- PorousFlowDictatorThe UserObject that holds the list of PorousFlow variable names
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:The UserObject that holds the list of PorousFlow variable names
- capillary_pressureName of the UserObject defining the capillary pressure
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:Name of the UserObject defining the capillary pressure
- fluid_stateName of the FluidState UserObject
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:Name of the FluidState UserObject
- gas_porepressureVariable that is the porepressure of the gas phase
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Variable that is the porepressure of the gas phase
- zTotal mass fraction of component i summed over all phases
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Total mass fraction of component i summed over all phases
PorousFlowFluidState
Class for fluid state calculations using persistent primary variables and a vapor-liquid flash
Material that provides all thermophysical properties of the system given a set of nonlinear variables using the formulation provided by one of the fluid state UserObjects.
Input Parameters
- at_nodesFalseEvaluate Material properties at nodes instead of quadpoints
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Evaluate Material properties at nodes instead of quadpoints
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:NONE, ELEMENT, SUBDOMAIN
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- temperature20.0The fluid temperature (C or K, depending on temperature_unit)
Default:20.0
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The fluid temperature (C or K, depending on temperature_unit)
- temperature_unitKelvinThe unit of the temperature variable
Default:Kelvin
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:Kelvin, Celsius
Controllable:No
Description:The unit of the temperature variable
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- xnaclThe salt mass fraction in the brine (kg/kg)
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The salt mass fraction in the brine (kg/kg)
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- (modules/porous_flow/test/tests/jacobian/brineco2_liquid_2.i)
- (modules/porous_flow/examples/lava_lamp/2phase_convection.i)
- (modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
- (modules/porous_flow/test/tests/fluidstate/waterncg.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_ic.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_gas.i)
- (modules/porous_flow/test/tests/jacobian/waterncg_liquid.i)
- (modules/porous_flow/examples/fluidflower/fluidflower.i)
- (modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
- (modules/porous_flow/test/tests/jacobian/waterncg_gas.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_liquid.i)
- (modules/porous_flow/test/tests/fluidstate/theis.i)
- (modules/porous_flow/examples/lava_lamp/1phase_convection.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_twophase_nonisothermal.i)
- (modules/porous_flow/test/tests/fluidstate/waterncg_ic.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_fv.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
- (modules/porous_flow/test/tests/jacobian/waterncg_twophase_nonisothermal.i)
- (modules/porous_flow/test/tests/fluidstate/theis_nonisothermal.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_hightemp.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_twophase.i)
- (modules/porous_flow/test/tests/fluidstate/waterncg_nonisothermal.i)
- (modules/porous_flow/test/tests/jacobian/waterncg_twophase.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_nonisothermal.i)
- (modules/porous_flow/examples/co2_intercomparison/1Dradial/properties.i)
- (modules/porous_flow/test/tests/recover/theis.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2.i)
(modules/porous_flow/test/tests/jacobian/brineco2_liquid_2.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that give a single liquid phase, including salt as a nonlinear variable
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pgas]
[]
[zi]
[]
[xnacl]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 5e6
max = 8e6
variable = pgas
[]
[z]
type = RandomIC
min = 0.01
max = 0.03
variable = zi
[]
[xnacl]
type = RandomIC
min = 0.01
max = 0.15
variable = xnacl
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
variable = xnacl
fluid_component = 2
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[adv2]
type = PorousFlowAdvectiveFlux
variable = xnacl
fluid_component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e3
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
(modules/porous_flow/examples/lava_lamp/2phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# Initially, the model has a gas phase at the top with a saturation of 0.29
# (which corresponds to an initial value of zi = 0.2).
# Diffusion of the dissolved CO2
# component from the saturated liquid to the unsaturated liquid below reduces the
# amount of CO2 in the gas phase. As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores,
# preferably on a cluster.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[]
[initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[]
[]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymax = 2
xmax = 2
ny = 40
nx = 40
bias_y = 0.95
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.01
[]
[saturation_gas]
order = FIRST
family = MONOMIAL
[]
[xco2l]
order = FIRST
family = MONOMIAL
[]
[density_liquid]
order = FIRST
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e4
[]
[]
[ICs]
[pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[]
[zi]
type = BoundingBoxIC
variable = zi
x1 = 0
x2 = 2
y1 = 1.95
y2 = 2
inside = 0.2
outside = 0
[]
[porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
seed = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedBicubicFluidProperties
fp = co2sw
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 2
cutback_factor = 0.5
[]
[]
[Functions]
[flux]
type = ParsedFunction
symbol_values = 'delta_xco2 dt'
symbol_names = 'dx dt'
expression = 'dx/dt'
[]
[]
[Postprocessors]
[total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[]
[total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[]
[numdofs]
type = NumDOFs
[]
[delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[]
[dt]
type = TimestepSize
[]
[flux]
type = FunctionValuePostprocessor
function = flux
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
# Note: this test is the same as theis.i, but uses the tabulated version of the CO2FluidProperties
[Mesh]
type = GeneratedMesh
dim = 1
nx = 80
xmax = 200
bias_x = 1.05
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = tabulated
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[tabulated]
type = TabulatedBicubicFluidProperties
fp = co2
fluid_property_file = fluid_properties.csv
# We try to avoid using both, but some properties are not implemented in the tabulation
allow_fp_and_tabulation = true
# Test was design prior to bounds check
error_on_out_of_bounds = false
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = fluid_properties.csv
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-8 1E-10 20'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 8e2
[TimeStepper]
type = IterationAdaptiveDT
dt = 2
growth_factor = 2
[]
[]
[VectorPostprocessors]
[line]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
start_point = '0 0 0'
end_point = '200 0 0'
num_points = 1000
variable = 'pgas zi x1 saturation_gas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '1 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '1 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '1 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '1 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '1 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
file_base = theis_tabulated_csvout
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/test/tests/fluidstate/waterncg.i)
