u). It has a constant internal heat generation q,
# and has the boundary conditions du/dx = 0 at x= L and u(L) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'q L beta uo ko'
symbol_values = '1200 1 1e-3 0 1'
expression = 'uo+(1/beta)*( ( 1 + (1-(x/L)^2) * (beta*q*L^2) / ko )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./ui]
type = NeumannBC
boundary = left
variable = u
value = 0
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '1 * (1 + 1e-3*u)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/executioners/executioner/steady.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = -4
[../]
[./exact_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ffn'
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_steady
exodus = true
[]
(test/tests/auxkernels/time_derivative/time_derivative.i)
# This test is setting the values of an auxiliary varaible f according to the
# function f_fn. This function is time dependent.
#
# Then the f_dot is brought as a forcing function into the L2 projection, thus
# the resulting values of u should give the f_dot which is known.
#
# NOTE: There is no need to do more than 2 time steps, because f_dot is constant
# in time. That means that the projection is exactly the same for the second time
# step as is for the first time step. The solver has nothing to do and you can
# see that on the "zero" initial non-linear residual.
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Functions]
[./f_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[./f_dot_fn]
type = ParsedFunction
expression = (x+y)
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./l2_proj]
type = Reaction
variable = u
[../]
[./dck]
type = DotCouplingKernel
variable = u
v = f
[../]
[]
[AuxVariables]
[./f]
[../]
[]
[AuxKernels]
[./f_k]
type = FunctionAux
variable = f
function = f_fn
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = f_dot_fn
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
nl_abs_tol = 1.e-15
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/auxkernels/time_derivative/coupled_aux_time_derivative.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Functions]
[./f_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[./f_dot_fn]
type = ParsedFunction
expression = (x+y)
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./l2_proj]
type = Reaction
variable = u
[../]
[./dck]
type = DotCouplingKernel
variable = u
v = f
[../]
[]
[AuxVariables]
[./f]
[../]
[./g]
[../]
[]
[AuxKernels]
[./f_k]
type = FunctionAux
variable = f
function = f_fn
[../]
# We do not allow coupling of time derivatives of aux vars into the aux vars
[./g_k]
type = DotCouplingAux
variable = g
v = f
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = f_dot_fn
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
nl_abs_tol = 1.e-15
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/dgkernels/3d_diffusion_dg/3d_diffusion_dg_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
elem_type = HEX8
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = MONOMIAL
[InitialCondition]
type = ConstantIC
value = 0.5
[]
[]
[]
[Functions]
active = 'forcing_fn exact_fn'
[forcing_fn]
type = ParsedFunction
expression = 2*pow(e,-x-(y*y))*(1-2*y*y)
[]
[exact_fn]
type = ParsedGradFunction
expression = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[]
[]
[Kernels]
active = 'diff abs forcing'
[diff]
type = Diffusion
variable = u
[]
[abs] # u * v
type = Reaction
variable = u
[]
[forcing]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[DGKernels]
active = 'dg_diff'
[dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[]
[]
[BCs]
active = 'all'
[all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3 4 5'
function = exact_fn
epsilon = -1
sigma = 6
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'h dofs l2_err'
[h]
type = AverageElementSize
execute_on = 'initial timestep_end'
[]
[dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/mortar/continuity-3d-non-conforming/continuity_penalty_sphere_hex.i)
[Mesh]
second_order = false
[file]
type = FileMeshGenerator
file = spheres_hex8.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
new_block_id = 11
new_block_name = "secondary"
sidesets = '101'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
new_block_id = 12
new_block_name = "primary"
sidesets = '102'
[]
uniform_refine = 0
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[T]
block = '1 2'
[]
[]
[BCs]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_soln_primal
variable = T
boundary = '1 2'
[]
[]
[Kernels]
[conduction]
type = Diffusion
variable = T
block = '1 2'
[]
[sink]
type = Reaction
variable = T
block = '1 2'
[]
[forcing_function]
type = BodyForce
variable = T
function = forcing_function
block = '1 2'
[]
[]
[Functions]
[forcing_function]
type = ParsedFunction
expression = 'x^2 + y^2 + z^2 - 6'
[]
[exact_soln_primal]
type = ParsedFunction
expression = 'x^2 + y^2 + z^2'
[]
[exact_soln_lambda]
type = ParsedFunction
expression = '4'
[]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[mortar]
type = PenaltyEqualValueConstraint
primary_boundary = 2
secondary_boundary = 1
primary_subdomain = '12'
secondary_subdomain = '11'
secondary_variable = T
correct_edge_dropping = true
penalty_value = 1.e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 6'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = '1 2'
[]
[h]
type = AverageElementSize
block = '1 2'
[]
[]
(test/tests/variables/high_order_monomial/high_order_monomial.i)
###########################################################
# This is a simple test demonstrating the use of the
# Higher order monomial variable type.
#
# @Requirement F3.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
# Monomial variable types
[AuxVariables]
[./first]
family = MONOMIAL
[../]
[./second]
order = SECOND
family = MONOMIAL
[../]
[./third]
order = THIRD
family = MONOMIAL
[../]
[]
[Functions]
[./first]
type = ParsedFunction
expression = 1+2*x+2*y
[../]
[./second]
type = ParsedFunction
expression = 1+2*x+4*x*x+2*y+4*y*y+4*x*y
[../]
[./third]
type = ParsedFunction
expression = 1+2*x+4*x*x+8*x*x*x+2*y+4*y*y+8*y*y*y+4*x*y+8*x*x*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./first]
type = FunctionAux
variable = first
function = first
execute_on = timestep_end
[../]
[./second]
type = FunctionAux
variable = second
function = second
execute_on = timestep_end
[../]
[./third]
type = FunctionAux
variable = third
function = third
execute_on = timestep_end
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./first_error]
type = ElementL2Error
variable = first
function = first
execute_on = 'initial timestep_end'
[../]
[./second_error]
type = ElementL2Error
variable = second
function = second
execute_on = 'initial timestep_end'
[../]
[./third_error]
type = ElementL2Error
variable = third
function = third
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/mms_sine/2_d_mms_sine_postprocessor_test.i)
#2_d_mms_sine_postprocessor_test.i
#This is for u = sin(a*x*y*z*t)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 8
ny = 8
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions] #Added so that we can use the Postprocessor
active = 'solution'
[./solution]
type = ParsedFunction
expression = sin(a*x*y*z*t)
symbol_names = 'a'
symbol_values = '3.141592653589793'
[../]
[]
[AuxVariables] #We added nodal AuxVariables
active = 'nodal_aux'
[./nodal_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff implicit conv forcing reaction'
[./diff]
type = MMSDiffusion
variable = u
[../]
[./implicit] #We got from MOOSE kernels
type = MMSImplicitEuler
variable = u
[../]
[./conv] #We created our own convection kernel
type = MMSConvection
variable = u
x = -1
y = 2
[../]
[./forcing] #We created our own forcing kernel
type = MMSForcing
variable = u
[../]
[./reaction] #We got from MOOSE kernels
type = MMSReaction
variable = u
[../]
[]
[AuxKernels] #We created our own AuxKernel
active = 'ConstantAux'
[./ConstantAux]
type = MMSConstantAux
variable = nodal_aux
[../]
[]
[BCs]
active = 'all_u'
[./all_u]
type = MMSCoupledDirichletBC
variable = u
boundary = '0 1 2 3'
# value = sin(a*x*y*z*t)
[../]
[]
[Executioner]
type = Transient
dt = .1
num_steps = 5
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'l2_error dofs'
[./l2_error]
type = ElementL2Error
variable = u
function = solution
execute_on = 'initial timestep_end'
[../]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = 2_d_postprocessor_out
csv = true
[]
(test/tests/fvkernels/mms/cylindrical/advection-diffusion-reaction.i)
a=1.1
diff=1.1
[Mesh]
coord_type = 'RZ'
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} ${a} 0'
advected_interp_method = 'average'
[../]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-a*sin(x)*sin(y) + diff*sin(x)*cos(y) + sin(x)*cos(y) + (x*a*cos(x)*cos(y) + a*sin(x)*cos(y))/x - (-x*diff*sin(x)*cos(y) + diff*cos(x)*cos(y))/x'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/kernels/ad_scalar_kernel_constraint/diffusion_bipass_scalar.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[exact_fn]
type = ParsedFunction
value = 'x*x+y*y'
[]
[ffn]
type = ParsedFunction
value = -4
[]
[bottom_bc_fn]
type = ParsedFunction
value = -2*y
[]
[right_bc_fn]
type = ParsedFunction
value = 2*x
[]
[top_bc_fn]
type = ParsedFunction
value = 2*y
[]
[left_bc_fn]
type = ParsedFunction
value = -2*x
[]
[]
[Variables]
[u]
family = LAGRANGE
order = SECOND
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[Kernels]
# Make sure that we can derive from the scalar base class
# but actually not assign a scalar variable
[diff]
type = ADDiffusionNoScalar
variable = u
[]
[ffnk]
type = ADBodyForce
variable = u
function = ffn
[]
[sk_lm]
type = ADScalarLMKernel
variable = u
kappa = lambda
pp_name = pp
value = 2.666666666666666
[]
[]
[Problem]
kernel_coverage_check = false
error_on_jacobian_nonzero_reallocation = true
[]
[BCs]
[bottom]
type = ADFunctionNeumannBC
variable = u
boundary = 'bottom'
function = bottom_bc_fn
[]
[right]
type = ADFunctionNeumannBC
variable = u
boundary = 'right'
function = right_bc_fn
[]
[top]
type = ADFunctionNeumannBC
variable = u
boundary = 'top'
function = top_bc_fn
[]
[left]
type = ADFunctionNeumannBC
variable = u
boundary = 'left'
function = left_bc_fn
[]
[]
[Postprocessors]
# integrate the volume of domain since original objects set
# int(phi)=V0, rather than int(phi-V0)=0
[pp]
type = FunctionElementIntegral
function = 1
execute_on = initial
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
residual_and_jacobian_together = true
nl_rel_tol = 1e-9
l_tol = 1.e-10
nl_max_its = 10
# This example builds an indefinite matrix, so "-pc_type hypre -pc_hypre_type boomeramg" cannot
# be used reliably on this problem
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
# This is a linear problem, so we don't need to recompute the
# Jacobian. This isn't a big deal for a Steady problems, however, as
# there is only one solve.
solve_type = 'LINEAR'
[]
[Outputs]
# exodus = true
csv = true
hide = lambda
[]
(python/peacock/tests/common/oversample.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[./refine_2]
type = Exodus
file_base = oversample_2
refinements = 2
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/bcs/advection_bc/2d_advection_bc.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10.0
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./vx]
[../]
[./force]
[../]
[]
[ICs]
[./vx]
type = FunctionIC
variable = vx
function = vx_function
[../]
[./force]
type = FunctionIC
variable = force
function = forcing
[../]
[]
[Kernels]
[./advection]
type = MassConvectiveFlux
variable = phi
vel_x = vx
[../]
[./rhs]
type = CoupledForce
variable = phi
v = force
[../]
[]
[BCs]
[./inflow_enthalpy]
type = DirichletBC
variable = phi
boundary = 'left'
value = 1
[../]
[./outflow_term]
type = AdvectionBC
variable = phi
velocity_vector = 'vx'
boundary = 'right'
[../]
[]
[Functions]
[./vx_function]
type = ParsedFunction
expression = '1 + x * x'
[../]
[./forcing]
type = ParsedFunction
expression = 'x'
[../]
[./analytical]
type = ParsedFunction
expression = '(1 + 0.5 * x * x) / (1 + x * x)'
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = phi
function = analytical
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/mortar/continuity-3d-non-conforming/continuity_non_conforming_tet.i)
[Mesh]
second_order = false
[file]
type = FileMeshGenerator
file = tet_non_mesh.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
new_block_id = 11
new_block_name = "secondary"
sidesets = '101'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
new_block_id = 12
new_block_name = "primary"
sidesets = '102'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[T]
block = '1 2'
[]
[lambda]
block = 'secondary'
[]
[]
[BCs]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_soln_primal
variable = T
boundary = '1 2'
[]
[]
[Kernels]
[conduction]
type = Diffusion
variable = T
block = '1 2'
[]
[sink]
type = Reaction
variable = T
block = '1 2'
[]
[forcing_function]
type = BodyForce
variable = T
function = forcing_function
block = '1 2'
[]
[]
[Functions]
[forcing_function]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi) + 3*pi^2*sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_primal]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_lambda]
type = ParsedFunction
expression = 'pi*sin(pi*y)*sin(pi*z)*cos(pi*x)'
[]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[mortar]
type = EqualValueConstraint
primary_boundary = 2
secondary_boundary = 1
primary_subdomain = '12'
secondary_subdomain = '11'
variable = lambda
secondary_variable = T
delta = 0.1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type -snes_linesearch_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu basic NONZERO 1e-15'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[L2lambda]
type = ElementL2Error
variable = lambda
function = exact_soln_lambda
execute_on = 'timestep_end'
block = 'secondary'
[]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = '1 2'
[]
[h]
type = AverageElementSize
block = '1 2'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/rotated/rotated-pp-flow.i)
mu=0.5
rho=1.1
advected_interp_method='average'
velocity_interp_method='average'
two_term_boundary_expansion=true
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 10
ny = 2
[]
[rotate]
type = TransformGenerator
input = gen
transform = 'rotate'
vector_value = '45 0 0'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[AuxVariables]
[vel_exact_x][]
[vel_exact_y][]
[p_exact][]
[]
[AuxKernels]
[u_exact]
type = FunctionAux
variable = vel_exact_x
function = exact_u
[]
[v_exact]
type = FunctionAux
variable = vel_exact_y
function = exact_v
[]
[p_exact]
type = FunctionAux
variable = p_exact
function = exact_p
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = ${two_term_boundary_expansion}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = '0.25*sqrt(2)*(1.0 - 1/2*(-x + y)^2)/mu'
symbol_names = 'mu'
symbol_values = '${mu}'
[]
[exact_rhou]
type = ParsedFunction
expression = '0.25*sqrt(2)*rho*(1.0 - 1/2*(-x + y)^2)/mu'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = '0'
[]
[exact_v]
type = ParsedFunction
expression = '0.25*sqrt(2)*(1.0 - 1/2*(-x + y)^2)/mu'
symbol_names = 'mu'
symbol_values = '${mu}'
[]
[exact_rhov]
type = ParsedFunction
expression = '0.25*sqrt(2)*rho*(1.0 - 1/2*(-x + y)^2)/mu'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '0'
[]
[exact_p]
type = ParsedFunction
expression = '-1/2*sqrt(2)*(x + y) + 10.0'
[]
[forcing_p]
type = ParsedFunction
expression = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Outputs]
csv = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[./L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
l_tol = 1e-13
start_time = 0.0
num_steps = 20
dt = 0.00005
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/time_integrators/tvdrk2/1d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 20
elem_type = EDGE2
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = u
function = ic
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitTVDRK2
[../]
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 10
dt = 0.001
l_tol = 1e-15
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/level_set/test/tests/kernels/advection/advection_mms.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 12
nx = 48
[]
[Adaptivity]
steps = 5
marker = marker
[./Markers]
[./marker]
type = UniformMarker
mark = REFINE
[../]
[../]
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[ICs]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[BCs]
[./left]
type = FunctionDirichletBC
boundary = 'left'
function = phi_exact
variable = phi
[../]
[]
[Functions]
[./phi_exact]
type = ParsedFunction
expression = 'a*sin(pi*x/b)*cos(pi*x)'
symbol_names = 'a b'
symbol_values = '2 12'
[../]
[./phi_mms]
type = ParsedFunction
expression = '-2*pi*a*sin(pi*x)*sin(pi*x/b) + 2*pi*a*cos(pi*x)*cos(pi*x/b)/b'
symbol_names = 'a b'
symbol_values = '2 12'
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '2'
expression_y = '2'
[../]
[]
[Kernels]
[./phi_advection]
type = LevelSetAdvection
variable = phi
velocity = velocity
[../]
[./phi_forcing]
type = BodyForce
variable = phi
function = phi_mms
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = phi_exact
variable = phi
[../]
[./h]
type = AverageElementSize
[../]
[]
[VectorPostprocessors]
active = ''
[./results]
type = LineValueSampler
variable = phi
start_point = '0 0 0'
end_point = '12 0 0'
num_points = 500
sort_by = x
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-10
solve_type = NEWTON
# A steady-state pure advection problem is numerically challenging,
# it has a zero diagonal in the Jabocian matrix. The following solver
# settings seem to reliably solve this problem.
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
[]
[Outputs]
execute_on = 'TIMESTEP_END'
csv = true
[]
(test/tests/kernels/material_coupled_force/material_coupled_force.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 10
ymin = 0
ymax = 2
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v1]
initial_condition = 3
[../]
[./v2]
[../]
[]
[ICs]
[./v2_ic]
type = FunctionIC
variable = v2
function = v2_func
[../]
[]
[Functions]
[./v2_func]
type = ParsedFunction
expression = 'x + 2 * y'
[../]
[./reference]
type = ParsedFunction
expression = '3 * (-1) * 3.5 + (x + 2 * y) * 15 * 1.2'
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'm1 m2'
prop_values = '-1 15'
[../]
[]
[Kernels]
[./reaction]
type = Reaction
variable = u
[../]
[./coupled]
type = MatCoupledForce
variable = u
v = 'v1 v2'
coef = '3.5 1.2'
material_properties = 'm1 m2'
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = reference
variable = u
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/variables/fe_hier/hier-1-1d.i)
###########################################################
# This is a simple test demonstrating the use of the
# Hierarchic variable type.
#
# @Requirement F3.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 5
elem_type = EDGE3
[]
[Functions]
[./bc_fnl]
type = ParsedFunction
expression = -1
[../]
[./bc_fnr]
type = ParsedFunction
expression = 1
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./solution]
type = ParsedGradFunction
expression = x
grad_x = 1
[../]
[]
# Hierarchic Variable type
[Variables]
[./u]
order = FIRST
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(tutorials/tutorial03_verification/app/test/tests/step04_mms/2d_mms_spatial.i)
[ICs]
active = 'mms'
[mms]
type = FunctionIC
variable = T
function = mms_exact
[]
[]
[BCs]
active = 'mms'
[mms]
type = FunctionDirichletBC
variable = T
boundary = 'left right top bottom'
function = mms_exact
[]
[]
[Kernels]
[mms]
type = HeatSource
variable = T
function = mms_force
[]
[]
[Functions]
[mms_force]
type = ParsedFunction
expression = 'cp*rho*sin(x*pi)*sin(5*y*pi) + 26*pi^2*k*t*sin(x*pi)*sin(5*y*pi) - shortwave*exp(y*kappa)*sin((1/2)*x*pi)*sin((1/3600)*pi*t/hours)'
symbol_names = 'rho cp k kappa shortwave hours'
symbol_values = '150 2000 0.01 40 650 9'
[]
[mms_exact]
type = ParsedFunction
expression = 't*sin(pi*x)*sin(5*pi*y)'
[]
[]
[Outputs]
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = T
function = mms_exact
[]
[h]
type = AverageElementSize
[]
[]
(test/tests/mortar/convergence-studies/fv-gap-conductance/gap-conductance.i)
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Mesh]
[left_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3'
new_boundary = 'lb_bottom lb_right lb_top lb_left'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block
subdomain_id = 2
[]
[right_block_change_boundary_id]
type = RenameBoundaryGenerator
input = right_block_id
old_boundary = '0 1 2 3'
new_boundary = '100 101 102 103'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'left_block right_block'
[]
[right_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = rb_right
included_subdomains = right_block
normal = '1 0 0'
[]
[right_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_right_sideset
new_boundary = rb_left
included_subdomains = right_block
normal = '-1 0 0'
[]
[right_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_left_sideset
new_boundary = rb_top
included_subdomains = right_block
normal = '0 1 0'
[]
[right_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_top_sideset
new_boundary = rb_bottom
included_subdomains = right_block
normal = '0 -1 0'
[]
[secondary]
input = right_bottom_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'lb_right'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'rb_left'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[T]
block = 'left_block right_block'
type = MooseVariableFVReal
[]
[lambda]
block = 'secondary_lower'
family = MONOMIAL
order = CONSTANT
[]
[]
[FVBCs]
[neumann]
type = FVFunctionDirichletBC
function = exact_soln_primal
variable = T
boundary = 'lb_bottom lb_top lb_left rb_bottom rb_right rb_top'
[]
[]
[FVKernels]
[conduction]
type = FVDiffusion
variable = T
block = 'left_block right_block'
coeff = 1
[]
[sink]
type = FVReaction
variable = T
block = 'left_block right_block'
[]
[forcing_function]
type = FVBodyForce
variable = T
function = forcing_function
block = 'left_block right_block'
[]
[]
[Functions]
[forcing_function]
type = ParsedFunction
expression = ''
[]
[exact_soln_primal]
type = ParsedFunction
expression = ''
[]
[exact_soln_lambda]
type = ParsedFunction
expression = ''
[]
[mms_secondary]
type = ParsedFunction
expression = ''
[]
[mms_primary]
type = ParsedFunction
expression = ''
[]
[]
[Constraints]
[mortar]
type = GapHeatConductanceTest
primary_boundary = rb_left
secondary_boundary = lb_right
primary_subdomain = primary_lower
secondary_subdomain = secondary_lower
secondary_variable = T
variable = lambda
secondary_gap_conductance = 1
primary_gap_conductance = 1
secondary_mms_function = mms_secondary
primary_mms_function = mms_primary
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[L2lambda]
type = ElementL2Error
variable = lambda
function = exact_soln_lambda
execute_on = 'timestep_end'
block = 'secondary_lower'
[]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = 'left_block right_block'
[]
[h]
type = AverageElementSize
block = 'left_block right_block'
[]
[]
(test/tests/executioners/executioner/sln-time-adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_sta
exodus = true
[]
(test/tests/time_integrators/dirk/dirk-2d-heat.i)
#
# Testing a solution that is second order in space and first order in time.
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = exact_fn
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = 0.0
end_time = 1.0
dt = 1.0
nl_abs_tol=1e-13
nl_rel_tol=1e-13
[./TimeIntegrator]
type = LStableDirk2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/variables/fe_monomial_const/monomial-const-1d.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 100
elem_type = EDGE3
[]
[Functions]
[./bc_fn]
type=ParsedFunction
expression=0
[../]
[./forcing_fn]
type = MTPiecewiseConst1D
[../]
[./solution]
type = MTPiecewiseConst1D
[../]
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
# Note: MOOSE's DirichletBCs do not work properly with shape functions that do not
# have DOFs at the element edges. This test works because the solution
# has been designed to be zero at the boundary which is satisfied by the IC
# Ticket #1352
active = ''
[./bc_all]
type=FunctionDirichletBC
variable = u
boundary = 'left right'
function = bc_fn
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1.e-9
[./Adaptivity]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/functions/parsed/mms_transient_coupled.i)
###########################################################
# This is a simple test of the Function System. This
# test uses forcing terms produced from analytical
# functions of space and time to verify a solution
# using MMS.
#
# @Requirement F6.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 1.0
nx = 10
ymin = 0.0
ymax = 1.0
ny = 10
uniform_refine = 2
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Functions]
[./v_left_bc]
# Left-side boundary condition for v equation, v(0,y,t) = u(0.5,y,t). This is accomplished using a PointValue postprocessor, which is what this input file was designed to test.
