- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
TimeDerivative
Description
The TimeDerivative
kernel implements a simple time derivative for the domain given by
where the second term on the left hand side corresponds to the strong forms of other kernels. The corresponding TimeDerivative
weak form using inner-product notation is
where is the approximate solution and is a finite element test function.
The Jacobian is given by
where is referred to as du_dot_du
in MOOSE syntax. More information about time kernels can be found on the Kernels description page.
Example Syntax
Time derivative terms are ubiquitous in any transient simulation. The kernel block for a transient advection-diffusion-reaction problem that demonstrates the TimeDerivative
syntax is shown below:
[Kernels]
active = 'trans advection diffusion source'
[./trans]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = Advection0
variable = phi
Au = 10.
Bu = -6.
Cu = 5.
Av = 10.
Bv = 8.
Cv = -1.
[../]
[./diffusion]
type = Diffusion0
variable = phi
Ak = 10.
Bk = 0.1
Ck = 0.1
[../]
[./source]
type = ForcingFunctionXYZ0
variable = phi
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
Au = 10.
Bu = -6.
Cu = 5.
Av = 10.
Bv = 8.
Cv = -1.
Ak = 10.
Bk = 0.1
Ck = 0.1
[../]
[]
(test/tests/kernels/adv_diff_reaction/adv_diff_reaction_transient_test.i)Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacements
- lumpingFalseTrue for mass matrix lumping, false otherwise
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:True for mass matrix lumping, false otherwise
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystem timeThe tag for the matrices this Kernel should fill
Default:system time
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system, time
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagstimeThe tag for the vectors this Kernel should fill
Default:time
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (test/tests/outputs/console/console_transient.i)
- (modules/porous_flow/test/tests/jacobian/hcs01.i)
- (test/tests/postprocessors/num_iterations/num_iterations.i)
- (test/tests/multiapps/move/multilevel_sub.i)
- (test/tests/multiapps/relaxation/sub_relaxed_sub.i)
- (test/tests/transfers/from_full_solve/sub.i)
- (test/tests/auxkernels/parsed_aux/xyzt.i)
- (modules/phase_field/test/tests/mobility_derivative/AC_mobility_derivative_test.i)
- (modules/porous_flow/test/tests/basic_advection/except1.i)
- (test/tests/outputs/intervals/sync_times.i)
- (modules/porous_flow/test/tests/poroperm/poro_hm.i)
- (modules/phase_field/test/tests/MultiSmoothCircleIC/multismoothcircleIC_test.i)
- (modules/porous_flow/test/tests/jacobian/pls03.i)
- (test/tests/functions/piecewise_multilinear/except1.i)
- (test/tests/materials/output/limited_via_outputs.i)
- (test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_outside.i)
- (modules/phase_field/test/tests/anisotropic_mobility/nonsplit.i)
- (test/tests/multiapps/restart/parent2.i)
- (test/tests/restart/restart_diffusion/exodus_refined_refined_restart_2_test.i)
- (test/tests/outputs/csv_final_and_latest/latest.i)
- (test/tests/multiapps/steffensen_postprocessor/transient_sub.i)
- (modules/phase_field/test/tests/SoretDiffusion/direct.i)
- (test/tests/meshgenerators/block_deletion_generator/delete_interior_parents.i)
- (test/tests/time_integrators/bdf2/bdf2.i)
- (modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_parent.i)
- (test/tests/auxkernels/old_older_material_aux/old_mat_in_aux.i)
- (test/tests/transfers/multiapp_userobject_transfer/3d_1d_parent.i)
- (python/peacock/tests/common/lcf1.i)
- (modules/level_set/test/tests/transfers/markers/single_level/parent.i)
- (test/tests/restart/kernel_restartable/kernel_restartable.i)
- (modules/phase_field/test/tests/phase_field_crystal/PFCEnergyDensity/auxkernel.i)
- (test/tests/transfers/transfer_on_final/sub.i)
- (test/tests/multiapps/multiple_position_files/sub2.i)
- (test/tests/functions/piecewise_multilinear/oneDa.i)
- (modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_2D.i)
- (test/tests/functions/parsed/scalar.i)