# Tests correct calculation of properties in PorousFlowWaterNCG.
# This test is run three times, with the initial condition of z (the total mass
# fraction of NCG in all phases) varied to give either a single phase liquid, a
# single phase gas, or two phases.
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pgas]
initial_condition = 1e6
[]
[z]
initial_condition = 0.005
[]
[]
[AuxVariables]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_water]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_gas]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_water]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[enthalpy_water]
type = PorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = timestep_end
[]
[enthalpy_gas]
type = PorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = timestep_end
[]
[internal_energy_water]
type = PorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = timestep_end
[]
[internal_energy_gas]
type = PorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
exodus = true
file_base = waterncg_liquid
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_ic.i)
# Tests correct calculation of z (total mass fraction of NCG summed over all
# phases) using the PorousFlowFluidStateIC initial condition. Once z is
# calculated by the initial condition, the thermophysical properties are calculated
# and the resulting gas saturation should be equal to that given in the intial condition
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature_unit = Celsius
[]
[Variables]
[pgas]
initial_condition = 1e6
[]
[z]
[]
[]
[ICs]
[z]
type = PorousFlowFluidStateIC
saturation = 0.5
gas_porepressure = pgas
temperature = 50
variable = z
xnacl = 0.1
fluid_state = fs
[]
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
fluid_state = fs
capillary_pressure = pc
xnacl = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
execute_on = 'initial timestep_end'
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
execute_on = 'initial timestep_end'
[]
[z]
type = ElementIntegralVariablePostprocessor
variable = z
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/jacobian/brineco2_gas.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that give a single gas phase
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[xnacl]
initial_condition = 0.05
[]
[]
[Variables]
[pgas]
[]
[zi]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 5e4
max = 1e5
variable = pgas
[]
[z]
type = RandomIC
min = 0.9
max = 0.99
variable = zi
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e3
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/test/tests/jacobian/waterncg_liquid.i)
# Tests correct calculation of properties derivatives in PorousFlowWaterNCG
# for conditions that give a single liquid phase
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pgas]
[]
[z]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 6e6
max = 8e6
variable = pgas
[]
[z]
type = RandomIC
min = 0.01
max = 0.05
variable = z
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e4
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/examples/fluidflower/fluidflower.i)
# FluidFlower International Benchmark study model
# CSIRO 2023
#
# This example can be used to reproduce the results presented by the
# CSIRO team as part of this benchmark study. See
# Green, C., Jackson, S.J., Gunning, J., Wilkins, A. and Ennis-King, J.,
# 2023. Modelling the FluidFlower: Insights from Characterisation and
# Numerical Predictions. Transport in Porous Media.
#
# This example takes a long time to run! The large density contrast
# between the gas phase CO2 and the water makes convergence very hard,
# so small timesteps must be taken during injection.
#
# This example uses a simplified mesh in order to be run during the
# automated testing. To reproduce the results of the benchmark study,
# replace the simple layered input mesh with the one located in the
# large_media submodule.
#
# The mesh file contains:
# - porosity as given by FluidFlower description
# - permeability as given by FluidFlower description
# - subdomain ids for each sand type
#
# The nominal thickness of the FluidFlower tank is 19mm. To keep masses consistent
# with the experiment, porosity and permeability are multiplied by the thickness
thickness = 0.019
#
# Properties associated with each sand type associated with mesh block ids
#
# block 0 - ESF (very fine sand)
sandESF = '0 10 20'
sandESF_pe = 1471.5
sandESF_krg = 0.09
sandESF_swi = 0.32
sandESF_krw = 0.71
sandESF_sgi = 0.14
# block 1 - C - Coarse lower
sandC = '1 21'
sandC_pe = 294.3
sandC_krg = 0.05
sandC_swi = 0.14
sandC_krw = 0.93
sandC_sgi = 0.1
# block 2 - D - Coarse upper
sandD = '2 22'
sandD_pe = 98.1
sandD_krg = 0.02
sandD_swi = 0.12
sandD_krw = 0.95
sandD_sgi = 0.08
# block 3 - E - Very Coarse lower
sandE = '3 13 23'
sandE_pe = 10
sandE_krg = 0.1
sandE_swi = 0.12
sandE_krw = 0.93
sandE_sgi = 0.06
# block 4 - F - Very Coarse upper
sandF = '4 14 24 34'
sandF_pe = 10
sandF_krg = 0.11
sandF_swi = 0.12
sandF_krw = 0.72
sandF_sgi = 0.13
# block 5 - G - Flush Zone
sandG = '5 15 35'
sandG_pe = 10
sandG_krg = 0.16
sandG_swi = 0.1
sandG_krw = 0.75
sandG_sgi = 0.06
# block 6 - Fault 1 - Heterogeneous
fault1 = '6 26'
fault1_pe = 10
fault1_krg = 0.16
fault1_swi = 0.1
fault1_krw = 0.75
fault1_sgi = 0.06
# block 7 - Fault 2 - Impermeable
# Note: this fault has been removed from the mesh (no elements in this region)
# block 8 - Fault 3 - Homogeneous
fault3 = '8'
fault3_pe = 10
fault3_krg = 0.16
fault3_swi = 0.1
fault3_krw = 0.75
fault3_sgi = 0.06
# Top layer
top_layer = '9'
# Boxes A, B an C used to report values (sg, sgr, xco2, etc)
boxA = '10 13 14 15 34 35'
boxB = '20 21 22 23 24 26'
boxC = '34 35'
# Furthermore, the seal sand unit in boxes A and B
seal_boxA = '10'
seal_boxB = '20'