type = ParsedFunction
expression = a
symbol_values = u_midpoint
symbol_names = a
[../]
[./u_mms_func]
# MMS Forcing function for the u equation.
type = ParsedFunction
expression = ' 20*exp(20*t)*x*x*x-6*exp(20*t)*x-(2-0.125*exp(20*t))*sin(5/2*x*pi)-0.125*exp(20*t)-1
'
[../]
[./v_mms_func]
# MMS forcing function for the v equation.
type = ParsedFunction
expression = -2.5*exp(20*t)*sin(5/2*x*pi)+2.5*exp(20*t)+25/4*(2-0.125*exp(20*t))*sin(5/2*x*pi)*pi*pi
[../]
[./u_right_bc]
type = ParsedFunction
expression = 3*exp(20*t) # \nabla{u}|_{x=1} = 3\exp(20*t)
[../]
[./u_exact]
# Exact solution for the MMS function for the u variable.
type = ParsedFunction
expression = exp(20*t)*pow(x,3)+1
[../]
[./v_exact]
# Exact MMS solution for v.
type = ParsedFunction
expression = (2-0.125*exp(20*t))*sin(5/2*pi*x)+0.125*exp(20*t)+1
[../]
[]
[Kernels]
# Strong Form:
# \frac{\partial u}{\partial t} - \nabla \cdot 0.5 \nabla u - v = 0
# \frac{\partial u}{\partial t} - \nabla \cdot \nabla v = 0
#
# BCs:
# u(0,y,t) = 1
# \nabla u |_{x=1} = 3\exp(20*t)
# v(0,y,t) = u(0.5,y,t)
# v(1,y,t) = 3
# \nabla u |_{y=0,1} = 0
# \nabla v |_{y=0,1} = 0
#
[./u_time]
type = TimeDerivative
variable = u
[../]
[./u_diff]
type = Diffusion
variable = u
[../]
[./u_source]
type = CoupledForce
variable = u
v = v
[../]
[./v_diff]
type = Diffusion
variable = v
[../]
[./u_mms]
type = BodyForce
variable = u
function = u_mms_func
[../]
[./v_mms]
type = BodyForce
variable = v
function = v_mms_func
[../]
[./v_time]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./u_left]
type = DirichletBC
variable = u
boundary = left # x=0
value = 1 # u(0,y,t)=1
[../]
[./u_right]
type = FunctionNeumannBC
variable = u
boundary = right # x=1
function = u_right_bc # \nabla{u}|_{x=1}=3\exp(20t)
[../]
[./v_left]
type = FunctionDirichletBC
variable = v
boundary = left # x=0
function = v_left_bc # v(0,y,t) = u(0.5,y,t)
[../]
[./v_right]
type = DirichletBC
variable = v
boundary = right # x=1
value = 3 # v(1,y,t) = 3
[../]
[]
[Postprocessors]
[./u_midpoint]
type = PointValue
variable = u
point = '0.5 0.5 0'
execute_on = 'initial timestep_end'
[../]
[./u_midpoint_exact]
type = FunctionValuePostprocessor
function = u_exact
point = '0.5 0.5 0.0'
execute_on = 'initial timestep_end'
[../]
[./u_error]
type = ElementL2Error
variable = u
function = u_exact
execute_on = 'initial timestep_end'
[../]
[./v_error]
type = ElementL2Error
variable = v
function = v_exact
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = NEWTON
end_time = 0.1
scheme = crank-nicolson
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_initial]
# Use the MMS exact solution to compute the initial conditions.
function = u_exact
variable = u
type = FunctionIC
[../]
[./v_exact]
# Use the MMS exact solution to compute the initial condition.
function = v_exact
variable = v
type = FunctionIC
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/mms/supg/supg_adv_dominated_mms.i)
mu=1.5e-2
rho=2.5
[GlobalParams]
gravity = '0 0 0'
supg = true
convective_term = true
integrate_p_by_parts = false
transient_term = true
laplace = true
u = vel_x
v = vel_y
pressure = p
alpha = 1e0
order = SECOND
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
elem_type = QUAD9
nx = 4
ny = 4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
order = FIRST
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
[../]
[./x_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
forcing_func = vel_x_source_func
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
forcing_func = vel_y_source_func
[../]
[./p_source]
type = BodyForce
function = p_source_func
variable = p
[../]
[]
[BCs]
[./vel_x]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_x_func
variable = vel_x
[../]
[./vel_y]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_y_func
variable = vel_y
[../]
[./p]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = p_func
variable = p
[../]
[]
[Functions]
[./vel_x_source_func]
type = ParsedFunction
expression = '-${mu}*(-0.028*pi^2*x^2*sin(0.2*pi*x*y) - 0.028*pi^2*y^2*sin(0.2*pi*x*y) - 0.1*pi^2*sin(0.5*pi*x) - 0.4*pi^2*sin(pi*y)) + ${rho}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[./vel_y_source_func]
type = ParsedFunction
expression = '-${mu}*(-0.018*pi^2*x^2*sin(0.3*pi*x*y) - 0.018*pi^2*y^2*sin(0.3*pi*x*y) - 0.384*pi^2*sin(0.8*pi*x) - 0.027*pi^2*sin(0.3*pi*y)) + ${rho}*(0.06*pi*x*cos(0.3*pi*x*y) + 0.09*pi*cos(0.3*pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.06*pi*y*cos(0.3*pi*x*y) + 0.48*pi*cos(0.8*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*x*cos(0.2*pi*x*y) + 0.3*pi*cos(0.3*pi*y)'
[../]
[./p_source_func]
type = ParsedFunction
expression = '-0.06*pi*x*cos(0.3*pi*x*y) - 0.14*pi*y*cos(0.2*pi*x*y) - 0.2*pi*cos(0.5*pi*x) - 0.09*pi*cos(0.3*pi*y)'
[../]
[./vel_x_func]
type = ParsedFunction
expression = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./vel_y_func]
type = ParsedFunction
expression = '0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3'
[../]
[./p_func]
type = ParsedFunction
expression = '0.5*sin(0.5*pi*x) + 1.0*sin(0.3*pi*y) + 0.5*sin(0.2*pi*x*y) + 0.5'
[../]
[./vxx_func]
type = ParsedFunction
expression = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-14
nl_max_its = 10
l_tol = 1e-6
l_max_its = 10
[./TimeStepper]
dt = .05
type = IterationAdaptiveDT
cutback_factor = 0.4
growth_factor = 1.2
optimal_iterations = 20
[../]
[]
[Outputs]
execute_on = 'final'
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2vel_x]
type = ElementL2Error
variable = vel_x
function = vel_x_func
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2vel_y]
variable = vel_y
function = vel_y_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2p]
variable = p
function = p_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2vxx]
variable = vxx
function = vxx_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./vxx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./vxx]
type = VariableGradientComponent
component = x
variable = vxx
gradient_variable = vel_x
[../]
[]
(test/tests/kernels/ad_coupled_value/ad_aux_coupled_time_value.i)
###########################################################
# This is a simple test of coupling an aux variable into the
# ADCoupledTimeDerivative kernel.
# The expected solution for the variable v is
# v(x) = 1/2 * (x^2 + x)
###########################################################
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Functions]
[./u]
type = ParsedFunction
expression = 't'
[../]
[]
[AuxKernels]
[./u]
type = FunctionAux
variable = u
function = u
[../]
[]
[Kernels]
[./time_v]
type = ADCoupledTimeDerivative
variable = v
v = u
[../]
[./diff_v]
type = ADDiffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = v
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = v
function = '1/2 * (x^2 + x)'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-linear-adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = (x+y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
[./Markers]
[./box]
bottom_left = '-0.4 -0.4 0'
inside = refine
top_right = '0.4 0.4 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 4
dt = 0.005
l_tol = 1e-12
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(modules/level_set/test/tests/verification/1d_level_set_mms/level_set_mms.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 32
nx = 64
uniform_refine = 0
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[ICs]
[./phi_ic]
function = phi_exact
variable = phi
type = FunctionIC
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Functions]
[./phi_exact]
type = ParsedFunction
expression = 'a*exp(1/(10*t))*sin(2*pi*x/b) + 1'
symbol_names = 'a b'
symbol_values = '1 8'
[../]
[./phi_mms]
type = ParsedFunction
expression = '-a*exp(1/(10*t))*sin(2*pi*x/b)/(10*t^2) + 2*pi*a*exp(1/(10*t))*cos(2*pi*x/b)/b'
symbol_names = 'a b'
symbol_values = '1 8'
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '1'
expression_y = '1'
[../]
[]
[Kernels]
[./phi_advection]
type = LevelSetAdvection
variable = phi
velocity = velocity
[../]
[./phi_time]
type = TimeDerivative
variable = phi
[../]
[./phi_forcing]
type = BodyForce
variable = phi
function = phi_mms
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = phi_exact
variable = phi
[../]
[./h]
type = AverageElementSize
[../]
[./point]
type = PointValue
point = '0.1 0 0'
variable = phi
[../]
[]
[Executioner]
type = Transient
start_time = 1
dt = 0.01
end_time = 1.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
scheme = bdf2
nl_rel_tol = 1e-12
[]
[Outputs]
time_step_interval = 10
execute_on = 'timestep_end'
csv = true
[]
(test/tests/variables/fe_hier/hier-2-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 1
ny = 1
nz = 1
elem_type = HEX27
# This problem only has 1 element, so using DistributedMesh in parallel
# isn't really an option, and we don't care that much about DistributedMesh
# in serial.
parallel_type = replicated
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
expression = 2*y
[../]
[./bc_fnb]
type = ParsedFunction
expression = -2*y
[../]
[./bc_fnl]
type = ParsedFunction
expression = -2*x
[../]
[./bc_fnr]
type = ParsedFunction
expression = 2*x
[../]
[./bc_fnf]
type = ParsedFunction
expression = 2*z
[../]
[./bc_fnk]
type = ParsedFunction
expression = -2*z
[../]
[./forcing_fn]
type = ParsedFunction
expression = -6+x*x+y*y+z*z
[../]
[./solution]
type = ParsedGradFunction
expression = x*x+y*y+z*z
grad_x = 2*x
grad_y = 2*y
grad_z = 2*z
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[./bc_front]
type = FunctionNeumannBC
variable = u
boundary = 'front'
function = bc_fnf
[../]
[./bc_back]
type = FunctionNeumannBC
variable = u
boundary = 'back'
function = bc_fnk
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/postprocessors/nodal_var_value/nodal_var_value.i)
[Mesh]
file = square-2x2-nodeids.e
# NodalVariableValue is not safe on renumbered meshes
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 scalednode1 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./scalednode1]
type = NodalVariableValue
variable = u
nodeid = 15
scale_factor = 2
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_nodal_var_value
exodus = true
[]
(test/tests/kernels/ad_scalar_kernel_constraint/scalar_constraint_together.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[exact_fn]
type = ParsedFunction
value = 'x*x+y*y'
[]
[ffn]
type = ParsedFunction
value = -4
[]
[bottom_bc_fn]
type = ParsedFunction
value = -2*y
[]
[right_bc_fn]
type = ParsedFunction
value = 2*x
[]
[top_bc_fn]
type = ParsedFunction
value = 2*y
[]
[left_bc_fn]
type = ParsedFunction
value = -2*x
[]
[]
[Variables]
[u]
family = LAGRANGE
order = SECOND
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[ffnk]
type = ADBodyForce
variable = u
function = ffn
[]
[sk_lm]
type = ADScalarLMKernel
variable = u
kappa = lambda
pp_name = pp
value = 2.666666666666666
[]
[]
[Problem]
kernel_coverage_check = false
error_on_jacobian_nonzero_reallocation = true
[]
[BCs]
[bottom]
type = ADFunctionNeumannBC
variable = u
boundary = 'bottom'
function = bottom_bc_fn
[]
[right]
type = ADFunctionNeumannBC
variable = u
boundary = 'right'
function = right_bc_fn
[]
[top]
type = ADFunctionNeumannBC
variable = u
boundary = 'top'
function = top_bc_fn
[]
[left]
type = ADFunctionNeumannBC
variable = u
boundary = 'left'
function = left_bc_fn
[]
[]
[Postprocessors]
# integrate the volume of domain since original objects set
# int(phi)=V0, rather than int(phi-V0)=0
[pp]
type = FunctionElementIntegral
function = 1
execute_on = initial
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Steady
residual_and_jacobian_together = true
nl_rel_tol = 1e-9
l_tol = 1.e-10
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
solve_type = NEWTON
[]
[Outputs]
# exodus = true
csv = true
hide = lambda
[]
(test/tests/time_integrators/convergence/explicit_convergence.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
# We are solving only mass matrices in this problem. The Jacobi
# preconditioner is a bit faster than ILU or AMG for this.
petsc_options_iname = '-pc_type'
petsc_options_value = 'jacobi'
start_time = 0.0
end_time = 0.03125
dt = 0.00390625
[./TimeIntegrator]
type = Heun
[../]
# For explicit methods, we use the LINEAR solve type.
solve_type = 'LINEAR'
l_tol = 1e-13
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
[]
(test/tests/time_integrators/tvdrk2/2d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*((x*x)+(y*y))-(4*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*((x*x)+(y*y))
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = u
function = ic
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitTVDRK2
[../]
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 10
dt = 0.0001
l_tol = 1e-8
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/level_set/test/tests/kernels/olsson_reinitialization/olsson_1d.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 8
ny = 8
uniform_refine = 2
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./phi_0]
family = MONOMIAL
order = FIRST
[../]
[./phi_exact]
[../]
[]
[AuxKernels]
[./phi_exact]
type = FunctionAux
function = phi_exact
variable = phi_exact
[../]
[]
[Functions]
[./phi_initial]
type = ParsedFunction
expression = '1-x'
[../]
[./phi_exact]
type = ParsedFunction
symbol_names = epsilon
symbol_values = 0.05
expression = '1 / (1+exp((x-0.5)/epsilon))'
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_initial
variable = phi
[../]
[./phi_0_ic]
type = FunctionIC
function = phi_initial
variable = phi_0
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./reinit]
type = LevelSetOlssonReinitialization
variable = phi
phi_0 = phi_0
epsilon = 0.05
[../]
[]
[UserObjects]
[./arnold]
type = LevelSetOlssonTerminator
tol = 0.1
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = phi
function = phi_exact
execute_on = 'initial timestep_end'
[../]
[./ndofs]
type = NumDOFs
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
start_point = '0 0.5 0'
end_point = '1 0.5 0'
variable = phi
num_points = 100
sort_by = x
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
l_max_its = 100
nl_max_its = 100
solve_type = PJFNK
num_steps = 10
start_time = 0
nl_abs_tol = 1e-13
scheme = implicit-euler
dt = 0.05
petsc_options_iname = '-pc_type -pc_sub_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
[]
[Outputs]
exodus = true
[./out]
type = CSV
time_data = true
file_base = output/olsson_1d_out
[../]
[]
(modules/heat_transfer/test/tests/verify_against_analytical/ad_2d_steady_state.i)
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatDiff]
type = ADHeatConduction
variable = T
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'right bottom left'
value = 0
[../]
[./top]
type = ADFunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Materials]
[./properties]
type = ADGenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1 1 1'
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/pps_interval/pps_out_interval.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
file_base = pps_out_interval
time_step_interval = 2
exodus = true
[./console]
type = Console
time_step_interval = 1
[../]
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 200
elem_type = EDGE2
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
lumping = true
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 20
dt = 0.00005
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/time_integrators/implicit-euler/ie_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/hdgkernels/diffusion/mms-diffusion.i)
[GlobalParams]
variable = face_u
u = u
grad_u = grad_u
face_u = face_u
diffusivity = 1
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
elem_type = TRI6
[]
[]
[Variables]
[face_u]
family = SIDE_HIERARCHIC
[]
[]
[AuxVariables]
[u]
family = L2_LAGRANGE
[]
[grad_u]
family = L2_LAGRANGE_VEC
[]
[]
[HDGKernels]
[diff]
type = DiffusionHDGKernel
source = 'forcing'
[]
[]
[HDGBCs]
[all]
type = DiffusionHDGDirichletBC
boundary = 'left right top bottom'
functor = 'exact'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(.5*pi*x)*sin(.5*pi*y)'
[]
[forcing]
type = ParsedFunction
expression = '.5*pi*.5*pi*cos(.5*pi*x)*sin(.5*pi*y) + .5*pi*.5*pi*cos(.5*pi*x)*sin(.5*pi*y)'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'basic'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/skew-correction/skewed-vortex-action.i)
mu = 1.0
rho = 1.0
[Mesh]
[gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'incompressible'
density = 'rho'
dynamic_viscosity = 'mu'
wall_boundaries = 'top left right bottom'
momentum_wall_types = 'noslip noslip noslip noslip'
initial_velocity = '1 1 0'
pin_pressure = true
pinned_pressure_type = average
pinned_pressure_value = 0
momentum_face_interpolation = skewness-corrected
pressure_face_interpolation = skewness-corrected
momentum_advection_interpolation = skewness-corrected
mass_advection_interpolation = skewness-corrected
[]
[]
[FVKernels]
[u_forcing]
type = INSFVBodyForce
variable = vel_x
functor = forcing_u
momentum_component = 'x'
rhie_chow_user_object = 'ins_rhie_chow_interpolator'
[]
[v_forcing]
type = INSFVBodyForce
variable = vel_y
functor = forcing_v
momentum_component = 'y'
rhie_chow_user_object = 'ins_rhie_chow_interpolator'
[]
[]
[FunctorMaterials]
[const]
type = ADGenericFunctorMaterial
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'x^2*(1-x)^2*(2*y-6*y^2+4*y^3)'
[]
[exact_v]
type = ParsedFunction
expression = '-y^2*(1-y)^2*(2*x-6*x^2+4*x^3)'
[]
[exact_p]
type = ParsedFunction
expression = 'x*(1-x)-2/12'
[]
[forcing_u]
type = ParsedFunction
expression = '-4*mu/rho*(-1+2*y)*(y^2-6*x*y^2+6*x^2*y^2-y+6*x*y-6*x^2*y+3*x^2-6*x^3+3*x^4)+1-2*x+4*x^3'
'*y^2*(2*y^2-2*y+1)*(y-1)^2*(-1+2*x)*(x-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '4*mu/rho*(-1+2*x)*(x^2-6*y*x^2+6*x^2*y^2-x+6*x*y-6*x*y^2+3*y^2-6*y^3+3*y^4)+4*y^3*x^2*(2'
'*x^2-2*x+1)*(x-1)^2*(-1+2*y)*(y-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-8
[]
[Outputs]
[out]
type = Exodus
hide = lambda
[]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = vel_x
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2Error
variable = vel_y
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/auxkernels/error_function_aux/error_function_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./element_l2_error]
# Aux field variable representing the L2 error on each element
order = CONSTANT
family = MONOMIAL
[../]
[./element_h1_error]
# Aux field variable representing the H1 error on each element
order = CONSTANT
family = MONOMIAL
[../]
[./element_l2_norm]
# Aux field variable representing the L^2 norm of the solution variable
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = sin(2*pi*x)*sin(2*pi*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 8*pi^2*sin(2*pi*x)*sin(2*pi*y)
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[AuxKernels]
[./l2_norm_aux]
type = ElementLpNormAux
variable = element_l2_norm
coupled_variable = u
[../]
[./l2_error_aux]
type = ElementL2ErrorFunctionAux
variable = element_l2_error
# A function representing the exact solution for the solution
function = exact_fn
# The nonlinear variable representing the FEM solution
coupled_variable = u
[../]
[./h1_error_aux]
type = ElementH1ErrorFunctionAux
variable = element_h1_error
# A function representing the exact solution for the solution
function = exact_fn
# The nonlinear variable representing the FEM solution
coupled_variable = u
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'bottom left right top'
function = exact_fn
[../]
[]
[Postprocessors]
[./L2_error]
# The L2 norm of the error over the entire mesh. Note: this is
# *not* equal to the sum over all the elements of the L2-error
# norms.
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/electromagnetics/test/tests/interfacekernels/electrostatic_contact/analytic_solution_test_two_block.i)
# Regression test for ElectrostaticContactCondition with analytic solution with
# two blocks
#
# dim = 1D
# X = [0,2]
# Interface at X = 1
#
# stainless_steel graphite
# +------------------+------------------+
#
# Left BC: Potential = 1
# Right BC: Potential = 0
# Center Interface: ElectrostaticContactCondition
#
[Mesh]
[line]
type = GeneratedMeshGenerator
dim = 1
nx = 4
xmax = 2
[]
[break]
type = SubdomainBoundingBoxGenerator
input = line
block_id = 1
block_name = 'graphite'
bottom_left = '1 0 0'
top_right = '2 0 0'
[]
[block_rename]
type = RenameBlockGenerator
input = break
old_block = 0
new_block = 'stainless_steel'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = block_rename
primary_block = 'stainless_steel'
paired_block = 'graphite'
new_boundary = 'ssg_interface'
[]
[]
[Variables]
[potential_graphite]
block = graphite
[]
[potential_stainless_steel]
block = stainless_steel
[]
[]
[AuxVariables]
[analytic_potential_stainless_steel]
block = stainless_steel
[]
[analytic_potential_graphite]
block = graphite
[]
[]
[Kernels]
[electric_graphite]
type = ADMatDiffusion
variable = potential_graphite
diffusivity = electrical_conductivity
block = graphite
[]
[electric_stainless_steel]
type = ADMatDiffusion
variable = potential_stainless_steel
diffusivity = electrical_conductivity
block = stainless_steel
[]
[]
[AuxKernels]
[analytic_function_aux_stainless_steel]
type = FunctionAux
function = potential_fxn_stainless_steel
variable = analytic_potential_stainless_steel
block = stainless_steel
[]
[analytic_function_aux_graphite]
type = FunctionAux
function = potential_fxn_graphite
variable = analytic_potential_graphite
block = graphite
[]
[]
[BCs]
[elec_left]
type = ADDirichletBC
variable = potential_stainless_steel
boundary = left
value = 1
[]
[elec_right]
type = ADDirichletBC
variable = potential_graphite
boundary = right
value = 0
[]
[]
[InterfaceKernels]
[electric_contact_conductance_ssg]
type = ElectrostaticContactCondition
variable = potential_stainless_steel
neighbor_var = potential_graphite
boundary = ssg_interface
mean_hardness = mean_hardness
mechanical_pressure = 3000
[]
[]
[Materials]
#graphite (at 300 K)
[sigma_graphite]
type = ADGenericConstantMaterial
prop_names = electrical_conductivity
prop_values = 73069.2
block = graphite
[]
#stainless_steel (at 300 K)
[sigma_stainless_steel]
type = ADGenericConstantMaterial
prop_names = electrical_conductivity
prop_values = 1.41867e6
block = stainless_steel
[]
# harmonic mean of graphite and stainless steel hardness
[mean_hardness]
type = ADGenericConstantMaterial
prop_names = mean_hardness
prop_values = 2.4797e9
[]
[]
[Functions]
[potential_fxn_stainless_steel]
type = ElectricalContactTestFunc
domain = stainless_steel
[]
[potential_fxn_graphite]
type = ElectricalContactTestFunc
domain = graphite
[]
[]
[Postprocessors]
[error_stainless_steel]
type = ElementL2Error
variable = potential_stainless_steel
function = potential_fxn_stainless_steel
block = stainless_steel
[]
[error_graphite]
type = ElementL2Error
variable = potential_graphite
function = potential_fxn_graphite
block = graphite
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = true
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/outputs/debug/show_var_residual_norms_debug.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[forcing_fnu]
type = ParsedFunction
expression = -5.8*(x+y)+x*x*x-x+y*y*y-y
[]
[forcing_fnv]
type = ParsedFunction
expression = -4
[]
[slnu]
type = ParsedGradFunction
expression = x*x*x-x+y*y*y-y
grad_x = 3*x*x-1
grad_y = 3*y*y-1
[]
[slnv]
type = ParsedGradFunction
expression = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[]
#NeumannBC functions
[bc_fnut]
type = ParsedFunction
expression = 3*y*y-1
[]
[bc_fnub]
type = ParsedFunction
expression = -3*y*y+1
[]
[bc_fnul]
type = ParsedFunction
expression = -3*x*x+1
[]
[bc_fnur]
type = ParsedFunction
expression = 3*x*x-1
[]
[]
[Variables]
[u]
order = THIRD
family = HIERARCHIC
[]
[v]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff1 diff2 test1 forceu forcev react'
[diff1]
type = Diffusion
variable = u
[]
[test1]
type = CoupledConvection
variable = u
velocity_vector = v
[]
[diff2]
type = Diffusion
variable = v
[]
[react]
type = Reaction
variable = u
[]
[forceu]
type = BodyForce
variable = u
function = forcing_fnu
[]
[forcev]
type = BodyForce
variable = v
function = forcing_fnv
[]
[]
[BCs]
active = 'bc_u_tb bc_v bc_ul bc_ur bc_ut bc_ub'
[bc_u]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[]
[bc_v]
type = FunctionDirichletBC
variable = v
function = slnv
boundary = 'left right top bottom'
[]
[bc_u_lr]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[]
[bc_u_tb]
type = CoupledKernelGradBC
variable = u
var2 = v
vel = '0.1 0.1'
boundary = 'top bottom left right'
[]
[bc_ul]
type = FunctionNeumannBC
variable = u
function = bc_fnul
boundary = 'left'
[]
[bc_ur]
type = FunctionNeumannBC
variable = u
function = bc_fnur
boundary = 'right'
[]
[bc_ut]
type = FunctionNeumannBC
variable = u
function = bc_fnut
boundary = 'top'
[]
[bc_ub]
type = FunctionNeumannBC
variable = u
function = bc_fnub
boundary = 'bottom'
[]
[]
[Preconditioning]
active = ' '
[prec]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'L2u L2v'
[dofs]
type = NumDOFs
[]
[h]
type = AverageElementSize
[]
[L2u]
type = ElementL2Error
variable = u
function = slnu
[]
[L2v]
type = ElementL2Error
variable = v
function = slnv
[]
[H1error]
type = ElementH1Error
variable = u
function = solution
[]
[H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-15
nl_abs_tol = 1e-13
[]
[Outputs]
execute_on = 'timestep_end'
[]
[Debug]
show_var_residual_norms = true
[]
(modules/heat_transfer/test/tests/code_verification/spherical_test_no1.i)
