- functorThe name of the functor for which to find the extrema. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name of the functor for which to find the extrema. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
ElementExtremeFunctorValue
Finds either the min or max elemental value of a functor over the domain.
You can optionally provide a "proxy_functor", which will change the behavior of this postprocessor to find the element at which the proxy functor reaches the max/min value, and then return the value of the specified functor at that element.
Like the ElementExtremeValue postprocessor, this postprocessor can also operate on both elemental and nodal variables. However, unlike the ElementExtremeValue postprocessor, this postprocessor does not examine the quadrature point values, but instead passes the element argument to the functor.
Example Input File Syntax
[Postprocessors]
[max_u]
type = ADElementExtremeFunctorValue
functor = 'u'
[]
[min_w_f]
type = ElementExtremeFunctorValue
functor = 'w_f'
value_type = min
[]
[max_v_x]
type = ADElementExtremeFunctorValue
functor = 'v_x'
[]
[min_v_y]
type = ADElementExtremeFunctorValue
functor = 'v_y'
value_type = min
[]
# because we set v_x and v_y equal to the x and y coordinates, these two postprocessors
# should just return the point at which u reaches a maximum value
[max_v_from_proxy_x]
type = ADElementExtremeFunctorValue
functor = v_x
proxy_functor = u
value_type = max
[]
[max_v_from_proxy_y]
type = ADElementExtremeFunctorValue
functor = v_y
proxy_functor = u
value_type = max
[]
# because we set v_x and v_y equal to the x and y coordinates, these two postprocessors
# should just return the point at which w reaches a minimum value
[min_v_from_proxy_x]
type = ADElementExtremeFunctorValue
functor = v_x
proxy_functor = w
value_type = min
[]
[min_v_from_proxy_y]
type = ADElementExtremeFunctorValue
functor = v_y
proxy_functor = w
value_type = min
[]
[]
(test/tests/postprocessors/element_extreme_functor_value/extreme_proxy_value.i)Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR_CONVERGENCE, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, TRANSFER
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- proxy_functorThe name of the functor to use to identify the location at which the functor value should be taken; if not provided, this defaults to the 'functor' parameter. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name of the functor to use to identify the location at which the functor value should be taken; if not provided, this defaults to the 'functor' parameter. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- value_typemaxType of extreme value to return. 'max' returns the maximum value. 'min' returns the minimum value.
Default:max
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:max, min
Controllable:No
Description:Type of extreme value to return. 'max' returns the maximum value. 'min' returns the minimum value.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (test/tests/functors/get_functor/get_functor.i)
- (modules/heat_transfer/test/tests/functormaterials/fin_enhancement_factor/fin_enhancement_factor.i)
- (test/tests/functormaterials/time_derivatives/functor_time_derivatives.i)
- (modules/heat_transfer/test/tests/fvbcs/fv_marshak_bc/rad_istothermal_medium_2d.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_loop_negative_rotation.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_as_volume_force_loop_pressure_corrected.i)
- (modules/heat_transfer/test/tests/functormaterials/P1_radiation/P1_radiation_material_test.i)
- (test/tests/postprocessors/element_extreme_functor_value/extreme_proxy_value.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase-physics.i)
- (modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
- (test/tests/functormaterials/parsed_functor_material/parsed_functor_material.i)
- (modules/heat_transfer/test/tests/functormaterials/convection_heat_flux/convection_heat_flux.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
- (test/tests/functormaterials/with_suffix/functor_material.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_and_counterpump_loop.i)
- (modules/heat_transfer/test/tests/functormaterials/fin_efficiency/fin_efficiency.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/fuel_cavity.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_loop.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_as_volume_force_loop_force_corrected.i)
- (modules/navier_stokes/test/tests/finite_volume/physics/restart/2d_channel_scalar_turbulence_init.i)
- (modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
- (modules/heat_transfer/test/tests/fvbcs/fv_marshak_bc/rad_istothermal_medium_1d.i)
- (modules/solid_properties/test/tests/materials/thermal_solid_functor_properties/base.i)
proxy_functor
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name of the functor to use to identify the location at which the functor value should be taken; if not provided, this defaults to the 'functor' parameter. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
(test/tests/postprocessors/element_extreme_functor_value/extreme_proxy_value.i)
[Problem]
type = FEProblem
solve = false
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
[]
[AuxVariables]
[u]
type = MooseVariableFVReal
[]
[w]
type = MooseVariableFVReal
[]
[v_x]
type = MooseVariableFVReal
[]
[v_y]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[u]
type = FunctionAux
variable = u
function = u_f
[]
[w]
type = FunctionAux
variable = w
function = w_f
[]
[v_x]
type = FunctionAux
variable = v_x
function = v_x_f
[]
[v_y]
type = FunctionAux
variable = v_y
function = v_y_f
[]
[]
[Functions]
[u_f] # reaches a maximum value at (0.5, 0.6)
type = ParsedFunction
expression = 'sin(pi*x)*sin(pi*y/1.2)'
[]
[w_f] # reaches a minium expression at (0.7, 0.8)
type = ParsedFunction
expression = '-sin(pi*x/1.4)*sin(pi*y/1.6)'
[]
[v_x_f]
type = ParsedFunction
expression = 'x'
[]
[v_y_f]
type = ParsedFunction
expression = 'y'
[]
[]
[Postprocessors]
[max_u]
type = ADElementExtremeFunctorValue
functor = 'u'
[]
[min_w_f]
type = ElementExtremeFunctorValue
functor = 'w_f'
value_type = min
[]
[max_v_x]
type = ADElementExtremeFunctorValue
functor = 'v_x'
[]
[min_v_y]
type = ADElementExtremeFunctorValue
functor = 'v_y'
value_type = min
[]
# because we set v_x and v_y equal to the x and y coordinates, these two postprocessors
# should just return the point at which u reaches a maximum value
[max_v_from_proxy_x]
type = ADElementExtremeFunctorValue
functor = v_x
proxy_functor = u
value_type = max
[]
[max_v_from_proxy_y]
type = ADElementExtremeFunctorValue
functor = v_y
proxy_functor = u
value_type = max
[]
# because we set v_x and v_y equal to the x and y coordinates, these two postprocessors
# should just return the point at which w reaches a minimum value
[min_v_from_proxy_x]
