LinearWCNSFVMomentumFlux
This kernel adds the contributions of two terms that require face fluxes in the momentum equations of the incompressible/weakly-compressible Navier Stokes equations:
Momentum advection term
Viscous stress term
We discuss these two terms in detail below.
Momentum advection term
This term is described by the component of the incompressible/weakly-compressible Navier Stokes momentum equation.
The face mass flux is provided by the RhieChowMassFlux object which uses pressure gradients and the discrete momentum equation to compute face velocities and mass fluxes. For more information on the expression that is used, see SIMPLE.
Once the face flux is given ($(\rho \vec{u}\cdot \vec{n})_{RC} $), the integral of the advection term over a cell can be expressed as:
where \vec{u}_f
is a face velocity. This face velocity acts as the advected quantity and a linear average or upwind scheme can be used to compute it. This kernel adds the face contribution for each face to the right hand side and matrix.
Viscous stress term
This term is described by the component of the incompressible/weakly-compressible Navier Stokes momentum equation. Using the divergence theorem and the finite volume approximation, this term can be expressed as
where the first term () can be discretized using the same method as in LinearFVDiffusion. The other two terms, () are treated explicitly meaning that they don't contribute to the system matrix, only to the right hand side.
For incompressible simulations with constant viscosity fields, the last two terms are provably 0. Furthermore, in most scenarios, these two terms are negligible compared to the first term so the user can elect to disable them using "use_deviatoric_terms" parameter.
Similarly to LinearFVDiffusion, once can select to utilize nonorthogonal corrections for the first term using the "use_nonorthogonal_correction" parameter.
use_deviatoric_terms
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:If deviatoric terms in the stress terms need to be used.
use_nonorthogonal_correction
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:If the nonorthogonal correction should be used when computing the normal gradient.
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/linear-segregated/3d/3d-velocity-pressure.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 3
dx = '0.3'
dy = '0.3'
dz = '0.3'
ix = '3'
iy = '3'
iz = '3'
[]
[]
[Problem]
linear_sys_names = 'u_system v_system w_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
w = vel_z
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = 0.5
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
solver_sys = v_system
initial_condition = 0.0
[]
[vel_z]
type = MooseLinearVariableFVReal
solver_sys = w_system
initial_condition = 0.0
[]
[pressure]
type = MooseLinearVariableFVReal
solver_sys = pressure_system
initial_condition = 0.2
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
w = vel_z
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
w = vel_z
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[w_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_z
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
w = vel_z
momentum_component = 'z'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[w_pressure]
type = LinearFVMomentumPressure
variable = vel_z
pressure = pressure
momentum_component = 'z'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '1.1'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[inlet-w]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_z
functor = '0.0'
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom back front'
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom back front'
variable = vel_y
functor = 0.0
[]
[walls-w]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom back front'
variable = vel_z
functor = 0.0
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 1.4
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
variable = vel_x
use_two_term_expansion = false
boundary = right
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
variable = vel_y
use_two_term_expansion = false
boundary = right
[]
[outlet_w]
type = LinearFVAdvectionDiffusionOutflowBC
variable = vel_z
use_two_term_expansion = false
boundary = right
[]
[]
[Executioner]
type = SIMPLE
momentum_l_abs_tol = 1e-10
pressure_l_abs_tol = 1e-10
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system w_system'
pressure_system = 'pressure_system'
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 100
pressure_absolute_tolerance = 1e-10
momentum_absolute_tolerance = 1e-10
momentum_petsc_options_iname = '-pc_type -pc_hypre_type -pc_hypre_boomeramg_agg_nl -pc_hypre_boomeramg_agg_num_paths -pc_hypre_boomeramg_truncfactor -pc_hypre_boomeramg_strong_threshold -pc_hypre_boomeramg_coarsen_type -pc_hypre_boomeramg_interp_type'
momentum_petsc_options_value = 'hypre boomeramg 4 1 0.1 0.6 HMIS ext+i'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type -pc_hypre_boomeramg_agg_nl -pc_hypre_boomeramg_agg_num_paths -pc_hypre_boomeramg_truncfactor -pc_hypre_boomeramg_strong_threshold -pc_hypre_boomeramg_coarsen_type -pc_hypre_boomeramg_interp_type'
pressure_petsc_options_value = 'hypre boomeramg 2 1 0.1 0.6 HMIS ext+i'
print_fields = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mms/linear-segregated/2d-vortex/2d-vortex.i)
mu = 1
rho = 1
advected_interp_method = 'average'
[Problem]
linear_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = 0.0
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
solver_sys = v_system
initial_condition = 0.0
[]
[pressure]
type = MooseLinearVariableFVReal
solver_sys = pressure_system
initial_condition = 0