# Problem III.1
#
# A spherical shell has a constant thermal conductivity k and internal
# heat generation q. It has inner radius ri and outer radius ro.
# Both surfaces are exposed to constant temperatures: u(ri) = ui and u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'ri ro ui uo'
symbol_values = '0.2 1.0 300 0'
expression = '( uo * (1/ri-1/x) - ui * (1/ro-1/x)) / (1/ri-1/ro)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 5.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/fvkernels/mms/grad-reconstruction/mat-cartesian.i)
a=1.1
diff=1.1
[Mesh]
[gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Variables]
[v]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[advection]
type = FVElementalAdvection
variable = v
velocity = '${a} ${fparse 2 * a} 0'
advected_quantity = 'mat_u'
grad_advected_quantity = 'mat_grad_u'
[]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[diri]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Materials]
[mat]
type = ADCoupledGradientMaterial
mat_prop = 'mat_u'
grad_mat_prop = 'mat_grad_u'
u = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fvkernels/mms/cylindrical/diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
coord_type = 'RZ'
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff_v]
type = FVDiffusion
variable = v
coeff = coeff
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[boundary]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = '1.1*sin(0.9*x)*cos(1.2*y)'
[]
[forcing]
type = ParsedFunction
expression = '1.584*sin(0.9*x)*cos(1.2*y) - (-0.891*x*sin(0.9*x)*cos(1.2*y) + 0.99*cos(0.9*x)*cos(1.2*y))/x'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/postprocessors/nodal_var_value/screen_output_test.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./console]
type = Console
max_rows = 2
[../]
[]
(test/tests/variables/fe_hier/hier-1-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
expression = 1
[../]
[./bc_fnb]
type = ParsedFunction
expression = -1
[../]
[./bc_fnl]
type = ParsedFunction
expression = -1
[../]
[./bc_fnr]
type = ParsedFunction
expression = 1
[../]
[./forcing_fn]
type = ParsedFunction
expression = x+y
[../]
[./solution]
type = ParsedGradFunction
expression = x+y
grad_x = 1
grad_y = 1
[../]
[]
[Variables]
[./u]
order = FIRST
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-conserved-pcnsfv-kt.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[rho]
type = MooseVariableFVReal
[]
[rho_ud]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = rho
function = 'exact_rho'
[]
[sup_vel_x]
type = FunctionIC
variable = rho_ud
function = 'exact_rho_ud'
[]
[T_fluid]
type = FunctionIC
variable = rho_et
function = 'exact_rho_et'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = rho
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = rho
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = rho_ud
momentum_component = x
eqn = "momentum"
[]
[momentum_fn]
type = FVBodyForce
variable = rho_ud
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = rho_et
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = rho_et
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = rho
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = rho_ud
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = rho_et
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = rho
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = rho_ud
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = rho_et
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[rho_right]
type = FVFunctionDirichletBC
variable = rho
function = exact_rho
boundary = 'right'
[]
[rho_ud_left]
type = FVFunctionDirichletBC
variable = rho_ud
function = exact_rho_ud
boundary = 'left'
[]
[rho_et_left]
type = FVFunctionDirichletBC
variable = rho_et
function = exact_rho_et
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousConservedVarMaterial
rho = rho
superficial_rhou = rho_ud
rho_et = rho_et
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
expression = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
expression = '-3.45300378856215*sin(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
expression = '3.13909435323832*cos(1.1*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
expression = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
expression = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
expression = '0.9*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 0.99*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 0.9*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
expression = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
expression = '3.13909435323832*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
expression = '0.9*cos(1.1*x)/cos(x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
expression_x = '0.9*cos(1.1*x)/cos(x)'
[]
[eps]
type = ParsedFunction
expression = '0.9'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options = '-snes_linesearch_monitor'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho]
type = ElementL2Error
variable = rho
function = exact_rho
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_ud]
variable = rho_ud
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_et]
variable = rho_et
function = exact_rho_et
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fviks/one-var-diffusion/test.i)
L = 2
l = 1
q1 = 1
q2 = 2
uR = 1
D1 = 1
D2 = 2
ul = '${fparse 1/D2*(D2*uR+q2*L*L/2-q2*l*l/2-l*(q2-q1)*L+l*l*(q2-q1))}'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = ${L}
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '${l} 0 0'
block_id = 1
top_right = '${L} 1.0 0'
[]
[interface_primary_side]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary_interface'
[]
[interface_secondary_side]
input = interface_primary_side
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'secondary_interface'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[v]
type = MooseVariableFVReal
block = 0
[]
[w]
type = MooseVariableFVReal
block = 1
[]
[]
[FVKernels]
[diff_left]
type = FVDiffusion
variable = u
coeff = 'left'
block = 0
[]
[diff_right]
type = FVDiffusion
variable = u
coeff = 'right'
block = 1
[]
[source_left]
type = FVBodyForce
variable = u
function = ${q1}
block = 0
[]
[source_right]
type = FVBodyForce
variable = u
function = ${q2}
block = 1
[]
[diff_v]
type = FVDiffusion
variable = v
block = 0
coeff = 'left'
[]
[diff_w]
type = FVDiffusion
variable = w
block = 1
coeff = 'right'
[]
[]
[FVInterfaceKernels]
active = 'interface'
[interface]
type = FVOneVarDiffusionInterface
variable1 = u
boundary = primary_interface
subdomain1 = '0'
subdomain2 = '1'
coeff1 = 'left'
coeff2 = 'right'
coeff_interp_method = average
[]
[bad1]
type = FVOneVarDiffusionInterface
variable1 = w
variable2 = u
boundary = primary_interface
subdomain1 = '0'
subdomain2 = '1'
coeff1 = 'left'
coeff2 = 'right'
coeff_interp_method = average
[]
[bad2]
type = FVOneVarDiffusionInterface
variable1 = u
variable2 = v
boundary = primary_interface
subdomain1 = '0'
subdomain2 = '1'
coeff1 = 'left'
coeff2 = 'right'
coeff_interp_method = average
[]
[bad3]
type = FVOneVarDiffusionInterface
variable1 = v
boundary = primary_interface
subdomain1 = '0'
subdomain2 = '1'
coeff1 = 'left'
coeff2 = 'right'
coeff_interp_method = average
[]
[]
[FVBCs]
[right]
type = FVDirichletBC
variable = u
boundary = 'right'
value = ${uR}
[]
[v_left]
type = FVDirichletBC
variable = v
boundary = 'left'
value = 1
[]
[v_right]
type = FVDirichletBC
variable = v
boundary = 'primary_interface'
value = 0
[]
[w_left]
type = FVDirichletBC
variable = w
boundary = 'secondary_interface'
value = 1
[]
[w_right]
type = FVDirichletBC
variable = w
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = ADGenericFunctorMaterial
block = '0'
prop_names = 'left'
prop_values = '${D1}'
[]
[block1]
type = ADGenericFunctorMaterial
block = '1'
prop_names = 'right'
prop_values = '${D2}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
csv = true
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'if(x<${l}, 1/${D1}*(${fparse D1*ul+q1*l*l/2}-${fparse q1/2}*x*x),-1/${D2}*(${fparse -D2*ul-q2*l*l/2}+${fparse q2/2}*x*x-${fparse l*(q2-q1)}*x+${fparse l*l*(q2-q1)}))'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(python/mms/test/mms_spatial.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 8
ny = 8
[]
[Variables]
[u][]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
function = force
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(2*pi*x)*sin(2*pi*y)'
[]
[force]
type = ParsedFunction
expression = '8*pi^2*sin(2*x*pi)*sin(2*y*pi)'
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
function = exact
boundary = 'left right top bottom'
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
function = exact
variable = u
[]
[h]
type = AverageElementSize
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/scalar_adr/supg/2d_advection_error_testing.i)
ax=1
ay=1
[GlobalParams]
u = ${ax}
v = ${ay}
pressure = 0
tau_type = mod
transient_term = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 1
ymax = 1
elem_type = QUAD9
[]
[Variables]
[./c]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./adv]
type = AdvectionSUPG
variable = c
forcing_func = 'ffn'
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = c
boundary = 'left right top bottom'
function = 'c_func'
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'mu rho'
prop_values = '0 1'
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
expression = '${ax}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)) + ${ay}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))'
[../]
[./c_func]
type = ParsedFunction
expression = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./cx_func]
type = ParsedFunction
expression = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[]
# [Executioner]
# type = Steady
# petsc_options_iname = '-pc_type -pc_factor_shift_type'
# petsc_options_value = 'lu NONZERO'
# []
[Executioner]
type = Transient
num_steps = 10
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu NONZERO superlu_dist'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-12
nl_max_its = 10
l_tol = 1e-6
l_max_its = 10
[./TimeStepper]
dt = .05
type = IterationAdaptiveDT
cutback_factor = 0.4
growth_factor = 1.2
optimal_iterations = 20
[../]
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2c]
type = ElementL2Error
variable = c
function = c_func
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2cx]
type = ElementL2Error
variable = cx
function = cx_func
outputs = 'console' execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./cx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./cx_aux]
type = VariableGradientComponent
component = x
variable = cx
gradient_variable = c
[../]
[]
(test/tests/fvkernels/mms/non-orthogonal/extended-adr.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = TRI3
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
type = MooseVariableFVReal
face_interp_method = vertex-based
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} ${fparse 2*a} 0'
advected_interp_method = 'average'
[../]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
use_point_neighbors = true
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'hypre'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fvkernels/mms/advective-outflow/advection-diffusion.i)
diff=1
a=1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = -1
xmax = 0
nx = 2
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
[./advection]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
force_boundary_execution = true
[../]
[./diffusion]
type = FVDiffusion
variable = v
coeff = coeff
[../]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[left]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '${diff}'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(x)'
[]
[forcing]
type = ParsedFunction
expression = 'cos(x) - sin(x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/hdg/mms/channel.i)
mu=1.1
rho=1.1
[GlobalParams]
variable = face_vel_x
u = vel_x
v = vel_y
grad_u = grad_vel_x
grad_v = grad_vel_y
face_u = face_vel_x
face_v = face_vel_y
pressure = p
mu = ${mu}
rho = ${rho}
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = TRI6
[]
[]
[Variables]
[face_vel_x]
family = SIDE_HIERARCHIC
[]
[face_vel_y]
family = SIDE_HIERARCHIC
[]
[p]
family = L2_LAGRANGE
[]
[]
[AuxVariables]
[vel_x]
family = L2_LAGRANGE
[]
[vel_y]
family = L2_LAGRANGE
[]
[grad_vel_x]
family = L2_LAGRANGE_VEC
[]
[grad_vel_y]
family = L2_LAGRANGE_VEC
[]
[]
[HDGKernels]
[ns]
type = NavierStokesHDGKernel
body_force_x = forcing_u
body_force_y = forcing_v
pressure_mms_forcing_function = forcing_p
[]
[]
[HDGBCs]
[exact]
type = NavierStokesHDGVelocityDirichletBC
boundary = 'left bottom top'
dirichlet_u = 'exact_u'
dirichlet_v = 'exact_v'
[]
[right]
type = NavierStokesHDGOutflowBC
boundary = 'right'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = '(1/2)*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) + (1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2 - pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) - 1/4*pi*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_v]
type = ParsedFunction
expression = '(5/16)*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) - pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + (1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + (3/2)*pi*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'basic'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = vel_x
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
variable = vel_y
function = exact_v
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = p
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i)
#
# KKS simple example in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 50
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 0.4
zmin = 0
zmax = 0
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute concentration
[./cl]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Solid phase solute concentration
[./cs]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
expression = 0.5*(1.0-tanh((x)/sqrt(2.0)))
[../]
[./ic_func_c]
type = ParsedFunction
expression = '0.9*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[BCs]
[./left_c]
type = DirichletBC
variable = 'c'
boundary = 'left'
value = 0.5
[../]
[./left_eta]
type = DirichletBC
variable = 'eta'
boundary = 'left'
value = 0.5
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
property_name = fl
coupled_variables = 'cl'
expression = '(0.1-cl)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
property_name = fs
coupled_variables = 'cs'
expression = '(0.9-cs)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cl + h(eta)*cs
[./PhaseConc]
type = KKSPhaseConcentration
ca = cl
variable = cs
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute]
type = KKSPhaseChemicalPotential
variable = cl
cb = cs
fa_name = fl
fb_name = fs
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cl
fa_name = fl
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
coupled_variables = 'cl cs'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cl
cb = cs
fa_name = fl
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
nl_abs_tol = 1e-10
end_time = 800
dt = 4.0
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./integral]
type = ElementL2Error
variable = eta
function = ic_func_eta
[../]
[]
[Outputs]
exodus = true
console = true
gnuplot = true
[]
(test/tests/time_integrators/bdf2/bdf2_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/mortar/continuity-2d-conforming/conforming-2nd-order.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-conf-2nd.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Functions]
[./exact_sln]
type = ParsedFunction
expression= x*x+y*y
[../]
[./ffn]
type = ParsedFunction
expression= -4
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = SECOND
family = LAGRANGE
block = secondary_lower
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[Constraints]
[./ced]
type = EqualValueConstraint
variable = lm
secondary_variable = u
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '1 2 3 4'
function = exact_sln
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = exact_sln
block = '1 2'
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-14
l_tol = 1e-14
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/code_verification/cylindrical_test_no2.i)
# Problem II.2
#
# The thermal conductivity of an infinitely long hollow tube varies
# linearly with temperature. It is exposed on the inner
# and outer surfaces to constant temperatures.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'ri ro beta ki ko ui uo'
symbol_values = '0.2 1.0 1e-3 5.3 5 300 0'
expression = 'uo+(ko/beta)* ( ( 1 + beta*(ki+ko)*(ui-uo)*( log(x/ro) / log(ri/ro) )/(ko^2))^0.5 -1 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '5 + 1e-3 * (u-0)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/code_verification/cylindrical_test_no4.i)
# Problem II.4
#
# An infinitely long hollow cylinder has thermal conductivity k and internal
# heat generation q. Its inner radius is ri and outer radius is ro.
# A constant heat flux is applied to the inside surface qin and
# the outside surface is exposed to a fluid temperature T and heat transfer
# coefficient h, which results in the convective boundary condition.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'qin q k ri ro uf h'
symbol_values = '100 1200 1.0 0.2 1 100 10'
expression = 'uf+ (0.25*q/k) * ( 2*k*(ro^2-ri^2)/(h*ro) + ro^2-x^2 + 2*ri^2*log(x/ro)) + (k/(h*ro) - log(x/ro)) * qin * ri / k'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./ui]
type = NeumannBC
boundary = left
variable = u
value = 100
[../]
[./uo]
type = CoupledConvectiveHeatFluxBC
boundary = right
variable = u
htc = 10.0
T_infinity = 100
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 1.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/channel-flow/2d-average-with-temp.i)
mu = 1.1
rho = 1.1
k = 1.1
cp = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
[]
[temperature]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = temperature
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = temperature
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[temp_forcing]
type = FVBodyForce
variable = temperature
function = forcing_t
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[inlet-and-walls-t]
type = FVFunctionDirichletBC
boundary = 'left top bottom'
variable = temperature
function = 'exact_t'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[FunctorMaterials]
[const]
type = ADGenericFunctorMaterial
prop_names = 'k cp'
prop_values = '${k} ${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin((1/2)*y*pi)*cos((1/2)*x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = '(1/2)*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) - '
'1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) + '
'(1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2 - '
'pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) - '
'1/4*pi*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '(5/16)*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) - '
'pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - '
'1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + '
'(1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + '
'(3/2)*pi*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - '
'1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[exact_t]
type = ParsedFunction
expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_t]
type = ParsedFunction
expression = '-pi*cp*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - '
'1/2*pi*cp*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + '
'(1/4)*pi*cp*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + '
'(5/16)*pi^2*k*sin((1/4)*x*pi)*cos((1/2)*y*pi)'
symbol_names = 'k rho cp'
symbol_values = '${k} ${rho} ${cp}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2t]
variable = temperature
function = exact_t
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = (x+y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 20
dt = 0.00005
l_tol = 1e-12
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/postprocessors/mms_slope/mms_slope_test.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
# do not use uniform refine, we are using adaptive refining
# uniform_refine = 6
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
active = 'forcing_func u_func'
[forcing_func]
type = ParsedFunction
expression = alpha*alpha*pi*pi*sin(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[]
[u_func]
type = ParsedGradFunction
expression = sin(alpha*pi*x)
grad_x = alpha*pi*sin(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[]
[]
[Kernels]
active = 'diff forcing'
[diff]
type = Diffusion
variable = u
[]
[forcing]
type = BodyForce
variable = u
function = forcing_func
[]
[]
[BCs]
active = 'left right'
[left]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-14
[Adaptivity]
# if the refine fraction is 1 it will refine every element
# remember < 1 means only refine that percentage of elements
refine_fraction = 1
steps = 6
# do not coarsen at all
coarsen_fraction = 0
# maximum level of refinement steps, make sure this is > max_r_steps
max_h_level = 10
# leave this as is
error_estimator = KellyErrorEstimator
[]
[]
# print l2 and h1 errors from the Postprocessors too so I can compare
[Postprocessors]
active = 'l2_error h1_error dofs'
# active = ' '
[l2_error]
type = ElementL2Error
variable = u
function = u_func
[]
[h1_error]
type = ElementH1Error
variable = u
function = u_func
[]
[dofs]
type = NumDOFs
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/executioners/executioner/steady_state_check_test.i)
#
# Run transient simulation into steady state
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
# expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
expression = -4
[../]
[./exact_fn]
type = ParsedFunction
# expression = t*t*t*((x*x)+(y*y))
expression = ((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
nl_abs_tol = 1e-14
start_time = 0.0
num_steps = 12
dt = 1
steady_state_detection = true
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_ss_check
exodus = true
[]
(test/tests/preconditioners/vcp/vcp_test.i)
[Mesh]
[original_file_mesh]
type = FileMeshGenerator
file = non_conform_2blocks.e
[]
[secondary_side]
input = original_file_mesh
type = LowerDBlockFromSidesetGenerator
sidesets = '10'
new_block_id = '100'
new_block_name = 'secondary_side'
[]
[primary_side]
input = secondary_side
type = LowerDBlockFromSidesetGenerator
sidesets = '20'
new_block_id = '200'
new_block_name = 'primary_side'
[]
[]
[Functions]
[exact_sln]
type = ParsedFunction
expression = sin(2*pi*x)*sin(2*pi*y)
[]
[ffn]
type = ParsedFunction
expression = 8*pi*pi*sin(2*pi*x)*sin(2*pi*y)
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = secondary_side
use_dual = true
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = ffn
[]
[]
[Constraints]
[ced]
type = EqualValueConstraint
variable = lm
secondary_variable = u
primary_boundary = 20
primary_subdomain = 200
secondary_boundary = 10
secondary_subdomain = 100
[]
[]
[BCs]
[all]
type = DirichletBC
variable = u
boundary = '30 40'
value = 0.0
[]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_sln
variable = u
boundary = '50 60'
[]
[]
[Postprocessors]
[l2_error]
type = ElementL2Error
variable = u
function = exact_sln
block = '1 2'
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[vcp]
type = VCP
full = true
lm_variable = 'lm'
primary_variable = 'u'
preconditioner = 'AMG'
is_lm_coupling_diagonal = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
l_max_its = 100
nl_rel_tol = 1e-6
[]
[Outputs]
csv = true
[]
(test/tests/variables/fe_hermite_convergence/hermite_converge_periodic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in PeriodicBCs.
parallel_type = replicated
[]
[Functions]
[./bc_fn]
type = ParsedGradFunction
value = -sin(pi*x)*sin(pi*y)
grad_x = -pi*cos(pi*x)*sin(pi*y)
grad_y = -pi*sin(pi*x)*cos(pi*y)
[../]
[./bc_fnt]
type = ParsedFunction
expression = -pi*sin(pi*x)*cos(pi*y)
[../]
[./bc_fnb]
type = ParsedFunction
expression = pi*sin(pi*x)*cos(pi*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = -2*pi*pi*sin(pi*x)*sin(pi*y)-sin(pi*x)*sin(pi*y)
[../]
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction= 'x y'
[../]
[../]
[./bc_top]
type=FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type=FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = bc_fn
[../]
[./H1error]
type = ElementH1Error
variable = u
function = bc_fn
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = bc_fn
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
# We use higher-order quadrature to ensure that the forcing function
# is integrated accurately.
[./Quadrature]
order=ELEVENTH
[../]
[]
[Adaptivity]
steps = 2
marker = uniform
[./Markers]
[./uniform]
type = UniformMarker
mark = refine
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
print_mesh_changed_info = true
[]
(test/tests/variables/fe_hier/hier-3-1d.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 5
elem_type = EDGE3
[]
[Functions]
[./bc_fnl]
type = ParsedFunction
expression = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
expression = 3*x*x
[../]
[./forcing_fn]
type = ParsedFunction
expression = -6*x+(x*x*x)
[../]
[./solution]
type = ParsedGradFunction
expression = x*x*x
grad_x = 3*x*x
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/fvkernels/mms/diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
# [u]
# []
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[FVKernels]
[diff_v]
type = FVDiffusion
variable = v
coeff = coeff
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[boundary]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = '3*x^2 + 2*x + 1'
[]
[forcing]
type = ParsedFunction
expression = '-6'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
# [./L2u]
# type = ElementL2Error
# variable = u
# function = exact
# outputs = 'console'
# execute_on = 'timestep_end'
# [../]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fvkernels/fv_adapt/steady-adapt.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 1
elem_type = QUAD4
[]
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
fv = true
type = MooseVariableFVReal
[]
[]
[Functions]
[exact-quadratic]
type = ParsedFunction
expression = '-(x-1)^2+1'
[]
[exact-linear]
type = ParsedFunction
expression = 'x'
[]
[]
[FVKernels]
inactive = 'source'
[diff]
type = FVDiffusion
variable = u
coeff = coeff
use_point_neighbors = true
[]
[source]
type = FVBodyForce
variable = u
function = 2
[]
[]
[FVBCs]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'hypre'
[]
[Adaptivity]
marker = box
initial_steps = 1
[Markers]
[box]
bottom_left = '0.5 0 0'
inside = refine
top_right = '1 1 0'
outside = do_nothing
type = BoxMarker
[]
[]
[]
[Outputs]
exodus = true
csv = true
[console]
type = Console
system_info = 'framework mesh aux nonlinear relationship execution'
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = u
function = exact-linear
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(python/peacock/tests/common/transient_with_date.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = with_date
exodus = true
[./with_date]
type = Exodus
file_base = with_date
append_date = true
append_date_format = '%Y-%m-%d'
[../]
[]
(test/tests/fvkernels/mms/advective-outflow/advection-outflow.i)
a=1.1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 1.1
nx = 2
[../]
[]
[Variables]
[./u]
family = MONOMIAL
order = CONSTANT
fv = true
two_term_boundary_expansion = false
type = MooseVariableFVReal
[../]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
two_term_boundary_expansion = true
type = MooseVariableFVReal
[../]
[]
[FVKernels]
[./advection_u]
type = FVAdvection
variable = u
velocity = '${a} 0 0'
[../]
[body_u]
type = FVBodyForce
variable = u
function = 'forcing'
[]
[./advection_v]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
[../]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[left_u]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = u
[]
[right_u]
type = FVConstantScalarOutflowBC
variable = u
velocity = '${a} 0 0'
boundary = 'right'
[]
[left_v]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = v
[]
[right_v]
type = FVConstantScalarOutflowBC
variable = v
velocity = '${a} 0 0'
boundary = 'right'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(x)'
[]
[forcing]
type = ParsedFunction
expression = '-${a} * sin(x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu NONZERO mumps'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./L2u]
type = ElementL2Error
variable = u
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/scalar_adr/supg/advection_error_testing.i)
velocity=1
[GlobalParams]
u = ${velocity}
pressure = 0
tau_type = mod
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
xmax = 1
elem_type = EDGE2
[]
[Variables]
[./c]
family = LAGRANGE
order = FIRST
[../]
[]
[Kernels]
[./adv]
type = AdvectionSUPG
variable = c
forcing_func = 'ffn'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'mu rho'
prop_values = '0 1'
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
expression = '1-x^2'
[../]
[./c_func]
type = ParsedFunction
expression = 'x-x^3/3'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2c]
type = ElementL2Error
variable = c
function = c_func
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2cx]
type = ElementL2Error
variable = cx
function = ffn
outputs = 'console' execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./cx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./cx]
type = VariableGradientComponent
component = x
variable = cx
gradient_variable = c
[../]
[]
(test/tests/fvkernels/mms/grad-reconstruction/cartesian.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[../]
[]
[FVKernels]
[./advection]
type = FVElementalAdvection
variable = v
velocity = '${a} ${fparse 2 * a} 0'
[../]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[diri]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/time_integrators/crank-nicolson/cranic_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = sin(pi*x)*sin(pi*y)+2*t*pi*pi*sin(pi*x)*sin(pi*y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*sin(pi*x)*sin(pi*y)
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
# Use the block format instead of the scheme parameter
[./TimeIntegrator]
type = CrankNicolson
[../]
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/optimization/test/tests/userobjects/adjoint_solution/adjoint.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[MultiApps]
[forward]
type = FullSolveMultiApp
input_files = forward.i
execute_on = INITIAL
[]
[]
[AuxVariables/u_reverse]
[]
[UserObjects]
[u_reverse_solution]
type = AdjointSolutionUserObject
mesh = forward_out.e
system_variables = 'u'
reverse_time_end = 10
[]
[terminate]
type = Terminator
expression = 'u_reverse_test > 1e-12'
error_level = ERROR
[]
[]
[AuxKernels]
[u_reverse_aux]
type = SolutionAux
variable = u_reverse
solution = u_reverse_solution
[]
[]
[Functions]
[u_reverse_fun]
type = ParsedFunction
expression = '(x + y) * (11 - t)'
[]
[]
[Postprocessors]
[u_reverse_test]
type = ElementL2Error
variable = u_reverse
function = u_reverse_fun
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
dt = 1
end_time = 10
[]
(python/peacock/tests/input_tab/InputTree/gold/transient.i)
# ##########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
# ##########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Functions]
[forcing_fn]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
expression = '3*t*t*((x*x)+(y*y))-(4*t*t*t)'
[]
[exact_fn]
type = ParsedFunction
expression = 't*t*t*((x*x)+(y*y))'
[]
[]
[Kernels]
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
inactive = 'left right'
[all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[]
[left]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = '1'
value = 1
[]
[]
[Postprocessors]
[l2_err]
type = ElementL2Error
variable = 'u'
function = exact_fn
[]
[dt]
type = TimestepSize
[]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Transient
scheme = implicit-euler
solve_type = PJFNK
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/cg-dg-hybrid/mms/lid-driven-skewed/hybrid-skewed-vortex.i)
rho=1
mu=1
[Mesh]
[gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[]
[corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen_mesh
[]
[]
[Variables]
[u]
family = MONOMIAL
order = SECOND
[]
[v]
family = MONOMIAL
order = SECOND
[]
[pressure][]
[]
[Kernels]
[momentum_x_convection]
type = ADConservativeAdvection
variable = u
velocity = 'velocity'
[]
[momentum_x_diffusion]
type = Diffusion
variable = u
[]
[momentum_x_pressure]
type = PressureGradient
integrate_p_by_parts = false
variable = u
pressure = pressure
component = 0
[]
[u_forcing]
type = BodyForce
variable = u
function = forcing_u
[]
[momentum_y_convection]
type = ADConservativeAdvection
variable = v
velocity = 'velocity'
[]
[momentum_y_diffusion]
type = Diffusion
variable = v
[]
[momentum_y_pressure]
type = PressureGradient
integrate_p_by_parts = false
variable = v
pressure = pressure
component = 1
[]
[v_forcing]
type = BodyForce
variable = v
function = forcing_v
[]
[mass]
type = ADConservativeAdvection
variable = pressure
velocity = velocity
advected_quantity = -1
[]
[]
[DGKernels]
[momentum_x_convection]
type = ADDGAdvection
variable = u
velocity = 'velocity'
[]
[momentum_x_diffusion]
type = DGDiffusion
variable = u
sigma = 6
epsilon = -1
[]
[momentum_y_convection]
type = ADDGAdvection
variable = v
velocity = 'velocity'
[]
[momentum_y_diffusion]
type = DGDiffusion
variable = v
sigma = 6
epsilon = -1
[]
[]
[BCs]
[u_walls]
type = DGFunctionDiffusionDirichletBC
boundary = 'left bottom right top'
variable = u
sigma = 6
epsilon = -1
function = exact_u
[]
[v_walls]
type = DGFunctionDiffusionDirichletBC
boundary = 'left bottom right top'
variable = v
sigma = 6
epsilon = -1
function = exact_v
[]
[pressure_pin]
type = FunctionDirichletBC
variable = pressure
boundary = 'pinned_node'
function = 'exact_p'
[]
[]
[Materials]
[rho]
type = ADGenericConstantMaterial
prop_names = 'rho'
prop_values = '${rho}'
[]
[vel]
type = ADVectorFromComponentVariablesMaterial
vector_prop_name = 'velocity'
u = u
v = v
[]
[rhou]
type = ADParsedMaterial
property_name = 'rhou'
coupled_variables = 'u'
material_property_names = 'rho'
expression = 'rho*u'
[]
[rhov]
type = ADParsedMaterial
property_name = 'rhov'
coupled_variables = 'v'
material_property_names = 'rho'
expression = 'rho*v'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'x^2*(1-x)^2*(2*y-6*y^2+4*y^3)'
[]
[exact_v]
type = ParsedFunction
expression = '-y^2*(1-y)^2*(2*x-6*x^2+4*x^3)'
[]
[exact_p]
type = ParsedFunction
expression = 'x*(1-x)-2/12'
[]
[forcing_u]
type = ParsedFunction
expression = '-4*mu/rho*(-1+2*y)*(y^2-6*x*y^2+6*x^2*y^2-y+6*x*y-6*x^2*y+3*x^2-6*x^3+3*x^4)+1-2*x+4*x^3'
'*y^2*(2*y^2-2*y+1)*(y-1)^2*(-1+2*x)*(x-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '4*mu/rho*(-1+2*x)*(x^2-6*y*x^2+6*x^2*y^2-x+6*x*y-6*x*y^2+3*y^2-6*y^3+3*y^4)+4*y^3*x^2*(2'
'*x^2-2*x+1)*(x-1)^2*(-1+2*y)*(y-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu NONZERO mumps'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
variable = v
function = exact_v
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/variables/fe_hier/hier-2-1d.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 5
elem_type = EDGE3
[]
[Functions]
[./bc_fnl]
type = ParsedFunction
expression = -2*x
[../]
[./bc_fnr]
type = ParsedFunction
expression = 2*x
[../]
[./forcing_fn]
type = ParsedFunction
expression = -2+x*x
[../]
[./solution]
type = ParsedGradFunction
expression = x*x
grad_x = 2*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/time_integrators/rk-2/2d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*((x*x)+(y*y))-(4*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*((x*x)+(y*y))
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitMidpoint
[../]
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 10
dt = 0.0001
l_tol = 1e-8
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/kernels/scalar_kernel_constraint/scalar_constraint_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[exact_fn]
type = ParsedFunction
value = 'x*x+y*y'
[]
[ffn]
type = ParsedFunction
value = -4
[]
[bottom_bc_fn]
type = ParsedFunction
value = -2*y
[]
[right_bc_fn]
type = ParsedFunction
value = 2*x
[]
[top_bc_fn]
type = ParsedFunction
value = 2*y
[]
[left_bc_fn]
type = ParsedFunction
value = -2*x
[]
[]
[Variables]
[u]
family = LAGRANGE
order = SECOND
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[ffnk]
type = BodyForce
variable = u
function = ffn
[]
[sk_lm]
type = ScalarLMKernel
variable = u
kappa = lambda
pp_name = pp
value = 2.666666666666666
[]
[]
[Problem]
kernel_coverage_check = false
error_on_jacobian_nonzero_reallocation = true
[]
[BCs]
[bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bottom_bc_fn
[]
[right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = right_bc_fn
[]
[top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = top_bc_fn
[]
[left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = left_bc_fn
[]
[]
[Postprocessors]
# integrate the volume of domain since original objects set
# int(phi)=V0, rather than int(phi-V0)=0
[pp]
