- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- equationEquation for which to query flux vector
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Equation for which to query flux vector
ADFlowBoundaryFlux1Phase
Retrieves an entry of a flux vector for a connection attached to a 1-phase junction
This object can be used to get the flux for either of the mass, momentum and energy equations. The flux is computed by an AD boundary flux user object. The boundary user object is retrieved using the boundary name specified in the "boundary" parameter.
Input Parameters
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR_CONVERGENCE, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, TRANSFER
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- variablesrhoA rhouA rhoEA A Single-phase flow variables
Default:rhoA rhouA rhoEA A
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Single-phase flow variables
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/thermal_hydraulics/test/tests/postprocessors/flow_junction_flux_1phase/flow_junction_flux_1phase.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation_ss.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/junction_with_calorifically_imperfect_gas.i)
- (modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.conservation.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/junction_with_calorifically_imperfect_gas.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/flow_boundary_flux_1phase/test.i)
boundary
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
(modules/thermal_hydraulics/test/tests/postprocessors/flow_junction_flux_1phase/flow_junction_flux_1phase.i)
# This input file tests mass conservation at steady-state by looking at the
# net mass flux into the domain.
T_in = 523.0
m_dot = 100
p_out = 7e6
[GlobalParams]
initial_p = ${p_out}
initial_vel = 1
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 3
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletMassFlowRateTemperature1Phase
input = 'inlet:in'
m_dot = ${m_dot}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 3
[]
[inlet_plenum]
type = VolumeJunction1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 1
connections = 'inlet:out channel1:in channel2:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
use_scalar_variables = false
[]
[channel1]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 4
D_h = 1
[]
[K_bypass]
type = FormLossFromFunction1Phase
K_prime = 500
flow_channel = channel1
[]
[channel2]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 1
D_h = 1
[]
[outlet_plenum]
type = VolumeJunction1Phase
position = '0 0 0'
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 1
connections = 'channel1:out channel2:out outlet:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
use_scalar_variables = false
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 1
[]
[outlet_bc]
type = Outlet1Phase
p = ${p_out}
input = 'outlet:out'
[]
[]
[Postprocessors]
[inlet_in_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet_bc'
equation = mass
[]
[inlet_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'inlet:out'
connection_index = 0
junction = inlet_plenum
equation = mass
[]
[channel1_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:in'
connection_index = 1
junction = inlet_plenum
equation = mass
[]
[channel1_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:out'
connection_index = 0
junction = outlet_plenum
equation = mass
[]
[channel2_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:in'
connection_index = 2
junction = inlet_plenum
equation = mass
[]
[channel2_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:out'
connection_index = 1
junction = outlet_plenum
equation = mass
[]
[outlet_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'outlet:in'
connection_index = 2
junction = outlet_plenum
equation = mass
[]
[outlet_out_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet_bc'
equation = mass
[]
[net_mass_flow_rate_domain]
type = LinearCombinationPostprocessor
pp_names = 'inlet_in_m_dot outlet_out_m_dot'
pp_coefs = '1 -1'
[]
[net_mass_flow_rate_volume_junction]
type = LinearCombinationPostprocessor
pp_names = 'inlet_out_m_dot channel1_in_m_dot channel2_in_m_dot'
pp_coefs = '1 -1 -1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 10000
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 8
iteration_window = 2
[]
timestep_tolerance = 1e-6
abort_on_solve_fail = true
line_search = none
nl_rel_tol = 1e-8
nl_abs_tol = 2e-8
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'net_mass_flow_rate_domain net_mass_flow_rate_volume_junction'
[]
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
10 ${m_dot_sec_in}'
[]
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[none_closures]
type = Closures1PhaseNone
[]
[]
[Materials]
[Re_mat]
type = ADReynoldsNumberMaterial
Re = Re
rho = rho
vel = vel
D_h = D_h
mu = mu
block = hx/pri
[]
[f_mat]
type = ADParsedMaterial
property_name = f_D
constant_names = 'a b c'
constant_expressions = '1 0.1 -0.5'