# CO2 injection details:
# CO2 density ~1.8389 kg/m3 at 293.15 K, 1.01325e5 Pa
# Injection in Port (9, 3) for 5 hours.
# Injection in Port (17, 7) for 2:45 hours.
# Injection of 10 ml/min = 0.1666 ml/s = 1.666e-7 m3/s = ~3.06e-7 kg/s.
# Total mass of CO2 injected ~ 8.5g.
inj_rate = 3.06e-7
[Mesh]
[mesh]
type = FileMeshGenerator
file = 'fluidflower_test.e'
# file = '../../../../large_media/porous_flow/examples/fluidflower/fluidflower.e'
use_for_exodus_restart = true
[]
[]
[Debug]
show_var_residual_norms = true
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature = temperature
log_extension = false
[]
[Variables]
[pgas]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[z]
family = MONOMIAL
order = CONSTANT
fv = true
scaling = 1e4
[]
[]
[AuxVariables]
[xnacl]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.0055
[]
[temperature]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 20
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_from_file_var = porosity
[]
[porosity_times_thickness]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[permeability]
family = MONOMIAL
order = CONSTANT
fv = true
initial_from_file_var = permeability
[]
[permeability_times_thickness]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[saturation_water]
family = MONOMIAL
order = CONSTANT
[]
[saturation_gas]
family = MONOMIAL
order = CONSTANT
[]
[pressure_water]
family = MONOMIAL
order = CONSTANT
[]
[pc]
family = MONOMIAL
order = CONSTANT
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity_times_thickness]
type = ParsedAux
variable = porosity_times_thickness
coupled_variables = porosity
expression = 'porosity * ${thickness}'
execute_on = 'initial'
[]
[permeability_times_thickness]
type = ParsedAux
variable = permeability_times_thickness
coupled_variables = permeability
expression = 'permeability * ${thickness}'
execute_on = 'initial'
[]
[pressure_water]
type = ADPorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_water]
type = ADPorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_gas]
type = ADPorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'initial timestep_end'
[]
[density_water]
type = ADPorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = 'initial timestep_end'
[]
[density_gas]
type = ADPorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = 'initial timestep_end'
[]
[x1_water]
type = ADPorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = ADPorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x0_water]
type = ADPorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = ADPorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[pc]
type = ADPorousFlowPropertyAux
variable = pc
property = capillary_pressure
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass0]
type = FVPorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[flux0]
type = FVPorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[diff0]
type = FVPorousFlowDispersiveFlux
variable = pgas
fluid_component = 0
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = FVPorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[flux1]
type = FVPorousFlowAdvectiveFlux
variable = z
fluid_component = 1
[]
[diff1]
type = FVPorousFlowDispersiveFlux
variable = z
fluid_component = 1
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[DiracKernels]
[injector1]
type = ConstantPointSource
point = '0.9 0.3 0'
value = ${inj_rate}
variable = z
[]
[injector2]
type = ConstantPointSource
point = '1.7 0.7 0'
value = ${inj_rate}
variable = z
[]
[]
[Controls]
[injection1]
type = ConditionalFunctionEnableControl
enable_objects = 'DiracKernels::injector1'
conditional_function = injection_schedule1
[]
[injection2]
type = ConditionalFunctionEnableControl
enable_objects = 'DiracKernels::injector2'
conditional_function = injection_schedule2
[]
[]
[Functions]
[initial_p]
type = ParsedFunction
symbol_names = 'p0 g H rho0'
symbol_values = '101.325e3 9.81 1.5 1002'
expression = 'p0 + rho0 * g * (H - y)'
[]
[injection_schedule1]
type = ParsedFunction
expression = 'if(t >= 0 & t <= 1.8e4, 1, 0)'
[]
[injection_schedule2]
type = ParsedFunction
expression = 'if(t >= 8.1e3 & t <= 1.8e4, 1, 0)'
[]
[]
[ICs]
[p]
type = FunctionIC
variable = pgas
function = initial_p
[]
[]
[FVBCs]
[pressure_top]
type = FVPorousFlowAdvectiveFluxBC
boundary = top
porepressure_value = 1.01325e5
variable = pgas
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedBicubicFluidProperties
fp = water
save_file = false
pressure_min = 1e5
pressure_max = 1e6
temperature_min = 290
temperature_max = 300
num_p = 20
num_T = 10
[]
[co2]
type = CO2FluidProperties
[]
[co2tab]
type = TabulatedBicubicFluidProperties
fp = co2
save_file = false
pressure_min = 1e5
pressure_max = 1e6
temperature_min = 290
temperature_max = 300
num_p = 20
num_T = 10
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[sandESF_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandESF_pe}
lambda = 2
block = ${sandESF}
pc_max = 1e4
sat_lr = ${sandESF_swi}
[]
[sandC_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandC_pe}
lambda = 2
block = ${sandC}
pc_max = 1e4
sat_lr = ${sandC_swi}
[]
[sandD_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandD_pe}
lambda = 2
block = ${sandD}
pc_max = 1e4
sat_lr = ${sandD_swi}
[]
[sandE_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandE_pe}
lambda = 2
block = ${sandE}
pc_max = 1e4
sat_lr = ${sandE_swi}
[]
[sandF_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandF_pe}
lambda = 2
block = ${sandF}
pc_max = 1e4
sat_lr = ${sandF_swi}
[]
[sandG_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandG_pe}
lambda = 2
block = ${sandG}
pc_max = 1e4
sat_lr = ${sandG_swi}
[]
[fault1_pc]
type = PorousFlowCapillaryPressureBC
pe = ${fault1_pe}
lambda = 2
block = ${fault1}
pc_max = 1e4
sat_lr = ${fault1_swi}
[]
[fault3_pc]
type = PorousFlowCapillaryPressureBC
pe = ${fault3_pe}
lambda = 2
block = ${fault3}
pc_max = 1e4
sat_lr = ${fault3_swi}
[]
[top_layer_pc]
type = PorousFlowCapillaryPressureConst
pc = 0
block = ${top_layer}
[]
[sandESF_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandESF_pc
[]
[sandC_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandC_pc
[]
[sandD_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandD_pc
[]
[sandE_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandE_pc
[]
[sandF_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandF_pc
[]
[sandG_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandG_pc
[]
[fault1_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = fault1_pc
[]
[fault3_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = fault3_pc
[]
[top_layer_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = top_layer_pc
[]
[]
[Materials]
[temperature]
type = ADPorousFlowTemperature
temperature = temperature
[]
[sandESF_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandESF_fs
capillary_pressure = sandESF_pc
block = ${sandESF}
[]
[sandC_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandC_fs
capillary_pressure = sandC_pc
block = ${sandC}
[]
[sandD_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandD_fs