type = ADElementExtremeFunctorValue
functor = v_x
proxy_functor = w
value_type = min
[]
[min_v_from_proxy_y]
type = ADElementExtremeFunctorValue
functor = v_y
proxy_functor = w
value_type = min
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(test/tests/functors/get_functor/get_functor.i)
[GlobalParams]
execute_on = 'INITIAL'
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[AuxVariables]
[testvar]
[]
[testppdot]
family = MONOMIAL
order = CONSTANT
[]
[testppdiv]
[]
[]
[AuxKernels]
[testvar_auxkern]
type = FunctionAux
variable = testvar
function = testvar_fn
execute_on = 'INITIAL'
[]
[testppdot_auxkern]
type = TimeDerivativeAux
variable = testppdot
functor = testpp
[]
[testppdiv_auxkern]
type = DivergenceAux
variable = testppdiv
u = testpp
v = testpp
w = testpp
[]
[]
[FunctorMaterials]
[testfmat]
type = GenericFunctorMaterial
prop_names = 'testfmprop'
prop_values = 'testfmat_fn'
[]
[]
[Functions]
[testvar_fn]
type = ParsedFunction
expression = '10*x'
[]
[testfmat_fn]
type = ParsedFunction
expression = '50*x'
[]
[testfn]
type = ParsedFunction
expression = '25*x'
[]
[]
[Postprocessors]
[testpp]
type = ConstantPostprocessor
value = 2
[]
[get_var]
type = ElementIntegralFunctorPostprocessor
functor = testvar
[]
[get_fn]
type = ElementExtremeFunctorValue
functor = testfn
value_type = max
[]
[get_fmprop]
type = ElementExtremeFunctorValue
functor = testfmprop
value_type = max
[]
[get_pp]
type = ElementExtremeFunctorValue
functor = testpp
value_type = max
execution_order_group = 1
[]
[get_ppdiv]
type = ElementAverageValue
variable = testppdiv
[]
[get_ppdot]
type = ElementAverageValue
variable = testppdot
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/functormaterials/fin_enhancement_factor/fin_enhancement_factor.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[FunctorMaterials]
[fin_fmat]
type = FinEnhancementFactorFunctorMaterial
fin_efficiency = 0.6
fin_area_fraction = 0.95
area_increase_factor = 5.0
fin_enhancement_factor_name = factor
[]
[]
[Postprocessors]
[fin_enhancement_factor]
type = ElementExtremeFunctorValue
functor = factor
execute_on = 'INITIAL'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
execute_on = 'INITIAL'
[]
(test/tests/functormaterials/time_derivatives/functor_time_derivatives.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 4.0
ymin = 0.0
ymax = 6.0
zmin = 0.0
zmax = 10.0
[]
[Variables]
[v1]
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = v1
[]
[source]
type = BodyForce
variable = v1
function = 10
[]
[]
[Functions]
[f1]
type = ParsedFunction
expression = '- 4 * t'
[]
[f2]
type = ConstantFunction
value = 3
[]
[]
[AuxVariables]
[v2]
[AuxKernel]
type = ParsedAux
expression = '3 * t'
use_xyzt = true
[]
[]
[]
[FunctorMaterials]
[time_derivatives]
type = ADGenericFunctorTimeDerivativeMaterial
prop_names = 'f1dt f2dt v1dt v2dt'
prop_values = 'f1 f2 v1 v2'
[]
[]
[Postprocessors]
[f1_time]
type = ElementExtremeFunctorValue
functor = f1dt
value_type = max
execute_on = 'INITIAL'
[]
[f2_time]
type = ElementExtremeFunctorValue
functor = f2dt
value_type = max
execute_on = 'INITIAL'
[]
[v1_time]
type = ElementExtremeFunctorValue
functor = v1dt
value_type = max
# derivatives are not available on INITIAL and TIMESTEP_BEGIN
execute_on = 'TIMESTEP_END'
[]
[v2_time]
type = ElementExtremeFunctorValue
functor = v2dt
value_type = max
# derivatives are not available on INITIAL and TIMESTEP_BEGIN
execute_on = 'TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Outputs]
csv = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_marshak_bc/rad_istothermal_medium_2d.i)
# The test gurantees that Marshak BCs yield the expected constant 2D solution
diffusion_coef = 1e-12
opacity = 1.0
temperature_radiation = 100.0
wall_temperature = ${fparse temperature_radiation / (4^(1/4))}
G_bc = 1.0
sigma = 5.670374419e-8
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 20
[]
[]
[Variables]
[G]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[G_diffusion]
type = FVDiffusion
variable = G
coeff = ${diffusion_coef}
[]
[source_and_sink]
type = FVThermalRadiationSourceSink
variable = G
temperature_radiation = ${temperature_radiation}
opacity = ${opacity}
[]
[]
[FVBCs]
[boundaries_bc]
type = FVMarshakRadiativeBC
boundary = 'left right'
variable = G
temperature_radiation = ${wall_temperature}
coeff_diffusion = ${diffusion_coef}
boundary_emissivity = 0.5
[]
[]
[Functions]
[analytical_sol]
type = ParsedFunction
symbol_names = 'a'
symbol_values = '${fparse sqrt(opacity / diffusion_coef)}'
expression = '${G_bc} * cosh(a*x) / cosh(a) + ${sigma} * ${temperature_radiation}^4 * (1.0 - cosh(a*x) / cosh(a))'
[]
[]
[Postprocessors]
[mean_value]
type = ElementIntegralFunctorPostprocessor
functor = G
[]
[max_value]
type = ElementExtremeFunctorValue
functor = G
[]
[relative_difference]
type = ParsedPostprocessor
pp_names = 'mean_value max_value'
expression = '(max_value / mean_value - 1.0) / mean_value'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_loop_negative_rotation.i)
mu = 1.0
rho = 1.0
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '0.1 0.8 0.1'
dy = '0.1 0.8 0.1'
ix = '5 20 5'
iy = '5 20 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[]
[delete_internal_part]
type = BlockDeletionGenerator
input = gen
block = '2'
new_boundary = 'wall-internal'
[]
[lump_bdries_to_wall]
type = RenameBoundaryGenerator
input = delete_internal_part
old_boundary = 'bottom right top left'
new_boundary = 'wall-external wall-external wall-external wall-external'
[]
[pump_domain]
type = ParsedSubdomainMeshGenerator
input = lump_bdries_to_wall
combinatorial_geometry = 'x > 0.3 & x < 0.4 & y > 0.5'
block_id = '3'
[]
[rename_blocks]
type = RenameBlockGenerator
input = pump_domain
old_block = '1 3'
new_block = 'pipe pump'
[]
[side_pump]
type = ParsedGenerateSideset
input = rename_blocks
included_subdomains = 'pump'
included_neighbors = 'pipe'
new_sideset_name = 'pump_side'
normal = '1 0 0'
combinatorial_geometry = 'x > 0.35'
[]
[]
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Problem]
material_coverage_check = False
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
correct_volumetric_force = true
volumetric_force_functors = 'pump_volume_force'
volume_force_correction_method = 'force-consistent'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_pump]
type = INSFVPump
variable = vel_x
momentum_component = 'x'
pump_volume_force = 'pump_volume_force'
block = 'pump'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_x
function = '0'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_y
function = '0'
[]
[]
[Functions]
[pump_head_negative]
type = PiecewiseLinear
x = '0.0 10.0'
y = '1000.0 0.0'
[]
[]
[FunctorMaterials]
[pump_mat]
type = NSFVPumpFunctorMaterial
rho = ${rho}
speed = 'U'
rotation_speed = 120
rotation_speed_rated = 100
area_rated = 0.1
volume_rated = 0.01
flow_rate_rated = 1.0
flow_rate = 'flow_rate'