material_property_names = 'Re'
expression = 'a + b * Re^c'
block = hx/pri
[]
[Pr_mat]
type = ADPrandtlNumberMaterial
Pr = Pr
cp = cp
mu = mu
k = k
block = hx/pri
[]
[Nu_mat]
type = ADParsedMaterial
property_name = 'Nu'
constant_names = 'a b c'
constant_expressions = '0.03 0.9 0.5'
material_property_names = 'Re Pr'
expression = 'a * Re ^b * Pr^c'
block = hx/pri
[]
[Hw_mat]
type = ADConvectiveHeatTransferCoefficientMaterial
D_h = D_h
k = k
Nu = Nu
Hw = Hw
block = hx/pri
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = ${A_core}
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 1 0'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionParallelChannels1Phase
position = '1 0 1.75'
connections = 'down_pipe_1:out hx/pri:in'
volume = 1e-5
use_scalar_variables = false
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
roughness = 1e-5
A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
D_h = ${hx_dia_inner}
closures = none_closures
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
P_hf = '${fparse pi * hx_dia_inner}'
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
solid_properties = 'steel'
solid_properties_T_ref = '300'
names = '0'
inner_radius = '${fparse hx_dia_inner / 2.}'
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = '${fparse 2 * pi * hx_radius_wall}'
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 0.25'
orientation = '0 0 1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
fp = water
initial_T = 300
[]
[]
[jct7]
type = JunctionParallelChannels1Phase
position = '1 0 0.5'
connections = 'hx/pri:out down_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct9]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:in'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:out'
p = 1e5
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0.0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[m_dot_sec]
type = ADFlowBoundaryFlux1Phase
boundary = inlet_sec
equation = mass
[]
[Hw_hx_pri]
type = ADElementAverageMaterialProperty
mat_prop = Hw
block = hx/pri
[]
[fD_hx_pri]
type = ADElementAverageMaterialProperty
mat_prop = f_D
block = hx/pri
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation_ss.i)
# Testing energy conservation at steady state
P_hf = ${fparse 0.6 * sin (pi/24)}
[GlobalParams]
scaling_factor_1phase = '1 1 1e-3'
gravity_vector = '0 0 0'
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
block = 'blk:0'
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1000 10 30'
[]
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in1]
type = InletVelocityTemperature1Phase
input = 'fch1:in'
vel = 1
T = 300
[]
[fch1]
type = FlowChannel1Phase
position = '0.15 0 0'
orientation = '0 0 1'
fp = fp
n_elems = 10
length = 1
initial_T = 300
initial_p = 1.01e5
initial_vel = 1
closures = simple_closures
A = 0.00314159
f = 0.0
[]
[out1]
type = Outlet1Phase
input = 'fch1:out'
p = 1.01e5
[]
[in2]
type = InletVelocityTemperature1Phase
input = 'fch2:in'
vel = 1
T = 350
[]
[fch2]
type = FlowChannel1Phase
position = '0 0.15 0'
orientation = '0 0 1'
fp = fp
n_elems = 10
length = 1
initial_T = 350
initial_p = 1.01e5
initial_vel = 1
closures = simple_closures
A = 0.00314159
f = 0
[]
[out2]
type = Outlet1Phase
input = 'fch2:out'
p = 1.01e5
[]
[blk]
type = HeatStructureFromFile3D
file = mesh.e
position = '0 0 0'
initial_T = 325
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'fch1 fch2'
hs = blk
boundary = blk:rmin
Hw = 10000
P_hf = ${P_hf}
[]
[]
[Postprocessors]
[E_in1]
type = ADFlowBoundaryFlux1Phase
boundary = in1
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out1]
type = ADFlowBoundaryFlux1Phase
boundary = out1
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe1]
type = ADHeatRateConvection1Phase
block = fch1
T_wall = T_wall
T = T
Hw = Hw
P_hf = ${P_hf}
execute_on = 'initial timestep_end'
[]
[E_diff1]
type = DifferencePostprocessor
value1 = E_in1
value2 = E_out1
execute_on = 'initial timestep_end'
[]
[E_conservation1]
type = SumPostprocessor
values = 'E_diff1 hf_pipe1'
[]
[E_in2]
type = ADFlowBoundaryFlux1Phase
boundary = in2
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out2]
type = ADFlowBoundaryFlux1Phase
boundary = out2
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe2]
type = ADHeatRateConvection1Phase
block = fch2
T_wall = T_wall
T = T
Hw = Hw
P_hf = ${P_hf}
execute_on = 'initial timestep_end'
[]
[E_diff2]
type = DifferencePostprocessor
value1 = E_in2
value2 = E_out2
execute_on = 'initial timestep_end'
[]
[E_conservation2]
type = SumPostprocessor
values = 'E_diff2 hf_pipe2'
[]
[E_conservation_hs]
type = SumPostprocessor
values = 'hf_pipe1 hf_pipe2'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 5
end_time = 100
solve_type = NEWTON
line_search = basic
abort_on_solve_fail = true
nl_abs_tol = 1e-8
[]
[Outputs]
file_base = 'phy.conservation_ss'
[csv]
type = CSV
show = 'E_conservation1 E_conservation2 E_conservation_hs'
execute_on = 'FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/junction_with_calorifically_imperfect_gas.i)