capillary_pressure = sandD_pc
block = ${sandD}
[]
[sandE_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandE_fs
capillary_pressure = sandE_pc
block = ${sandE}
[]
[sandF_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandF_fs
capillary_pressure = sandF_pc
block = ${sandF}
[]
[sandG_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandG_fs
capillary_pressure = sandG_pc
block = ${sandG}
[]
[fault1_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = fault1_fs
capillary_pressure = fault1_pc
block = ${fault1}
[]
[fault3_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = fault3_fs
capillary_pressure = fault3_pc
block = ${fault3}
[]
[top_layer_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = top_layer_fs
capillary_pressure = top_layer_pc
block = ${top_layer}
[]
[porosity]
type = ADPorousFlowPorosityConst
porosity = porosity_times_thickness
[]
[permeability]
type = ADPorousFlowPermeabilityConstFromVar
perm_xx = permeability_times_thickness
perm_yy = permeability_times_thickness
perm_zz = permeability_times_thickness
[]
[diffcoeff]
type = ADPorousFlowDiffusivityConst
tortuosity = '1 1'
diffusion_coeff = '2e-9 2e-9 0 0'
[]
[sandESF_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandESF_swi}
sum_s_res = ${fparse sandESF_sgi + sandESF_swi}
scaling = ${sandESF_krw}
block = ${sandESF}
[]
[sandESF_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandESF_sgi}
sum_s_res = ${fparse sandESF_sgi + sandESF_swi}
scaling = ${sandESF_krg}
block = ${sandESF}
[]
[sandC_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandC_swi}
sum_s_res = ${fparse sandC_sgi + sandC_swi}
scaling = ${sandC_krw}
block = ${sandC}
[]
[sandC_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandC_sgi}
sum_s_res = ${fparse sandC_sgi + sandC_swi}
scaling = ${sandC_krg}
block = ${sandC}
[]
[sandD_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandD_swi}
sum_s_res = ${fparse sandD_sgi + sandD_swi}
scaling = ${sandD_krw}
block = ${sandD}
[]
[sandD_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandD_sgi}
sum_s_res = ${fparse sandD_sgi + sandD_swi}
scaling = ${sandD_krg}
block = ${sandD}
[]
[sandE_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandE_swi}
sum_s_res = ${fparse sandE_sgi + sandE_swi}
scaling = ${sandE_krw}
block = ${sandE}
[]
[sandE_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandE_sgi}
sum_s_res = ${fparse sandE_sgi + sandE_swi}
scaling = ${sandE_krg}
block = ${sandE}
[]
[sandF_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandF_swi}
sum_s_res = ${fparse sandF_sgi + sandF_swi}
scaling = ${sandF_krw}
block = ${sandF}
[]
[sandF_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandF_sgi}
sum_s_res = ${fparse sandF_sgi + sandF_swi}
scaling = ${sandF_krg}
block = ${sandF}
[]
[sandG_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandG_swi}
sum_s_res = ${fparse sandG_sgi + sandG_swi}
scaling = ${sandG_krw}
block = ${sandG}
[]
[sandG_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandG_sgi}
sum_s_res = ${fparse sandG_sgi + sandG_swi}
scaling = ${sandG_krg}
block = ${sandG}
[]
[fault1_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${fault1_swi}
sum_s_res = ${fparse fault1_sgi + fault1_swi}
scaling = ${fault1_krw}
block = ${fault1}
[]
[fault1_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${fault1_sgi}
sum_s_res = ${fparse fault1_sgi + fault1_swi}
scaling = ${fault1_krg}
block = ${fault1}
[]
[fault3_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${fault3_swi}
sum_s_res = ${fparse fault3_sgi + fault3_swi}
scaling = ${fault3_krw}
block = ${fault3}
[]
[fault3_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${fault3_sgi}
sum_s_res = ${fparse fault3_sgi + fault3_swi}
scaling = ${fault3_krg}
block = ${fault3}
[]
[top_layer_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
block = ${top_layer}
[]
[top_layer_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
block = ${top_layer}
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-ksp_snes_ew'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -sub_pc_factor_shift_type'
petsc_options_value = 'gmres lu mumps NONZERO'
# petsc_options_iname = '-ksp_type -pc_type -pc_hypre_type -sub_pc_type -sub_pc_factor_shift_type -sub_pc_factor_levels -ksp_gmres_restart'
# petsc_options_value = 'gmres hypre boomeramg lu NONZERO 4 301'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dtmax = 60
start_time = 0
end_time = 4.32e5
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-5
l_abs_tol = 1e-8
# line_search = none # Can be a useful option for this problem
[TimeSteppers]
[time]
type = FunctionDT
growth_factor = 2
cutback_factor_at_failure = 0.5
function = 'if(t<1.8e4, 2, if(t<3.6e4, 20, 60))'
[]
[]
[]
[Postprocessors]
[p_5_3]
type = PointValue
variable = pgas
point = '0.5 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_5_3_w]
type = PointValue
variable = pressure_water
point = '0.5 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_5_7]
type = PointValue
variable = pgas
point = '0.5 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_5_7_w]
type = PointValue
variable = pressure_water
point = '0.5 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_9_3]
type = PointValue
variable = pgas
point = '0.9 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_9_3_w]
type = PointValue
variable = pressure_water
point = '0.9 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_15_5]
type = PointValue
variable = pgas
point = '1.5 0.5 0'
execute_on = 'initial timestep_end'
[]
[p_15_5_w]
type = PointValue
variable = pressure_water
point = '1.5 0.5 0'
execute_on = 'initial timestep_end'
[]
[p_17_7]
type = PointValue
variable = pgas
point = '1.7 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_17_7_w]
type = PointValue
variable = pressure_water
point = '1.7 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_17_11]
type = PointValue
variable = pgas
point = '1.7 1.1 0'
execute_on = 'initial timestep_end'
[]
[p_17_11_w]
type = PointValue
variable = pressure_water
point = '1.7 1.1 0'
execute_on = 'initial timestep_end'
[]
[x0mass]
type = FVPorousFlowFluidMass
fluid_component = 0
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1mass]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1gas]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '1'
execute_on = 'initial timestep_end'
[]
[boxA]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${boxA}
execute_on = 'initial timestep_end'
[]
[imm_A_sandESF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandESF_sgi}
block = 10
execute_on = 'initial timestep_end'
[]
[imm_A_sandE]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandE_sgi}
block = 13
execute_on = 'initial timestep_end'
[]
[imm_A_sandF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandF_sgi}
block = '14 34'
execute_on = 'initial timestep_end'
[]
[imm_A_sandG]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandG_sgi}
block = '15 35'
execute_on = 'initial timestep_end'
[]
[imm_A]
type = LinearCombinationPostprocessor
pp_names = 'imm_A_sandESF imm_A_sandE imm_A_sandF imm_A_sandG'