block = 'pump'
enable_negative_rotation = true
symmetric_negative_pressure_head = false
pressure_head_function_negative_rotation = 'pump_head_negative'
[]
[]
[Postprocessors]
[flow_rate]
type = Receiver
default = 1.0
[]
[flow_rate_to_pipe]
type = VolumetricFlowRate
advected_quantity = ${rho}
boundary = 'pump_side'
vel_x = 'vel_x'
vel_y = 'vel_y'
[]
[maximum_speed]
type = ADElementExtremeFunctorValue
functor = vel_x
value_type = max
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = false
[out]
type = CSV
execute_on = FINAL
show = 'flow_rate_to_pipe maximum_speed'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_as_volume_force_loop_pressure_corrected.i)
mu = 1.0
rho = 1.0
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '0.1 0.8 0.1'
dy = '0.1 0.8 0.1'
ix = '5 20 5'
iy = '5 20 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[]
[delete_internal_part]
type = BlockDeletionGenerator
input = gen
block = '2'
new_boundary = 'wall-internal'
[]
[lump_bdries_to_wall]
type = RenameBoundaryGenerator
input = delete_internal_part
old_boundary = 'bottom right top left'
new_boundary = 'wall-external wall-external wall-external wall-external'
[]
[pump_domain]
type = ParsedSubdomainMeshGenerator
input = lump_bdries_to_wall
combinatorial_geometry = 'x > 0.3 & x < 0.7 & y > 0.5'
block_id = '3'
[]
[rename_blocks]
type = RenameBlockGenerator
input = pump_domain
old_block = '1 3'
new_block = 'pipe pump'
[]
[side_pump]
type = ParsedGenerateSideset
input = rename_blocks
included_subdomains = 'pump'
included_neighbors = 'pipe'
new_sideset_name = 'pump_side'
normal = '1 0 0'
combinatorial_geometry = 'x > 0.35'
[]
[]
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Problem]
material_coverage_check = False
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
correct_volumetric_force = true
volumetric_force_functors = 'pump_force'
volume_force_correction_method = 'pressure-consistent'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_pump]
type = INSFVBodyForce
variable = vel_x
momentum_component = 'x'
functor = 'pump_force'
block = 'pump'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_x
function = '0'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_y
function = '0'
[]
[]
[FunctorMaterials]
[pump_force]
type = PiecewiseByBlockFunctorMaterial
prop_name = 'pump_force'
subdomain_to_prop_value = 'pump 1000.0
pipe 0.0'
[]
[]
[Postprocessors]
[flow_rate]
type = Receiver
default = 1.0
[]
[flow_rate_to_pipe]
type = VolumetricFlowRate
advected_quantity = ${rho}
boundary = 'pump_side'
vel_x = 'vel_x'
vel_y = 'vel_y'
[]
[maximum_speed]
type = ADElementExtremeFunctorValue
functor = vel_x
value_type = max
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = false
[out]
type = CSV
execute_on = FINAL
show = 'flow_rate_to_pipe maximum_speed'
[]
[]
(modules/heat_transfer/test/tests/functormaterials/P1_radiation/P1_radiation_material_test.i)
opacity = 1.0
P1_sigma_scattering = 1.0
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[FunctorMaterials]
[diff_coef_non_AD]
type = RadiativeP1DiffusionCoefficientMaterial
opacity = ${opacity}
sigma_scat_eff = ${P1_sigma_scattering}
P1_diff_coef_name = 'diff_coef_non_AD'
[]
[diff_coef_AD]
type = ADRadiativeP1DiffusionCoefficientMaterial
opacity = ${opacity}
sigma_scat_eff = ${P1_sigma_scattering}
P1_diff_coef_name = 'diff_coef_AD'
[]
[]
[Postprocessors]
[value_non_AD]
type = ElementExtremeFunctorValue
functor = 'diff_coef_non_AD'
execute_on = 'initial'
[]
[value_AD]
type = ADElementExtremeFunctorValue
functor = 'diff_coef_AD'
execute_on = 'initial'
[]
[relative_difference]
type = RelativeDifferencePostprocessor
value1 = value_non_AD
value2 = value_AD
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
execute_on = 'INITIAL'
[]
(test/tests/postprocessors/element_extreme_functor_value/extreme_proxy_value.i)
[Problem]
type = FEProblem
solve = false
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
[]
[AuxVariables]
[u]
type = MooseVariableFVReal
[]
[w]
type = MooseVariableFVReal
[]
[v_x]
type = MooseVariableFVReal
[]
[v_y]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[u]
type = FunctionAux
variable = u
function = u_f
[]
[w]
type = FunctionAux
variable = w
function = w_f
[]
[v_x]
type = FunctionAux
variable = v_x
function = v_x_f
[]
[v_y]
type = FunctionAux
variable = v_y
function = v_y_f
[]
[]
[Functions]
[u_f] # reaches a maximum value at (0.5, 0.6)
type = ParsedFunction
expression = 'sin(pi*x)*sin(pi*y/1.2)'
[]
[w_f] # reaches a minium expression at (0.7, 0.8)
type = ParsedFunction
expression = '-sin(pi*x/1.4)*sin(pi*y/1.6)'
[]
[v_x_f]
type = ParsedFunction
expression = 'x'
[]
[v_y_f]
type = ParsedFunction
expression = 'y'
[]
[]
[Postprocessors]
[max_u]
type = ADElementExtremeFunctorValue
functor = 'u'
[]
[min_w_f]
type = ElementExtremeFunctorValue
functor = 'w_f'
value_type = min
[]
[max_v_x]
type = ADElementExtremeFunctorValue
functor = 'v_x'
[]
[min_v_y]
type = ADElementExtremeFunctorValue
functor = 'v_y'
value_type = min
[]
# because we set v_x and v_y equal to the x and y coordinates, these two postprocessors
# should just return the point at which u reaches a maximum value
[max_v_from_proxy_x]
type = ADElementExtremeFunctorValue
functor = v_x
proxy_functor = u
value_type = max
[]
[max_v_from_proxy_y]
type = ADElementExtremeFunctorValue
functor = v_y
proxy_functor = u
value_type = max
[]
# because we set v_x and v_y equal to the x and y coordinates, these two postprocessors
# should just return the point at which w reaches a minimum value
[min_v_from_proxy_x]
type = ADElementExtremeFunctorValue
functor = v_x
proxy_functor = w
value_type = min
[]
[min_v_from_proxy_y]
type = ADElementExtremeFunctorValue
functor = v_y
proxy_functor = w
value_type = min
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase-physics.i)
mu = 1.0
rho = 1.0e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.1
g = -9.81
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
k = 1
k_d = 1
cp = 1
cp_d = 1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 10
ny = 10
[]
[]
[Physics]
[NavierStokes]
[Flow]
[flow]
compressibility = 'incompressible'
density = 'rho_mixture'
dynamic_viscosity = 'mu_mixture'
# Initial conditions
initial_velocity = '0 0 0'
initial_pressure = 0
# Pressure pin
pin_pressure = true
pinned_pressure_type = 'point-value-uo'
pinned_pressure_point = '0 0 0'
pinned_pressure_value = '0'
# Gravity
gravity = '0 ${g} 0'
# Boundary conditions are defined outside of the Physics
# Moving walls are not that common of a problem
mass_advection_interpolation = '${advected_interp_method}'
momentum_advection_interpolation = '${advected_interp_method}'
velocity_interpolation = '${velocity_interp_method}'
[]
[]
[TwoPhaseMixture]
[mixture]
phase_1_fraction_name = 'phase_1'
phase_2_fraction_name = 'phase_2'
add_phase_transport_equation = true
phase_advection_interpolation = '${advected_interp_method}'