# This input file tests compatibility of JunctionParallelChannels1Phase and CaloricallyImperfectGas.
# Loss coefficient is applied in first junction.
# Expected pressure drop from form loss ~0.5*K*rho_in*vel_in^2=0.5*100*3.219603*1 = 160.9 Pa
# Pressure drop from averall flow area change ~ 21.9 Pa
# Expected pressure drop ~ 182.8 Pa
T_in = 523.0
vel = 1
p_out = 7e6
[GlobalParams]
initial_p = ${p_out}
initial_vel = ${vel}
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 3
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = '1e2'
scaling_factor_rhowV = '1e-2'
scaling_factor_rhoEV = '1e-5'
[]
[Functions]
[e_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '783.9 2742.3 2958.6 3489.2 4012.7 4533.3 5053.8 5574 6095.1 7140.2 8192.9 9256.3 10333.6 12543.9 14836.6 17216.3 19688.4 22273.7 25018.3 28042.3 31544.2 35818.1 41256.5 100756.5'
scale_factor = 1e3
[]
[mu_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '85.42 85.42 89.53 99.44 108.9 117.98 126.73 135.2 143.43 159.25 174.36 188.9 202.96 229.88 255.5 280.05 303.67 326.45 344.97 366.49 387.87 409.48 431.86 431.86'
scale_factor = 1e-7
[]
[k_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '186.82 186.82 194.11 212.69 231.55 250.38 268.95 287.19 305.11 340.24 374.92 409.66 444.75 511.13 583.42 656.44 733.32 826.53 961.15 1180.38 1546.31 2135.49 3028.08 3028.08'
scale_factor = 1e-3
[]
[]
[FluidProperties]
[fp]
type = CaloricallyImperfectGas
molar_mass = 0.002
e = e_fn
k = k_fn
mu = mu_fn
min_temperature = 100
max_temperature = 5000
out_of_bound_error = false
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletVelocityTemperature1Phase
input = 'inlet:in'
vel = ${vel}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 3
[]
[inlet_plenum]
type = JunctionParallelChannels1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = ${vel}
K = 100
connections = 'inlet:out channel1:in channel2:in'
volume = 1
use_scalar_variables = false
[]
[channel1]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 4
D_h = 1
[]
[channel2]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 1
D_h = 1
[]
[outlet_plenum]
type = JunctionParallelChannels1Phase
position = '0 0 0'
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = ${vel}
connections = 'channel1:out channel2:out outlet:in'
volume = 1
use_scalar_variables = false
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 1
[]
[outlet_bc]
type = Outlet1Phase
p = ${p_out}
input = 'outlet:out'
[]
[]
[Postprocessors]
[p_in]
type = SideAverageValue
variable = p
boundary = inlet:in
[]
[p_out]
type = SideAverageValue
variable = p
boundary = outlet:out
[]
[Delta_p]
type = DifferencePostprocessor
value1 = p_out
value2 = p_in
[]
[inlet_in_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet_bc'
equation = mass
[]
[inlet_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'inlet:out'
connection_index = 0
junction = inlet_plenum
equation = mass
[]
[channel1_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:in'
connection_index = 1
junction = inlet_plenum
equation = mass
[]
[channel1_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:out'
connection_index = 0
junction = outlet_plenum
equation = mass
[]
[channel2_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:in'
connection_index = 2
junction = inlet_plenum