pp_coefs = '1 1 1 1'
execute_on = 'initial timestep_end'
[]
[diss_A]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 0
block = ${boxA}
execute_on = 'initial timestep_end'
[]
[seal_A]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${seal_boxA}
execute_on = 'initial timestep_end'
[]
[boxB]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${boxB}
execute_on = 'initial timestep_end'
[]
[imm_B_sandESF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandESF_sgi}
block = 20
execute_on = 'initial timestep_end'
[]
[imm_B_sandC]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandC_sgi}
block = 21
execute_on = 'initial timestep_end'
[]
[imm_B_sandD]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandD_sgi}
block = 22
execute_on = 'initial timestep_end'
[]
[imm_B_sandE]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandE_sgi}
block = 23
execute_on = 'initial timestep_end'
[]
[imm_B_sandF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandF_sgi}
block = 24
execute_on = 'initial timestep_end'
[]
[imm_B_fault1]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${fault1_sgi}
block = 26
execute_on = 'initial timestep_end'
[]
[imm_B]
type = LinearCombinationPostprocessor
pp_names = 'imm_B_sandESF imm_B_sandC imm_B_sandD imm_B_sandE imm_B_sandF imm_B_fault1'
pp_coefs = '1 1 1 1 1 1'
execute_on = 'initial timestep_end'
[]
[diss_B]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 0
block = ${boxB}
execute_on = 'initial timestep_end'
[]
[seal_B]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${seal_boxB}
execute_on = 'initial timestep_end'
[]
[boxC]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0'
block = ${boxC}
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
# exodus = true
[csv]
type = CSV
[]
[]
(modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
# Intercomparison problem 3: Radial flow from an injection well
#
# From Pruess et al, Code intercomparison builds confidence in
# numerical simulation models for geologic disposal of CO2, Energy 29 (2004)
#
# A variation with zero salinity can be run by changing the initial condition
# of the AuxVariable xnacl
[Mesh]
type = GeneratedMesh
dim = 1
nx = 500
xmax = 10000
bias_x = 1.01
coord_type = 'RZ'
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 0 0'
[]
[AuxVariables]
[pressure_liquid]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[xnacl]
initial_condition = 0.15
[]
[]
[AuxKernels]
[pressure_liquid]
type = PorousFlowPropertyAux
variable = pressure_liquid
property = pressure
phase = 0
execute_on = 'timestep_end'
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
initial_condition = 12e6
[]
[zi]
initial_condition = 0
scaling = 1e4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 5.099e-5
m = 0.457
sat_lr = 0.0
pc_max = 1e7
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedBicubicFluidProperties
fp = co2sw
[]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedBicubicFluidProperties
fp = water
temperature_min = 273.15
temperature_max = 573.15
fluid_property_output_file = water_fluid_properties.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water_fluid_properties.csv
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.12'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityVG
m = 0.457
phase = 0
s_res = 0.3
sum_s_res = 0.35
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.05
sum_s_res = 0.35
[]
[]
[BCs]
[rightwater]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
variable = pgas
use_mobility = true
PorousFlowDictator = dictator
fluid_phase = 0
multipliers = '0 1e9'
PT_shift = '12e6'
pt_vals = '0 1e9'
mass_fraction_component = 0
use_relperm = true
[]
[rightco2]
type = PorousFlowPiecewiseLinearSink
variable = zi
boundary = 'right'
use_mobility = true
PorousFlowDictator = dictator
fluid_phase = 1
multipliers = '0 1e9'
PT_shift = '12e6'
pt_vals = '0 1e9'
mass_fraction_component = 1
use_relperm = true
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 1
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres bjacobi lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 8.64e8
nl_max_its = 25
l_max_its = 100
dtmax = 5e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
[]
[]
[VectorPostprocessors]
[vars]
type = NodalValueSampler
sort_by = x
variable = 'pgas zi xnacl'
execute_on = 'timestep_end'
outputs = spatial
[]
[auxvars]
type = ElementValueSampler
sort_by = x
variable = 'saturation_gas x1 y0'
execute_on = 'timestep_end'
outputs = spatial
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '25.25 0 0'
variable = pgas
outputs = time
[]
[sgas]
type = PointValue
point = '25.25 0 0'
variable = saturation_gas
outputs = time
[]
[zi]
type = PointValue
point = '25.25 0 0'
variable = zi
outputs = time
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
outputs = time
[]
[x1]
type = PointValue
point = '25.25 0 0'
variable = x1
outputs = time
[]
[y0]
type = PointValue
point = '25.25 0 0'
variable = y0
outputs = time
[]
[xnacl]
type = PointValue
point = '25.25 0 0'
variable = xnacl
outputs = time
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
sync_times = '2.592e6 8.64e6 8.64e7 8.64e8'
[time]
type = CSV
[]
[spatial]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/test/tests/jacobian/waterncg_gas.i)
# Tests correct calculation of properties derivatives in PorousFlowWaterNCG
# for conditions that give a single gas phase
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pgas]
[]
[z]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 1e4
max = 4e4
variable = pgas
[]
[z]
type = RandomIC
min = 0.88
max = 0.98
variable = z
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e3
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/test/tests/jacobian/brineco2_liquid.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that give a single liquid phase
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[xnacl]
initial_condition = 0.05
[]
[]
[Variables]
[pgas]
[]
[zi]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 5e6
max = 8e6
variable = pgas
[]
[z_liquid]
type = RandomIC
min = 0.01
max = 0.03
variable = zi
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e4
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/test/tests/fluidstate/theis.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 40
xmax = 200
bias_x = 1.05
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-8 1E-10 20'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 2e2
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 2
[]
[]
[VectorPostprocessors]
[line]
type = NodalValueSampler
sort_by = x
variable = 'pgas zi'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '1 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '1 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '1 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '1 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '1 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/examples/lava_lamp/1phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# The model starts with CO2 in the liquid phase only. The CO2 diffuses into the brine.