type = FunctionElementIntegral
function = 1
execute_on = initial
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-9
l_tol = 1.e-10
nl_max_its = 10
# This example builds an indefinite matrix, so "-pc_type hypre -pc_hypre_type boomeramg" cannot
# be used reliably on this problem
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
# This is a linear problem, so we don't need to recompute the
# Jacobian. This isn't a big deal for a Steady problems, however, as
# there is only one solve.
solve_type = 'LINEAR'
[]
[Outputs]
exodus = true
hide = lambda
[]
(test/tests/postprocessors/mms_sine/3_d_mms_sine_postprocessor_test.i)
#mms_sine_posprocessor_test.i
#This is for u = sin(a*x*y*z*t)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
elem_type = HEX8
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions] #Added so that we can use the Postprocessor
active = 'solution'
[./solution]
type = ParsedFunction
expression = sin(a*x*y*z*t)
symbol_names = 'a'
symbol_values = '3.141592653589793'
[../]
[]
[AuxVariables] #We added nodal AuxVariables
active = 'nodal_aux'
[./nodal_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff implicit conv forcing reaction'
[./diff]
type = MMSDiffusion
variable = u
[../]
[./implicit] #We got from MOOSE kernels
type = MMSImplicitEuler
variable = u
[../]
[./conv] #We created our own convection kernel
type = MMSConvection
variable = u
x = -1
y = 2
z = -3
[../]
[./forcing] #We created our own forcing kernel
type = MMSForcing
variable = u
[../]
[./reaction] #We got from MOOSE kernels
type = MMSReaction
variable = u
[../]
[]
[AuxKernels] #We created our own AuxKernel
active = 'ConstantAux'
[./ConstantAux]
type = MMSConstantAux
variable = nodal_aux
[../]
[]
[BCs]
active = 'all_u'
[./all_u]
type = MMSCoupledDirichletBC
variable = u
boundary = '0 1 2 3 4 5'
# value = sin(a*x*y*z*t)
[../]
[]
[Executioner]
type = Transient
dt = .1
num_steps = 5
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'l2_error dofs'
[./l2_error]
type = ElementL2Error
variable = u
function = solution
execute_on = 'initial timestep_end'
[../]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = 3_d_postprocessor_out
csv = true
[]
(test/tests/fvkernels/mms/advective-outflow/kt-limited-advection.i)
a=1.1
c=343
max_abs_eig=${fparse c + a}
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = 0.1
xmax = 1.1
nx = 2
[../]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = exact
[]
[]
[Variables]
[./u]
two_term_boundary_expansion = true
type = MooseVariableFVReal
[../]
[]
[FVKernels]
[./advection_u]
type = FVKTLimitedAdvection
variable = u
velocity = '${a} 0 0'
limiter = 'vanLeer'
max_abs_eig = ${max_abs_eig}
add_artificial_diff = true
[../]
[body_u]
type = FVBodyForce
variable = u
function = 'forcing'
[]
[]
[FVBCs]
[left_u]
type = FVFunctionNeumannBC
boundary = 'left'
function = 'advection'
variable = u
[]
[diri_left]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = u
[]
[right]
type = FVConstantScalarOutflowBC
variable = u
velocity = '${a} 0 0'
boundary = 'right'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(x)'
[]
[advection]
type = ParsedFunction
expression = '${a} * cos(x)'
[]
[forcing]
type = ParsedFunction
expression = '-${a} * sin(x)'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-snes_linesearch_minlambda'
petsc_options_value = '1e-3'
nl_abs_tol = 1e-9
[]
[Outputs]
file_base = 'kt-limited-advection_out'
[csv]
type = CSV
execute_on = 'final'
[]
[exo]
type = Exodus
execute_on = 'final'
[]
[]
[Postprocessors]
[./L2u]
type = ElementL2Error
variable = u
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/jeffery_hamel/wedge_dirichlet.i)
# This input file tests whether we can converge to the semi-analytical
# solution for flow in a 2D wedge.
[GlobalParams]
gravity = '0 0 0'
# Params used by the WedgeFunction for computing the exact solution.
# The value of K is only required for comparing the pressure to the
# exact solution, and is computed by the associated jeffery_hamel.py
# script.
alpha_degrees = 15
Re = 30
K = -9.78221333616
f = f_theta
[]
[Mesh]
[file]
type = FileMeshGenerator
# file = wedge_4x6.e
file = wedge_8x12.e
# file = wedge_16x24.e
# file = wedge_32x48.e
# file = wedge_64x96.e
[]
[./corner_node]
# Pin is on the centerline of the channel on the left-hand side of
# the domain at r=1. If you change the domain, you will need to
# update this pin location for the pressure exact solution to
# work.
type = ExtraNodesetGenerator
new_boundary = pinned_node
coord = '1 0'
input = file
[../]
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[BCs]
[./vel_x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'inlet outlet'
function = 'vel_x_exact'
[../]
[./vel_y_inlet]
type = FunctionDirichletBC
variable = vel_y
boundary = 'inlet outlet'
function = 'vel_y_exact'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 1
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
num_steps = 5
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-13
nl_abs_tol = 1e-11
nl_max_its = 10
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
exodus = true
[]
[Functions]
[./f_theta]
# Non-dimensional solution values f(eta), 0 <= eta <= 1 for
# alpha=15 deg, Re=30. Note: this introduces an input file
# ordering dependency: this Function must appear *before* the two
# functions below which use it since apparently proper dependency
# resolution is not done in this scenario.
type = PiecewiseLinear
data_file = 'f.csv'
format = 'columns'
[../]
[./vel_x_exact]
type = WedgeFunction
var_num = 0
mu = 1
rho = 1
[../]
[./vel_y_exact]
type = WedgeFunction
var_num = 1
mu = 1
rho = 1
[../]
[./p_exact]
type = WedgeFunction
var_num = 2
mu = 1
rho = 1
[../]
[]
[Postprocessors]
[./vel_x_L2_error]
type = ElementL2Error
variable = vel_x
function = vel_x_exact
execute_on = 'initial timestep_end'
[../]
[./vel_y_L2_error]
type = ElementL2Error
variable = vel_y
function = vel_y_exact
execute_on = 'initial timestep_end'
[../]
[./p_L2_error]
type = ElementL2Error
variable = p
function = p_exact
execute_on = 'initial timestep_end'
[../]
[]
(test/tests/fvkernels/mms/mass-mom-mat-advection-diffusion/input.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmin = -.6
xmax = .6
[]
[]
[GlobalParams]
advected_interp_method = 'average'
[]
[Variables]
[fv_rho]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 2
[]
[fv_vel]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 2
[]
[]
[FVKernels]
[adv_rho]
type = FVMatAdvection
variable = fv_rho
vel = 'fv_velocity'
[]
[diff_rho]
type = FVDiffusion
variable = fv_rho
coeff = coeff
[]
[forcing_rho]
type = FVBodyForce
variable = fv_rho
function = 'forcing_rho'
[]
[adv_rho_u]
type = FVMatAdvection
variable = fv_vel
vel = 'fv_velocity'
advected_quantity = 'rho_u'
[]
[diff_vel]
type = FVDiffusion
variable = fv_vel
coeff = coeff
[]
[forcing_vel]
type = FVBodyForce
variable = fv_vel
function = 'forcing_vel'
[]
[]
[FVBCs]
[boundary_rho]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact_rho'
variable = fv_rho
[]
[boundary_vel]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact_vel'
variable = fv_vel
[]
[]
[Materials]
[euler_material]
type = ADCoupledVelocityMaterial
vel_x = fv_vel
rho = fv_rho
velocity = 'fv_velocity'
[]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
csv = true
[]
[Functions]
[forcing_rho]
type = ParsedFunction
expression = '-1.331*sin(1.1*x)^2 + 1.331*sin(1.1*x) + 1.331*cos(1.1*x)^2'
[]
[exact_rho]
type = ParsedFunction
expression = '1.1*sin(1.1*x)'
[]
[forcing_vel]
type = ParsedFunction
expression = '-2.9282*sin(1.1*x)^2*cos(1.1*x) + 1.4641*cos(1.1*x)^3 + 1.331*cos(1.1*x)'
[]
[exact_vel]
type = ParsedFunction
expression = '1.1*cos(1.1*x)'
[]
[]
[Postprocessors]
[./l2_rho]
type = ElementL2Error
variable = fv_rho
function = exact_rho
execute_on = timestep_end
[../]
[./l2_vel]
type = ElementL2Error
variable = fv_vel
function = exact_vel
execute_on = timestep_end
[../]
[h]
type = AverageElementSize
execute_on = timestep_end
[]
[]
(test/tests/misc/check_error/coupled_grad_without_declare.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[forcing_fnu]
type = ParsedFunction
expression = -5.8*(x+y)+x*x*x-x+y*y*y-y
[]
[forcing_fnv]
type = ParsedFunction
expression = -4
[]
[slnu]
type = ParsedGradFunction
expression = x*x*x-x+y*y*y-y
grad_x = 3*x*x-1
grad_y = 3*y*y-1
[]
[slnv]
type = ParsedGradFunction
expression = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[]
#NeumannBC functions
[bc_fnut]
type = ParsedFunction
expression = 3*y*y-1
[]
[bc_fnub]
type = ParsedFunction
expression = -3*y*y+1
[]
[bc_fnul]
type = ParsedFunction
expression = -3*x*x+1
[]
[bc_fnur]
type = ParsedFunction
expression = 3*x*x-1
[]
[]
[Variables]
[u]
order = THIRD
family = HIERARCHIC
[]
[v]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff1 diff2 test1 forceu forcev react'
[diff1]
type = Diffusion
variable = u
[]
[test1]
type = CoupledConvection
variable = u
velocity_vector = v
# Trigger the error in this class
test_coupling_declaration_error = true
[]
[diff2]
type = Diffusion
variable = v
[]
[react]
type = Reaction
variable = u
[]
[forceu]
type = BodyForce
variable = u
function = forcing_fnu
[]
[forcev]
type = BodyForce
variable = v
function = forcing_fnv
[]
[]
[BCs]
active = 'bc_u_tb bc_v bc_ul bc_ur bc_ut bc_ub'
[bc_u]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[]
[bc_v]
type = FunctionDirichletBC
variable = v
function = slnv
boundary = 'left right top bottom'
[]
[bc_u_lr]
type = FunctionPenaltyDirichletBC
variable = u
function = slnu
boundary = 'left right top bottom'
penalty = 1e6
[]
[bc_u_tb]
type = CoupledKernelGradBC
variable = u
var2 = v
vel = '0.1 0.1'
boundary = 'top bottom left right'
[]
[bc_ul]
type = FunctionNeumannBC
variable = u
function = bc_fnul
boundary = 'left'
[]
[bc_ur]
type = FunctionNeumannBC
variable = u
function = bc_fnur
boundary = 'right'
[]
[bc_ut]
type = FunctionNeumannBC
variable = u
function = bc_fnut
boundary = 'top'
[]
[bc_ub]
type = FunctionNeumannBC
variable = u
function = bc_fnub
boundary = 'bottom'
[]
[]
[Preconditioning]
active = ' '
[prec]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'L2u L2v'
[dofs]
type = NumDOFs
[]
[h]
type = AverageElementSize
[]
[L2u]
type = ElementL2Error
variable = u
function = slnu
[]
[L2v]
type = ElementL2Error
variable = v
function = slnv
[]
[H1error]
type = ElementH1Error
variable = u
function = solution
[]
[H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-15
nl_abs_tol = 1e-13
[]
[Outputs]
execute_on = 'timestep_end'
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/fvkernels/mms/grad-reconstruction/mat-rz.i)
a=1.1
diff=1.1
[Mesh]
[gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[]
[]
[FVKernels]
[advection]
type = FVElementalAdvection
variable = v
velocity = '${a} ${a} 0'
advected_quantity = 'mat_u'
grad_advected_quantity = 'mat_grad_u'
[]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[diri]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Materials]
[mat]
type = ADCoupledGradientMaterial
mat_prop = 'mat_u'
grad_mat_prop = 'mat_grad_u'
u = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-a*sin(x)*sin(y) + diff*sin(x)*cos(y) + sin(x)*cos(y) + (x*a*cos(x)*cos(y) + a*sin(x)*cos(y))/x - (-x*diff*sin(x)*cos(y) + diff*cos(x)*cos(y))/x'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/postprocessors/element_l2_error_pps/element_l2_error_pp_test.i)
###########################################################
# This is a simple test of the Postprocessor System. This
# test uses a forcing function and the MMS to verify
# correctness of the implementation.
# Grid adaptivity is applied at successively finer grids
# to verify the correct slope of the measure of error
# against the analytical solution.
#
# @Requirement F6.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'forcing_func u_func'
[./forcing_func]
type = ParsedFunction
expression = alpha*alpha*pi*pi*sin(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[../]
[./u_func]
type = ParsedFunction
expression = sin(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[../]
[]
[Kernels]
active = 'diff forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[../]
[]
[Executioner]
type = Steady
[./Adaptivity]
refine_fraction = 1.0
coarsen_fraction = 0.0
max_h_level = 10
steps = 4
[../]
[]
# Postprocessor System
[Postprocessors]
[./integral]
type = ElementL2Error
variable = u
function = u_func
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(test/tests/variables/fe_monomial_const/monomial-const-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 21
ny = 21
nz = 21
elem_type = HEX8
[]
[Functions]
[./bc_fn]
type=ParsedFunction
expression=0
[../]
[./bc_fnt]
type = ParsedFunction
expression = 0
[../]
[./bc_fnb]
type = ParsedFunction
expression = 0
[../]
[./bc_fnl]
type = ParsedFunction
expression = 0
[../]
[./bc_fnr]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
# type = ParsedFunction
# expression = 0
type = MTPiecewiseConst3D
[../]
[./solution]
type = MTPiecewiseConst3D
[../]
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
# Note: MOOSE's DirichletBCs do not work properly with shape functions that do not
# have DOFs at the element edges. This test works because the solution
# has been designed to be zero at the boundary which is satisfied by the IC
# Ticket #1352
active = ''
[./bc_all]
type=FunctionDirichletBC
variable = u
boundary = 'top bottom left right'
function = bc_fn
[../]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1.e-9
[./Adaptivity]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/heat_transfer/test/tests/sideset_heat_transfer/gap_thermal_ktemp_1D.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmax = 2
[]
[split]
type = SubdomainBoundingBoxGenerator
input = mesh
block_id = 1
bottom_left = '1 0 0'
top_right = '2 0 0'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = split
primary_block = 1
paired_block = 0
new_boundary = 'interface0'
[]
uniform_refine = 4
[]
[Variables]
[T]
order = FIRST
family = MONOMIAL
[]
[]
[AuxVariables]
[Tbulk]
order = FIRST
family = LAGRANGE
initial_condition = 300 # K
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = T
diffusivity = conductivity
[]
[source]
type = BodyForce
variable = T
value = 1.0
[]
[]
[DGKernels]
[dg_diff]
type = DGDiffusion
variable = T
epsilon = -1
sigma = 6
diff = conductivity
exclude_boundary = 'interface0'
[]
[]
[InterfaceKernels]
[gap_var]
type = SideSetHeatTransferKernel
variable = T
neighbor_var = T
boundary = 'interface0'
Tbulk_var = Tbulk
[]
[]
[Functions]
# Defining temperature dependent fucntion for conductivity across side set
[kgap]
type = ParsedFunction
expression = 't / 200'
[]
[bc_func]
type = ConstantFunction
value = 300
[]
[exact]
type = ParsedFunction
expression = '
A := if(x < 1, -0.5, -0.25);
B := if(x < 1, -0.293209850655001, 0.0545267662299068);
C := if(x < 1, 300.206790149345, 300.19547323377);
d := -1;
A * (x+d) * (x+d) + B * (x+d) + C'
[]
[]
[BCs]
[bc_left]
type = DGFunctionDiffusionDirichletBC
boundary = 'left'
variable = T
diff = 'conductivity'
epsilon = -1
sigma = 6
function = bc_func
[]
[bc_right]
type = DGFunctionDiffusionDirichletBC
boundary = 'right'
variable = T
diff = 'conductivity'
epsilon = -1
sigma = 6
function = bc_func
[]
[]
[Materials]
[k0]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 1.0
block = 0
[]
[k1]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 2.0
block = 1
[]
[gap_mat]
type = SideSetHeatTransferMaterial
boundary = 'interface0'
# Using temperature dependent function for gap conductivity
conductivity_temperature_function = kgap
# Variable to evaluate conductivity with
gap_temperature = Tbulk
gap_length = 1.0
h_primary = 1
h_neighbor = 1
emissivity_primary = 1
emissivity_neighbor = 1
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = T
function = exact
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/dgkernels/3d_diffusion_dg/3d_diffusion_p_refinement.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
elem_type = HEX8
[]
[Variables]
[u]
order = FIRST
family = MONOMIAL
[InitialCondition]
type = ConstantIC
value = 0.5
[]
[]
[]
[Functions]
[forcing_fn]
type = ParsedFunction
expression = 2*pow(e,-x-(y*y))*(1-2*y*y)
[]
[exact_fn]
type = ParsedGradFunction
expression = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[abs]
type = Reaction
variable = u
[]
[forcing]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[DGKernels]
[dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[]
[]
[BCs]
[all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3 4 5'
function = exact_fn
epsilon = -1
sigma = 6
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[Adaptivity]
switch_h_to_p_refinement = true
steps = 2
refine_fraction = 1.0
coarsen_fraction = 0
max_h_level = 8
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
execute_on = 'initial timestep_end'
[]
[dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/mms/supg/supg_pspg_adv_dominated_mms.i)
mu=1.5e-4
rho=2.5
[GlobalParams]
gravity = '0 0 0'
supg = true
pspg = true
convective_term = true
integrate_p_by_parts = false
transient_term = true
laplace = true
u = vel_x
v = vel_y
pressure = p
alpha = 1e0
order = FIRST
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
elem_type = QUAD9
nx = 4
ny = 4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
order = FIRST
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
x_vel_forcing_func = vel_x_source_func
y_vel_forcing_func = vel_y_source_func
[../]
[./x_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
forcing_func = vel_x_source_func
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
forcing_func = vel_y_source_func
[../]
[./p_source]
type = BodyForce
function = p_source_func
variable = p
[../]
[]
[BCs]
[./vel_x]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_x_func
variable = vel_x
[../]
[./vel_y]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_y_func
variable = vel_y
[../]
[./p]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = p_func
variable = p
[../]
[]
[Functions]
[./vel_x_source_func]
type = ParsedFunction
expression = '-${mu}*(-0.028*pi^2*x^2*sin(0.2*pi*x*y) - 0.028*pi^2*y^2*sin(0.2*pi*x*y) - 0.1*pi^2*sin(0.5*pi*x) - 0.4*pi^2*sin(pi*y)) + ${rho}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[./vel_y_source_func]
type = ParsedFunction
expression = '-${mu}*(-0.018*pi^2*x^2*sin(0.3*pi*x*y) - 0.018*pi^2*y^2*sin(0.3*pi*x*y) - 0.384*pi^2*sin(0.8*pi*x) - 0.027*pi^2*sin(0.3*pi*y)) + ${rho}*(0.06*pi*x*cos(0.3*pi*x*y) + 0.09*pi*cos(0.3*pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.06*pi*y*cos(0.3*pi*x*y) + 0.48*pi*cos(0.8*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*x*cos(0.2*pi*x*y) + 0.3*pi*cos(0.3*pi*y)'
[../]
[./p_source_func]
type = ParsedFunction
expression = '-0.06*pi*x*cos(0.3*pi*x*y) - 0.14*pi*y*cos(0.2*pi*x*y) - 0.2*pi*cos(0.5*pi*x) - 0.09*pi*cos(0.3*pi*y)'
[../]
[./vel_x_func]
type = ParsedFunction
expression = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./vel_y_func]
type = ParsedFunction
expression = '0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3'
[../]
[./p_func]
type = ParsedFunction
expression = '0.5*sin(0.5*pi*x) + 1.0*sin(0.3*pi*y) + 0.5*sin(0.2*pi*x*y) + 0.5'
[../]
[./vxx_func]
type = ParsedFunction
expression = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu NONZERO superlu_dist'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-12
nl_max_its = 10
l_tol = 1e-6
l_max_its = 10
# To run to steady-state, set num-steps to some large number (1000000 for example)
type = Transient
num_steps = 10
steady_state_detection = true
steady_state_tolerance = 1e-10
[./TimeStepper]
dt = .1
type = IterationAdaptiveDT
cutback_factor = 0.4
growth_factor = 1.2
optimal_iterations = 20
[../]
[]
[Outputs]
execute_on = 'final'
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2vel_x]
type = ElementL2Error
variable = vel_x
function = vel_x_func
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2vel_y]
variable = vel_y
function = vel_y_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2p]
variable = p
function = p_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2vxx]
variable = vxx
function = vxx_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./vxx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./vxx]
type = VariableGradientComponent
component = x
variable = vxx
gradient_variable = vel_x
[../]
[]
(test/tests/fvkernels/mms/mat-advection-diffusion.i)
diff=1.1
a=1.1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = -0.6
xmax = 0.6
nx = 64
[../]
[]
[Variables]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[]
[FVKernels]
[./advection]
type = FVMatAdvection
variable = v
vel = 'fv_velocity'
[../]
[./diffusion]
type = FVDiffusion
variable = v
coeff = coeff
[../]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[boundary]
type = FVFunctionDirichletBC
boundary = 'left right'
function = 'exact'
variable = v
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '${diff}'
[]
[adv_material]
type = ADCoupledVelocityMaterial
vel_x = '${a}'
rho = 'v'
velocity = 'fv_velocity'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = '3*x^2 + 2*x + 1'
[]
[forcing]
type = ParsedFunction
expression = '-${diff}*6 + ${a} * (6*x + 2)'
# expression = '-${diff}*6'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/kernels/ad_mat_diffusion/ad_2d_steady_state.i)
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatDiff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'left right bottom'
value = 0
[../]
[./top]
type = ADFunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Materials]
[./k]
type = ADGenericConstantMaterial
prop_names = diffusivity
prop_values = 1
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/dgkernels/ad_dg_diffusion/2d_diffusion_ad_dg_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[u]
order = FIRST
family = MONOMIAL
[InitialCondition]
type = ConstantIC
value = 1
[]
[]
[]
[Functions]
[forcing_fn]
type = ParsedFunction
expression = 2*pow(e,-x-(y*y))*(1-2*y*y)
[]
[exact_fn]
type = ParsedGradFunction
expression = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[abs] # u * v
type = Reaction
variable = u
[]
[forcing]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[DGKernels]
[dg_diff]
type = ADDGDiffusion
variable = u
epsilon = -1
sigma = 6
diff = diff
[]
[]
[Materials]
[ad_coupled_mat]
type = ADCoupledMaterial
coupled_var = u
ad_mat_prop = diff
regular_mat_prop = diff_regular
[]
[]
[BCs]
[all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[Adaptivity]
steps = 2
refine_fraction = 1.0
coarsen_fraction = 0
max_h_level = 8
[]
nl_rel_tol = 1e-10
[]
[Postprocessors]
[h]
type = AverageElementSize
[]
[dofs]
type = NumDOFs
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[]
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/mms/cylindrical/advection.i)
a = 1.1
[Mesh]
coord_type = 'RZ'
[gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = 2
xmax = 3
nx = 2
[]
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[]
[]
[FVKernels]
# Flux kernel
[advection]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
advected_interp_method = 'average'
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[left_u]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = v
[]
[right_u]
type = FVConstantScalarOutflowBC
variable = v
velocity = '${a} 0 0'
boundary = 'right'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)'
[]
[forcing]
type = ParsedFunction
expression = '(x*a*cos(x) + a*sin(x))/x'
symbol_names = 'a'
symbol_values = '${a}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/time_integrators/crank-nicolson/cranic.i)
#
# Testing a solution that is second order in space and second order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*((x*x)+(y*y))-(4*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'crank-nicolson'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/mms/supg/supg_mms_test.i)
mu=1.5
rho=2.5
[GlobalParams]
gravity = '0 0 0'
supg = true
convective_term = true
integrate_p_by_parts = false
laplace = true
u = vel_x
v = vel_y
pressure = p
alpha = 1
order = SECOND
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
elem_type = QUAD9
nx = 4
ny = 4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
order = FIRST
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
forcing_func = vel_x_source_func
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
forcing_func = vel_y_source_func
[../]
[./p_source]
type = BodyForce
function = p_source_func
variable = p
[../]
[]
[BCs]
[./vel_x]
type = FunctionDirichletBC
preset = false
boundary = 'left right top bottom'
function = vel_x_func
variable = vel_x
[../]
[./vel_y]
type = FunctionDirichletBC
preset = false
boundary = 'left right top bottom'
function = vel_y_func
variable = vel_y
[../]
[./p]
type = FunctionDirichletBC
preset = false
boundary = 'left right top bottom'
function = p_func
variable = p
[../]
[]
[Functions]
[./vel_x_source_func]
type = ParsedFunction
expression = '-${mu}*(-0.028*pi^2*x^2*sin(0.2*pi*x*y) - 0.028*pi^2*y^2*sin(0.2*pi*x*y) - 0.1*pi^2*sin(0.5*pi*x) - 0.4*pi^2*sin(pi*y)) + ${rho}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[./vel_y_source_func]
type = ParsedFunction
expression = '-${mu}*(-0.018*pi^2*x^2*sin(0.3*pi*x*y) - 0.018*pi^2*y^2*sin(0.3*pi*x*y) - 0.384*pi^2*sin(0.8*pi*x) - 0.027*pi^2*sin(0.3*pi*y)) + ${rho}*(0.06*pi*x*cos(0.3*pi*x*y) + 0.09*pi*cos(0.3*pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.06*pi*y*cos(0.3*pi*x*y) + 0.48*pi*cos(0.8*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*x*cos(0.2*pi*x*y) + 0.3*pi*cos(0.3*pi*y)'
[../]
[./p_source_func]
type = ParsedFunction
expression = '-0.06*pi*x*cos(0.3*pi*x*y) - 0.14*pi*y*cos(0.2*pi*x*y) - 0.2*pi*cos(0.5*pi*x) - 0.09*pi*cos(0.3*pi*y)'
[../]
[./vel_x_func]
type = ParsedFunction
expression = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./vel_y_func]
type = ParsedFunction
expression = '0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3'
[../]
[./p_func]
type = ParsedFunction
expression = '0.5*sin(0.5*pi*x) + 1.0*sin(0.3*pi*y) + 0.5*sin(0.2*pi*x*y) + 0.5'
[../]
[./vxx_func]
type = ParsedFunction
expression = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2vel_x]
type = ElementL2Error
variable = vel_x
function = vel_x_func
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2vel_y]
variable = vel_y
function = vel_y_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2p]
variable = p
function = p_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2vxx]
variable = vxx
function = vxx_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./vxx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./vxx]
type = VariableGradientComponent
component = x
variable = vxx
gradient_variable = vel_x
[../]
[]
(test/tests/preconditioners/vcp/no_condense_test.i)
[Mesh]
[original_file_mesh]
type = FileMeshGenerator
file = non_conform_2blocks.e
[]
[secondary_side]
input = original_file_mesh
type = LowerDBlockFromSidesetGenerator
sidesets = '10'
new_block_id = '100'
new_block_name = 'secondary_side'
[]
[primary_side]
input = secondary_side
type = LowerDBlockFromSidesetGenerator
sidesets = '20'
new_block_id = '200'
new_block_name = 'primary_side'
[]
[]
[Functions]
[exact_sln]
type = ParsedFunction
expression = sin(2*pi*x)*sin(2*pi*y)
[]
[ffn]
type = ParsedFunction
expression = 8*pi*pi*sin(2*pi*x)*sin(2*pi*y)
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = secondary_side
use_dual = false
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = ffn
[]
[]
[Constraints]
[ced]
type = EqualValueConstraint
variable = lm
secondary_variable = u
primary_boundary = 20
primary_subdomain = 200
secondary_boundary = 10
secondary_subdomain = 100
[]
[]
[BCs]
[all]
type = DirichletBC
variable = u
boundary = '30 40'
value = 0.0
[]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_sln
variable = u
boundary = '50 60'
[]
[]
[Postprocessors]
[l2_error]
type = ElementL2Error
variable = u
function = exact_sln
block = '1 2'
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-12'
l_max_its = 100
nl_rel_tol = 1e-6
[]
[Outputs]
csv = true
[]
(test/tests/fviks/one-var-diffusion/no-ik.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 'coeff'
coeff_interp_method = average
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = FVDirichletBC
variable = u
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = ADGenericFunctorMaterial
block = '0'
prop_names = 'coeff'
prop_values = '4'
[]
[block1]
type = ADGenericFunctorMaterial
block = '1'
prop_names = 'coeff'
prop_values = '2'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
csv = true
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'if(x<1, 1 - x/3, 4/3 - 2*x/3)'
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(python/peacock/tests/common/transient.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
(test/tests/mortar/convergence-studies/continuity-3d/continuity.i)
[Mesh]
second_order = true
[file]
type = FileMeshGenerator
file = hex_mesh.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
new_block_id = 11
new_block_name = "secondary"
sidesets = '101'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
new_block_id = 12
new_block_name = "primary"
sidesets = '102'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[T]
block = '1 2'
order = SECOND
[]
[lambda]
block = 'secondary'
# family = MONOMIAL
# order = CONSTANT
family = LAGRANGE
order = SECOND
use_dual = true
[]
[]
[BCs]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_soln_primal
variable = T
boundary = '1 2'
[]
[]
[Kernels]
[conduction]
type = Diffusion
variable = T
block = '1 2'
[]
[sink]
type = Reaction
variable = T
block = '1 2'
[]
[forcing_function]
type = BodyForce
variable = T
function = forcing_function
block = '1 2'
[]
[]
[Functions]
[forcing_function]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi) + 3*pi^2*sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_primal]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_lambda]
type = ParsedFunction
expression = 'pi*sin(pi*y)*sin(pi*z)*cos(pi*x)'
[]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[mortar]
type = EqualValueConstraint
primary_boundary = 2
secondary_boundary = 1
primary_subdomain = '12'
secondary_subdomain = '11'
variable = lambda
secondary_variable = T
# delta = 0.1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type -snes_linesearch_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu basic NONZERO 1e-15'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[L2lambda]
type = ElementL2Error
variable = lambda
function = exact_soln_lambda
execute_on = 'timestep_end'
block = 'secondary'
[]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = '1 2'
[]
[h]
type = AverageElementSize
block = '1 2'
[]
[]
(test/tests/fvkernels/mms/skewness-correction/diffusion/skewed.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = FileMeshGenerator
file = skewed.msh
[../]
[]
[Variables]
[./v]
initial_condition = 1
type = MooseVariableFVReal
face_interp_method = 'skewness-corrected'
[../]
[]
[FVKernels]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '2*diff*sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
[]
[]
(test/tests/executioners/executioner/steady-adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 3
ny = 3
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = -4
[../]
[./exact_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ffn'
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[./Adaptivity]
steps = 3
coarsen_fraction = 0.1
refine_fraction = 0.2
max_h_level = 5
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_steady_adapt
exodus = true
print_mesh_changed_info = true
[]
(python/peacock/tests/common/transient_big.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
file_base = out_transient
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-hllc.i)
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_mom_x]
type = FunctionIC
variable = sup_mom_x
function = 'exact_rho_ud'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVMassHLLC
variable = pressure
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVMomentumHLLC
variable = sup_mom_x
momentum_component = x
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[momentum_fn]
type = FVBodyForce
variable = sup_mom_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVFluidEnergyHLLC
variable = T_fluid
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
superficial_rhou = sup_mom_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
expression = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
expression = '-3.83667087618017*sin(1.1*x)*cos(1.3*x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
expression = '3.48788261470924*cos(1.1*x)*cos(1.3*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
expression = '(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x))*cos(1.3*x) + 3.48788261470924*sin(x)*cos(1.1*x)^2*cos(1.3*x)/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)*cos(1.3*x)/cos(x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)^2/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
expression = '26.7439413073546*cos(1.5*x)'
[]
[forcing_rho_et]
type = ParsedFunction
expression = '1.0*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(x)*cos(1.1*x)*cos(1.3*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.1*x)*cos(1.3*x)/cos(x) - 1.3*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.3*x)*cos(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x) - 40.1159119610319*sin(1.5*x))*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
expression = '0.0106975765229418*cos(1.5*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)*cos(1.3*x)'
[]
[exact_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
expression = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[eps]
type = ParsedFunction
expression = 'cos(1.3*x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
expression_x = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_mom_x]
variable = sup_mom_x
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/time_integrators/dirk/dirk-2d-heat-adap.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = 0.0
num_steps = 5
dt = 0.25
[./TimeIntegrator]
type = LStableDirk2
[../]
[./Adaptivity]
refine_fraction = 0.07
coarsen_fraction = 0.