equation = mass
[]
[channel2_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:out'
connection_index = 1
junction = outlet_plenum
equation = mass
[]
[outlet_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'outlet:in'
connection_index = 2
junction = outlet_plenum
equation = mass
[]
[outlet_out_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet_bc'
equation = mass
[]
[net_mass_flow_rate_domain]
type = LinearCombinationPostprocessor
pp_names = 'inlet_in_m_dot outlet_out_m_dot'
pp_coefs = '1 -1'
[]
[net_mass_flow_rate_volume_junction]
type = LinearCombinationPostprocessor
pp_names = 'inlet_out_m_dot channel1_in_m_dot channel2_in_m_dot'
pp_coefs = '1 -1 -1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 8
iteration_window = 2
[]
timestep_tolerance = 1e-6
abort_on_solve_fail = true
line_search = basic
nl_rel_tol = 1e-8
nl_abs_tol = 2e-8
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'net_mass_flow_rate_domain net_mass_flow_rate_volume_junction Delta_p'
[]
[]
(modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.conservation.i)
[GlobalParams]
initial_p = 1e6
initial_T = 517
initial_vel = 4.3
initial_vel_x = 4.3
initial_vel_y = 0
initial_vel_z = 0
fp = fp
closures = simple_closures
f = 0
rdg_slope_reconstruction = minmod
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.01
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 517
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[turbine]
type = SimpleTurbine1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1
A_ref = 1.0
K = 0
on = true
power = 1000
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1. 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e6
[]
[]
[Postprocessors]
[mass_in]
type = ADFlowBoundaryFlux1Phase
equation = mass
boundary = inlet
[]
[mass_out]
type = ADFlowBoundaryFlux1Phase
equation = mass
boundary = outlet
[]
[mass_diff]
type = LinearCombinationPostprocessor
pp_coefs = '1 -1'
pp_names = 'mass_in mass_out'
[]
[p_in]
type = SideAverageValue
boundary = pipe1:in
variable = p
[]
[vel_in]
type = SideAverageValue
boundary = pipe1:in
variable = vel_x
[]
[momentum_in]
type = ADFlowBoundaryFlux1Phase
equation = momentum
boundary = inlet
[]
[momentum_out]
type = ADFlowBoundaryFlux1Phase
equation = momentum
boundary = outlet
[]
[dP]
type = ParsedPostprocessor
pp_names = 'p_in W_dot'
expression = 'p_in * (1 - (1-W_dot/(10*2910.06*517))^(1.4/0.4))'
[]
[momentum_diff]
type = LinearCombinationPostprocessor
pp_coefs = '1 -1 -1'
pp_names = 'momentum_in momentum_out dP' # momentum source = -dP * A and A=1
[]
[energy_in]
type = ADFlowBoundaryFlux1Phase
equation = energy
boundary = inlet
[]
[energy_out]
type = ADFlowBoundaryFlux1Phase
equation = energy
boundary = outlet
[]
[W_dot]
type = ElementAverageValue
variable = W_dot
block = 'turbine'
[]
[energy_diff]
type = LinearCombinationPostprocessor
pp_coefs = '1 -1 -1'
pp_names = 'energy_in energy_out W_dot'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 10
dt = 0.5
abort_on_solve_fail = true
solve_type = 'newton'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 0
nl_abs_tol = 2e-6
nl_max_its = 10
l_tol = 1e-3
# automatic_scaling = true
# compute_scaling_once = false
# off_diagonals_in_auto_scaling = true
[]
[Outputs]
[csv]
type = CSV
show = 'mass_diff energy_diff momentum_diff'