# As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[]
[initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[]
[]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymin = 1.5
ymax = 2
xmax = 2
ny = 20
nx = 40
bias_y = 0.95
[]
[AuxVariables]
[xnacl]
initial_condition = 0.01
[]
[saturation_gas]
order = FIRST
family = MONOMIAL
[]
[xco2l]
order = FIRST
family = MONOMIAL
[]
[density_liquid]
order = FIRST
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e4
[]
[]
[ICs]
[pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[]
[zi]
type = ConstantIC
value = 0
variable = zi
[]
[porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
seed = 0
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0.04
variable = zi
boundary = top
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedBicubicFluidProperties
fp = co2sw
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
growth_factor = 2
cutback_factor = 0.5
[]
[]
[Functions]
[flux]
type = ParsedFunction
symbol_values = 'delta_xco2 dt'
symbol_names = 'dx dt'
expression = 'dx/dt'
[]
[]
[Postprocessors]
[total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[]
[total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[]
[numdofs]
type = NumDOFs
[]
[delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[]
[dt]
type = TimestepSize
[]
[flux]
type = FunctionValuePostprocessor
function = flux
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/jacobian/brineco2_twophase_nonisothermal.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for nonisothermal two phase conditions, including salt as a nonlinear variable
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
xmax = 10
ymax = 10
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e-4
[]
[xnacl]
[]
[temperature]
scaling = 1e-7
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 1e6
max = 4e6
variable = pgas
seed = 1
[]
[z]
type = RandomIC
min = 0.2
max = 0.8
variable = zi
seed = 1
[]
[xnacl]
type = RandomIC
min = 0.01
max = 0.15
variable = xnacl
seed = 1
[]
[temperature]
type = RandomIC
min = 20
max = 80
variable = temperature
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
variable = xnacl
fluid_component = 2
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[adv2]
type = PorousFlowAdvectiveFlux
variable = xnacl
fluid_component = 2
[]
[energy]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heat]
type = PorousFlowHeatAdvection
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl temperature'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e3
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature = temperature
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1000
density = 2500
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
(modules/porous_flow/test/tests/fluidstate/waterncg_ic.i)
# Tests correct calculation of z (total mass fraction of NCG summed over all
# phases) using the PorousFlowFluidStateIC initial condition. Once z is
# calculated by the initial condition, the thermophysical properties are calculated
# and the resulting gas saturation should be equal to that given in the intial condition
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature_unit = Celsius
[]
[Variables]
[pgas]
initial_condition = 1e6
[]
[z]
[]
[]
[ICs]
[z]
type = PorousFlowFluidStateIC
saturation = 0.5
gas_porepressure = pgas
temperature = 50
variable = z
fluid_state = fs
[]
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
fluid_state = fs
capillary_pressure = pc
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
execute_on = 'initial timestep_end'
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
execute_on = 'initial timestep_end'
[]
[z]
type = ElementIntegralVariablePostprocessor
variable = z
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
# Two phase Theis problem: Flow from single source.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
#
# This test takes a few minutes to run, so is marked heavy
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2000
xmax = 2000
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[xnacl]
initial_condition = 0.1
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = xnacl
[]
[flux2]
type = PorousFlowAdvectiveFlux
fluid_component = 2
variable = xnacl
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
fluid_property_file = 'fluid_properties.csv'
allow_fp_and_tabulation = true
error_on_out_of_bounds = false
[]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
temperature_min = 273.15
temperature_max = 573.15
fluid_property_output_file = water_fluid_properties.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water_fluid_properties.csv
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[VectorPostprocessors]
[line]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
start_point = '0 0 0'
end_point = '2000 0 0'
num_points = 10000
variable = 'pgas zi xnacl x1 saturation_gas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '4 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '4 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '4 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '4 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '4 0 0'
variable = y0
[]
[xnacl]
type = PointValue
point = '4 0 0'
variable = xnacl
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_fv.i)
# Tests correct calculation of properties in PorousFlowBrineCO2 using FV variables
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 30
[]
[Variables]
[pg]
type = MooseVariableFVReal
initial_condition = 20e6
[]
[z]
type = MooseVariableFVReal
initial_condition = 0.2
[]
[]
[AuxVariables]
[xnacl]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[pressure_gas]
type = MooseVariableFVReal
[]
[pressure_water]
type = MooseVariableFVReal
[]
[saturation_gas]
type = MooseVariableFVReal
[]
[saturation_water]
type = MooseVariableFVReal
[]
[density_water]
type = MooseVariableFVReal
[]
[density_gas]
type = MooseVariableFVReal
[]
[viscosity_water]
type = MooseVariableFVReal
[]
[viscosity_gas]
type = MooseVariableFVReal
[]
[enthalpy_water]
type = MooseVariableFVReal
[]
[enthalpy_gas]
type = MooseVariableFVReal
[]
[internal_energy_water]
type = MooseVariableFVReal
[]
[internal_energy_gas]
type = MooseVariableFVReal
[]
[x0_water]
type = MooseVariableFVReal
[]
[x0_gas]
type = MooseVariableFVReal
[]
[x1_water]
type = MooseVariableFVReal
[]
[x1_gas]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[pressure_water]
type = ADPorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = 'timestep_end'
[]
[pressure_gas]
type = ADPorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = 'timestep_end'
[]
[saturation_water]
type = ADPorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = 'timestep_end'
[]
[saturation_gas]
type = ADPorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[density_water]
type = ADPorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = 'timestep_end'
[]
[density_gas]
type = ADPorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = 'timestep_end'
[]
[viscosity_water]
type = ADPorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = 'timestep_end'
[]
[viscosity_gas]
type = ADPorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = 'timestep_end'
[]
[enthalpy_water]
type = ADPorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = 'timestep_end'
[]
[enthalpy_gas]
type = ADPorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = 'timestep_end'
[]
[internal_energy_water]
type = ADPorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = 'timestep_end'
[]
[internal_energy_gas]
type = ADPorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = 'timestep_end'
[]
[x1_water]
type = ADPorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[x1_gas]
type = ADPorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = 'timestep_end'
[]
[x0_water]
type = ADPorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = 'timestep_end'
[]
[x0_gas]
type = ADPorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass0]
type = FVPorousFlowMassTimeDerivative
variable = pg
fluid_component = 0
[]
[mass1]
type = FVPorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pg z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = ADPorousFlowTemperature
[]
[brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pg
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = ADPorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = ADPorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = ADPorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = ADPorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
execute_on = 'timestep_end'
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
execute_on = 'timestep_end'
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
execute_on = 'timestep_end'
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
execute_on = 'timestep_end'
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
execute_on = 'timestep_end'
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
execute_on = 'timestep_end'
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
execute_on = 'timestep_end'
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
execute_on = 'timestep_end'
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
execute_on = 'timestep_end'
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
execute_on = 'timestep_end'
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
execute_on = 'timestep_end'
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
execute_on = 'timestep_end'
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
execute_on = 'timestep_end'
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
execute_on = 'timestep_end'
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
execute_on = 'timestep_end'
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
execute_on = 'timestep_end'
[]
[x0mass]
type = FVPorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
file_base = brineco2
execute_on = 'timestep_end'