phase_fraction_diffusivity = 1e-3
# We could consider adding fixed-value-yet-not-an-inlet
# boundary conditions to the TwoPhaseMixture physics
# Base phase material properties
phase_1_density_name = ${rho}
phase_1_viscosity_name = ${mu}
phase_1_specific_heat_name = ${cp}
phase_1_thermal_conductivity_name = ${k}
# Other phase material properties
phase_2_density_name = ${rho_d}
phase_2_viscosity_name = ${mu_d}
phase_2_specific_heat_name = ${cp_d}
phase_2_thermal_conductivity_name = ${k_d}
output_all_properties = true
# Friction model, not actually used!
use_dispersed_phase_drag_model = true
particle_diameter = ${dp}
[]
[]
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${U_lid}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[bottom_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'bottom'
value = 1.0
[]
[top_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'top'
value = 0.0
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
execute_on = 'TIMESTEP_END'
[]
[]
[Postprocessors]
[average_void]
type = ElementAverageValue
variable = 'phase_2'
[]
[max_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = max
[]
[min_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = min
[]
[max_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = max
[]
[min_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = min
[]
[max_x_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_x'
value_type = max
[]
[max_y_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_y'
value_type = max
[]
[max_drag_coefficient]
type = ElementExtremeFunctorValue
functor = 'drag_coefficient'
value_type = max
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
iteration_window = 2
growth_factor = 2.0
cutback_factor = 0.5
dt = 1e-3
[]
nl_max_its = 10
nl_rel_tol = 1e-03
nl_abs_tol = 1e-9
l_max_its = 5
end_time = 1e8
[]
[Outputs]
exodus = false
[CSV]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/navier_stokes/test/tests/postprocessors/rayleigh/natural_convection.i)
mu = 1
rho = 1.1
beta = 1e-4
k = .01
cp = 1000
velocity_interp_method = 'rc'
advected_interp_method = 'average'
l = 4
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = ${l}
nx = 8
ny = 8
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
rhie_chow_user_object = 'rc'
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
rhie_chow_user_object = 'rc'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
rhie_chow_user_object = 'rc'
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
rhie_chow_user_object = 'rc'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
rhie_chow_user_object = 'rc'
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rhie_chow_user_object = 'rc'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom top'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[FluidProperties]
[fp]
type = SimpleFluidProperties
density0 = ${rho}
thermal_expansion = ${beta}
[]
[]
[FunctorMaterials]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 10
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
nl_abs_tol = 1e-11
automatic_scaling = true
[]
[Postprocessors]
[rayleigh_1]
type = RayleighNumber
rho_min = rho_min
rho_max = rho_max
rho_ave = ${rho}
l = ${l}
mu_ave = ${mu}
k_ave = ${k}
cp_ave = ${cp}
gravity_magnitude = 9.81
[]
[rayleigh_2]
type = RayleighNumber
T_cold = T_min
T_hot = T_max
rho_ave = ${rho}
beta = ${beta}
l = ${l}
mu_ave = ${mu}
k_ave = ${k}
cp_ave = ${cp}
gravity_magnitude = 9.81
[]
[rho_min]
type = ADElementExtremeFunctorValue
functor = 'rho'
value_type = 'min'
[]
[rho_max]
type = ADElementExtremeFunctorValue
functor = 'rho'
value_type = 'max'
[]
[T_min]
type = ADElementExtremeFunctorValue
functor = 'T'
value_type = 'min'
[]
[T_max]
type = ADElementExtremeFunctorValue
functor = 'T'
value_type = 'max'
[]
[]
[Outputs]
csv = true
[]
(test/tests/functormaterials/parsed_functor_material/parsed_functor_material.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 4.0
ymin = 0.0
ymax = 6.0
zmin = 0.0
zmax = 10.0
[]
[Functions]
[fn1]
type = ParsedFunction
# The max value on elements should be:
# 2 * 3 + 0.5 * 4.5 + 7.5 - 4 = 11.75
expression = '2 * x + 0.5 * y + z - t'
[]
[fn2]
type = ConstantFunction
value = 3
[]
[]
[FunctorMaterials]
[parsed_fmat]
type = ParsedFunctorMaterial
expression = 'A * B^2 + 2 + pi + e + t + x + y + z'
functor_names = 'fn1 fn2'
functor_symbols = 'A B'
property_name = 'prop1'
[]
[]
[Postprocessors]
# The value should be:
# 11.75 * 3^2 + 2 + pi + e + 4 + 3 + 4.5 + 7.5 = 132.60987448204884
[get_prop1]
type = ElementExtremeFunctorValue
functor = prop1
value_type = max
execute_on = 'INITIAL'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
time = 4.0
[]
[Outputs]
csv = true
execute_on = 'INITIAL'
[]
(modules/heat_transfer/test/tests/functormaterials/convection_heat_flux/convection_heat_flux.i)
T_solid = 500
T_fluid = 300
htc = 100
# q = htc * (T_solid - T_fluid) = 100 * (500 - 300) = 20000
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[FunctorMaterials]
[q_fmat]
type = ADConvectionHeatFluxFunctorMaterial
heat_flux_name = q
T_solid = ${T_solid}
T_fluid = ${T_fluid}
htc = ${htc}
[]
[]
[Postprocessors]
[q_pp]
type = ADElementExtremeFunctorValue
functor = q
execute_on = 'INITIAL'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
execute_on = 'INITIAL'
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
mu = 1.0
rho = 1e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.0
g = -9.81
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 11
ny = 11
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[pin_pressure]
type = NSPressurePin
variable = pressure
pin_type = point-value
point = '0 0 0'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = 'rho_mixture'
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyant]
type = INSFVMomentumGravity
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
gravity = '0 ${g} 0'
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyant]
type = INSFVMomentumGravity
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
gravity = '0 ${g} 0'
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1e-3