- (modules/heat_transfer/test/tests/convective_heat_flux/equilibrium.i)
- (modules/combined/test/tests/elastic_patch/ad_elastic_patch_plane_strain.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test11.i)
- (examples/ex18_scalar_kernel/ex18.i)
- (modules/solid_mechanics/test/tests/power_law_creep/smallstrain.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_missing_sub_object.i)
- (test/tests/time_steppers/timesequence_stepper/timesequence_failed_solve.i)
- (modules/solid_mechanics/test/tests/power_law_creep/restart2.i)
- (test/tests/kernels/ode/ode_expl_test.i)
- (test/tests/auxkernels/time_derivative/time_derivative_nl.i)
- (test/tests/controls/time_periods/dirackernels/dirac.i)
- (test/tests/outputs/intervals/multiple_sync_times.i)
- (test/tests/mesh/custom_partitioner/custom_linear_partitioner_test_displacement.i)
- (test/tests/multiapps/restart_multilevel/subsub.i)
- (test/tests/auxkernels/aux_scalar_deps/aux_scalar_deps.i)
- (modules/optimization/test/tests/executioners/transient_and_adjoint/self_adjoint.i)
- (modules/phase_field/test/tests/MultiSmoothCircleIC/specifiedsmoothcircleIC_test.i)
- (test/tests/multiapps/picard_postprocessor/transient_main.i)
- (test/tests/materials/derivative_material_interface/construction_order.i)
- (modules/phase_field/test/tests/phase_field_crystal/PFCTrad/PFCTrad_test.i)
- (test/tests/controls/error/multiple_parameters_found.i)
- (test/tests/materials/stateful_prop/computing_initial_residual_test.i)
- (test/tests/kernels/simple_transient_diffusion/simple_transient_diffusion.i)
- (modules/combined/examples/phase_field-mechanics/Nonconserved.i)
- (test/tests/executioners/adapt_and_modify/adapt_and_modify.i)
- (modules/phase_field/examples/rigidbodymotion/AC_CH_advection_constforce_rect.i)
- (modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_objects.i)
- (test/tests/time_steppers/time_stepper_system/testRejectStep.i)
- (python/peacock/tests/common/oversample.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/main_nearest_sub_app.i)
- (test/tests/outputs/checkpoint/checkpoint_interval.i)
- (test/tests/controls/error/tid_warehouse_error.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_sub_2.i)
- (modules/phase_field/test/tests/flood_counter_aux_test/flood_aux_elemental.i)
- (test/tests/misc/solution_invalid/solution_invalid_recover.i)
- (test/tests/restart/restart_transient_from_steady/restart_trans_with_sub.i)
- (test/tests/userobjects/Terminator/terminator_message.i)
- (test/tests/outputs/checkpoint/checkpoint_parent.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/06_sub_twoapps.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test1.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/07_sub_sub_multilevel.i)
- (modules/optimization/examples/simpleTransient/forward_mesh.i)
- (test/tests/functions/piecewise_multilinear/except5.i)
- (test/tests/outputs/residual/output_residual_test.i)
- (test/tests/time_steppers/time_stepper_system/timestepper_input_error.i)
- (modules/combined/test/tests/multiphase_mechanics/gradientcomponent.i)
- (test/tests/time_steppers/time_stepper_system/lower_bound.i)
- (test/tests/meshgenerators/distributed_rectilinear/dmg_displaced_mesh/pbc_adaptivity.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-linear-adapt.i)
- (modules/phase_field/examples/interfacekernels/interface_gradient.i)
- (modules/combined/test/tests/feature_volume_fraction/Avrami.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test13.i)
- (modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_test.i)
- (modules/phase_field/test/tests/initial_conditions/SmoothCircleIC.i)
- (test/tests/materials/parsed/parsed_material_with_functors.i)
- (test/tests/functions/solution_function/solution_function_scale_transl.i)
- (test/tests/time_integrators/implicit-euler/ie_adapt.i)
- (test/tests/restart/kernel_restartable/kernel_restartable_second.i)
- (test/tests/multiapps/check_error/sub_unused.i)
- (modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i)
- (test/tests/problems/reference_residual_problem/no_ref.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/02_parent_sublimit.i)