perf_graph = false
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
# Two phase nonisothermal Theis problem: Flow from single source.
# Constant rate injection 2 kg/s of cold CO2 into warm reservoir
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 40
xmin = 0.1
xmax = 200
bias_x = 1.05
[]
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[xnacl]
initial_condition = 0.1
[]
[temperature]
initial_condition = 70
scaling = 1e-4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = xnacl
[]
[flux2]
type = PorousFlowAdvectiveFlux
fluid_component = 2
variable = xnacl
[]
[energy]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heatadv]
type = PorousFlowHeatAdvection
variable = temperature
[]
[conduction]
type = PorousFlowHeatConduction
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl temperature'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature = temperature
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[rockheat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1000
density = 2500
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '50 0 0 0 50 0 0 0 50'
[]
[]
[BCs]
[cold_gas]
type = DirichletBC
boundary = left
variable = temperature
value = 20
[]
[gas_injecton]
type = PorousFlowSink
boundary = left
variable = zi
flux_function = -0.159155
[]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[righttemp]
type = DirichletBC
boundary = right
value = 70
variable = temperature
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e4
nl_abs_tol = 1e-7
nl_rel_tol = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '2 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '2 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '2 0 0'
variable = zi
[]
[temperature]
type = PointValue
point = '2 0 0'
variable = temperature
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '2 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '2 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
csv = true
[]
(modules/porous_flow/test/tests/jacobian/waterncg_twophase_nonisothermal.i)
# Tests correct calculation of properties derivatives in PorousFlowWaterNCG
# for nonisothermal two phase conditions
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pgas]
[]
[z]
[]
[temperature]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 1e5
max = 5e5
variable = pgas
[]
[z]
type = RandomIC
min = 0.01
max = 0.06
variable = z
[]
[temperature]
type = RandomIC
min = 20
max = 80
variable = temperature
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = z
fluid_component = 1
[]
[energy]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heat]
type = PorousFlowHeatAdvection
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z temperature'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e1
pc_max = 1e4
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature = temperature
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1000
density = 2500
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/test/tests/fluidstate/theis_nonisothermal.i)
# Two-phase nonisothermal Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s of cold gas into warm reservoir
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 40
xmin = 0.1
xmax = 200
bias_x = 1.05
[]
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[temperature]
initial_condition = 70
scaling = 1e-4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[energy]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heatadv]
type = PorousFlowHeatAdvection
variable = temperature
[]
[conduction]
type = PorousFlowHeatConduction
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi temperature'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = methane
capillary_pressure = pc
[]
[]
[FluidProperties]
[methane]
type = MethaneFluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature = temperature
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[rockheat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1000
density = 2500
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '50 0 0 0 50 0 0 0 50'
[]
[]
[BCs]
[cold_gas]
type = DirichletBC
boundary = left
variable = temperature
value = 20
[]
[gas_injecton]
type = PorousFlowSink
boundary = left
variable = zi
flux_function = -0.159155
[]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[righttemp]
type = DirichletBC
boundary = right
value = 70
variable = temperature
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e4
nl_abs_tol = 1e-7
nl_rel_tol = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '2 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '2 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '2 0 0'
variable = zi
[]
[temperature]
type = PointValue
point = '2 0 0'
variable = temperature
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '2 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '2 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
csv = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
# Injection of supercritical CO2 into a single brine saturated cell. The CO2 initially fully
# dissolves into the brine, increasing its density slightly. After a few time steps,
# the brine is saturated with CO2, and subsequently a supercritical gas phase of CO2 saturated
# with a small amount of H2O is formed. Salt is included as a nonlinear variable.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 30
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
[]
[xnacl]
initial_condition = 0.1
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
variable = z
point = '0.5 0.5 0'
mass_flux = 2
[]
[]
[BCs]
[left]
type = DirichletBC
value = 20e6
variable = pgas
boundary = left
[]
[right]
type = DirichletBC
value = 20e6
variable = pgas
boundary = right
[]
[]
[AuxVariables]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = 'initial timestep_end'
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = 'initial timestep_end'
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'initial timestep_end'
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = 'initial timestep_end'
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = 'initial timestep_end'
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = 'initial timestep_end'
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = 'initial timestep_end'
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
variable = xnacl
fluid_component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 10
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
execute_on = 'initial timestep_end'
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
execute_on = 'initial timestep_end'
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
execute_on = 'initial timestep_end'
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
execute_on = 'initial timestep_end'
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
execute_on = 'initial timestep_end'
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
execute_on = 'initial timestep_end'
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
execute_on = 'initial timestep_end'
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
execute_on = 'initial timestep_end'
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
execute_on = 'initial timestep_end'
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
execute_on = 'initial timestep_end'
[]
[xnacl]
type = ElementIntegralVariablePostprocessor
variable = xnacl
execute_on = 'initial timestep_end'
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x2mass]
type = PorousFlowFluidMass
fluid_component = 2
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
file_base = brineco2_2
execute_on = 'initial timestep_end'
perf_graph = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_hightemp.i)