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${U_lid}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[bottom_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'bottom'
value = 1.0
[]
[top_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'top'
value = 0.0
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[phase_1]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[compute_phase_1]
type = ParsedAux
variable = phase_1
coupled_variables = 'phase_2'
expression = '1 - phase_2'
[]
[]
[FunctorMaterials]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_1_names = '${rho_d} ${mu_d}'
phase_2_names = '${rho} ${mu}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[]
[Postprocessors]
[average_void]
type = ElementAverageValue
variable = 'phase_2'
[]
[max_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = max
[]
[min_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = min
[]
[max_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = max
[]
[min_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = min
[]
[max_x_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_x'
value_type = max
[]
[max_y_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_y'
value_type = max
[]
[max_drag_coefficient]
type = ElementExtremeFunctorValue
functor = 'drag_coefficient'
value_type = max
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
iteration_window = 2
growth_factor = 2
cutback_factor = 0.5
dt = 1e-3
[]
nl_max_its = 20
nl_rel_tol = 1e-03
nl_abs_tol = 1e-9
l_max_its = 5
end_time = 1e8
[]
[Outputs]
exodus = false
[CSV]
type = CSV
execute_on = 'FINAL'
[]
[]
(test/tests/functormaterials/with_suffix/functor_material.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 4.0
ymin = 0.0
ymax = 6.0
zmin = 0.0
zmax = 10.0
[]
[FunctorMaterials]
[fmat]
type = GenericFunctorMaterial
prop_values = '1 2'
prop_names = 'prop1 prop2'
[]
[]
[Postprocessors]
[get_prop1]
type = ElementExtremeFunctorValue
functor = prop1
value_type = max
execute_on = 'INITIAL'
[]
[get_prop2]
type = ElementExtremeFunctorValue
functor = prop2
value_type = max
execute_on = 'INITIAL'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Debug]
show_functors = true
[]
[Outputs]
csv = true
execute_on = 'INITIAL'
[]
(modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_and_counterpump_loop.i)
mu = 1.0
rho = 1.0
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '0.1 0.8 0.1'
dy = '0.1 0.8 0.1'
ix = '5 20 5'
iy = '5 20 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[]
[delete_internal_part]
type = BlockDeletionGenerator
input = gen
block = '2'
new_boundary = 'wall-internal'
[]
[lump_bdries_to_wall]
type = RenameBoundaryGenerator
input = delete_internal_part
old_boundary = 'bottom right top left'
new_boundary = 'wall-external wall-external wall-external wall-external'
[]
[pump_1_domain]
type = ParsedSubdomainMeshGenerator
input = lump_bdries_to_wall
combinatorial_geometry = 'x > 0.3 & x < 0.4 & y > 0.5'
block_id = '3'
[]
[pump_2_domain]
type = ParsedSubdomainMeshGenerator
input = pump_1_domain
combinatorial_geometry = 'x > 0.5 & y > 0.3 & y < 0.4'
block_id = '4'
[]
[rename_blocks]
type = RenameBlockGenerator
input = pump_2_domain
old_block = '1 3 4'
new_block = 'pipe pump_1 pump_2'
[]
[side_pump]
type = ParsedGenerateSideset
input = rename_blocks
included_subdomains = 'pump_1'
included_neighbors = 'pipe'
new_sideset_name = 'pump_side'
normal = '1 0 0'
combinatorial_geometry = 'x > 0.35'
[]
[]
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Problem]
material_coverage_check = False
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
correct_volumetric_force = true
volumetric_force_functors = 'pump_volume_force_1 pump_volume_force_2'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_pump_1]
type = INSFVPump
variable = vel_x
momentum_component = 'x'
pump_volume_force = 'pump_volume_force_1'
block = 'pump_1'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[u_pump_2]
type = INSFVPump
variable = vel_y
momentum_component = 'y'
pump_volume_force = 'pump_volume_force_2'
block = 'pump_2'
[]
[]
[FVBCs]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_x
function = '0'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_y
function = '0'
[]
[]
[Functions]
[pump_head]
type = PiecewiseLinear
x = '0.0 10.0'
y = '1000.0 0.0'
[]
[]
[FunctorMaterials]
[pump_mat_1]
type = NSFVPumpFunctorMaterial
rho = ${rho}
speed = 'U'
pressure_head_function = 'pump_head'
rotation_speed = 120
rotation_speed_rated = 100
area_rated = 0.1
volume_rated = 0.01
flow_rate_rated = 1.0
flow_rate = 'flow_rate'
block = 'pump_1'
pump_force_name = 'pump_volume_force_1'
[]
[pump_mat_2]
type = NSFVPumpFunctorMaterial
rho = ${rho}
speed = 'U'
pressure_head_function = 'pump_head'
rotation_speed = 50
rotation_speed_rated = 100
area_rated = 0.1
volume_rated = 0.01
flow_rate_rated = 1.0
flow_rate = 'flow_rate'
block = 'pump_2'
pump_force_name = 'pump_volume_force_2'
[]
[]
[Postprocessors]
[flow_rate]
type = Receiver
default = 1.0
[]
[flow_rate_to_pipe]
type = VolumetricFlowRate
advected_quantity = ${rho}
boundary = 'pump_side'
vel_x = 'vel_x'
vel_y = 'vel_y'
[]
[maximum_speed]
type = ADElementExtremeFunctorValue
functor = vel_x
value_type = max
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = false
[out]
type = CSV
execute_on = FINAL
show = 'flow_rate_to_pipe maximum_speed'
[]
[]
(modules/heat_transfer/test/tests/functormaterials/fin_efficiency/fin_efficiency.i)
# This example uses rectangular fins
width = 1.0
thickness = 0.001
perimeter = ${fparse 2 * width + 2 * thickness}
area = ${fparse width * thickness}
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[FunctorMaterials]
[fin_fmat]
type = FinEfficiencyFunctorMaterial
fin_height = 0.01
fin_perimeter_area_ratio = ${fparse perimeter / area}
heat_transfer_coefficient = 25.0
thermal_conductivity = 15.0
fin_efficiency_name = efficiency
[]
[]
[Postprocessors]
[fin_efficiency]
type = ElementExtremeFunctorValue
functor = efficiency
execute_on = 'INITIAL'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
execute_on = 'INITIAL'
[]
(modules/navier_stokes/test/tests/finite_volume/ins/natural_convection/fuel_cavity.i)