- (test/tests/materials/output/output_via_outputs.i)
- (modules/phase_field/test/tests/Nucleation/marker.i)
- (test/tests/functions/default_function/default_function.i)
- (test/tests/markers/two_circle_marker/two_circle_marker_coarsen.i)
- (test/tests/dirackernels/function_dirac_source/function_dirac_source.i)
- (modules/heat_transfer/test/tests/directional_flux_bc/2d.i)
- (test/tests/multiapps/max_procs_per_app/parent.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_bad_user_object.i)
- (test/tests/executioners/time_period/time_period_test.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_parent_inline.i)
- (test/tests/kernels/ode/parsedode_sys_impl_test.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except01.i)
- (test/tests/functions/solution_function/solution_function_rot2.i)
- (test/tests/bcs/periodic/auto_dir_repeated_id.i)
- (test/tests/functions/solution_function/solution_function_rot3.i)
- (modules/porous_flow/test/tests/sinks/s11.i)
- (modules/optimization/test/tests/dirackernels/reporter_time_point_source.i)
- (test/tests/transfers/multiapp_userobject_transfer/restricted_node_sub.i)
- (modules/heat_transfer/test/tests/ad_heat_conduction/test.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/02_sub_sublimit.i)
- (modules/xfem/test/tests/moving_interface/moving_diffusion.i)
- (test/tests/outputs/png/simple_transient_diffusion.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/between_multiapp/main.i)
- (test/tests/test_harness/csv_validation_tester_01.i)
- (examples/ex07_ics/transient.i)
- (test/tests/bcs/periodic/wedge.i)
- (test/tests/multiapps/grid-sequencing/vi-fine.i)
- (test/tests/outputs/intervals/output_limiting_function.i)
- (modules/phase_field/test/tests/KKS_system/kks_example_nested_damped.i)
- (test/tests/misc/check_error/time_integrator_error.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/03_sub_subcycle.i)
- (test/tests/auxkernels/time_derivative_aux/test.i)
- (test/tests/nodalkernels/high_order_time_integration/high_order_time_integration.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/quad_sub.i)
- (test/tests/restart/restart_transient_from_transient/pseudo_trans_with_2subs_sub.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_nonisothermal.i)
- (test/tests/outputs/overwrite/overwrite.i)
- (test/tests/bcs/periodic/periodic_bc_displaced_problem.i)
- (test/tests/bcs/sin_bc/sin_dirichlet_test.i)
- (test/tests/multiapps/picard/picard_parent.i)
- (modules/stochastic_tools/test/tests/transfers/sobol/sub.i)
- (test/tests/misc/check_error/multi_sub.i)
- (test/tests/interfacekernels/1d_interface/reaction_1D_transient.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except07.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/single_var.i)
- (test/tests/ics/from_exodus_solution/elem_part1.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_init_dt.i)
- (modules/phase_field/test/tests/KKS_system/two_phase.i)
- (test/tests/outputs/intervals/no_final_repeat.i)
- (modules/phase_field/test/tests/initial_conditions/SpecifiedSmoothSuperellipsoidIC.i)
- (test/tests/postprocessors/memory_usage/print_memory_usage.i)
- (test/tests/multiapps/relaxation/picard_parent.i)
- (modules/phase_field/test/tests/Nucleation/material.i)
- (test/tests/time_integrators/crank-nicolson/cranic_adapt.i)
- (test/tests/userobjects/setup_interface_count/side.i)
- (test/tests/misc/intermittent_failure/intermittent_failure.i)
- (test/tests/postprocessors/default_value/default_value.i)
- (test/tests/time_steppers/calc_const_dt/calc_const_dt.i)
- (modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_parent_no_path.i)
- (modules/porous_flow/test/tests/functions/mpf_except1.i)
- (modules/solid_mechanics/test/tests/jacobian/poro01.i)
- (test/tests/outputs/csv/csv_restart_part1.i)
- (test/tests/multiapps/picard_multilevel/2level_picard/sub_level2.i)
- (test/tests/userobjects/layered_base_restartable/layered_base_restartable.i)
- (test/tests/dirackernels/point_caching/point_caching_moving_mesh.i)
- (test/tests/controls/time_periods/multiapps/parent.i)