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/heat_transfer/test/tests/code_verification/spherical_test_no2.i)
# Problem III.2
#
# A spherical shell has a thermal conductivity that varies linearly
# with temperature. The inside and outside surfaces of the shell are
# exposed to constant temperatures.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'ri ro beta ki ko ui uo'
symbol_values = '0.2 1.0 1e-3 5.3 5 300 0'
expression = 'uo+(ko/beta)* ( ( 1 + beta*(ki+ko)*(ui-uo)*( (1/x-1/ro) / (1/ri-1/ro) )/(ko^2))^0.5 -1 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '5 + 1e-3 * (u-0)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/code_verification/cartesian_test_no1.i)
# Problem I.1
#
# An infinite plate with constant thermal conductivity k and
# internal heat generation q. It is exposed on each boundary
# to a constant temperature: u(0) = ui and u(L) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'q L k ui uo'
symbol_values = '1200 1 12 100 0'
expression = 'ui + (uo-ui)*x/L + (q/k) * x * (L-x) / 2'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 100
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 12.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/pps_interval/pps_bad_interval2.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
file_base = ignore_bad
exodus = true
[./console]
type = Console
time_step_interval = 2
[../]
[]
(test/tests/bcs/penalty_dirichlet_bc/penalty_dirichlet_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = -2*(x*x+y*y-2)+(1-x*x)*(1-y*y)
[../]
[./solution]
type = ParsedGradFunction
value = (1-x*x)*(1-y*y)
grad_x = 2*(x*y*y-x)
grad_y = 2*(x*x*y-y)
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'bc_all'
[./bc_all]
type = PenaltyDirichletBC
variable = u
value = 0
boundary = 'top left right bottom'
penalty = 1e5
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/kernels/scalar_constraint/scalar_constraint_kernel_disp.i)
#
# This test is identical to scalar_constraint_kernel.i, but it everything is evaluated on the displaced mesh
#
[GlobalParams]
use_displaced_mesh = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
displacements = 'disp_x disp_y'
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = 'x*x+y*y'
[../]
[./ffn]
type = ParsedFunction
expression = -4
[../]
[./bottom_bc_fn]
type = ParsedFunction
expression = -2*y
[../]
[./right_bc_fn]
type = ParsedFunction
expression = 2*x
[../]
[./top_bc_fn]
type = ParsedFunction
expression = 2*y
[../]
[./left_bc_fn]
type = ParsedFunction
expression = -2*x
[../]
[]
[AuxVariables]
[./disp_x]
family = LAGRANGE
order = SECOND
[../]
[./disp_y]
family = LAGRANGE
order = SECOND
[../]
[]
[AuxKernels]
[./disp_x_ak]
type = ConstantAux
variable = disp_x
value = 0
[../]
[./disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[../]
[]
# NL
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[./lambda]
family = SCALAR
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffnk]
type = BodyForce
variable = u
function = ffn
[../]
[./sk_lm]
type = ScalarLagrangeMultiplier
variable = u
lambda = lambda
[../]
[]
[ScalarKernels]
[./constraint]
type = AverageValueConstraint
variable = lambda
pp_name = pp
value = 2.666666666666666
# overrride the global setting, scalar kernels do not live on a mesh
use_displaced_mesh = false
[../]
[]
[BCs]
[./bottom]
type = FunctionNeumannBC
variable = u
boundary = '0'
function = bottom_bc_fn
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = '1'
function = right_bc_fn
[../]
[./top]
type = FunctionNeumannBC
variable = u
boundary = '2'
function = top_bc_fn
[../]
[./left]
type = FunctionNeumannBC
variable = u
boundary = '3'
function = left_bc_fn
[../]
[]
[Postprocessors]
[./pp]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./pc]
type = SMP
full = true
solve_type = 'PJFNK'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-14
l_tol = 1e-7
[]
[Outputs]
exodus = true
hide = lambda
[]
(modules/heat_transfer/test/tests/code_verification/cartesian_test_no5.i)
# Problem I.5
#
# The volumetric heat generation in an infinite plate varies linearly
# with spatial location. It has constant thermal conductivity.
# It is insulated on the left boundary and exposed to a
# constant temperature on the right.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./volumetric_heat]
type = ParsedFunction
symbol_names = 'q L beta'
symbol_values = '1200 1 0.1'
expression = 'q * (1-beta*x/L)'
[../]
[./exact]
type = ParsedFunction
symbol_names = 'uo q k L beta'
symbol_values = '300 1200 1 1 0.1'
expression = 'uo + (0.5*q*L^2/k) * ( (1-(x/L)^2) - (1-(x/L)^3) * beta/3 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = volumetric_heat
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 300
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 1.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/bcs/ad_penalty_dirichlet_bc/function_penalty_dirichlet_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = -4+x*x+y*y
[../]
[./solution]
type = ParsedGradFunction
value = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = ADDiffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = ADBodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'bc_all'
[./bc_all]
type = ADFunctionPenaltyDirichletBC
variable = u
function = solution
boundary = 'top left right bottom'
penalty = 1e6
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-14
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/cg-dg-hybrid/mms/lid-driven/hybrid-cg-dg-mms.i)
rho=1.1
mu=1.1
cp=1.1
k=1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = -1
xmax = 1.0
ymin = -1
ymax = 1.0
nx = 2
ny = 2
[]
[corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[]
[]
[Variables]
[u]
family = MONOMIAL
[]
[v]
family = MONOMIAL
[]
[pressure][]
[T]
family = MONOMIAL
[]
[]
[Kernels]
[momentum_x_convection]
type = ADConservativeAdvection
variable = u
velocity = 'velocity'
advected_quantity = 'rhou'
[]
[momentum_x_diffusion]
type = MatDiffusion
variable = u
diffusivity = 'mu'
[]
[momentum_x_pressure]
type = PressureGradient
integrate_p_by_parts = false
variable = u
pressure = pressure
component = 0
[]
[u_forcing]
type = BodyForce
variable = u
function = forcing_u
[]
[momentum_y_convection]
type = ADConservativeAdvection
variable = v
velocity = 'velocity'
advected_quantity = 'rhov'
[]
[momentum_y_diffusion]
type = MatDiffusion
variable = v
diffusivity = 'mu'
[]
[momentum_y_pressure]
type = PressureGradient
integrate_p_by_parts = false
variable = v
pressure = pressure
component = 1
[]
[v_forcing]
type = BodyForce
variable = v
function = forcing_v
[]
[mass]
type = ADConservativeAdvection
variable = pressure
velocity = velocity
advected_quantity = -1
[]
[p_forcing]
type = BodyForce
variable = pressure
function = forcing_p
[]
[T_convection]
type = ADConservativeAdvection
variable = T
velocity = 'velocity'
advected_quantity = 'rho_cp_temp'
[]
[T_diffusion]
type = MatDiffusion
variable = T
diffusivity = 'k'
[]
[T_forcing]
type = BodyForce
variable = T
function = forcing_T
[]
[]
[DGKernels]
[momentum_x_convection]
type = ADDGAdvection
variable = u
velocity = 'velocity'
advected_quantity = 'rhou'
[]
[momentum_x_diffusion]
type = DGDiffusion
variable = u
sigma = 6
epsilon = -1
diff = 'mu'
[]
[momentum_y_convection]
type = ADDGAdvection
variable = v
velocity = 'velocity'
advected_quantity = 'rhov'
[]
[momentum_y_diffusion]
type = DGDiffusion
variable = v
sigma = 6
epsilon = -1
diff = 'mu'
[]
[T_convection]
type = ADDGAdvection
variable = T
velocity = 'velocity'
advected_quantity = 'rho_cp_temp'
[]
[T_diffusion]
type = DGDiffusion
variable = T
sigma = 6
epsilon = -1
diff = 'k'
[]
[]
[BCs]
[u_walls]
type = DGFunctionDiffusionDirichletBC
boundary = 'left bottom right top'
variable = u
sigma = 6
epsilon = -1
function = exact_u
diff = 'mu'
[]
[v_walls]
type = DGFunctionDiffusionDirichletBC
boundary = 'left bottom right top'
variable = v
sigma = 6
epsilon = -1
function = exact_v
diff = 'mu'
[]
[pressure_pin]
type = FunctionDirichletBC
variable = pressure
boundary = 'pinned_node'
function = 'exact_p'
[]
[T_walls]
type = DGFunctionDiffusionDirichletBC
boundary = 'left bottom right top'
variable = T
sigma = 6
epsilon = -1
function = exact_T
diff = 'k'
[]
[]
[Materials]
[const]
type = ADGenericConstantMaterial
prop_names = 'rho cp'
prop_values = '${rho} ${cp}'
[]
[const_reg]
type = GenericConstantMaterial
prop_names = 'mu k'
prop_values = '${mu} ${k}'
[]
[vel]
type = ADVectorFromComponentVariablesMaterial
vector_prop_name = 'velocity'
u = u
v = v
[]
[rhou]
type = ADParsedMaterial
property_name = 'rhou'
coupled_variables = 'u'
material_property_names = 'rho'
expression = 'rho*u'
[]
[rhov]
type = ADParsedMaterial
property_name = 'rhov'
coupled_variables = 'v'
material_property_names = 'rho'
expression = 'rho*v'
[]
[rho_cp]
type = ADParsedMaterial
property_name = 'rho_cp'
material_property_names = 'rho cp'
expression = 'rho*cp'
[]
[rho_cp_temp]
type = ADParsedMaterial
property_name = 'rho_cp_temp'
material_property_names = 'rho cp'
coupled_variables = 'T'
expression = 'rho*cp*T'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(y)*cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = 'mu*sin(y)*cos((1/2)*x*pi) + (1/4)*pi^2*mu*sin(y)*cos((1/2)*x*pi) - 1/2*pi*rho*sin(x)*sin(y)*sin((1/2)*y*pi)*cos((1/2)*x*pi) + rho*sin(x)*cos(y)*cos((1/2)*x*pi)*cos((1/2)*y*pi) - pi*rho*sin(y)^2*sin((1/2)*x*pi)*cos((1/2)*x*pi) + sin(y)*cos(x)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin(x)*cos((1/2)*y*pi)'
[]
[forcing_v]
type = ParsedFunction
expression = 'mu*sin(x)*cos((1/2)*y*pi) + (1/4)*pi^2*mu*sin(x)*cos((1/2)*y*pi) - pi*rho*sin(x)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 1/2*pi*rho*sin(x)*sin(y)*sin((1/2)*x*pi)*cos((1/2)*y*pi) + rho*sin(y)*cos(x)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + sin(x)*cos(y)'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin(x)*sin(y)'
[]
[forcing_p]
type = ParsedFunction
expression = '(1/2)*pi*sin(x)*sin((1/2)*y*pi) + (1/2)*pi*sin(y)*sin((1/2)*x*pi)'
[]
[exact_T]
type = ParsedFunction
expression = 'cos(x)*cos(y)'
[]
[forcing_T]
type = ParsedFunction
expression = '-cp*rho*sin(x)*sin(y)*cos(x)*cos((1/2)*y*pi) - cp*rho*sin(x)*sin(y)*cos(y)*cos((1/2)*x*pi) - 1/2*pi*cp*rho*sin(x)*sin((1/2)*y*pi)*cos(x)*cos(y) - 1/2*pi*cp*rho*sin(y)*sin((1/2)*x*pi)*cos(x)*cos(y) + 2*k*cos(x)*cos(y)'
symbol_names = 'rho cp k'
symbol_values = '${rho} ${cp} ${k}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu NONZERO mumps'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
variable = v
function = exact_v
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T]
variable = T
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/free-flow-hllc.i)
diff_coeff = 0.1
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = 1.1
nx = 2
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Variables]
[rho]
type = MooseVariableFVReal
[]
[rho_u]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[]
[ICs]
[rho]
type = FunctionIC
variable = rho
function = 'exact_rho'
[]
[rho_u]
type = FunctionIC
variable = rho_u
function = 'exact_rho_u'
[]
[rho_et]
type = FunctionIC
variable = rho_et
function = 'exact_rho_et'
[]
[]
[FVKernels]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
[]
[mass_fn]
type = FVBodyForce
variable = rho
function = 'forcing_rho'
[]
[momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
[]
[momentum_fn]
type = FVBodyForce
variable = rho_u
function = 'forcing_rho_u'
[]
[fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_et
[]
[energy_fn]
type = FVBodyForce
variable = rho_et
function = 'forcing_rho_et'
[]
[mass_diff]
type = FVDiffusion
variable = rho
coeff = ${diff_coeff}
[]
[momentum_diff]
type = FVDiffusion
variable = rho_u
coeff = ${diff_coeff}
[]
[energy_diff]
type = FVDiffusion
variable = rho_et
coeff = ${diff_coeff}
[]
[]
[FVBCs]
[mass_in]
variable = rho
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMassBC
boundary = left
temperature = 'exact_T'
rhou = 'exact_rho_u'
[]
[momentum_in]
variable = rho_u
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMomentumBC
boundary = left
temperature = 'exact_T'
rhou = 'exact_rho_u'
momentum_component = 'x'
[]
[energy_in]
variable = rho_et
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureFluidEnergyBC
boundary = left
temperature = 'exact_T'
rhou = 'exact_rho_u'
[]
[mass_out]
variable = rho
type = CNSFVHLLCSpecifiedPressureMassBC
boundary = right
pressure = 'exact_p'
[]
[momentum_out]
variable = rho_u
type = CNSFVHLLCSpecifiedPressureMomentumBC
boundary = right
pressure = 'exact_p'
momentum_component = 'x'
[]
[energy_out]
variable = rho_et
type = CNSFVHLLCSpecifiedPressureFluidEnergyBC
boundary = right
pressure = 'exact_p'
[]
[left_mass_diffusion]
type = FVFunctionNeumannBC
variable = rho
function = minus_rho_bc
boundary = 'left'
[]
[left_momentum_diffusion]
type = FVFunctionNeumannBC
variable = rho_u
function = minus_rho_u_bc
boundary = 'left'
[]
[left_energy_diffusion]
type = FVFunctionNeumannBC
variable = rho_et
function = minus_rho_et_bc
boundary = 'left'
[]
[right_mass_diffusion]
type = FVFunctionNeumannBC
variable = rho
function = rho_bc
boundary = 'right'
[]
[right_momentum_diffusion]
type = FVFunctionNeumannBC
variable = rho_u
function = rho_u_bc
boundary = 'right'
[]
[right_energy_diffusion]
type = FVFunctionNeumannBC
variable = rho_et
function = rho_et_bc
boundary = 'right'
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rho_et = rho_et
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
expression = '3.48788261470924*cos(x)'
[]
[rho_bc]
type = ParsedFunction
value = '-diff_coeff*3.48788261470924*sin(x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[minus_rho_bc]
type = ParsedFunction
value = 'diff_coeff*3.48788261470924*sin(x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[forcing_rho]
type = ParsedFunction
expression = '-3.83667087618017*sin(1.1*x) + 0.348788261470924*cos(x)'
[]
[exact_rho_u]
type = ParsedFunction
expression = '3.48788261470924*cos(1.1*x)'
[]
[rho_u_bc]
type = ParsedFunction
value = '-diff_coeff*3.48788261470924*1.1*sin(1.1*x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[minus_rho_u_bc]
type = ParsedFunction
value = 'diff_coeff*3.48788261470924*1.1*sin(1.1*x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[forcing_rho_u]
type = ParsedFunction
expression = '-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.48788261470924*sin(x)*cos(1.1*x)^2/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)/cos(x) + 0.422033796379819*cos(1.1*x)'
[]
[exact_rho_et]
type = ParsedFunction
expression = '26.7439413073546*cos(1.2*x)'
[]
[rho_et_bc]
type = ParsedFunction
value = '-diff_coeff*26.7439413073546*1.2*sin(1.2*x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[minus_rho_et_bc]
type = ParsedFunction
value = 'diff_coeff*26.7439413073546*1.2*sin(1.2*x)'
vars = 'diff_coeff'
vals = '${diff_coeff}'
[]
[forcing_rho_et]
type = ParsedFunction
expression = '1.0*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x) + 3.85112754825907*cos(1.2*x)'
[]
[exact_T]
type = ParsedFunction
expression = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = none
nl_rel_tol = 1e-11
nl_abs_tol = 1e-11
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho]
type = ElementL2Error
variable = rho
function = exact_rho
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_u]
variable = rho_u
function = exact_rho_u
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_et]
variable = rho_et
function = exact_rho_et
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/functions/linear_combination_function/lcf_grad.i)
# LinearCombinationFunction function test
# See [Functions] block for a description of the tests
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 3
ny = 3
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./the_linear_combo_x]
order = CONSTANT
family = MONOMIAL
[../]
[./the_linear_combo_y]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./the_linear_combo_x]
type = FunctionDerivativeAux
component = x
variable = the_linear_combo_x
function = the_linear_combo
[../]
[./the_linear_combo_y]
type = FunctionDerivativeAux
component = y
variable = the_linear_combo_y
function = the_linear_combo
[../]
[]
[Functions]
[./xtimes]
type = ParsedGradFunction
value = '1.1*x+y'
grad_x = '1.1'
grad_y = '1'
[../]
[./twoxplus1]
type = ParsedGradFunction
value = '2*x+1'
grad_x = '2'
[../]
[./tover2]
type = ParsedGradFunction
value = '0.5*t-y*7'
grad_y = '-7'
[../]
[./the_linear_combo]
type = LinearCombinationFunction
functions = 'xtimes twoxplus1 tover2'
w = '3 -1.2 3'
[../]
[./should_be_answer_x]
type = ParsedFunction
expression = '3*1.1-1.2*2'
[../]
[./should_be_answer_y]
type = ParsedFunction
expression = '3*1+3*(-7)'
[../]
[]
[Postprocessors]
[./should_be_zero_x]
type = ElementL2Error
function = should_be_answer_x
variable = the_linear_combo_x
[../]
[./should_be_zero_y]
type = ElementL2Error
function = should_be_answer_y
variable = the_linear_combo_y
[../]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = lcf_grad
hide = dummy
exodus = false
csv = true
[]
(modules/stochastic_tools/test/tests/auxkernels/surrogate_aux/surrogate_array_aux.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 10
[]
[]
[Surrogates]
[surrogate]
type = PolynomialRegressionSurrogate
filename = surrogate_trainer_poly_regression.rd
[]
[]
[AuxVariables]
[u]
family = MONOMIAL
order = CONSTANT
components = 2
[]
[u0]
family = MONOMIAL
order = CONSTANT
[]
[u1]
family = MONOMIAL
order = CONSTANT
[]
[array_var]
family = MONOMIAL
order = CONSTANT
components = 2
[]
[var]
family = MONOMIAL
order = CONSTANT
[]
[reference]
family = MONOMIAL
order = CONSTANT
[]
[]
[ICs]
[array_var_ic]
type = ArrayFunctionIC
variable = array_var
function = 'funx funmx'
[]
[var_ic]
type = FunctionIC
variable = var
function = funy
[]
[]
[Functions]
[funx]
type = ParsedFunction
expression = 'x'
[]
[funmx]
type = ParsedFunction
expression = '-x'
[]
[funy]
type = ParsedFunction
expression = 'y'
[]
[funz]
type = ParsedFunction
expression = 'z'
[]
[funt]
type = ParsedFunction
expression = 't'
[]
[reference0]
type = ParsedFunction
expression = '1 + x + y + z + t +
x*x + x*y + x*z + x*t +
y*y + y*z + y*t +
z*z + z*t +
t*t'
[]
[reference1]
type = ParsedFunction
expression = '1 - x + y + z + t +
x*x - x*y - x*z - x*t +
y*y + y*z + y*t +
z*z + z*t +
t*t'
[]
[]
[Postprocessors]
[pp]
type = FunctionValuePostprocessor
function = funt
point = '0 0 0'
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[AuxKernels]
[u_aux]
type = SurrogateModelArrayAuxKernel
variable = u
model = surrogate
parameters = 'array_var var funz pp'
scalar_parameters = 'funz pp'
coupled_variables = 'var'
coupled_array_variables = 'array_var'
execute_on = 'INITIAL TIMESTEP_END'
[]
[u0_aux]
type = ArrayVariableComponent
variable = u0
array_variable = u
component = 0
execute_on = 'INITIAL TIMESTEP_END'
[]
[u1_aux]
type = ArrayVariableComponent
variable = u1
array_variable = u
component = 1
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Postprocessors]
[diff0]
type = ElementL2Error
variable = u0
function = reference0
execute_on = 'INITIAL TIMESTEP_END'
[]
[diff1]
type = ElementL2Error
variable = u1
function = reference1
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 10
[]
[UserObjects]
[terminator]
type = Terminator
expression = '(diff0 + diff1) > 1e-8'
error_level = ERROR
[]
[]
(test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value_ts_begin.i)
[Mesh]
file = square-2x2-nodeids.e
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = AverageNodalVariableValue
variable = u
boundary = 10
execute_on = TIMESTEP_BEGIN
[../]
[./node4]
type = AverageNodalVariableValue
variable = v
boundary = 13
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_avg_nodal_var_value_ts_begin
exodus = true
[]
(test/tests/time_steppers/dt2/dt2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD4
[]
[GlobalParams]
slope = 1
t_jump = 2
[]
[Functions]
active = 'u_func'
[./u_func]
type = ParsedFunction
expression = 'atan((t-2)*pi)' # atan((t-t_jump)*pi*slope) - has to match global params above
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = TEIC
[../]
[../]
[]
[Kernels]
active = 'td diff ffn'
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = TEJumpFFN
variable = u
[../]
[]
[BCs]
active = 'all'
[./all]
type = TEJumpBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Postprocessors]
active = 'dt l2'
[./dt]
type = TimestepSize
[../]
[./l2]
type = ElementL2Error
variable = u
function = u_func
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-7
# l_tol = 1e-5
start_time = 0.0
end_time = 5
num_steps = 500000
dtmax = 0.25
[./TimeStepper]
type = DT2
dt = 0.1
e_max = 3e-1
e_tol = 1e-1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(python/mms/test/mms_temporal.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 8
ny = 8
[]
[Variables]
[u][]
[]
[Kernels]
[time]
type = ADTimeDerivative
variable = u
[]
[diff]
type = ADDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
function = force
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 't^3*x*y'
[]
[force]
type = ParsedFunction
expression = '3*x*y*t^2'
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
function = exact
boundary = 'left right top bottom'
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
function = exact
variable = u
[]
[h]
type = AverageElementSize
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 3
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/variables/fe_hier/hier-1-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 5
ny = 5
elem_type = HEX8
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
expression = 1
[../]
[./bc_fnb]
type = ParsedFunction
expression = -1
[../]
[./bc_fnl]
type = ParsedFunction
expression = -1
[../]
[./bc_fnr]
type = ParsedFunction
expression = 1
[../]
[./bc_fnf]
type = ParsedFunction
expression = 1
[../]
[./bc_fnk]
type = ParsedFunction
expression = -1
[../]
[./forcing_fn]
type = ParsedFunction
expression = x+y+z
[../]
[./solution]
type = ParsedGradFunction
expression = x+y+z
grad_x = 1
grad_y = 1
grad_z = 1
[../]
[]
[Variables]
[./u]
order = FIRST
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[./bc_front]
type = FunctionNeumannBC
variable = u
boundary = 'front'
function = bc_fnf
[../]
[./bc_back]
type = FunctionNeumannBC
variable = u
boundary = 'back'
function = bc_fnk
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/solid_mechanics/test/tests/global_strain/global_strain_shear.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[SolidMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '0 0 0 5e9 5e9 5e9'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err_e01]
type = ElementL2Error
variable = e01
function = 0.095 #Shear strain check
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/recompute_radial_return/affine_plasticity.i)