# ========================================================================
# The purpose of this MOOSE scripts is to solve a 2-D axisymmetric
# problem with the following details:
# ------------------------------------------------------------------
# Physics: natural convection through a fluid and heat conduction
# in a solid and there is convective heat transfer from the
# solid to the liquid.
# ------------------------------------------------------------------
# Materials: the fluid is water and the solid is not specified.
# ------------------------------------------------------------------
# BCS: Inlet and outlet pressure with value of 0
# noslip conditions on the walls.
# Heat flux on the left wall with value of 40000 W/m^2
# ========================================================================
# ========================================================================
# Dimensions & Physical properties
# ========================================================================
Domain_length = 121.92e-2 # m
Solid_width = 0.7112e-3 # m
Liquid_width = 0.56261e-2 # m
mu = 0.00053157
rho = 987.27
k = 0.64247
k_solid = 15.0
cp = 4181.8
alpha_b = 210e-6
T_init = 300.0
input_heat_flux = 40000.0
# ========================================================================
# The main body of the script
# ========================================================================
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
#dx = '0.7032625e-4 0.7112e-5'
dx = '${Liquid_width} ${Solid_width}'
ix = '10 3'
dy = '${fparse 1./5.*Domain_length} ${fparse 4./5.*Domain_length}'
iy = '30 10'
subdomain_id = '0 1
0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[fluid_side]
type = BreakBoundaryOnSubdomainGenerator
input = 'interface'
boundaries = 'top bottom'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
block = 0
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
initial_condition = ${T_init}
scaling = 1e-5
[]
[Ts]
type = INSFVEnergyVariable
block = 1
initial_condition = ${T_init}
scaling = 1e-3
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T
gravity = '0 -9.81 0'
rho = ${rho}
ref_temperature = ${T_init}
momentum_component = 'x'
#alpha_name = ${alpha_b}
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
#alpha_name = ${alpha_b}
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T
gravity = '0 -9.81 0'
rho = ${rho}
ref_temperature = ${T_init}
momentum_component = 'y'
[]
[temp_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = '${rho}'
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[Ts_time]
type = INSFVEnergyTimeDerivative
variable = Ts
rho = '${rho}'
dh_dt = dh_solid_dt
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k_solid'
variable = Ts
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = htc
T_solid = Ts
T_fluid = T
subdomain1 = 0
subdomain2 = 1
wall_cell_is_bulk = true
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'interface left bottom_to_0'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'interface left bottom_to_0'
function = 0
[]
[outlet]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'top_to_0'
function = 0.0
[]
[outlet_T]
type = NSFVOutflowTemperatureBC
variable = T
boundary = 'top_to_0'
u = vel_x
v = vel_y
rho = ${rho}
cp = '${cp}'
backflow_T = ${T_init}
[]
[Insulator]
type = FVNeumannBC
variable = 'T'
boundary = 'left'
value = 0.0
[]
[heater]
type = FVNeumannBC
variable = 'Ts'
boundary = 'right'
value = '${fparse input_heat_flux}'
[]
[Insulator_solid]
type = FVNeumannBC
variable = 'Ts'
boundary = 'top_to_1'
value = 0.0
[]
[inlet_T_1]
type = FVDirichletBC
variable = Ts
boundary = 'bottom_to_1'
value = ${T_init}
[]
[]
[AuxVariables]
[Ra]
type = INSFVScalarFieldVariable
initial_condition = 1000.0
[]
[htc]
type = INSFVScalarFieldVariable
initial_condition = 0.0
[]
[]
[AuxKernels]
[compute_Ra]
type = ParsedAux
variable = Ra
coupled_variables = 'T'
constant_names = 'g beta T_init width nu alpha'
constant_expressions = '9.81 ${alpha_b} ${T_init} ${Liquid_width} ${fparse mu/rho} ${fparse k/(rho*cp)}'
expression = 'g * beta * (T - T_init) * pow(width, 3) / (nu*alpha) + 1.0'
block = 0
[]
[htc]
type = ParsedAux
variable = htc
coupled_variables = 'Ra'
constant_names = 'Pr'
constant_expressions = '${fparse cp*mu/k}'
expression = '${k}* (0.68 + 0.67 * pow(Ra, 0.25)/pow(1 + pow(0.437/Pr, 9/16) ,4/9) )/ ${Liquid_width} '
block = 0
[]
[]
[FunctorMaterials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k k_solid'
prop_values = '${cp} ${k} ${k_solid}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[ins_fv_solid]
type = INSFVEnthalpyFunctorMaterial
temperature = 'Ts'
rho = ${rho}
cp = ${cp}
h = h_solid
rho_h = rho_h_solid
block = 1
[]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b'
prop_values = '${alpha_b}'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = ' lu NONZERO 200'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 20
iteration_window = 2
[]
nl_max_its = 30
nl_abs_tol = 1e-10
steady_state_detection = true
steady_state_tolerance = 1e-09
[]
[Postprocessors]
[max_T]
type = ADElementExtremeFunctorValue
functor = T
block = 0
[]
[max_Ts]
type = ADElementExtremeFunctorValue
functor = Ts
block = 1
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
mu = 1.0
rho = 1.0e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.1
g = -9.81
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 10
ny = 10
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[pin_pressure]
type = NSPressurePin
variable = pressure
pin_type = point-value
point = '0 0 0'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = 'rho_mixture'
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyant]
type = INSFVMomentumGravity
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
gravity = '0 ${g} 0'
[]
# NOTE: the friction terms for u and v are missing
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyant]
type = INSFVMomentumGravity
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
gravity = '0 ${g} 0'
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1e-3
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${U_lid}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[bottom_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'bottom'
value = 1.0
[]
[top_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'top'
value = 0.0
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FunctorMaterials]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
gravity = '0 ${g} 0'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
gravity = '0 ${g} 0'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_1_names = '${rho_d} ${mu_d}'
phase_2_names = '${rho} ${mu}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Postprocessors]
[average_void]
type = ElementAverageValue
variable = 'phase_2'
[]
[max_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = max
[]
[min_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = min
[]
[max_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = max
[]
[min_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = min
[]
[max_x_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_x'
value_type = max
[]
[max_y_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_y'
value_type = max
[]
[max_drag_coefficient]
type = ElementExtremeFunctorValue
functor = 'drag_coefficient'
value_type = max