- (test/tests/variables/get_elemental_value/get_elemental_value.i)
- (test/tests/multiapps/multiple_position_files/sub1.i)
- (test/tests/outputs/checkpoint/checkpoint_child.i)
- (test/tests/multiapps/restart_multilevel/sub.i)
- (test/tests/restart/restart_add_variable/transient_with_stateful.i)
- (test/tests/multiapps/detect_steady_state/parent.i)
- (tutorials/tutorial02_multiapps/step03_coupling/02_sub_picard.i)
- (modules/phase_field/test/tests/initial_conditions/CrossIC.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/no_multiapp.i)
- (test/tests/multiapps/picard_multilevel/picard_sub.i)
- (modules/stochastic_tools/test/tests/samplers/AdaptiveImportanceSampler/sub.i)
- (modules/phase_field/test/tests/mobility_derivative/AC_mobility_derivative_coupled_test.i)
- (test/tests/kernels/adv_diff_reaction/adv_diff_reaction_transient_test.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except02.i)
- (test/tests/multiapps/sub_cycling/sub_negative.i)
- (test/tests/dirackernels/nonlinear_source/nonlinear_source.i)
- (test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/to_sub/sub.i)
- (test/tests/postprocessors/relative_solution_difference_norm/test.i)
- (modules/solid_mechanics/test/tests/power_law_creep/ad_restart2.i)
- (test/tests/mesh/adapt_weight/adapt_weight_test.i)
- (test/tests/multiapps/reset/multilevel_parent.i)
- (test/tests/auxkernels/element_aux_boundary/high_order_boundary_aux.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/two_pipe_parent.i)
- (python/peacock/tests/common/transient.i)
- (modules/optimization/test/tests/executioners/transient_and_adjoint/multi_variable.i)
- (modules/phase_field/test/tests/initial_conditions/SmoothSuperellipsoidIC.i)
- (test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/picard_sub.i)
- (modules/porous_flow/test/tests/jacobian/line_sink02.i)
- (test/tests/constraints/overwrite_variables/test_balance.i)
- (test/tests/postprocessors/element_variable_value/elemental_variable_value.i)
- (test/tests/functions/piecewise_multilinear/twoD_const.i)
- (modules/porous_flow/test/tests/jacobian/hfrompps.i)
- (test/tests/controls/time_periods/multiapps/sub.i)
- (modules/solid_mechanics/test/tests/power_law_creep/cp_power_law_creep.i)
- (test/tests/controls/output/controllable_clear.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/unstabilized-velocity-component-objects.i)
- (test/tests/functions/piecewise_multilinear/twoDa.i)
- (test/tests/postprocessors/pps_interval/pps_bad_interval2.i)
- (test/tests/tag/controls-tagging.i)
- (test/tests/multiapps/grid-sequencing/fine.i)
- (modules/phase_field/test/tests/KKS_system/kks_example_split.i)
- (modules/stochastic_tools/test/tests/multiapps/dynamic_sub_app_number/sub.i)
- (test/tests/meshgenerators/distributed_rectilinear/generator/distributed_rectilinear_mesh_generator_adaptivity.i)
- (test/tests/multiapps/application_block_multiapps/application_block_unregistered_sub.i)
- (test/tests/outputs/perf_graph/multi_app/sub.i)
- (test/tests/time_steppers/constant_dt_regrowth/constant_dt_regrowth.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialSintering_test.i)
- (test/tests/time_steppers/dt2/dt2.i)
- (test/tests/outputs/intervals/minimum_time_interval.i)
- (tutorials/tutorial02_multiapps/step02_transfers/01_parent_meshfunction.i)
- (test/tests/multiapps/catch_up/failing_sub.i)
- (modules/porous_flow/test/tests/jacobian/pls02.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_dtfunc_restart.i)
- (modules/optimization/examples/materialTransient/forward.i)
- (test/tests/outputs/perf_graph/multi_app/parent.i)
- (test/tests/dampers/min_damping/min_elem_damping.i)
- (test/tests/multiapps/restart_subapp_ic/parent.i)
- (test/tests/bcs/sin_bc/sin_neumann_test.i)
- (test/tests/time_steppers/fixed_point_iteration_adaptive_dt/main.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test4.i)
- (modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i)
- (modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_small_invalue_test.i)
- (modules/phase_field/test/tests/flood_counter_aux_test/boundary_intersection.i)