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when a
# heat structure is used. Conservation is checked by comparing the integral of
# the heat flux against the difference of the boundary fluxes.
[GlobalParams]
initial_p = 7.0e6
initial_vel = 0
initial_T = 513
gravity_vector = '0.0 0.0 0.0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 3.7
cp = 3.e2
rho = 10.42e3
[]
[gap-mat]
type = ThermalFunctionSolidProperties
k = 0.7
cp = 5e3
rho = 1.0
[]
[clad-mat]
type = ThermalFunctionSolidProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Components]
[reactor]
type = TotalPower
power = 1e3
[]
[core:pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.0
fp = eos
[]
[core:solid]
type = HeatStructureCylindrical
position = '0 -0.0071501 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
names = 'FUEL GAP CLAD'
widths = '6.057900E-03 1.524000E-04 9.398000E-04'
n_part_elems = '5 1 2'
solid_properties = 'fuel-mat gap-mat clad-mat'
solid_properties_T_ref = '300 300 300'
initial_T = 513
[]
[core:hgen]
type = HeatSourceFromTotalPower
hs = core:solid
regions = 'FUEL'
power = reactor
power_fraction = 1
[]
[core:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core:pipe
hs = core:solid
hs_side = outer
Hw = 1.0e4
P_hf = 4.4925e-2
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'core:pipe:in'
rho = 817.382210128610836
vel = 2.4
[]
[outlet]
type = Outlet1Phase
input = 'core:pipe:out'
p = 7e6
[]
[]
[Postprocessors]
[E_in]
type = ADFlowBoundaryFlux1Phase
boundary = inlet
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out]
type = ADFlowBoundaryFlux1Phase
boundary = outlet
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe]
type = ADHeatRateConvection1Phase
block = core:pipe
T_wall = T_wall
T = T
Hw = Hw
P_hf = P_hf
execute_on = 'initial timestep_end'
[]
[E_diff]
type = DifferencePostprocessor
value1 = E_in
value2 = E_out
execute_on = 'initial timestep_end'
[]
[E_conservation]
type = SumPostprocessor
values = 'E_diff hf_pipe'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
dt = 5
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 50
l_tol = 1e-3
l_max_its = 60
start_time = 0
end_time = 260
[]
[Outputs]
[out]
type = CSV
execute_on = final
show = 'E_conservation'
[]
[console]
type = Console
show = 'E_conservation'
[]
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
10 ${m_dot_sec_in}'
[]
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = ${A_core}
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 1 0'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionParallelChannels1Phase
position = '1 0 1.75'
connections = 'down_pipe_1:out hx/pri:in'
volume = 1e-5
use_scalar_variables = false
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
roughness = 1e-5
A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
D_h = ${hx_dia_inner}
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
P_hf = '${fparse pi * hx_dia_inner}'
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
solid_properties = 'steel'
solid_properties_T_ref = '300'
names = '0'
inner_radius = '${fparse hx_dia_inner / 2.}'
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = '${fparse 2 * pi * hx_radius_wall}'
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 0.25'
orientation = '0 0 1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
fp = water
initial_T = 300
[]
[]
[jct7]
type = JunctionParallelChannels1Phase
position = '1 0 0.5'
connections = 'hx/pri:out down_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct9]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:in'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:out'
p = 1e5
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0.0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[m_dot_sec]
type = ADFlowBoundaryFlux1Phase
boundary = inlet_sec
equation = mass
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 0
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/junction_with_calorifically_imperfect_gas.i)