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
iteration_window = 2
growth_factor = 2.0
cutback_factor = 0.5
dt = 1e-3
[]
nl_max_its = 10
nl_rel_tol = 1e-03
nl_abs_tol = 1e-9
l_max_its = 5
end_time = 1e8
[]
[Outputs]
exodus = false
[CSV]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_loop.i)
mu = 1.0
rho = 1.0
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '0.1 0.8 0.1'
dy = '0.1 0.8 0.1'
ix = '5 20 5'
iy = '5 20 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[]
[delete_internal_part]
type = BlockDeletionGenerator
input = gen
block = '2'
new_boundary = 'wall-internal'
[]
[lump_bdries_to_wall]
type = RenameBoundaryGenerator
input = delete_internal_part
old_boundary = 'bottom right top left'
new_boundary = 'wall-external wall-external wall-external wall-external'
[]
[pump_domain]
type = ParsedSubdomainMeshGenerator
input = lump_bdries_to_wall
combinatorial_geometry = 'x > 0.3 & x < 0.4 & y > 0.5'
block_id = '3'
[]
[rename_blocks]
type = RenameBlockGenerator
input = pump_domain
old_block = '1 3'
new_block = 'pipe pump'
[]
[side_pump]
type = ParsedGenerateSideset
input = rename_blocks
included_subdomains = 'pump'
included_neighbors = 'pipe'
new_sideset_name = 'pump_side'
normal = '1 0 0'
combinatorial_geometry = 'x > 0.35'
[]
[]
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Problem]
material_coverage_check = False
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
correct_volumetric_force = true
volumetric_force_functors = 'pump_volume_force'
volume_force_correction_method = 'pressure-consistent'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_pump]
type = INSFVPump
variable = vel_x
momentum_component = 'x'
pump_volume_force = 'pump_volume_force'
block = 'pump'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_x
function = '0'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_y
function = '0'
[]
[]
[Functions]
[pump_head]
type = PiecewiseLinear
x = '0.0 10.0'
y = '1000.0 0.0'
[]
[]
[FunctorMaterials]
[pump_mat]
type = NSFVPumpFunctorMaterial
rho = ${rho}
speed = 'U'
pressure_head_function = 'pump_head'
rotation_speed = 120
rotation_speed_rated = 100
area_rated = 0.1
volume_rated = 0.01
flow_rate_rated = 1.0
flow_rate = 'flow_rate'
block = 'pump'
[]
[]
[Postprocessors]
[flow_rate]
type = Receiver
default = 1.0
[]
[flow_rate_to_pipe]
type = VolumetricFlowRate
advected_quantity = ${rho}
boundary = 'pump_side'
vel_x = 'vel_x'
vel_y = 'vel_y'
[]
[maximum_speed]
type = ADElementExtremeFunctorValue
functor = vel_x
value_type = max
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = false
[out]
type = CSV
execute_on = FINAL
show = 'flow_rate_to_pipe maximum_speed'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/pump/pump_as_volume_force_loop_force_corrected.i)
mu = 1.0
rho = 1.0
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '0.1 0.8 0.1'
dy = '0.1 0.8 0.1'
ix = '5 20 5'
iy = '5 20 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[]
[delete_internal_part]
type = BlockDeletionGenerator
input = gen
block = '2'
new_boundary = 'wall-internal'
[]
[lump_bdries_to_wall]
type = RenameBoundaryGenerator
input = delete_internal_part
old_boundary = 'bottom right top left'
new_boundary = 'wall-external wall-external wall-external wall-external'
[]
[pump_domain]
type = ParsedSubdomainMeshGenerator
input = lump_bdries_to_wall
combinatorial_geometry = 'x > 0.3 & x < 0.7 & y > 0.5'
block_id = '3'
[]
[rename_blocks]
type = RenameBlockGenerator
input = pump_domain
old_block = '1 3'
new_block = 'pipe pump'
[]
[side_pump]
type = ParsedGenerateSideset
input = rename_blocks
included_subdomains = 'pump'
included_neighbors = 'pipe'
new_sideset_name = 'pump_side'
normal = '1 0 0'
combinatorial_geometry = 'x > 0.35'
[]
[]
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Problem]
material_coverage_check = False
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
correct_volumetric_force = true
volumetric_force_functors = 'pump_force'
volume_force_correction_method = 'force-consistent'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_pump]
type = INSFVBodyForce
variable = vel_x
momentum_component = 'x'
functor = 'pump_force'
block = 'pump'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_x
function = '0'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'wall-internal wall-external'
variable = vel_y
function = '0'
[]
[]
[FunctorMaterials]
[pump_force]
type = PiecewiseByBlockFunctorMaterial
prop_name = 'pump_force'
subdomain_to_prop_value = 'pump 1000.0
pipe 0.0'
[]
[]
[Postprocessors]
[flow_rate]
type = Receiver
default = 1.0
[]
[flow_rate_to_pipe]
type = VolumetricFlowRate
advected_quantity = ${rho}
boundary = 'pump_side'
vel_x = 'vel_x'
vel_y = 'vel_y'
[]
[maximum_speed]
type = ADElementExtremeFunctorValue
functor = vel_x
value_type = max
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = false
[out]
type = CSV
execute_on = FINAL
show = 'flow_rate_to_pipe maximum_speed'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/physics/restart/2d_channel_scalar_turbulence_init.i)
### Thermophysical Properties ###
rho = 1
cp = 1
Pr_t = 0.9
# large diffusion coefficients to converge without initial conditions (test uses Problem/solve=false)
mu = 100
k = 10
diff_scalar = 10
### Simulation parameters
inlet_velocity = 1
side_length = 1
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * inlet_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
mu_t_init = '${fparse rho * C_mu * k_init * k_init / eps_init}'
### Modeling parameters ###
bulk_wall_treatment = false
wall_treatment_eps = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
wall_treatment_tem = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
active = 'gen'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = ${side_length}
nx = 100
ny = 20
[]
[fmg_restart]
type = FileMeshGenerator
file = user_ics.e
use_for_exodus_restart = true
[]
[]
[Physics]
[NavierStokes]
[Flow]
[all_flow]
compressibility = 'incompressible'
density = ${rho}
dynamic_viscosity = ${mu}
inlet_boundaries = 'left'
momentum_inlet_types = 'fixed-velocity'
momentum_inlet_functors = '${inlet_velocity} 0'
wall_boundaries = 'top bottom'
momentum_wall_types = 'noslip noslip'
outlet_boundaries = 'right'
momentum_outlet_types = 'fixed-pressure'
pressure_functors = '0'
mass_advection_interpolation = 'average'
momentum_advection_interpolation = 'average'
[]
[]
[FluidHeatTransfer]
[all_energy]
thermal_conductivity = ${k}
specific_heat = ${cp}
energy_inlet_types = 'fixed-temperature'
energy_inlet_functors = '1'
energy_wall_types = 'heatflux heatflux'
energy_wall_functors = '0 0'
energy_advection_interpolation = 'average'
[]
[]
[ScalarTransport]
[all_scalar]
passive_scalar_names = 'scalar1 scalar2'
passive_scalar_diffusivity = '${diff_scalar} ${diff_scalar}'
passive_scalar_source = '0.1 0'
passive_scalar_coupled_source = '1; 0'
passive_scalar_coupled_source_coeff = '0.1; 0'
passive_scalar_inlet_types = 'fixed-value fixed-value'
passive_scalar_inlet_functors = '1; 0.1'
passive_scalar_advection_interpolation = 'average'
[]
[]
[Turbulence]
[keps]
fluid_heat_transfer_physics = 'all_energy'
scalar_transport_physics = 'all_scalar'
turbulence_handling = 'k-epsilon'
tke_name = TKE
tked_name = TKED
# Fluid properties
Pr_t = ${Pr_t}
Sc_t = '0.7'
# Model parameters
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
C_mu = ${C_mu}