- (test/tests/outputs/oversample/over_sampling_test_file.i)
- (modules/phase_field/test/tests/mobility_derivative/matdiffusion.i)
- (test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler_lump_preconditioned.i)
- (test/tests/outputs/displaced/displaced_adapt_test.i)
- (test/tests/problems/reference_residual_problem/abs_ref_acceptable.i)
- (test/tests/postprocessors/element_time_derivative/element_time_derivative_test.i)
- (modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/phase_field_sub.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/matrix_app_nonconforming.i)
- (test/tests/kernels/conservative_advection/no_upwinding_1D.i)
- (test/tests/multiapps/steffensen/transient_main.i)
- (test/tests/transfers/multiapp_userobject_transfer/tosub_displaced_sub.i)
- (modules/porous_flow/test/tests/jacobian/hgs01.i)
- (test/tests/postprocessors/scalar_variable/scalar_variable_pps.i)
- (test/tests/misc/check_error/invalid_steady_exec_test.i)
- (modules/phase_field/examples/multiphase/GrandPotential3Phase_masscons.i)
- (test/tests/outputs/iterative/iterative_start_time.i)
- (test/tests/multiapps/grid-sequencing/vi-coarser.i)
- (modules/combined/test/tests/DiffuseCreep/stress.i)
- (modules/porous_flow/test/tests/basic_advection/2phase.i)
- (modules/phase_field/examples/multiphase/GrandPotential3Phase.i)
- (test/tests/auxkernels/element_aux_boundary/element_aux_boundary.i)
- (modules/phase_field/test/tests/grain_tracker_test/grain_tracker_reserve.i)
- (test/tests/kernels/coupled_time_derivative/coupled_time_derivative_test.i)
- (test/tests/restart/restart_diffusion/restart_diffusion_test_transient.i)
- (modules/phase_field/test/tests/slkks/full_solve.i)
- (modules/phase_field/test/tests/phase_field_crystal/PFCTrad/pfct_newton_split1_asm1_10.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/01_parent.i)
- (test/tests/nodalkernels/jac_test/jac_test.i)
- (modules/heat_transfer/test/tests/directional_flux_bc/3d_elem.i)
- (test/tests/restart/start_time_override/transient.i)
- (modules/porous_flow/test/tests/heat_mass_transfer/variable_transfer_variable_0D.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except12.i)
- (test/tests/restart/start_time_override/start_time_override.i)
- (test/tests/controls/time_periods/bcs/bcs.i)
- (test/tests/materials/output/output_warning.i)
- (modules/phase_field/test/tests/mobility_derivative/mobility_derivative_split_coupled_test.i)
- (test/tests/meshgenerators/meta_data_store/mesh_meta_data_store.i)
- (modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i)
- (test/tests/multiapps/sub_cycling/sub.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/01_sub.i)
- (test/tests/time_integrators/explicit-euler/ee-2d-linear.i)
- (test/tests/multiapps/relaxation/sub_relaxed_parent.i)
- (test/tests/outputs/csv_final_and_latest/final.i)
- (test/tests/dampers/min_damping/min_general_damping.i)
- (test/tests/misc/check_error/bad_enum_test.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-quadratic-neumann.i)
- (modules/optimization/examples/materialTransient/gradient.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/tosub_displaced_sub.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/quad_sub2.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except08.i)
- (test/tests/executioners/adapt_and_modify/adapt_and_modify_heavy.i)
- (modules/phase_field/test/tests/initial_conditions/BimodalSuperellipsoidsIC.i)
- (modules/phase_field/test/tests/SoretDiffusion/direct_temp.i)
- (test/tests/transfers/transfer_with_reset/parent.i)
- (test/tests/adaptivity/cycles_per_step/cycles_per_step.i)
- (modules/phase_field/test/tests/CHSplitChemicalPotential/simple_transient_diffusion.i)
- (test/tests/functions/piecewise_multilinear/time.i)
- (modules/phase_field/test/tests/anisotropic_interfaces/adkobayashi.i)
- (modules/level_set/test/tests/transfers/markers/single_level/sub.i)
- (test/tests/restart/restart_transient_from_steady/restart_trans_with_2subs_sub.i)
- (test/tests/materials/derivative_material_interface/ad_derivative_parsed_material.i)
- (test/tests/multiapps/move/multilevel_parent.i)