# Affine Plasticity Test for Transient Stress Eigenvalues with Stationary Eigenvectors
# This test is taken from K. Jamojjala, R. Brannon, A. Sadeghirad, J. Guilkey,
# "Verification tests in solid mechanics," Engineering with Computers, Vol 31.,
# p. 193-213.
# The test involves applying particular strains and expecting particular stresses.
# The material properties are:
# Yield in shear 165 MPa
# Shear modulus 79 GPa
# Poisson's ratio 1/3
# The strains are:
# Time e11 e22 e33
# 0 0 0 0
# 1 -0.003 -0.003 0.006
# 2 -0.0103923 0 0.0103923
# The expected stresses are:
# sigma11:
# -474*t 0 < t <= 0.201
# -95.26 0.201 < t <= 1
# (189.4+0.1704*sqrt(a)-0.003242*a)
# --------------------------------- 1 < t <= 2
# 1+0.00001712*a
# -189.4 t > 2 (paper erroneously gives a positive value)
#
# sigma22:
# -474*t 0 < t <= 0.201
# -95.26 0.201 < t <= 1
# -(76.87+1.443*sqrt(a)-0.001316*a)
# --------------------------------- 1 < t <= 2 (paper gives opposite sign)
# 1+0.00001712*a
# 76.87 t > 2
#
# sigma33:
# 948*t 0 < t <= 0.201
# 190.5 0.201 < t <= 1
# -(112.5-1.272*sqrt(a)-0.001926*a)
# --------------------------------- 1 < t <= 2 (paper has two sign errors here)
# 1+0.00001712*a
# 112.5 t > 2
#
# where a = exp(12.33*t).
#
# Note: If planning to run this case with strain type ComputeFiniteStrain, the
# displacement function must be adjusted. Instead of
# strain = (l - l0)/l0 = (u+l0 - l0)/l0 = u/l0
# with l0=1.0, we would have
# strain = log(l/l0) = log((u+l0)/l0)
# with l0=1.0. So, for strain = -0.003,
# -0.003 = log((u+l0)/l0) ->
# u = exp(-0.003)*l0 - l0 = -0.0029955044966269995.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '0'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Functions]
[./disp_x]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.003 -0.0103923'
[../]
[./disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.003 0.'
[../]
[./disp_z]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0.006 0.0103923'
[../]
[./stress_xx]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# The paper gives -95.26 MPa as the stress at yield, but -95.26279441628823 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# 189.409039923814000, 0.170423791206825, -0.003242011311945, 1.711645501845780E-05 - exact values
symbol_names = 'timeAtYield stressAtYield expFac a b c d'
symbol_values = '0.20097635952803425 -95.26279441628823 12.332921390339125 189.409039923814000 0.170423791206825 -0.003242011311945 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, -474*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[../]
[./stress_yy]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# the paper gives -95.26 MPa as the stress at yield, but -95.26279441628823 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# -76.867432297315000, -1.442488120272900, 0.001315697947301, 1.711645501845780E-05 - exact values
symbol_names = 'timeAtYield stressAtYield expFac a b c d'
symbol_values = '0.20097635952803425 -95.26279441628823 12.332921390339125 -76.867432297315000 -1.442488120272900 0.001315697947301 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, -474*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[../]
[./stress_zz]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# the paper gives 190.5 MPa as the stress at yield, but 190.52558883257645 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# -112.541607626499000, 1.272064329066080, 0.001926313364644, 1.711645501845780E-05 - exact values
symbol_names = 'timeAtYield stressAtYield expFac a b c d'
symbol_values = '0.20097635952803425 190.52558883257645 12.332921390339125 -112.541607626499000 1.272064329066080 0.001926313364644 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, 948*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[SolidMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = 'timestep_end'
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
execute_on = 'timestep_end'
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = 'timestep_end'
[../]
[]
[BCs]
[./fixed_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixed_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./fixed_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./disp_x]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = disp_x
[../]
[./disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = disp_y
[../]
[./disp_z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 210666666666.666667
poissons_ratio = 0.3333333333333333
[../]
[./strain]
type = ComputeIncrementalStrain
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 285788383.2488647 # = sqrt(3)*165e6 = sqrt(3) * yield in shear
hardening_constant = 0.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 0.01 # use 0.0001 for a nearly exact match
end_time = 2.0
[]
[Postprocessors]
[./analytic_xx]
type = FunctionValuePostprocessor
function = stress_xx
[../]
[./analytic_yy]
type = FunctionValuePostprocessor
function = stress_yy
[../]
[./analytic_zz]
type = FunctionValuePostprocessor
function = stress_zz
[../]
[./stress_xx]
type = ElementalVariableValue
variable = stress_xx
elementid = 0
[../]
[./stress_yy]
type = ElementalVariableValue
variable = stress_yy
elementid = 0
[../]
[./stress_zz]
type = ElementalVariableValue
variable = stress_zz
elementid = 0
[../]
[./stress_xx_l2_error]
type = ElementL2Error
variable = stress_xx
function = stress_xx
[../]
[./stress_yy_l2_error]
type = ElementL2Error
variable = stress_yy
function = stress_yy
[../]
[./stress_zz_l2_error]
type = ElementL2Error
variable = stress_zz
function = stress_zz
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/nodalkernels/penalty_dirichlet/nodal_penalty_dirichlet.i)
#In order to compare the solution generated using preset BC, the penalty was set to 1e10.
#Large penalty number should be used with caution.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = -2*(x*x+y*y-2)
[../]
[./solution]
type = ParsedGradFunction
value = (1-x*x)*(1-y*y)
grad_x = 2*(x*y*y-x)
grad_y = 2*(x*x*y-y)
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[NodalKernels]
[./bc_all]
type = PenaltyDirichletNodalKernel
variable = u
value = 0
boundary = 'top left right bottom'
penalty = 1e10
[../]
[]
# [BCs]
# [./fix]
# type = DirichletBC
# preset = true
# variable = u
# value = 0
# boundary = 'top left right bottom'
# [../]
# []
[Postprocessors]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
[]
[Outputs]
file_base = nodal_preset_bc_out
exodus = true
[]
(test/tests/interfacekernels/1d_interface/reaction_1D_steady.i)
# Steady-state test for the InterfaceReaction kernel.
#
# Specie M transport from domain 1 (0<=x<=1) to domain 2 (1<x<=2),
# u and v are concentrations in domain 1 and domain 2.
#
# Diffusion in both domains can be described by Ficks law and diffusion
# kernel is applied.
#
# Specie M has different diffusity in different domains, here set as D1=4, D2=2.
#
# Dirichlet boundary conditions are applied, i.e., u(0)=1, v(2)=0
#
# At the interface consider the following
#
# (a) Fluxes are matched from both domains (InterfaceDiffusion kernel)
#
# (b) First-order reaction is R = kf*u - kb*v = 0
#
# This results in the interfacial conditions
#
# -D1 du = -D2 dv
# kf*u = kb*v
#
# Analytical solution is
# u = -0.2*u+1, 0<=u<=1
# v = -0.4*v+0.8, 1<v<=2
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'subdomain1'
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = MatDiffusion
variable = u
block = '0'
diffusivity = D
[../]
[./diff_v]
type = MatDiffusion
variable = v
block = '1'
diffusivity = D
[../]
[]
[InterfaceKernels]
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
D = D
D_neighbor = D
[../]
[./interface_reaction]
type = InterfaceReaction
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
kf = 1 # Forward reaction rate coefficient
kb = 2 # Backward reaction rate coefficient
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[../]
[]
[Materials]
[./block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[../]
[./block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
print_linear_residuals = true
execute_on = 'FINAL'
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[./elemental_error_u]
type = ElementL2Error
function = -0.2*x+1
variable = 'u'
block = '0'
[../]
[./elemental_error_v]
type = ElementL2Error
function = -0.4*x+0.8
variable = 'v'
block = '1'
[../]
[]
(modules/heat_transfer/test/tests/code_verification/cylindrical_test_no3.i)
# Problem II.3
#
# The thermal conductivity of an infinitely long hollow cylinder varies
# linearly with temperature: k = k0(1+beta*u). The tube inside radius is ri and
# outside radius is ro. It has a constant internal heat generation q and
# is exposed to the same constant temperature on both surfaces: u(ri) = u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'q k0 ri ro beta u0'
symbol_values = '1200 1 0.2 1.0 1e-3 0'
expression = 'u0+(1/beta)*( ( 1 + 0.5*beta*((ro^2-x^2)-(ro^2-ri^2) * log(ro/x)/log(ro/ri))*q/k0 )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = 'left right'
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '1 * (1 + 1e-3*u)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/mortar/continuity-2d-conforming/conforming_two_var.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-conf.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Functions]
[./exact_sln]
type = ParsedFunction
expression= y
[../]
[./ffn]
type = ParsedFunction
expression= 0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm_u]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm_v]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = ffn
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./coupled_u]
type = CoupledForce
variable = v
v = u
[../]
[]
[Problem]
extra_tag_vectors = 'ref'
[]
[Constraints]
[./ced_u]
type = EqualValueConstraint
variable = lm_u
secondary_variable = u
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
absolute_value_vector_tags = 'ref'
[../]
[./ced_v]
type = EqualValueConstraint
variable = lm_v
secondary_variable = v
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
absolute_value_vector_tags = 'ref'
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '1 2 3 4'
function = exact_sln
[../]
[./allv]
type = DirichletBC
variable = v
boundary = '1 2 3 4'
value = 0
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = exact_sln
block = '1 2'
execute_on = 'initial timestep_end'
[../]
[./l2_v]
type = ElementL2Norm
variable = v
block = '1 2'
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
l_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/electromagnetics/test/tests/interfacekernels/electrostatic_contact/analytic_solution_test_three_block.i)
# Regression test for ElectrostaticContactCondition with analytic solution with
# three blocks
#
# dim = 1D
# X = [0,3]
# Interfaces at X = 1 and X = 2
#
# stainless_steel graphite stainless_steel
# +------------------+------------------+------------------+
#
# Left BC: Potential = 1
# Right BC: Potential = 0
# Left Interface: ElectrostaticContactCondition (primary = stainless_steel)
# Right Interface: ElectrostaticContactCondition (primary = graphite)
#
[Mesh]
[line]
type = GeneratedMeshGenerator
dim = 1
nx = 6
xmax = 3
[]
[break_center]
type = SubdomainBoundingBoxGenerator
input = line
block_id = 1
block_name = 'graphite'
bottom_left = '1 0 0'
top_right = '2 0 0'
[]
[break_right]
type = SubdomainBoundingBoxGenerator
input = break_center
block_id = 2
bottom_left = '2 0 0'
top_right = '3 0 0'
[]
[ssg_interface]
type = SideSetsBetweenSubdomainsGenerator
input = break_right
primary_block = 0
paired_block = 1
new_boundary = 'ssg_interface'
[]
[gss_interface]
type = SideSetsBetweenSubdomainsGenerator
input = ssg_interface
primary_block = 1
paired_block = 2
new_boundary = 'gss_interface'
[]
[block_rename]
type = RenameBlockGenerator
input = gss_interface
old_block = '0 2'
new_block = 'stainless_steel_left stainless_steel_right'
[]
[]
[Variables]
[potential_graphite]
block = graphite
[]
[potential_stainless_steel_left]
block = stainless_steel_left
[]
[potential_stainless_steel_right]
block = stainless_steel_right
[]
[]
[AuxVariables]
[analytic_potential_stainless_steel_left]
block = stainless_steel_left
[]
[analytic_potential_stainless_steel_right]
block = stainless_steel_right
[]
[analytic_potential_graphite]
block = graphite
[]
[]
[Kernels]
[electric_graphite]
type = ADMatDiffusion
variable = potential_graphite
diffusivity = electrical_conductivity
block = graphite
[]
[electric_stainless_steel_left]
type = ADMatDiffusion
variable = potential_stainless_steel_left
diffusivity = electrical_conductivity
block = stainless_steel_left
[]
[electric_stainless_steel_right]
type = ADMatDiffusion
variable = potential_stainless_steel_right
diffusivity = electrical_conductivity
block = stainless_steel_right
[]
[]
[AuxKernels]
[analytic_function_aux_stainless_steel_left]
type = FunctionAux
function = potential_fxn_stainless_steel_left
variable = analytic_potential_stainless_steel_left
block = stainless_steel_left
[]
[analytic_function_aux_stainless_steel_right]
type = FunctionAux
function = potential_fxn_stainless_steel_right
variable = analytic_potential_stainless_steel_right
block = stainless_steel_right
[]
[analytic_function_aux_graphite]
type = FunctionAux
function = potential_fxn_graphite
variable = analytic_potential_graphite
block = graphite
[]
[]
[BCs]
[elec_left]
type = ADDirichletBC
variable = potential_stainless_steel_left
boundary = left
value = 1
[]
[elec_right]
type = ADDirichletBC
variable = potential_stainless_steel_right
boundary = right
value = 0
[]
[]
[InterfaceKernels]
[electric_contact_conductance_ssg]
type = ElectrostaticContactCondition
variable = potential_stainless_steel_left
neighbor_var = potential_graphite
boundary = ssg_interface
mean_hardness = mean_hardness
mechanical_pressure = 3000
[]
[electric_contact_conductance_gss]
type = ElectrostaticContactCondition
variable = potential_graphite
neighbor_var = potential_stainless_steel_right
boundary = gss_interface
mean_hardness = mean_hardness
mechanical_pressure = 3000
[]
[]
[Materials]
#graphite (at 300 K)
[sigma_graphite]
type = ADGenericConstantMaterial
prop_names = electrical_conductivity
prop_values = 73069.2
block = graphite
[]
#stainless_steel (at 300 K)
[sigma_stainless_steel_left]
type = ADGenericConstantMaterial
prop_names = electrical_conductivity
prop_values = 1.41867e6
block = stainless_steel_left
[]
[sigma_stainless_steel_right]
type = ADGenericConstantMaterial
prop_names = electrical_conductivity
prop_values = 1.41867e6
block = stainless_steel_right
[]
# harmonic mean of graphite and stainless steel hardness
[mean_hardness]
type = ADGenericConstantMaterial
prop_names = mean_hardness
prop_values = 2.4797e9
[]
[]
[Functions]
[potential_fxn_stainless_steel_left]
type = ElectricalContactTestFunc
domain = stainless_steel
three_block = true
three_block_side = left
[]
[potential_fxn_stainless_steel_right]
type = ElectricalContactTestFunc
domain = stainless_steel
three_block = true
three_block_side = right
[]
[potential_fxn_graphite]
type = ElectricalContactTestFunc
domain = graphite
three_block = true
[]
[]
[Postprocessors]
[error_stainless_steel_left]
type = ElementL2Error
variable = potential_stainless_steel_left
function = potential_fxn_stainless_steel_left
block = stainless_steel_left
[]
[error_graphite]
type = ElementL2Error
variable = potential_graphite
function = potential_fxn_graphite
block = graphite
[]
[error_stainless_steel_right]
type = ElementL2Error
variable = potential_stainless_steel_right
function = potential_fxn_stainless_steel_right
block = stainless_steel_right
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = true
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/code_verification/cylindrical_test_no1.i)
# Problem II.1
#
# An infinitely long hollow cylinder has an inner radius ri and
# outer radius ro. It has a constant thermal conductivity k and
# internal heat generation q. It is allowed to reach thermal
# equilibrium while being exposed to constant temperatures on its
# inside and outside boundaries: u(ri) = ui and u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'ri ro ui uo'
symbol_values = '0.2 1.0 300 0'
expression = '( uo * log(ri) - ui * log(ro) + (ui-uo) * log(x) ) / log(ri/ro)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 5.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(examples/ex14_pps/ex14_compare_solutions_2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[./forced]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = forced
[../]
[./forcing]
type = BodyForce
variable = forced
function = 'x*x+y*y' # Any object expecting a function name can also receive a ParsedFunction string
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = forced
boundary = 'bottom right top left'
value = 0
[../]
[]
[UserObjects]
[./fine_solution]
# Read in the fine grid solution
type = SolutionUserObject
system_variables = forced
mesh = ex14_compare_solutions_1_out_0000_mesh.xda
es = ex14_compare_solutions_1_out_0000.xda
[../]
[]
[Functions]
[./fine_function]
# Create a Function out of the fine grid solution
# Note: This references the SolutionUserObject above
type = SolutionFunction
solution = fine_solution
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./Quadrature]
# The integration of the error happens on the coarse mesh
# To reduce integration error of the finer solution we can
# raise the integration order.
# Note: This will slow down the calculation a bit
order = SIXTH
[../]
[]
[Postprocessors]
[./error]
# Compute the error between the computed solution and the fine-grid solution
type = ElementL2Error
variable = forced
function = fine_function
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/auxkernels/solution_aux/thread_xda.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with ParallelMesh.
type = GeneratedMesh
parallel_type = REPLICATED
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
[../]
[./uerror]
type = ElementL2Error
variable = u
function = u_xda_func
[../]
[]
[Outputs]
csv = true
[]
(test/tests/fvkernels/mms/cylindrical/advection-reaction.i)
a = 1.1
[Mesh]
coord_type = 'RZ'
[gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[]
[Variables]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[]
[]
[FVKernels]
[advection]
type = FVAdvection
variable = v
velocity = '${a} ${a} 0'
advected_interp_method = 'average'
[]
[reaction]
type = FVReaction
variable = v
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[left_u]
type = FVFunctionDirichletBC
boundary = 'left bottom'
function = 'exact'
variable = v
[]
[right_u]
type = FVConstantScalarOutflowBC
variable = v
velocity = '${a} ${a} 0'
boundary = 'right top'
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-a*sin(x)*sin(y) + sin(x)*cos(y) + (x*a*cos(x)*cos(y) + a*sin(x)*cos(y))/x'
symbol_names = 'a'
symbol_values = '${a}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -sub_pc_type'
petsc_options_value = 'asm NONZERO lu'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/level_set/test/tests/verification/1d_level_set_supg_mms/1d_level_set_supg_mms.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 32
nx = 64
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[ICs]
[./phi_ic]
function = phi_exact
variable = phi
type = FunctionIC
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Functions]
[./phi_exact]
type = ParsedFunction
expression = 'a*exp(1/(10*t))*sin(2*pi*x/b) + 1'
symbol_names = 'a b'
symbol_values = '1 8'
[../]
[./phi_mms]
type = ParsedFunction
expression = '-a*exp(1/(10*t))*sin(2*pi*x/b)/(10*t^2) + 2*pi*a*exp(1/(10*t))*cos(2*pi*x/b)/b'
symbol_names = 'a b'
symbol_values = '1 8'
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '1'
expression_y = '1'
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./time_supg]
type = LevelSetTimeDerivativeSUPG
variable = phi
velocity = velocity
[../]
[./phi_advection]
type = LevelSetAdvection
variable = phi
velocity = velocity
[../]
[./phi_forcing]
type = BodyForce
variable = phi
function = phi_mms
[../]
[./phi_advection_supg]
type = LevelSetAdvectionSUPG
variable = phi
velocity = velocity
[../]
[./phi_forcing_supg]
type = LevelSetForcingFunctionSUPG
velocity = velocity
variable = phi
function = phi_mms
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = phi_exact
variable = phi
[../]
[./h]
type = AverageElementSize
[../]
[./point]
type = PointValue
point = '0.1 0 0'
variable = phi
[../]
[]
[Executioner]
type = Transient
start_time = 1
dt = 0.01
end_time = 1.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
scheme = bdf2
nl_rel_tol = 1e-12
[]
[Outputs]
time_step_interval = 10
execute_on = 'timestep_end'
csv = true
[]
(test/tests/preconditioners/pbp/pbp_adapt_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = -4
[../]
[./exact_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./conv_v]
type = CoupledForce
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 0
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Preconditioning]
[./PBP]
type = PBP
solve_order = 'u v'
preconditioner = 'AMG ASM'
off_diag_row = 'v'
off_diag_column = 'u'
[../]
[]
[Executioner]
type = Steady
solve_type = JFNK
[./Adaptivity]
steps = 3
coarsen_fraction = 0.1
refine_fraction = 0.2
max_h_level = 5
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_pbp_adapt
print_mesh_changed_info = true
exodus = true
[]
(test/tests/variables/fe_hermite/hermite-3-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
expression = 3*y*y
[../]
[./bc_fnb]
type = ParsedFunction
expression = -3*y*y
[../]
[./bc_fnl]
type = ParsedFunction
expression = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
expression = 3*x*x
[../]
[./forcing_fn]
type = ParsedFunction
expression = -6*x-6*y+(x*x*x)+(y*y*y)
[../]
[./solution]
type = ParsedGradFunction
value = (x*x*x)+(y*y*y)
grad_x = 3*x*x
grad_y = 3*y*y
[../]
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/time_integrators/rk-2/1d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 20
elem_type = EDGE2
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitMidpoint
[../]
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 10
dt = 0.001
l_tol = 1e-15
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/materials/boundary_material/bnd_coupling_vol.i)
#
# Coupling volumetric material property inside boundary restricted material
# Also bringing boundary restricted material inside another boundary restricted
# material
#
# Solving: k \Laplace u + u - f = 0
#
# u = x^2 + y^2
# k = 3, but is decomposed as k3vol = k1vol + k2vol, where k1vol = 1 and k2vol = 2
#
# Boundary material property is computed as k3bnd = k1vol + k2bnd
#
# The material properties with suffix `vol` are volumetric, the ones with suffix `bnd`
# are boundary restricted
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = x*x+y*y
[../]
[./f_fn]
type = ParsedFunction
expression = -4*3+x*x+y*y
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = DiffMKernel
variable = u
offset = 0
mat_prop = k3vol
[../]
[./r]
type = Reaction
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = f_fn
[../]
[]
[BCs]
[./all]
type = MatDivergenceBC
variable = u
prop_name = k3bnd
boundary = 'left right top bottom'
[../]
[]
[Materials]
[./k1vol]
type = GenericConstantMaterial
prop_names = 'k1vol'
prop_values = 1
block = 0
[../]
[./k2vol]
type = GenericConstantMaterial
prop_names = 'k2vol'
prop_values = 2
block = 0
[../]
[./k2bnd]
type = GenericConstantMaterial
prop_names = 'k2bnd'
prop_values = 2
boundary = 'left right top bottom'
[../]
[./k3vol]
type = SumMaterial
sum_prop_name = k3vol
mp1 = k1vol
mp2 = k2vol
block = 0
val1 = 1
val2 = 2
[../]
[./k3bnd]
type = SumMaterial
sum_prop_name = 'k3bnd'
mp1 = k1vol
mp2 = k2bnd
boundary = 'left right top bottom'
val1 = 1
val2 = 2
[../]
[]
[Postprocessors]
[./l2err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/time_integrators/explicit-euler/ee-2d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
implicit = true
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
l_tol = 1e-13
start_time = 0.0
num_steps = 20
dt = 0.00005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/fvkernels/mms/advective-outflow/limited-advection.i)
a=1.1
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = 0.1
xmax = 1.1
nx = 2
[../]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = exact
[]
[]
[Variables]
[./u]
two_term_boundary_expansion = true
type = MooseVariableFVReal
[../]
[]
[FVKernels]
[./advection_u]
type = FVLimitedAdvection
variable = u
velocity = '${a} 0 0'
boundaries_to_force = 'right'
limiter = 'vanLeer'
[../]
[body_u]
type = FVBodyForce
variable = u
function = 'forcing'
[]
[]
[FVBCs]
[left_u]
type = FVFunctionNeumannBC
boundary = 'left'
function = 'advection'
variable = u
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(x)'
[]
[advection]
type = ParsedFunction
expression = '${a} * cos(x)'
[]
[forcing]
type = ParsedFunction
expression = '-${a} * sin(x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_abs_tol = 1e-13
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./L2u]
type = ElementL2Error
variable = u
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/dgkernels/2d_diffusion_dg/2d_diffusion_dg_test.i)