# This input file tests compatibility of VolumeJunction1Phase and CaloricallyImperfectGas.
# Loss coefficient is applied in first junction.
# Expected pressure drop ~0.5*K*rho_in*vel_in^2=0.5*100*3.219603*1 = 160.9 Pa
T_in = 523.0
vel = 1
p_out = 7e6
[GlobalParams]
initial_p = ${p_out}
initial_vel = ${vel}
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 3
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = '1e2'
scaling_factor_rhowV = '1e-2'
scaling_factor_rhoEV = '1e-5'
[]
[Functions]
[e_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '783.9 2742.3 2958.6 3489.2 4012.7 4533.3 5053.8 5574 6095.1 7140.2 8192.9 9256.3 10333.6 12543.9 14836.6 17216.3 19688.4 22273.7 25018.3 28042.3 31544.2 35818.1 41256.5 100756.5'
scale_factor = 1e3
[]
[mu_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '85.42 85.42 89.53 99.44 108.9 117.98 126.73 135.2 143.43 159.25 174.36 188.9 202.96 229.88 255.5 280.05 303.67 326.45 344.97 366.49 387.87 409.48 431.86 431.86'
scale_factor = 1e-7
[]
[k_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '186.82 186.82 194.11 212.69 231.55 250.38 268.95 287.19 305.11 340.24 374.92 409.66 444.75 511.13 583.42 656.44 733.32 826.53 961.15 1180.38 1546.31 2135.49 3028.08 3028.08'
scale_factor = 1e-3
[]
[]
[FluidProperties]
[fp]
type = CaloricallyImperfectGas
molar_mass = 0.002
e = e_fn
k = k_fn
mu = mu_fn
min_temperature = 100
max_temperature = 5000
out_of_bound_error = false
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletVelocityTemperature1Phase
input = 'inlet:in'
vel = ${vel}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 5
[]
[inlet_plenum]
type = VolumeJunction1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = ${vel}
K = 100
connections = 'inlet:out channel1:in channel2:in'
volume = 1
use_scalar_variables = false
[]
[channel1]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 4
D_h = 1
[]
[channel2]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 1
D_h = 1
[]
[outlet_plenum]
type = VolumeJunction1Phase
position = '0 0 0'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = ${vel}
connections = 'channel1:out channel2:out outlet:in'
volume = 1
use_scalar_variables = false
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 5
[]
[outlet_bc]
type = Outlet1Phase
p = ${p_out}
input = 'outlet:out'
[]
[]
[Postprocessors]
[p_in]
type = SideAverageValue
variable = p
boundary = inlet:in
[]
[p_out]
type = SideAverageValue
variable = p
boundary = outlet:out
[]
[Delta_p]
type = DifferencePostprocessor
value1 = p_out
value2 = p_in
[]
[inlet_in_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet_bc'
equation = mass
[]
[inlet_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'inlet:out'
connection_index = 0
junction = inlet_plenum
equation = mass
[]
[channel1_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:in'
connection_index = 1
junction = inlet_plenum
equation = mass
[]
[channel1_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:out'
connection_index = 0
junction = outlet_plenum
equation = mass
[]
[channel2_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:in'
connection_index = 2
junction = inlet_plenum
equation = mass
[]
[channel2_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:out'
connection_index = 1
junction = outlet_plenum
equation = mass
[]
[outlet_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'outlet:in'
connection_index = 2
junction = outlet_plenum
equation = mass
[]
[outlet_out_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet_bc'
equation = mass
[]
[net_mass_flow_rate_domain]
type = LinearCombinationPostprocessor
pp_names = 'inlet_in_m_dot outlet_out_m_dot'
pp_coefs = '1 -1'
[]
[net_mass_flow_rate_volume_junction]
type = LinearCombinationPostprocessor
pp_names = 'inlet_out_m_dot channel1_in_m_dot channel2_in_m_dot'
pp_coefs = '1 -1 -1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 8
iteration_window = 2
[]
timestep_tolerance = 1e-6
abort_on_solve_fail = true
line_search = basic
nl_rel_tol = 1e-8
nl_abs_tol = 4e-8
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'net_mass_flow_rate_domain net_mass_flow_rate_volume_junction Delta_p'
[]
[]
(modules/thermal_hydraulics/test/tests/postprocessors/flow_boundary_flux_1phase/test.i)
T_in = 300
p_out = 1e5
[GlobalParams]
initial_p = ${p_out}
initial_T = ${T_in}
initial_vel = 0
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 50
f = 0
scaling_factor_1phase = '1 1e-2 1e-4'
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'channel:in'
m_dot = 0.1
T = ${T_in}
[]
[channel]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 3
[]
[outlet]
type = Outlet1Phase
p = ${p_out}
input = 'channel:out'
[]
[]
[Postprocessors]
[m_dot_in]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet'
equation = mass
[]
[m_dot_out]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet'
equation = mass
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
num_steps = 10
dt = 0.1
solve_type = NEWTON
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
[out]
type = CSV
show = 'm_dot_in m_dot_out'
execute_on = 'final'
[]
[]