- (modules/rdg/test/tests/advection_1d/block_restrictable.i)
- (test/tests/auxkernels/material_rate_real/material_rate_real.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except10.i)
- (modules/level_set/examples/rotating_circle/circle_rotate_supg.i)
- (test/tests/bcs/periodic/periodic_bc_test.i)
- (modules/level_set/examples/vortex/vortex_reinit_sub.i)
- (test/tests/restart/restart_add_variable/add_variable_restart.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_blocks.i)
- (test/tests/time_steppers/cutback_factor_at_failure/function_dt_cutback.i)
- (test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/to_sub/sub_wrong_order.i)
- (test/tests/postprocessors/element_integral_var_pps/initial_pps.i)
- (modules/solid_mechanics/test/tests/power_law_creep/ad_smallstrain.i)
- (modules/heat_transfer/test/tests/radiative_bcs/function_radiative_bc.i)
- (test/tests/functions/piecewise_multilinear/except3.i)
- (test/tests/adaptivity/cycles_per_step/test.i)
- (test/tests/outputs/system_info/system_info.i)
- (test/tests/phi_zero/simple_transient_diffusion.i)
- (python/peacock/tests/common/time_data.i)
- (test/tests/misc/exception/exception_transient.i)
- (test/tests/outputs/perf_graph/multi_app/parent_sub_cycle.i)
- (modules/phase_field/test/tests/MultiPhase/derivativetwophasematerial.i)
- (test/tests/interfacekernels/1d_interface/ADMatreaction_1D_transient.i)
- (test/tests/dampers/min_damping/min_nodal_damping.i)
- (test/tests/utils/apply_input_parameters/apply_input_parameters.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropy.i)
- (modules/thermal_hydraulics/test/tests/controls/parsed_function_control/test.i)
- (modules/stochastic_tools/test/tests/vectorpostprocessors/stochastic_results/sub.i)
- (test/tests/controls/time_periods/error/control.i)
- (test/tests/restart/restart_transient_from_transient/restart_trans_with_2subs_sub.i)
- (tutorials/tutorial02_multiapps/step02_transfers/03_sub_uot.i)
- (test/tests/time_steppers/timesequence_stepper/timesequence_restart2.i)
- (test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/from_sub/sub_wrong_order.i)
- (modules/porous_flow/test/tests/poroperm/linear_test_vals.i)
- (test/tests/outputs/intervals/intervals.i)
- (modules/optimization/test/tests/simp/2d.i)
- (test/tests/restart/restart_transient_from_steady/restart_trans_with_sub_sub.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except05.i)
- (test/tests/time_integrators/explicit-euler/ee-1d-quadratic-neumann.i)
- (test/tests/multiapps/check_error/sub1.i)
- (test/tests/nodalkernels/constant_rate/constant_rate.i)
- (test/tests/batch_material/test.i)
- (test/tests/postprocessors/postprocessor_dependency/element_side_pp.i)
- (test/tests/functions/piecewise_multilinear/twoDb.i)
- (test/tests/functions/generic_function_material/generic_function_vector_material_test.i)
- (test/tests/multiapps/output_in_position/parent.i)
- (test/tests/outputs/debug/show_execution_auxkernels.i)
- (test/tests/meshgenerators/lower_d_block_generator/ids.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_bad_function_series.i)
- (test/tests/bcs/periodic/trapezoid_non_periodic.i)
- (modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_1d.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test6.i)
- (test/tests/multiapps/initial_intactive/parent.i)
- (test/tests/time_steppers/constant_dt/constant_dt.i)
- (modules/heat_transfer/test/tests/directional_flux_bc/2d_elem.i)
- (test/tests/auxkernels/constant_scalar_aux/constant_scalar_aux.i)
- (test/tests/postprocessors/nodal_extreme_value/nodal_max_value_test.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/fracture_app.i)
- (test/tests/restart/restart_steady_from_transient/transient.i)
- (test/tests/userobjects/postprocessor_spatial_user_object/parent.i)
- (test/tests/userobjects/setup_interface_count/nodal.i)
- (test/tests/postprocessors/num_failed_timesteps/failed_timesteps.i)
- (test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/from_sub/sub.i)