###########################################################
# This is a test of the Discontinuous Galerkin System.
# Discontinous basis functions are used (Monomials) and
# a Laplacian DGKernel contributes to the
# internal edges around each element. Jumps are allowed
# but penalized by this method.
#
# @Requirement F3.60
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
# xmin = -1
# xmax = 1
# ymin = -1
# ymax = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = MONOMIAL
[InitialCondition]
type = ConstantIC
value = 1
[]
[]
[]
[Functions]
active = 'forcing_fn exact_fn'
[forcing_fn]
type = ParsedFunction
# function = -4.0+(x*x)+(y*y)
# function = x
# function = (x*x)-2.0
expression = 2*pow(e,-x-(y*y))*(1-2*y*y)
# function = (x*x*x)-6.0*x
[]
[exact_fn]
type = ParsedGradFunction
# function = x
# grad_x = 1
# grad_y = 0
# function = (x*x)+(y*y)
# grad_x = 2*x
# grad_y = 2*y
# function = (x*x)
# grad_x = 2*x
# grad_y = 0
expression = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
# function = (x*x*x)
# grad_x = 3*x*x
# grad_y = 0
[]
[]
[Kernels]
active = 'diff abs forcing'
[diff]
type = Diffusion
variable = u
[]
[abs] # u * v
type = Reaction
variable = u
[]
[forcing]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[DGKernels]
active = 'dg_diff'
[dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[]
[]
[BCs]
active = 'all'
[all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# petsc_options = '-snes_mf'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
# petsc_options = '-snes_mf'
# max_r_steps = 2
[Adaptivity]
steps = 2
refine_fraction = 1.0
coarsen_fraction = 0
max_h_level = 8
[]
nl_rel_tol = 1e-10
# nl_rel_tol = 1e-12
[]
[Postprocessors]
active = 'h dofs l2_err'
[h]
type = AverageElementSize
[]
[dofs]
type = NumDOFs
[]
[l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[]
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/variables/fe_hier/hier-3-2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
expression = 3*y*y
[../]
[./bc_fnb]
type = ParsedFunction
expression = -3*y*y
[../]
[./bc_fnl]
type = ParsedFunction
expression = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
expression = 3*x*x
[../]
[./forcing_fn]
type = ParsedFunction
expression = -6*x-6*y+(x*x*x)+(y*y*y)
[../]
[./solution]
type = ParsedGradFunction
expression = (x*x*x)+(y*y*y)
grad_x = 3*x*x
grad_y = 3*y*y
[../]
[]
[Variables]
[./u]
order = THIRD
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/variables/fe_hermite/hermite-3-1d.i)
###########################################################
# This is a simple test demonstrating the use of the
# Hermite variable type.
#
# @Requirement F3.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 5
elem_type = EDGE3
[]
[Functions]
[./bc_fnl]
type = ParsedFunction
expression = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
expression = 3*x*x
[../]
[./forcing_fn]
type = ParsedFunction
expression = -6*x+(x*x*x)
[../]
[./solution]
type = ParsedGradFunction
value = x*x*x
grad_x = 3*x*x
[../]
[]
# Hermite Variable type
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/heat_transfer/test/tests/code_verification/spherical_test_no3.i)
# Problem III.3
#
# The thermal conductivity of a spherical shell varies linearly with
# temperature: k = k0(1+beta* u). The inside radius is ri and the outside radius
# is ro. It has a constant internal heat generation q and is exposed to
# the same constant temperature on both surfaces: u(ri) = u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 4
xmin = 0.2
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'q k0 ri ro beta u0'
symbol_values = '1200 1 0.2 1.0 1e-3 0'
expression = 'u0+(1/beta)*( ( 1 + (1/3)*beta*((ro^2-x^2)-(ro^2-ri^2) * (1/x-1/ro)/(1/ri-1/ro))*q/k0 )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = 'left right'
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
property_name = 'thermal_conductivity'
coupled_variables = u
expression = '1 * (1 + 1e-3*u)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/fvkernels/mms/advective-outflow/advection.i)
a=1.1
[GlobalParams]
advected_interp_method = 'average'
[]
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmin = 0.1
xmax = 1.1
nx = 2
[../]
[]
[Variables]
[./u]
family = MONOMIAL
order = CONSTANT
fv = true
two_term_boundary_expansion = false
type = MooseVariableFVReal
[../]
[./v]
family = MONOMIAL
order = CONSTANT
fv = true
two_term_boundary_expansion = true
type = MooseVariableFVReal
[../]
[]
[FVKernels]
[./advection_u]
type = FVAdvection
variable = u
velocity = '${a} 0 0'
force_boundary_execution = true
[../]
[body_u]
type = FVBodyForce
variable = u
function = 'forcing'
[]
[./advection_v]
type = FVAdvection
variable = v
velocity = '${a} 0 0'
force_boundary_execution = true
[../]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[left_u]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = u
[]
[left_v]
type = FVFunctionDirichletBC
boundary = 'left'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'cos(x)'
[]
[forcing]
type = ParsedFunction
expression = '-${a} * sin(x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[./L2u]
type = ElementL2Error
variable = u
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2v]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 20
elem_type = EDGE3
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x*x-2*t
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
l_tol = 1e-12
start_time = 0.0
num_steps = 20
dt = 0.00005
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/time_steppers/postprocessor_dt/postprocessor_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
# Just use some postprocessor that gives values good enough for time stepping ;-)
[./dt]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = 'crank-nicolson'
start_time = 1.0
num_steps = 2
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/dynamic_point_sampler/dynamic_point_sampler.i)
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[u]
[]
[]
[Functions]
[forcing_func]
type = ParsedFunction
expression = alpha*alpha*pi*pi*sin(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[]
[u_func]
type = ParsedGradFunction
value = sin(alpha*pi*x)
grad_x = alpha*pi*sin(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[forcing]
type = BodyForce
variable = u
function = forcing_func
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = 'u'
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = 'u'
boundary = 'right'
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 7
dt = 0.1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[l2_error]
type = ElementL2Error
variable = u
function = u_func
[]
[dofs]
type = NumDOFs
[]
[]
[Adaptivity]
max_h_level = 3
marker = error
[Indicators]
[jump]
type = GradientJumpIndicator
variable = u
[]
[]
[Markers]
[error]
type = ErrorFractionMarker
indicator = jump
coarsen = 0.1
refine = 0.3
[]
[]
[]
[VectorPostprocessors]
[dynamic_line_sampler]
type = DynamicPointValueSampler
variable = u
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 6
sort_by = x
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/code_verification/cylindrical_test_no5.i)
# Problem II.5
#
# The volumetric heat generation in an infinitely long solid cylinder
# varies with spatial location. It has a constant thermal conductivity.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./volumetric_heat]
type = ParsedFunction
symbol_names = 'q ro beta'
symbol_values = '1200 1 0.1'
expression = 'q * (1-beta*x/ro)'
[../]
[./exact]
type = ParsedFunction
symbol_names = 'uo q k ro beta'
symbol_values = '300 1200 1 1 0.1'
expression = 'uo + (0.25*q*ro^2/k) * ( (1-(x/ro)^2) - (1-(x/ro)^3) * beta * 4/9 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = volumetric_heat
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 300
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 1.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/verify_against_analytical/2d_steady_state.i)
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatDiff]
type = HeatConduction
variable = T
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'left right bottom'
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Materials]
[./properties]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1 1 1'
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-primitive-pcnsfv-kt.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_vel_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_vel_x
momentum_component = x
eqn = "momentum"
[]
[momentum_fn]
type = FVBodyForce
variable = sup_vel_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
superficial_vel_x = sup_vel_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
expression = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
expression = '-3.45300378856215*sin(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
expression = '3.13909435323832*cos(1.1*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
expression = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
expression = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
expression = '0.9*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 0.99*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 0.9*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
expression = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
expression = '3.13909435323832*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
expression = '0.9*cos(1.1*x)/cos(x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
expression_x = '0.9*cos(1.1*x)/cos(x)'
[]
[eps]
type = ParsedFunction
expression = '0.9'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
variable = sup_vel_x
function = exact_sup_vel_x
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/misc/multiple-nl-systems/test-fv.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Problem]
nl_sys_names = 'u v'
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[u]
type = MooseVariableFVReal
solver_sys = 'u'
[]
[v]
type = MooseVariableFVReal
solver_sys = 'v'
[]
[]
[FVKernels]
[diff_u]
type = FVDiffusion
variable = u
coeff = 1.0
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = 1.0
[]
[force]
type = FVCoupledForce
variable = v
v = u
[]
[]
[FVBCs]
[left_u]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[right_u]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[left_v]
type = FVDirichletBC
variable = v
boundary = left
value = 0
[]
[right_v]
type = FVDirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = SteadySolve2
solve_type = 'NEWTON'
petsc_options = '-snes_monitor'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
first_nl_sys_to_solve = 'u'
second_nl_sys_to_solve = 'v'
[]
[Functions]
[exact]
type = ParsedFunction
value = '-1/6*x*x*x +7/6*x'
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
function = exact
variable = v
execute_on = FINAL
outputs = 'csv'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = FINAL
[]
[]
[Outputs]
print_nonlinear_residuals = false
print_linear_residuals = false
exodus = true
[csv]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-primitive.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_vel_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_vel_x
momentum_component = x
eqn = "momentum"
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[momentum_fn]
type = FVBodyForce
variable = sup_vel_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
superficial_vel_x = sup_vel_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
expression = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
expression = '-3.83667087618017*sin(1.1*x)*cos(1.3*x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
expression = '3.48788261470924*cos(1.1*x)*cos(1.3*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
expression = '(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x))*cos(1.3*x) + 3.48788261470924*sin(x)*cos(1.1*x)^2*cos(1.3*x)/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)*cos(1.3*x)/cos(x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)^2/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
expression = '26.7439413073546*cos(1.5*x)'
[]
[forcing_rho_et]
type = ParsedFunction
expression = '1.0*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(x)*cos(1.1*x)*cos(1.3*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.1*x)*cos(1.3*x)/cos(x) - 1.3*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.3*x)*cos(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x) - 40.1159119610319*sin(1.5*x))*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
expression = '0.0106975765229418*cos(1.5*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)*cos(1.3*x)'
[]
[exact_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
expression = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[eps]
type = ParsedFunction
expression = 'cos(1.3*x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
expression_x = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
variable = sup_vel_x
function = exact_sup_vel_x
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/postprocessors/nodal_var_value/pps_output_test.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
outputs = exodus
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
outputs = console
[../]
[./avg_v]
type = AverageElementSize
outputs = none
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/indicators/laplacian_jump_indicator/biharmonic.i)
[GlobalParams]
# Parameters used by Functions.
vars = 'c'
vals = '50'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
nx = 10
ny = 10
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
[./biharmonic]
type = Biharmonic
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
active = 'all_value all_flux'
[./all_value]
type = FunctionPenaltyDirichletBC
variable = u
boundary = 'left right top bottom'
function = u_func
penalty = 1e10
[../]
[./all_flux]
type = FunctionPenaltyFluxBC
variable = u
boundary = 'left right top bottom'
function = u_func
penalty = 1e10
[../]
[./all_laplacian]
type = BiharmonicLapBC
variable = u
boundary = 'left right top bottom'
laplacian_function = lapu_func
[../]
[]
[Adaptivity]
[Indicators]
[error]
type = LaplacianJumpIndicator
variable = u
scale_by_flux_faces = true
[]
[]
[]
[Executioner]
type = Steady
# Note: the unusually tight tolerances here are due to the penalty
# BCs (currently the only way of accurately Dirichlet boundary
# conditions on Hermite elements in MOOSE).
nl_rel_tol = 1.e-15
l_tol = 1.e-15
# We have exact Jacobians
solve_type = 'NEWTON'
# Use 6x6 quadrature to ensure the forcing function is integrated
# accurately.
[./Quadrature]
type = GAUSS
order = ELEVENTH
[../]
[]
[Functions]
[./u_func]
type = ParsedGradFunction
value = 'exp(-c*(x^2+y^2))'
grad_x = '-2*c*exp(-c*(x^2+y^2))*x'
grad_y = '-2*c*exp(-c*(x^2+y^2))*y'
[../]
[./lapu_func]
type = ParsedFunction
expression = '4*c*(c*(x^2+y^2) - 1)*exp(-c*(x^2+y^2))'
[../]
[./forcing_func]
type = ParsedFunction
expression = '16*c^2*(c^2*(x^2+y^2)^2 - 4*c*(x^2+y^2) + 2)*exp(-c*(x^2+y^2))'
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = u_func
[../]
[./h1_error]
type = ElementH1Error
variable = u
function = u_func
[../]
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/recompute_radial_return/cp_affine_plasticity.i)
# Affine Plasticity Test for Transient Stress Eigenvalues with Stationary Eigenvectors
# This test is taken from K. Jamojjala, R. Brannon, A. Sadeghirad, J. Guilkey,
# "Verification tests in solid mechanics," Engineering with Computers, Vol 31.,
# p. 193-213.
# The test involves applying particular strains and expecting particular stresses.
# The material properties are:
# Yield in shear 165 MPa
# Shear modulus 79 GPa
# Poisson's ratio 1/3
# The strains are:
# Time e11 e22 e33
# 0 0 0 0
# 1 -0.003 -0.003 0.006
# 2 -0.0103923 0 0.0103923
# The expected stresses are:
# sigma11:
# -474*t 0 < t <= 0.201
# -95.26 0.201 < t <= 1
# (189.4+0.1704*sqrt(a)-0.003242*a)
# --------------------------------- 1 < t <= 2
# 1+0.00001712*a
# -189.4 t > 2 (paper erroneously gives a positive value)
#
# sigma22:
# -474*t 0 < t <= 0.201
# -95.26 0.201 < t <= 1
# -(76.87+1.443*sqrt(a)-0.001316*a)
# --------------------------------- 1 < t <= 2 (paper gives opposite sign)
# 1+0.00001712*a
# 76.87 t > 2
#
# sigma33:
# 948*t 0 < t <= 0.201
# 190.5 0.201 < t <= 1
# -(112.5-1.272*sqrt(a)-0.001926*a)
# --------------------------------- 1 < t <= 2 (paper has two sign errors here)
# 1+0.00001712*a
# 112.5 t > 2
#
# where a = exp(12.33*t).
#
# Note: If planning to run this case with strain type ComputeFiniteStrain, the
# displacement function must be adjusted. Instead of
# strain = (l - l0)/l0 = (u+l0 - l0)/l0 = u/l0
# with l0=1.0, we would have
# strain = log(l/l0) = log((u+l0)/l0)
# with l0=1.0. So, for strain = -0.003,
# -0.003 = log((u+l0)/l0) ->
# u = exp(-0.003)*l0 - l0 = -0.0029955044966269995.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '0'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Functions]
[disp_x]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.003 -0.0103923'
[]
[disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.003 0.'
[]
[disp_z]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0.006 0.0103923'
[]
[stress_xx]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# The paper gives -95.26 MPa as the stress at yield, but -95.26279441628823 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# 189.409039923814000, 0.170423791206825, -0.003242011311945, 1.711645501845780E-05 - exact values
symbol_names = 'timeAtYield stressAtYield expFac a b c d'
symbol_values = '0.20097635952803425 -95.26279441628823 12.332921390339125 189.409039923814000 0.170423791206825 -0.003242011311945 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, -474*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[]
[stress_yy]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# the paper gives -95.26 MPa as the stress at yield, but -95.26279441628823 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# -76.867432297315000, -1.442488120272900, 0.001315697947301, 1.711645501845780E-05 - exact values
symbol_names = 'timeAtYield stressAtYield expFac a b c d'
symbol_values = '0.20097635952803425 -95.26279441628823 12.332921390339125 -76.867432297315000 -1.442488120272900 0.001315697947301 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, -474*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[]
[stress_zz]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# the paper gives 190.5 MPa as the stress at yield, but 190.52558883257645 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# -112.541607626499000, 1.272064329066080, 0.001926313364644, 1.711645501845780E-05 - exact values
symbol_names = 'timeAtYield stressAtYield expFac a b c d'
symbol_values = '0.20097635952803425 190.52558883257645 12.332921390339125 -112.541607626499000 1.272064329066080 0.001926313364644 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, 948*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[]
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[SolidMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = 'timestep_end'
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
execute_on = 'timestep_end'
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = 'timestep_end'
[../]
[]
[BCs]
[fixed_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[fixed_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[fixed_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[disp_x]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = disp_x
[]
[disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = disp_y
[]
[disp_z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = disp_z
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 210666666666.666667
poissons_ratio = 0.3333333333333333
[../]
[./strain]
type = ComputeIncrementalStrain
[../]
[creep]
type = PowerLawCreepStressUpdate
coefficient = 0
n_exponent = 1
m_exponent = 1
activation_energy = 0
temperature = 1
[]
[isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 285788383.2488647 # = sqrt(3)*165e6 = sqrt(3) * yield in shear
hardening_constant = 0.0
[]
[radial_return_stress]
type = ComputeCreepPlasticityStress
tangent_operator = elastic
creep_model = creep
plasticity_model = isotropic_plasticity
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 0.01 # use 0.0001 for a nearly exact match
end_time = 2.0
[]
[Postprocessors]
[analytic_xx]
type = FunctionValuePostprocessor
function = stress_xx
[]
[analytic_yy]
type = FunctionValuePostprocessor
function = stress_yy
[]
[analytic_zz]
type = FunctionValuePostprocessor
function = stress_zz
[]
[stress_xx]
type = ElementalVariableValue
variable = stress_xx
elementid = 0
[]
[stress_yy]
type = ElementalVariableValue
variable = stress_yy
elementid = 0
[]
[stress_zz]
type = ElementalVariableValue
variable = stress_zz
elementid = 0
[]
[stress_xx_l2_error]
type = ElementL2Error
variable = stress_xx
function = stress_xx
[]
[stress_yy_l2_error]
type = ElementL2Error
variable = stress_yy
function = stress_yy
[]
[stress_zz_l2_error]
type = ElementL2Error
variable = stress_zz
function = stress_zz
[]
[]
[Outputs]
exodus = true
[]
(test/tests/mortar/continuity-3d-non-conforming/continuity_penalty_tet.i)
[Mesh]
second_order = false
[left_block]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 2
nz = 2
xmin = 0
xmax = 0.3
ymin = 0
ymax = .5
zmin = 0
zmax = .5
elem_type = TET4
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'lb_bottom lb_back lb_right lb_front lb_left lb_top'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 2
nz = 2
xmin = 0.3
xmax = 0.6
ymin = 0
ymax = .5
zmin = 0
zmax = .5
elem_type = TET4
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block
subdomain_id = 2
[]
[right_block_change_boundary_id]
type = RenameBoundaryGenerator
input = right_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'left_block right_block'
[]
[right_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = rb_right
block = right_block
normal = '1 0 0'
[]
[right_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_right_sideset
new_boundary = rb_left
block = right_block
normal = '-1 0 0'
[]
[right_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_left_sideset
new_boundary = rb_top
block = right_block
normal = '0 0 1'
[]
[right_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_top_sideset
new_boundary = rb_bottom
block = right_block
normal = '0 0 -1'
[]
[right_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_bottom_sideset
new_boundary = rb_front
block = right_block
normal = '0 1 0'
[]
[right_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_front_sideset
new_boundary = rb_back
block = right_block
normal = '0 -1 0'
[]
[secondary]
input = right_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'lb_right'
new_block_id = '12'
new_block_name = 'secondary'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'rb_left'
new_block_id = '11'
new_block_name = 'primary'
[]
[]
[Variables]
[T]
block = '1 2'
order = FIRST
[]
[]
[BCs]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_soln_primal
variable = T
boundary = 'lb_back lb_front lb_left lb_top lb_bottom rb_right rb_top rb_bottom rb_front rb_back'
[]
[]
[Kernels]
[conduction]
type = Diffusion
variable = T
block = '1 2'
[]
[sink]
type = Reaction
variable = T
block = '1 2'
[]
[forcing_function]
type = BodyForce
variable = T
function = forcing_function
block = '1 2'
[]
[]
[Functions]
[forcing_function]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi) + 3*pi^2*sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_primal]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_lambda]
type = ParsedFunction
expression = 'pi*sin(pi*y)*sin(pi*z)*cos(pi*x)'
[]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[mortar]
type = PenaltyEqualValueConstraint
primary_boundary = 'rb_left'
secondary_boundary = 'lb_right'
primary_subdomain = '11'
secondary_subdomain = '12'
secondary_variable = T
penalty_value = 1.0e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = 'left_block right_block'
[]
[h]
type = AverageElementSize
block = 'left_block right_block'
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/bcs/advection_bc/advection_bc.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 10.0
nx = 100
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./vx]
[../]
[./force]
[../]
[]
[ICs]
[./vx]
type = FunctionIC
variable = vx
function = vx_function
[../]
[./force]
type = FunctionIC
variable = force
function = forcing
[../]
[]
[Kernels]
[./advection]
type = MassConvectiveFlux
variable = phi
vel_x = vx
[../]
[./rhs]
type = CoupledForce
variable = phi
v = force
[../]
[]
[BCs]
[./inflow_enthalpy]
type = DirichletBC
variable = phi
boundary = 'left'
value = 1
[../]
[./outflow_term]
type = AdvectionBC
variable = phi
velocity_vector = 'vx'
boundary = 'right'
[../]
[]
[Functions]
[./vx_function]
type = ParsedFunction
expression = '1 + x * x'
[../]
[./forcing]
type = ParsedFunction
expression = 'x'
[../]
[./analytical]
type = ParsedFunction
expression = '(1 + 0.5 * x * x) / (1 + x * x)'
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = phi
function = analytical
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/time_integrators/explicit-euler/ee-2d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = (x+y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
lumping = true
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
function = exact_fn
implicit = true
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 20
dt = 0.00005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/variables/fe_hermite/hermite-3-3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 1
ny = 1
nz = 1
elem_type = HEX27
# This problem only has 1 element, so using DistributedMesh in parallel
# isn't really an option, and we don't care that much about DistributedMesh
# in serial.
parallel_type = replicated
[]
[Functions]
[./bc_fnt]
type = ParsedFunction
expression = 3*y*y
[../]
[./bc_fnb]
type = ParsedFunction
expression = -3*y*y
[../]
[./bc_fnl]
type = ParsedFunction
expression = -3*x*x
[../]
[./bc_fnr]
type = ParsedFunction
expression = 3*x*x
[../]
[./bc_fnk]
type = ParsedFunction
expression = -3*z*z
[../]
[./bc_fnf]
type = ParsedFunction
expression = 3*z*z
[../]
[./forcing_fn]
type = ParsedFunction
expression = -6*x-6*y-6*z+(x*x*x)+(y*y*y)+(z*z*z)
[../]
[./solution]
type = ParsedGradFunction
value = (x*x*x)+(y*y*y)+(z*z*z)
grad_x = 3*x*x
grad_y = 3*y*y
grad_z = 3*z*z
[../]
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./bc_top]
type = FunctionNeumannBC
variable = u
boundary = 'top'
function = bc_fnt
[../]
[./bc_bottom]
type = FunctionNeumannBC
variable = u
boundary = 'bottom'
function = bc_fnb
[../]
[./bc_left]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = bc_fnl
[../]
[./bc_right]
type = FunctionNeumannBC
variable = u
boundary = 'right'
function = bc_fnr
[../]
[./bc_front]
type = FunctionNeumannBC
variable = u
boundary = 'front'
function = bc_fnf
[../]
[./bc_back]
type = FunctionNeumannBC
variable = u
boundary = 'back'
function = bc_fnk
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/mortar/continuity-3d-non-conforming/continuity_tet.i)
[Mesh]
second_order = false
[left_block]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 2
nz = 2
xmin = 0
xmax = 0.3
ymin = 0
ymax = .5
zmin = 0
zmax = .5
elem_type = TET4
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'lb_bottom lb_back lb_right lb_front lb_left lb_top'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 2
nz = 2
xmin = 0.3
xmax = 0.6
ymin = 0
ymax = .5
zmin = 0
zmax = .5
elem_type = TET4
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block
subdomain_id = 2
[]
[right_block_change_boundary_id]
type = RenameBoundaryGenerator
input = right_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'left_block right_block'
[]
[right_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = rb_right
block = right_block
normal = '1 0 0'
[]
[right_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_right_sideset
new_boundary = rb_left
block = right_block
normal = '-1 0 0'
[]
[right_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_left_sideset
new_boundary = rb_top
block = right_block
normal = '0 0 1'
[]
[right_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_top_sideset
new_boundary = rb_bottom
block = right_block
normal = '0 0 -1'
[]
[right_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_bottom_sideset
new_boundary = rb_front
block = right_block
normal = '0 1 0'
[]
[right_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_front_sideset
new_boundary = rb_back
block = right_block
normal = '0 -1 0'
[]
[secondary]
input = right_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'lb_right'
new_block_id = '12'
new_block_name = 'secondary'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'rb_left'
new_block_id = '11'
new_block_name = 'primary'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[T]
block = '1 2'
order = FIRST
[]
[lambda]
block = 'secondary'
family = MONOMIAL
order = CONSTANT
[]
[]
[BCs]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_soln_primal
variable = T
boundary = 'lb_back lb_front lb_left lb_top lb_bottom rb_right rb_top rb_bottom rb_front rb_back'
[]
[]
[Kernels]
[conduction]
type = Diffusion
variable = T
block = '1 2'
[]
[sink]
type = Reaction
variable = T
block = '1 2'
[]
[forcing_function]
type = BodyForce
variable = T
function = forcing_function
block = '1 2'
[]
[]
[Functions]
[forcing_function]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi) + 3*pi^2*sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_primal]
type = ParsedFunction
expression = 'sin(x*pi)*sin(y*pi)*sin(z*pi)'
[]
[exact_soln_lambda]
type = ParsedFunction
expression = 'pi*sin(pi*y)*sin(pi*z)*cos(pi*x)'
[]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[mortar]
type = EqualValueConstraint
primary_boundary = 'rb_left'
secondary_boundary = 'lb_right'
primary_subdomain = '11'
secondary_subdomain = '12'
variable = lambda
secondary_variable = T
delta = .1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type -snes_linesearch_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu basic NONZERO 1e-15'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[L2lambda]
type = ElementL2Error
variable = lambda
function = exact_soln_lambda
execute_on = 'timestep_end'
block = 'secondary'
[]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = 'left_block right_block'
[]
[h]
type = AverageElementSize
block = 'left_block right_block'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-mixed.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_mom_x]
type = FunctionIC
variable = sup_mom_x
function = 'exact_rho_ud'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_mom_x
momentum_component = x
eqn = "momentum"
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[momentum_fn]
type = FVBodyForce
variable = sup_mom_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_mom_x_left]
type = FVFunctionDirichletBC
variable = sup_mom_x
function = exact_rho_ud
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
superficial_rhou = sup_mom_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
expression = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
expression = '-3.83667087618017*sin(1.1*x)*cos(1.3*x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
expression = '3.48788261470924*cos(1.1*x)*cos(1.3*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
expression = '(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x))*cos(1.3*x) + 3.48788261470924*sin(x)*cos(1.1*x)^2*cos(1.3*x)/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)*cos(1.3*x)/cos(x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)^2/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
expression = '26.7439413073546*cos(1.5*x)'
[]
[forcing_rho_et]
type = ParsedFunction
expression = '1.0*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(x)*cos(1.1*x)*cos(1.3*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.1*x)*cos(1.3*x)/cos(x) - 1.3*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.3*x)*cos(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x) - 40.1159119610319*sin(1.5*x))*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
expression = '0.0106975765229418*cos(1.5*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)*cos(1.3*x)'
[]
[exact_p]
type = ParsedFunction
expression = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
expression = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[eps]
type = ParsedFunction
expression = 'cos(1.3*x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
expression_x = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_mom_x]
variable = sup_mom_x
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-quadratic-neumann.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 10
elem_type = EDGE3
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x*x-2*t+t*x*x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x*x
[../]
[./left_bc_fn]
type = ParsedFunction
expression = -t*2*x
[../]
[./right_bc_fn]
type = ParsedFunction
expression = t*2*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./abs]
type = Reaction
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./left]
type = FunctionNeumannBC
variable = u
boundary = '0'
function = left_bc_fn
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = '1'
function = right_bc_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
l_tol = 1e-12
start_time = 0.0
num_steps = 10
dt = 0.001
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/time_integrators/implicit-euler/ie.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeIntegrator system.