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[u_forcing]
type = LinearFVSource
variable = vel_x
source_density = forcing_u
[]
[v_forcing]
type = LinearFVSource
variable = vel_y
source_density = forcing_v
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
use_nonorthogonal_correction_on_boundary = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[]
[LinearFVBCs]
[no-slip-wall-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left right top bottom'
variable = vel_x
functor = '0'
[]
[no-slip-wall-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left right top bottom'
variable = vel_y
functor = '0'
[]
[pressure-extrapolation]
type = LinearFVExtrapolatedPressureBC
boundary = 'left right top bottom'
variable = pressure
use_two_term_expansion = true
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
expression = 'x^2*(1-x)^2*(2*y-6*y^2+4*y^3)'
[]
[exact_v]
type = ParsedFunction
expression = '-y^2*(1-y)^2*(2*x-6*x^2+4*x^3)'
[]
[exact_p]
type = ParsedFunction
expression = 'x*(1-x)'
[]
[forcing_u]
type = ParsedFunction
expression = '-4*mu*(-1+2*y)*(y^2-6*x*y^2+6*x^2*y^2-y+6*x*y-6*x^2*y+3*x^2-6*x^3+3*x^4)+1-2*x+rho*4*x^3'
'*y^2*(2*y^2-2*y+1)*(y-1)^2*(-1+2*x)*(x-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[forcing_v]
type = ParsedFunction
expression = '4*mu*(-1+2*x)*(x^2-6*y*x^2+6*x^2*y^2-x+6*x*y-6*x*y^2+3*y^2-6*y^3+3*y^4)+rho*4*y^3*x^2*(2'
'*x^2-2*x+1)*(x-1)^2*(-1+2*y)*(y-1)^3'
symbol_names = 'mu rho'
symbol_values = '${mu} ${rho}'
[]
[]
[Executioner]
type = SIMPLE
momentum_l_abs_tol = 1e-8
pressure_l_abs_tol = 1e-8
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 2000
pressure_absolute_tolerance = 1e-8
momentum_absolute_tolerance = 1e-8
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
print_fields = false
pin_pressure = true
pressure_pin_value = 0.25
pressure_pin_point = '0.5 0.5 0.0'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = FINAL
[]
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'csv'
execute_on = FINAL
[]
[L2u]
type = ElementL2FunctorError
approximate = vel_x
exact = exact_u
outputs = 'csv'
execute_on = FINAL
[]
[L2v]
type = ElementL2FunctorError
approximate = vel_y
exact = exact_v
outputs = 'csv'
execute_on = FINAL
[]
[L2p]
approximate = pressure
exact = exact_p
type = ElementL2FunctorError
outputs = 'csv'
execute_on = FINAL
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/linear-segregated/lid-driven-segregated.i)
mu = .01
rho = 1
advected_interp_method = 'average'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 3
ny = 3
[]
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = 0.0
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0.0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
solver_sys = pressure_system
initial_condition = 0.2
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[]
[LinearFVBCs]
[top_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'top'
functor = 1
[]
[no_slip_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'left right bottom'
functor = 0
[]
[no_slip_y]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_y
boundary = 'left right top bottom'
functor = 0
[]
[pressure-extrapolation]
type = LinearFVExtrapolatedPressureBC
boundary = 'left right top bottom'
variable = pressure
use_two_term_expansion = true
[]
[]
[Executioner]
type = SIMPLE
momentum_l_abs_tol = 1e-12
pressure_l_abs_tol = 1e-12
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 100
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.05 0.05 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated-comparison/segregated-linear.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = 0.5
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
solver_sys = v_system
initial_condition = 0.0
[]
[pressure]
type = MooseLinearVariableFVReal
solver_sys = pressure_system
initial_condition = 0.2
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '1.1'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_y
functor = 0.0
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 1.4
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
variable = vel_x
use_two_term_expansion = false
boundary = right
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
variable = vel_y
use_two_term_expansion = false
boundary = right
[]
[]
[Executioner]
type = SIMPLE
momentum_l_abs_tol = 1e-10
pressure_l_abs_tol = 1e-10
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 2
pressure_absolute_tolerance = 1e-10
momentum_absolute_tolerance = 1e-10
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
print_fields = false
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/linear-segregated/2d/2d-velocity-pressure.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = 0.5
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
solver_sys = v_system
initial_condition = 0.0
[]
[pressure]
type = MooseLinearVariableFVReal
solver_sys = pressure_system
initial_condition = 0.2
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = ${mu}
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '1.1'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_y
functor = 0.0
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 1.4
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
variable = vel_x
use_two_term_expansion = false
boundary = right
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
variable = vel_y
use_two_term_expansion = false
boundary = right
[]
[]
[Executioner]
type = SIMPLE
momentum_l_abs_tol = 1e-10
pressure_l_abs_tol = 1e-10
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 50
pressure_absolute_tolerance = 1e-10
momentum_absolute_tolerance = 1e-10
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
print_fields = false
[]
[Outputs]
exodus = true
[]