- (test/tests/multiapps/picard_multilevel/2level_picard/sub_level1.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/matrix_app.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/restricted_elem_parent.i)
- (modules/porous_flow/test/tests/jacobian/mass01_fully_saturated.i)
- (test/tests/bcs/periodic/auto_periodic_bc_test.i)
- (test/tests/executioners/nl_forced_its/many_nl_forced_its_ref_res.i)
- (modules/stochastic_tools/test/tests/transfers/monte_carlo/sub.i)
- (test/tests/multiapps/restart/parent.i)
- (test/tests/multiapps/multilevel/time_dt_from_parent_parent.i)
- (test/tests/outputs/oversample/over_sampling_second_file.i)
- (test/tests/controls/time_periods/dampers/control.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_3eqn.parent.i)
- (examples/ex08_materials/ex08.i)
- (examples/ex09_stateful_materials/ex09.i)
- (test/tests/multiapps/positions_from_file/dt_from_multi.i)
- (modules/porous_flow/test/tests/basic_advection/except2.i)
- (modules/combined/test/tests/elastic_patch/elastic_patch_plane_strain.i)
- (test/tests/postprocessors/old_vpp_value/old_vpp_value.i)
- (test/tests/multiapps/sub_cycling_failure/failure_with_max_procs_set.i)
- (modules/phase_field/test/tests/Nucleation/timestep.i)
- (test/tests/userobjects/toggle_mesh_adaptivity/toggle_mesh_adaptivity_gaussian_ic.i)
- (modules/solid_mechanics/test/tests/power_law_creep/ad_power_law_creep.i)
- (test/tests/time_integrators/newmark-beta/newmark_beta_inactive_steps.i)
- (tutorials/tutorial02_multiapps/step03_coupling/03_parent_subcycling_picard.i)
- (test/tests/userobjects/Terminator/terminator_pass.i)
- (modules/phase_field/test/tests/phase_field_kernels/SimpleCHInterface.i)
- (test/tests/postprocessors/internal_side_jump/internal_side_jump.i)
- (test/tests/time_integrators/newmark-beta/newmark_beta_default_parameters.i)
- (test/tests/postprocessors/element_integral_var_pps/pps_old_value.i)
- (modules/phase_field/test/tests/MultiPhase/crosstermfreeenergy.i)
- (test/tests/transfers/multiapp_reporter_transfer/between_multiapp/main.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_reject_large_dt.i)
- (test/tests/time_integrators/dirk/dirk-2d-heat.i)
- (examples/ex21_debugging/ex21.i)
- (modules/stochastic_tools/test/tests/samplers/ParallelSubsetSimulation/sub.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_transfer_vector/sub.i)
- (modules/combined/test/tests/CHSplitFlux/simple_transient_diffusion_flux.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/03_parent_subcycle.i)
- (test/tests/parser/cli_multiapp_all/dt_from_parent_sub.i)
- (test/tests/postprocessors/nodal_var_value/nodal_var_value.i)
- (python/peacock/tests/common/spherical_average.i)
- (modules/phase_field/test/tests/rigidbodymotion/grain_forcedensity.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/fromsub_fixed_meshes_parent.i)
- (test/tests/ics/from_exodus_solution/nodal_part1.i)
- (test/tests/multiapps/full_solve_multiapp/sub.i)
- (test/tests/time_integrators/tvdrk2/2d-quadratic.i)
- (modules/functional_expansion_tools/test/tests/standard_use/interface_sub.i)
- (test/tests/multiapps/picard/fully_coupled.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/sub.i)
- (test/tests/kernels/block_kernel/block_kernel_test.i)
- (test/tests/kernels/ad_vector_couple/ad_grad_vector_couple.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/restricted_node_sub.i)
- (test/tests/controls/time_periods/transfers/parent.i)
- (test/tests/dirackernels/multiplicity/multiplicity.i)
- (test/tests/multiapps/sub_cycling_failure/parent.i)
- (modules/porous_flow/test/tests/functions/mpf1.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/sub.i)
- (tutorials/tutorial02_multiapps/step02_transfers/04_sub_multiscale.i)
- (modules/phase_field/test/tests/free_energy_material/MathEBFreeEnergy.i)
- (test/tests/auxkernels/mesh_integer/dg_mesh_integer.i)
- (test/tests/multiapps/picard_multilevel/fullsolve_multilevel/sub_level2.i)
- (modules/optimization/examples/simpleTransient/adjoint_mesh.i)
- (test/tests/restart/new_dt/new_dt_restart.i)
- (test/tests/misc/check_error/missing_required_coupled.i)
- (test/tests/materials/stateful_prop/stateful_prop_copy_test.i)