# Tests correct calculation of properties in PorousFlowBrineCO2 in the elevated
# temperature regime (T > 110C)
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 250
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
initial_condition = 0.2
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.1
[]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
execute_on = 'TIMESTEP_END'
perf_graph = false
[]
(modules/porous_flow/test/tests/jacobian/brineco2_twophase.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that are appropriate for two phases
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[xnacl]
initial_condition = 0.05
[]
[]
[Variables]
[pgas]
[]
[zi]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 1e6
max = 4e6
variable = pgas
seed = 1
[]
[z]
type = RandomIC
min = 0.2
max = 0.8
variable = zi
seed = 2
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e1
pc_max = 1e4
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/test/tests/fluidstate/waterncg_nonisothermal.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pgas]
initial_condition = 1e6
[]
[z]
initial_condition = 0.25
[]
[temperature]
initial_condition = 70
[]
[]
[AuxVariables]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_water]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_gas]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_water]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[enthalpy_water]
type = PorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = timestep_end
[]
[enthalpy_gas]
type = PorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = timestep_end
[]
[internal_energy_water]
type = PorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = timestep_end
[]
[internal_energy_gas]
type = PorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[heat]
type = TimeDerivative
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z '
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature = temperature
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/test/tests/jacobian/waterncg_twophase.i)
# Tests correct calculation of properties derivatives in PorousFlowWaterNCG
# for conditions for two phases
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pgas]
[]
[z]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 1e5
max = 5e5
variable = pgas
[]
[z]
type = RandomIC
min = 0.01
max = 0.06
variable = z
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e1
pc_max = 1e4
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_nonisothermal.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
initial_condition = 0.2
[]
[temperature]
initial_condition = 70
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.1
[]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_water]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_gas]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_water]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[enthalpy_water]
type = PorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = timestep_end
[]
[enthalpy_gas]
type = PorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = timestep_end
[]
[internal_energy_water]
type = PorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = timestep_end
[]
[internal_energy_gas]
type = PorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[heat]
type = TimeDerivative
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z temperature'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature = temperature
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/examples/co2_intercomparison/1Dradial/properties.i)
# Liquid and gas properties for code intercomparison problem 3
#
# From Pruess et al, Code intercomparison builds confidence in
# numerical simulation models for geologic disposal of CO2, Energy 29 (2004)
#
# This test simply calculates density and viscosity of each phase for
# various pressures and salinities, as well as mass fractions of CO2 in the
# liquid phase and H2O in the gas phase.
#
# Four versions of this are run:
# 1) No CO2, 0 salt mass fraction (pure water)
# 2) Enough CO2 to form gas phase, 0 salt mass fraction (pure water)
# 3) No CO2, 0.15 salt mass fraction
# 4) Enough CO2 to form gas phase, 0.15 salt mass fraction
#
# These results compare well with detailed results presented in Pruess et al,
# Intercomparison of numerical simulation codes for geologic disposal of CO2,
# LBNL-51813 (2002)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
xmax = 4
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[AuxVariables]
[density_liquid]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_liquid]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[xnacl]
initial_condition = 0.0
[]
[]
[AuxKernels]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_liquid]
type = PorousFlowPropertyAux
variable = viscosity_liquid
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
order = CONSTANT
family = MONOMIAL
[]
[zi]
initial_condition = 0.0
[]
[]
[Functions]
[pic]
type = ParsedFunction
expression = 'if(x<1,12e6,if(x<2,16e6,if(x<3,20e6,24e6)))'
[]
[]
[ICs]
[pic]
type = FunctionIC
function = pic
variable = pgas
[]
[]
[Kernels]
[diffusionp]
type = NullKernel
variable = pgas
[]
[diffusionz]
type = NullKernel
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 45
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
perf_graph = true
csv = true
execute_on = timestep_end
file_base = properties_water
[]
[VectorPostprocessors]
[vpp]
type = ElementValueSampler
variable = 'pgas density_liquid density_gas viscosity_liquid viscosity_gas x1 y0'
sort_by = x
[]
[]
(modules/porous_flow/test/tests/recover/theis.i)
# Tests that PorousFlow can successfully recover using a checkpoint file.
# This test contains stateful material properties, adaptivity and integrated
# boundary conditions with nodal-sized materials.
#
# This test file is run three times:
# 1) The full input file is run to completion
# 2) The input file is run for half the time and checkpointing is included
# 3) The input file is run in recovery using the checkpoint data
#
# The final output of test 3 is compared to the final output of test 1 to verify
# that recovery was successful.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 100
bias_x = 1.05
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Adaptivity]
marker = marker
max_h_level = 4
[Indicators]
[front]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = front
refine = 0.8
coarsen = 0.2
[]
[]
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[aquifer]
type = PorousFlowPiecewiseLinearSink
variable = pgas
boundary = right
pt_vals = '0 1e8'
multipliers = '0 1e8'
flux_function = 1e-6
PT_shift = 20e6
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 2e2
dt = 50
[]
[VectorPostprocessors]
[line]
type = NodalValueSampler
sort_by = x
variable = 'pgas zi'
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
csv = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2.i)
# Tests correct calculation of properties in PorousFlowBrineCO2
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 30
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
initial_condition = 0.2
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.1
[]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_water]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_gas]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_water]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[enthalpy_water]
type = PorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = timestep_end
[]
[enthalpy_gas]
type = PorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = timestep_end
[]
[internal_energy_water]
type = PorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = timestep_end
[]
[internal_energy_gas]
type = PorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
file_base = brineco2
execute_on = 'TIMESTEP_END'
perf_graph = false
[]