#
# Testing a solution that is second order in space
# and first order in time
#
# @Requirement F1.30
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
# Test of the TimeIntegrator System
scheme = 'implicit-euler'
start_time = 0.0
num_steps = 5
dt = 0.25
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/mms/pspg/pspg_mms_test.i)
mu=1.5
rho=2.5
[GlobalParams]
gravity = '0 0 0'
pspg = true
convective_term = true
integrate_p_by_parts = true
laplace = true
u = vel_x
v = vel_y
pressure = p
alpha = 1e-6
order = FIRST
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
elem_type = QUAD9
nx = 4
ny = 4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
x_vel_forcing_func = vel_x_source_func
y_vel_forcing_func = vel_y_source_func
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
forcing_func = vel_x_source_func
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
forcing_func = vel_y_source_func
[../]
[./p_source]
type = BodyForce
function = p_source_func
variable = p
[../]
[]
[BCs]
[./vel_x]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_x_func
variable = vel_x
[../]
[./vel_y]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = vel_y_func
variable = vel_y
[../]
[./p]
type = FunctionDirichletBC
boundary = 'left right top bottom'
function = p_func
variable = p
[../]
[]
[Functions]
[./vel_x_source_func]
type = ParsedFunction
expression = '-${mu}*(-0.028*pi^2*x^2*sin(0.2*pi*x*y) - 0.028*pi^2*y^2*sin(0.2*pi*x*y) - 0.1*pi^2*sin(0.5*pi*x) - 0.4*pi^2*sin(pi*y)) + ${rho}*(0.14*pi*x*cos(0.2*pi*x*y) + 0.4*pi*cos(pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[./vel_y_source_func]
type = ParsedFunction
expression = '-${mu}*(-0.018*pi^2*x^2*sin(0.3*pi*x*y) - 0.018*pi^2*y^2*sin(0.3*pi*x*y) - 0.384*pi^2*sin(0.8*pi*x) - 0.027*pi^2*sin(0.3*pi*y)) + ${rho}*(0.06*pi*x*cos(0.3*pi*x*y) + 0.09*pi*cos(0.3*pi*y))*(0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3) + ${rho}*(0.06*pi*y*cos(0.3*pi*x*y) + 0.48*pi*cos(0.8*pi*x))*(0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5) + 0.1*pi*x*cos(0.2*pi*x*y) + 0.3*pi*cos(0.3*pi*y)'
[../]
[./p_source_func]
type = ParsedFunction
expression = '-0.06*pi*x*cos(0.3*pi*x*y) - 0.14*pi*y*cos(0.2*pi*x*y) - 0.2*pi*cos(0.5*pi*x) - 0.09*pi*cos(0.3*pi*y)'
[../]
[./vel_x_func]
type = ParsedFunction
expression = '0.4*sin(0.5*pi*x) + 0.4*sin(pi*y) + 0.7*sin(0.2*pi*x*y) + 0.5'
[../]
[./vel_y_func]
type = ParsedFunction
expression = '0.6*sin(0.8*pi*x) + 0.3*sin(0.3*pi*y) + 0.2*sin(0.3*pi*x*y) + 0.3'
[../]
[./p_func]
type = ParsedFunction
expression = '0.5*sin(0.5*pi*x) + 1.0*sin(0.3*pi*y) + 0.5*sin(0.2*pi*x*y) + 0.5'
[../]
[./vxx_func]
type = ParsedFunction
expression = '0.14*pi*y*cos(0.2*pi*x*y) + 0.2*pi*cos(0.5*pi*x)'
[../]
[./px_func]
type = ParsedFunction
expression = '0.1*pi*y*cos(0.2*pi*x*y) + 0.25*pi*cos(0.5*pi*x)'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2vel_x]
type = ElementL2Error
variable = vel_x
function = vel_x_func
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2vel_y]
variable = vel_y
function = vel_y_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2p]
variable = p
function = p_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2vxx]
variable = vxx
function = vxx_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[./L2px]
variable = px
function = px_func
type = ElementL2Error
outputs = 'console' execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./vxx]
family = MONOMIAL
order = FIRST
[../]
[./px]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./vxx]
type = VariableGradientComponent
component = x
variable = vxx
gradient_variable = vel_x
[../]
[./px]
type = VariableGradientComponent
component = x
variable = px
gradient_variable = p
[../]
[]
(test/tests/bcs/penalty_dirichlet_bc/function_penalty_dirichlet_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = -4+x*x+y*y
[../]
[./solution]
type = ParsedGradFunction
value = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = Diffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'bc_all'
[./bc_all]
type = FunctionPenaltyDirichletBC
variable = u
function = solution
boundary = 'top left right bottom'
penalty = 1e6
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/mortar/convergence-studies/gap-conductance/gap-conductance.i)
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Mesh]
second_order = true
[./left_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[../]
[./left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3'
new_boundary = 'lb_bottom lb_right lb_top lb_left'
[../]
[./left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[../]
[./right_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[../]
[./right_block_id]
type = SubdomainIDGenerator
input = right_block
subdomain_id = 2
[../]
[right_block_change_boundary_id]
type = RenameBoundaryGenerator
input = right_block_id
old_boundary = '0 1 2 3'
new_boundary = '100 101 102 103'
[]
[./combined]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_change_boundary_id'
[../]
[./block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'left_block right_block'
[../]
[right_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = rb_right
block = right_block
normal = '1 0 0'
[]
[right_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_right_sideset
new_boundary = rb_left
block = right_block
normal = '-1 0 0'
[]
[right_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_left_sideset
new_boundary = rb_top
block = right_block
normal = '0 1 0'
[]
[right_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = right_top_sideset
new_boundary = rb_bottom
block = right_block
normal = '0 -1 0'
[]
[secondary]
input = right_bottom_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'lb_right'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'rb_left'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[./T]
block = 'left_block right_block'
order = SECOND
[../]
[./lambda]
block = 'secondary_lower'
family = MONOMIAL
order = CONSTANT
[../]
[]
[BCs]
[./neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_soln_primal
variable = T
boundary = 'lb_bottom lb_top lb_left rb_bottom rb_right rb_top'
[../]
[]
[Kernels]
[./conduction]
type = Diffusion
variable = T
block = 'left_block right_block'
[../]
[./sink]
type = Reaction
variable = T
block = 'left_block right_block'
[../]
[./forcing_function]
type = BodyForce
variable = T
function = forcing_function
block = 'left_block right_block'
[../]
[]
[Functions]
[./forcing_function]
type = ParsedFunction
expression = ''
[../]
[./exact_soln_primal]
type = ParsedFunction
expression = ''
[../]
[exact_soln_lambda]
type = ParsedFunction
expression = ''
[]
[mms_secondary]
type = ParsedFunction
expression = ''
[]
[mms_primary]
type = ParsedFunction
expression = ''
[]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[./mortar]
type = GapHeatConductanceTest
primary_boundary = rb_left
secondary_boundary = lb_right
primary_subdomain = primary_lower
secondary_subdomain = secondary_lower
secondary_variable = T
variable = lambda
secondary_gap_conductance = 1
primary_gap_conductance = 1
secondary_mms_function = mms_secondary
primary_mms_function = mms_primary
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[dofmap]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[L2lambda]
type = ElementL2Error
variable = lambda
function = exact_soln_lambda
execute_on = 'timestep_end'
block = 'secondary_lower'
[]
[L2u]
type = ElementL2Error
variable = T
function = exact_soln_primal
execute_on = 'timestep_end'
block = 'left_block right_block'
[]
[h]
type = AverageElementSize
block = 'left_block right_block'
[]
[]
(modules/heat_transfer/test/tests/code_verification/spherical_test_no4.i)
# Problem III.4
#
# A spherical shell has thermal conductivity k and heat generation q.
# It has an inner radius ri and outer radius ro. A constant heat flux is
# applied to the inside surface qin and the outside surface is exposed
# to a fluid temperature uf and heat transfer coefficient h.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./exact]
type = ParsedFunction
symbol_names = 'qin q k ri ro uf h'
symbol_values = '100 1200 1.0 0.2 1 100 10'
expression = 'uf+ (q/(6*k)) * ( ro^2-x^2 + 2*k*(ro^3-ri^3)/(h*ro^2) + 2 * ri^3 * (1/ro-1/x) ) + (1/x-1/ro+k/(h*ro^2)) * qin * ri^2 / k'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./ui]
type = NeumannBC
boundary = left
variable = u
value = 100
[../]
[./uo]
type = CoupledConvectiveHeatFluxBC
boundary = right
variable = u
htc = 10.0
T_infinity = 100
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 1.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/sideset_heat_transfer/gap_thermal_1D.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmax = 2
[]
[split]
type = SubdomainBoundingBoxGenerator
input = mesh
block_id = 1
bottom_left = '1 0 0'
top_right = '2 0 0'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = split
primary_block = 1
paired_block = 0
new_boundary = 'interface0'
[]
uniform_refine = 4
[]
[Variables]
# Defining a DFEM variable to handle gap discontinuity
[T]
order = FIRST
family = MONOMIAL
[]
[]
[AuxVariables]
# Auxvariable containing bulk temperature of gap
[Tbulk]
order = FIRST
family = LAGRANGE
initial_condition = 300 # K
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = T
diffusivity = conductivity
[]
[source]
type = BodyForce
variable = T
value = 1.0
[]
[]
[DGKernels]
# DG kernel to represent diffusion accross element faces
[./dg_diff]
type = DGDiffusion
variable = T
epsilon = -1
sigma = 6
diff = conductivity
# Ignoring gap side set because no diffusion accross there
exclude_boundary = 'interface0'
[../]
[]
[InterfaceKernels]
active = 'gap'
# Heat transfer kernel using Tbulk as material
[gap]
type = SideSetHeatTransferKernel
variable = T
neighbor_var = T
boundary = 'interface0'
[]
# Heat transfer kernel using Tbulk as auxvariable
[gap_var]
type = SideSetHeatTransferKernel
variable = T
neighbor_var = T
boundary = 'interface0'
Tbulk_var = Tbulk
[]
[]
[Functions]
[bc_func]
type = ConstantFunction
value = 300
[]
[exact]
type = ParsedFunction
expression = '
A := if(x < 1, -0.5, -0.25);
B := if(x < 1, -0.293209850655001, 0.0545267662299068);
C := if(x < 1, 300.206790149345, 300.19547323377);
d := -1;
A * (x+d) * (x+d) + B * (x+d) + C'
[]
[]
[BCs]
[bc_left]
type = DGFunctionDiffusionDirichletBC
boundary = 'left'
variable = T
diff = 'conductivity'
epsilon = -1
sigma = 6
function = bc_func
[]
[bc_right]
type = DGFunctionDiffusionDirichletBC
boundary = 'right'
variable = T
diff = 'conductivity'
epsilon = -1
sigma = 6
function = bc_func
[]
[]
[Materials]
[k0]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 1.0
block = 0
[]
[k1]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 2.0
block = 1
[]
[gap_mat]
type = SideSetHeatTransferMaterial
boundary = 'interface0'
conductivity = 1.5
gap_length = 1.0
h_primary = 1
h_neighbor = 1
Tbulk = 300
emissivity_primary = 1
emissivity_neighbor = 1
[]
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = T
function = exact
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/indicators/laplacian_jump_indicator/biharmonic_transient.i)
[GlobalParams]
# Parameters used by Functions.
vars = 'c'
vals = '50'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
nx = 10
ny = 10
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
[./biharmonic]
type = Biharmonic
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
[./all_value]
type = FunctionPenaltyDirichletBC
variable = u
boundary = 'left right top bottom'
function = u_func
penalty = 1e10
[../]
[./all_flux]
type = FunctionPenaltyFluxBC
variable = u
boundary = 'left right top bottom'
function = u_func
penalty = 1e10
[../]
[]
[Adaptivity]
[./Indicators]
[./error]
type = LaplacianJumpIndicator
variable = u
scale_by_flux_faces = true
[../]
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
# Note: the unusually tight tolerances here are due to the penalty
# BCs (currently the only way of accurately Dirichlet boundary
# conditions on Hermite elements in MOOSE).
nl_rel_tol = 1.e-15
l_tol = 1.e-15
# We have exact Jacobians
solve_type = 'NEWTON'
# Use 6x6 quadrature to ensure the forcing function is integrated
# accurately.
[./Quadrature]
type = GAUSS
order = ELEVENTH
[../]
[]
[Functions]
[./u_func]
type = ParsedGradFunction
value = 'exp(-c*(x^2+y^2))*exp(-t)'
grad_x = '-2*c*exp(-c*(x^2+y^2))*x*exp(-t)'
grad_y = '-2*c*exp(-c*(x^2+y^2))*y*exp(-t)'
[../]
[./forcing_func]
type = ParsedFunction
expression = '16*c^2*(c^2*(x^2+y^2)^2 - 4*c*(x^2+y^2) + 2)*exp(-c*(x^2+y^2))*exp(-t)'
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
function = u_func
variable = u
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = u_func
[../]
[./h1_error]
type = ElementH1Error
variable = u
function = u_func
[../]
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial03_verification/app/test/tests/step04_mms/2d_mms_temporal.i)
[ICs]
active = 'mms'
[mms]
type = FunctionIC
variable = T
function = mms_exact
[]
[]
[BCs]
active = 'mms'
[mms]
type = FunctionDirichletBC
variable = T
boundary = 'left right top bottom'
function = mms_exact
[]
[]
[Kernels]
[mms]
type = HeatSource
variable = T
function = mms_force
[]
[]
[Functions]
[mms_force]
type = ParsedFunction
expression = '-3.08641975308642e-5*x*y*cp*rho*exp(-3.08641975308642e-5*t) - shortwave*exp(y*kappa)*sin((1/2)*x*pi)*sin((1/3600)*pi*t/hours)'
symbol_names = 'rho cp k kappa shortwave hours'
symbol_values = '150 2000 0.01 40 650 9'
[]
[mms_exact]
type = ParsedFunction
expression = 'x*y*exp(-3.08641975308642e-5*t)'
[]
[]
[Outputs]
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = T
function = mms_exact
[]
[delta_t]
type = TimestepSize
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/cylindrical/2d-rc.i)
mu = 1.1
rho = 1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 1
xmax = 3
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[Problem]
coord_type = 'RZ'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[no-slip-wall-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = u
function = 'exact_u'
[]
[no-slip-wall-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = v
function = 'exact_v'
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'sin(y)*sin(x*pi)'
[]
[exact_rhou]
type = ParsedFunction
expression = 'rho*sin(y)*sin(x*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_u]
type = ParsedFunction
expression = 'mu*sin(y)*sin(x*pi) - (-x*pi^2*mu*sin(y)*sin(x*pi) + pi*mu*sin(y)*cos(x*pi))/x + '
'(2*x*pi*rho*sin(y)^2*sin(x*pi)*cos(x*pi) + rho*sin(y)^2*sin(x*pi)^2)/x + '
'(-1/2*x*pi*rho*sin(x)*sin(y)*sin(x*pi)*sin((1/2)*y*pi) + '
'x*rho*sin(x)*sin(x*pi)*cos(y)*cos((1/2)*y*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin(x)*cos((1/2)*y*pi)'
[]
[exact_rhov]
type = ParsedFunction
expression = 'rho*sin(x)*cos((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '(1/4)*pi^2*mu*sin(x)*cos((1/2)*y*pi) - pi*rho*sin(x)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) '
'+ cos(y) - (-x*mu*sin(x)*cos((1/2)*y*pi) + mu*cos(x)*cos((1/2)*y*pi))/x + '
'(x*pi*rho*sin(x)*sin(y)*cos(x*pi)*cos((1/2)*y*pi) + '
'x*rho*sin(y)*sin(x*pi)*cos(x)*cos((1/2)*y*pi) + '
'rho*sin(x)*sin(y)*sin(x*pi)*cos((1/2)*y*pi))/x'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin(y)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin(x)*sin((1/2)*y*pi) + (x*pi*rho*sin(y)*cos(x*pi) + '
'rho*sin(y)*sin(x*pi))/x'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/fvkernels/mms/non-orthogonal/advection-diffusion-reaction.i)
a=1.1
diff=1.1
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 2
xmax = 3
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = TRI3
[../]
[]
[Variables]
[v]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[advection]
type = FVAdvection
variable = v
velocity = '${a} ${fparse 2*a} 0'
advected_interp_method = 'average'
[]
[reaction]
type = FVReaction
variable = v
[]
[diff_v]
type = FVDiffusion
variable = v
coeff = ${diff}
[]
[body_v]
type = FVBodyForce
variable = v
function = 'forcing'
[]
[]
[FVBCs]
[exact]
type = FVFunctionDirichletBC
boundary = 'left right top bottom'
function = 'exact'
variable = v
[]
[]
[Functions]
[exact]
type = ParsedFunction
expression = 'sin(x)*cos(y)'
[]
[forcing]
type = ParsedFunction
expression = '-2*a*sin(x)*sin(y) + a*cos(x)*cos(y) + 2*diff*sin(x)*cos(y) + sin(x)*cos(y)'
symbol_names = 'a diff'
symbol_values = '${a} ${diff}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[error]
type = ElementL2Error
variable = v
function = exact
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(test/tests/executioners/executioner/transient.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
(test/tests/bcs/ad_penalty_dirichlet_bc/penalty_dirichlet_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = -2*(x*x+y*y-2)+(1-x*x)*(1-y*y)
[../]
[./solution]
type = ParsedGradFunction
value = (1-x*x)*(1-y*y)
grad_x = 2*(x*y*y-x)
grad_y = 2*(x*x*y-y)
[../]
[]
[Variables]
[./u]
order = SECOND
family = HIERARCHIC
[../]
[]
[Kernels]
active = 'diff forcing reaction'
[./diff]
type = ADDiffusion
variable = u
[../]
[./reaction]
type = Reaction
variable = u
[../]
[./forcing]
type = ADBodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'bc_all'
[./bc_all]
type = ADPenaltyDirichletBC
variable = u
value = 0
boundary = 'top left right bottom'
penalty = 1e5
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./h]
type = AverageElementSize
[../]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-14
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/outputs/debug/show_execution_userobjects.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1.5 2.4'
dy = '1.3 0.9'
ix = '3 2'
iy = '2 3'
subdomain_id = '0 1
1 0'
[]
[add_interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
second_order = true
[]
[Functions]
[forcing_fnu]
type = ParsedFunction
expression = -5.8*(x+y)+x*x*x-x+y*y*y-y
[]
[forcing_fnv]
type = ParsedFunction
expression = -4
[]
[slnu]
type = ParsedGradFunction
expression = x*x*x-x+y*y*y-y
grad_x = 3*x*x-1
grad_y = 3*y*y-1
[]
[slnv]
type = ParsedGradFunction
expression = x*x+y*y
grad_x = 2*x
grad_y = 2*y
[]
# NeumannBC functions
[bc_fnut]
type = ParsedFunction
expression = 3*y*y-1
[]
[bc_fnub]
type = ParsedFunction
expression = -3*y*y+1
[]
[bc_fnul]
type = ParsedFunction
expression = -3*x*x+1
[]
[bc_fnur]
type = ParsedFunction
expression = 3*x*x-1
[]
[]
[Variables]
[u]
order = SECOND
family = HIERARCHIC
[]
[v]
order = SECOND
family = LAGRANGE
initial_condition = 1
[]
[]
[AuxVariables]
[v_elem]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
active = 'diff1 diff2 test1 forceu forcev react'
[diff1]
type = Diffusion
variable = u
[]
[test1]
type = CoupledConvection
variable = u
velocity_vector = v
[]
[diff2]
type = Diffusion
variable = v
[]
[react]
type = Reaction
variable = u
[]
[forceu]
type = BodyForce
variable = u
function = forcing_fnu
[]
[forcev]
type = BodyForce
variable = v
function = forcing_fnv
[]
[]
[AuxKernels]
[set_v_elem]
type = FunctionAux
variable = v_elem
# selected not to be the solution for no particular reason
function = forcing_fnv
[]
[]
[BCs]
[bc_v]
type = FunctionDirichletBC
variable = v
function = slnv
boundary = 'left right top bottom'
[]
[bc_u_tb]
type = CoupledKernelGradBC
variable = u
var2 = v
vel = '0.1 0.1'
boundary = 'top bottom left right'
[]
[bc_ul]
type = FunctionNeumannBC
variable = u
function = bc_fnul
boundary = 'left'
[]
[bc_ur]
type = FunctionNeumannBC
variable = u
function = bc_fnur
boundary = 'right'
[]
[bc_ut]
type = FunctionNeumannBC
variable = u
function = bc_fnut
boundary = 'top'
[]
[bc_ub]
type = FunctionNeumannBC
variable = u
function = bc_fnub
boundary = 'bottom'
[]
[]
[Postprocessors]
# Global user objects
[dofs]
type = NumDOFs
[]
[h]
type = AverageElementSize
[]
# Elemental user objects
[L2u]
type = ElementL2Error
variable = u
function = slnu
# Testing an option
force_preic = true
[]
[L2v]
type = ElementL2Error
variable = v
function = slnv
# Testing an option
force_preaux = true
[]
[H1error]
type = ElementH1Error
variable = u
function = slnu
[]
[H1Semierror]
type = ElementH1SemiError
variable = u
function = slnu
[]
[L2v_elem]
type = ElementL2Error
variable = v_elem
function = slnv
[]
[f_integral]
type = FunctionElementIntegral
function = slnv
[]
[int_v]
type = ElementIntegralVariablePostprocessor
variable = v
block = 1
execute_on = 'TIMESTEP_END transfer'
[]
[int_v_elem]
type = ElementIntegralVariablePostprocessor
variable = v_elem
block = 1
execute_on = 'TIMESTEP_END transfer'
[]
# Side user objects
[integral_v]
type = SideIntegralVariablePostprocessor
variable = v
boundary = 0
[]
[]
[VectorPostprocessors]
# General UOs
[memory]
type = VectorMemoryUsage
[]
[line]
type = LineValueSampler
variable = v
num_points = 10
start_point = '0 0 0'
end_point = '0.5 0.5 0'
sort_by = 'x'
[]
# Nodal UOs
[nodal_sampler_y]
type = NodalValueSampler
variable = v
sort_by = 'y'
[]
[nodal_sampler_x]
type = NodalValueSampler
variable = v
sort_by = 'x'
[]
# Element UO
[elem_sample]
type = ElementValueSampler
variable = v_elem
sort_by = 'x'
[]
[]
[UserObjects]
# Nodal user objects
[find_node]
type = NearestNodeNumberUO
point = '0.5 0.5 0'
[]
# Side user objects
[side_int]
type = LayeredSideIntegral
variable = v
boundary = 0
direction = y
num_layers = 4
[]
[side_int_2]
type = NearestPointLayeredSideIntegral
variable = v
boundary = 0
direction = x
num_layers = 3
points = '1 1 0'
[]
# Interface user objects
[values]
type = InterfaceQpValueUserObject
var = v
boundary = interface
[]
inactive = 'prime_1 prime_2'
# Threaded general user objects
[prime_2]
type = PrimeProductUserObject
[]
[prime_1]
type = PrimeProductUserObject
[]
# Domain user objects
[domain_2]
type = InterfaceDomainUserObject
u = u
v = v
block = '0'
robin_boundaries = 'left'
interface_boundaries = 'interface'
interface_penalty = 1e-10
nl_abs_tol = 1e1
[]
[domain_1]
type = InterfaceDomainUserObject
u = u
v = v
block = '0 1'
robin_boundaries = 'left'
interface_boundaries = 'interface'
interface_penalty = 1e-10
nl_abs_tol = 1e1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_tol = 1e-5
[]
[Problem]
kernel_coverage_check = false
[]
[MultiApps]
active = ''
[full_solve]
type = FullSolveMultiApp
execute_on = 'initial timestep_end final'
input_files = show_execution_userobjects.i
cli_args = 'Problem/solve=false'
[]
[]
[Transfers]
active = ''
[conservative]
type = MultiAppNearestNodeTransfer
from_multi_app = full_solve
source_variable = v
variable = v_elem
from_postprocessors_to_be_preserved = int_v
to_postprocessors_to_be_preserved = int_v_elem
[]
[]
[Debug]
show_execution_order = 'ALWAYS INITIAL NONLINEAR LINEAR TIMESTEP_BEGIN TIMESTEP_END FINAL'
[]
(test/tests/utils/spline_interpolation/spline_interpolation.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
xmin = -1
xmax = 3
elem_type = EDGE2
[]
[Functions]
[./spline_fn]
type = SplineFunction
x = '-1 0 3'
y = '0.5 0 3'
[../]
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ufn]
type = SplineFFn
variable = u
function = spline_fn
[../]
[]
[BCs]
[./sides]
type = FunctionDirichletBC
variable = u
boundary = '0 1'
function = spline_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = spline_fn
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]