sigma_k = ${sigma_k}
sigma_eps = ${sigma_eps}
# Wall parameters
turbulence_walls = 'top bottom'
bulk_wall_treatment = ${bulk_wall_treatment}
wall_treatment_eps = ${wall_treatment_eps}
wall_treatment_T = ${wall_treatment_tem}
# Numerical parameters
mu_t_as_aux_variable = false
k_t_as_aux_variable = false
[]
[]
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-3
line_search = 'none'
[]
[Problem]
solve = false
[]
[Outputs]
# Used to set up a restart from checkpoint
checkpoint = true
# Used to set up a restart from exodus file
[exodus]
type = Exodus
execute_on = TIMESTEP_END
[]
# Used to check results
csv = true
execute_on = INITIAL
[]
[Postprocessors]
[min_vel_x]
type = ElementExtremeValue
variable = 'vel_x'
value_type = 'min'
execute_on = 'INITIAL'
[]
[max_vel_x]
type = ElementExtremeValue
variable = 'vel_x'
value_type = 'max'
execute_on = 'INITIAL'
[]
[min_vel_y]
type = ElementExtremeValue
variable = 'vel_y'
value_type = 'min'
execute_on = 'INITIAL'
[]
[max_vel_y]
type = ElementExtremeValue
variable = 'vel_y'
value_type = 'max'
execute_on = 'INITIAL'
[]
[min_pressure]
type = ElementExtremeValue
variable = 'pressure'
value_type = 'min'
execute_on = 'INITIAL'
[]
[max_pressure]
type = ElementExtremeValue
variable = 'pressure'
value_type = 'max'
execute_on = 'INITIAL'
[]
[min_T_fluid]
type = ElementExtremeValue
variable = 'T_fluid'
value_type = 'min'
execute_on = 'INITIAL'
[]
[max_T_fluid]
type = ElementExtremeValue
variable = 'T_fluid'
value_type = 'max'
execute_on = 'INITIAL'
[]
[min_scalar1]
type = ElementExtremeValue
variable = 'scalar1'
value_type = 'min'
execute_on = 'INITIAL'
[]
[max_scalar1]
type = ElementExtremeValue
variable = 'scalar1'
value_type = 'max'
execute_on = 'INITIAL'
[]
[min_scalar2]
type = ElementExtremeValue
variable = 'scalar2'
value_type = 'min'
execute_on = 'INITIAL'
[]
[max_scalar2]
type = ElementExtremeValue
variable = 'scalar2'
value_type = 'max'
execute_on = 'INITIAL'
[]
[min_mu_t]
type = ElementExtremeFunctorValue
functor = 'mu_t'
value_type = 'min'
execute_on = 'INITIAL'
[]
[max_mu_t]
type = ElementExtremeFunctorValue
functor = 'mu_t'
value_type = 'max'
execute_on = 'INITIAL'
[]
[min_tke]
type = ElementExtremeValue
variable = 'TKE'
value_type = 'min'
execute_on = 'INITIAL'
[]
[max_tke]
type = ElementExtremeValue
variable = 'TKE'
value_type = 'max'
execute_on = 'INITIAL'
[]
[min_tked]
type = ElementExtremeValue
variable = 'TKED'
value_type = 'min'
execute_on = 'INITIAL'
[]
[max_tked]
type = ElementExtremeValue
variable = 'TKED'
value_type = 'max'
execute_on = 'INITIAL'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/fviks/convection/convection_channel.i)
mu = 1
rho = 1
k = .01
cp = 1
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 0.5'
dy = '1'
ix = '8 5'
iy = '8'
subdomain_id = '0 1'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'cmg'
primary_block = 0
paired_block = 1
new_boundary = 'interface'
[]
[fluid_side]
type = BreakBoundaryOnSubdomainGenerator
input = 'interface'
boundaries = 'top bottom'
[]
[]
[GlobalParams]
# retain behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = 0
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
block = 0
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
block = 0
[]
[T]
type = INSFVEnergyVariable
block = 0
initial_condition = 1
[]
[Ts]
type = INSFVEnergyVariable
block = 1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
[]
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = Ts
[]
[]
[FVInterfaceKernels]
[convection]
type = FVConvectionCorrelationInterface
variable1 = T
variable2 = Ts
boundary = 'interface'
h = 5
T_solid = Ts
T_fluid = T
subdomain1 = 0
subdomain2 = 1
wall_cell_is_bulk = true
[]
[]
[FVBCs]
[walls_u]
type = INSFVNoSlipWallBC
variable = u
boundary = 'interface left'
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
variable = v
boundary = 'interface left'
function = 0
[]
[inlet_u]
type = INSFVInletVelocityBC
variable = u
boundary = 'bottom_to_0'
function = 0
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
boundary = 'bottom_to_0'
function = 1
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'bottom_to_0'
value = 0.5
[]
[outlet]
type = INSFVMassAdvectionOutflowBC
variable = pressure
boundary = 'top_to_0'
u = u
v = v
rho = ${rho}
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = u
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = v
boundary = 'top_to_0'
u = u
v = v
momentum_component = 'y'
rho = ${rho}
[]
[heater]
type = FVDirichletBC
variable = 'Ts'
boundary = 'right'
value = 10
[]
[]
[FunctorMaterials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
block = 0
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_abs_tol = 1e-14
[]
[Postprocessors]
[max_T]
type = ADElementExtremeFunctorValue
functor = T
block = 0
[]
[max_Ts]
type = ADElementExtremeFunctorValue
functor = Ts
block = 1
[]
[mdot_out]
type = VolumetricFlowRate
boundary = 'top_to_0'
vel_x = u
vel_y = v
advected_quantity = ${rho}
[]
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/fvbcs/fv_marshak_bc/rad_istothermal_medium_1d.i)
# The test gurantees that Marshak BCs yield the expected constant 1D solution
diffusion_coef = 1e-12
opacity = 1.0
temperature_radiation = 100.0
wall_temperature = ${fparse temperature_radiation / (4^(1/4))}
G_bc = 1.0
sigma = 5.670374419e-8
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 50
[]
[]
[Variables]
[G]
type = MooseVariableFVReal
initial_condition = 1
[]
[]
[FVKernels]
[G_diffusion]
type = FVDiffusion
variable = G
coeff = ${diffusion_coef}
[]
[source_and_sink]
type = FVThermalRadiationSourceSink
variable = G
temperature_radiation = ${temperature_radiation}
opacity = ${opacity}
[]
[]
[FVBCs]
[right_bc]
type = FVMarshakRadiativeBC
boundary = 'right'
variable = G
temperature_radiation = ${wall_temperature}
coeff_diffusion = ${diffusion_coef}
boundary_emissivity = 1.0
[]
[]
[Functions]
[analytical_sol]
type = ParsedFunction
symbol_names = 'a'
symbol_values = '${fparse sqrt(opacity / diffusion_coef)}'
expression = '${G_bc} * cosh(a*x) / cosh(a) + ${sigma} * ${temperature_radiation}^4 * (1.0 - cosh(a*x) / cosh(a))'
[]
[]
[Postprocessors]
[mean_value]
type = ElementIntegralFunctorPostprocessor
functor = G
[]
[max_value]
type = ElementExtremeFunctorValue
functor = G
[]
[relative_difference]
type = ParsedPostprocessor
pp_names = 'mean_value max_value'
expression = '(max_value / mean_value - 1.0) / mean_value'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_properties/test/tests/materials/thermal_solid_functor_properties/base.i)
T_initial = 300
[GlobalParams]
execute_on = 'INITIAL'
[]
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 1
[]
[SolidProperties]
[ss316_sp]
type = ThermalSS316Properties
[]
[]
[FunctorMaterials]
[sp_mat]
type = ThermalSolidPropertiesFunctorMaterial
temperature = T
sp = ss316_sp
specific_heat = cp
density = rho
thermal_conductivity = k
specific_internal_energy = e
[]
[]
[AuxVariables]
[T]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[T_ak]
type = ConstantAux
variable = T
value = ${T_initial}
[]
[]
[Postprocessors]
[cp]
type = ElementExtremeFunctorValue
functor = 'cp'
[]
[k]
type = ElementExtremeFunctorValue
functor = 'k'
[]
[density]
type = ElementExtremeFunctorValue
functor = 'rho'
[]
[e]
type = ElementExtremeFunctorValue
functor = 'e'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]