- (test/tests/test_harness/exodiff.i)
- (modules/porous_flow/test/tests/poroperm/except2.i)
- (modules/functional_expansion_tools/test/tests/standard_use/multiapp_different_physical_boundaries.i)
- (modules/phase_field/examples/interfacekernels/interface_fluxbc.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except06.i)
- (modules/phase_field/test/tests/KKS_system/kks_example.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_incompatible_orders.i)
- (test/tests/outputs/checkpoint/checkpoint.i)
- (modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i)
- (test/tests/preconditioners/reuse/convergence.i)
- (test/tests/bcs/periodic/auto_periodic_bc_test_3d.i)
- (test/tests/multiapps/picard/picard_adaptive_parent.i)
- (test/tests/multiapps/catch_up/parent.i)
- (modules/porous_flow/test/tests/jacobian/pls04.i)
- (modules/phase_field/test/tests/misc/equal_gradient_lagrange.i)
- (modules/phase_field/test/tests/MultiSmoothCircleIC/multismoothcircleIC_normal_test.i)
- (modules/porous_flow/test/tests/fluidstate/waterncg_nonisothermal.i)
- (modules/phase_field/test/tests/phase_field_kernels/CoupledCoefAllenCahn.i)
- (test/tests/multiapps/grid-sequencing/coarse.i)
- (test/tests/restart/restart_diffusion/restart_diffusion_from_end_part1.i)
- (modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i)
- (test/tests/meshgenerators/file_mesh_generator/exact_discontinuous_iga.i)
- (test/tests/time_integrators/bdf2/bdf2_adapt.i)
- (test/tests/outputs/hide_vector_pp/hide_vector_pp.i)
- (modules/porous_flow/examples/flow_through_fractured_media/diffusion.i)
- (test/tests/variables/time_derivatives_neighbor/test.i)
- (test/tests/postprocessors/nodal_extreme_value/nodal_extreme_pps_test.i)
- (test/tests/multiapps/picard/function_dt_parent.i)
- (test/tests/controls/time_periods/error/steady_error.i)
- (test/tests/dirackernels/reporter_point_source/2d_vpp_transient.i)
- (test/tests/userobjects/shape_element_user_object/simple_shape_element_uo_test.i)
- (test/tests/userobjects/Terminator/terminator.i)
- (test/tests/transfers/multiapp_conservative_transfer/sub_userobject.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/04_parent_multiple.i)
- (python/chigger/tests/input/mug_blocks.i)
- (test/tests/multiapps/move/parent.i)
- (test/tests/materials/stateful_coupling/stateful_coupling.i)
- (test/tests/multiapps/slow_sub/parent.i)
- (modules/combined/test/tests/elastic_patch/elastic_patch_rz_nonlinear.i)
- (test/tests/multiapps/move_and_reset/multilevel_sub_sub.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/05_sub_parallel.i)
- (test/tests/restart/restart_transient_from_steady/restart_trans_with_2subs.i)
- (modules/solid_mechanics/test/tests/power_law_creep/power_law_creep.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/04_sub3_multiple.i)
- (test/tests/multiapps/move_and_reset/sub.i)
- (test/tests/functions/piecewise_multilinear/except2.i)
- (test/tests/multiapps/application_block_multiapps/application_block_parent.i)
- (modules/phase_field/test/tests/PolynomialFreeEnergy/direct_order6_test.i)
- (test/tests/multiapps/move_and_reset/parent.i)
- (test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/parent.i)
- (modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i)
- (test/tests/multiapps/transient_multiapp/dt_from_parent_sub.i)
- (test/tests/misc/check_error/scalar_dot_integrity_check.i)
- (test/tests/multiapps/restart/sub2.i)
- (test/tests/outputs/iterative/iterative_csv.i)
- (modules/stochastic_tools/test/tests/multiapps/sampler_transient_multiapp/sub.i)
- (test/tests/transfers/multiapp_userobject_transfer/restricted_elem_sub.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/parent_quad.i)
- (modules/level_set/examples/rotating_circle/circle_rotate_parent.i)
- (modules/combined/examples/mortar/mortar_gradient.i)
- (test/tests/time_integrators/rk-2/2d-quadratic.i)
- (test/tests/functions/piecewise_multilinear/oneDb.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/matrix_app_dirac.i)
- (test/tests/userobjects/shape_element_user_object/jacobian_test.i)
- (modules/combined/test/tests/chemical_reactions_richards/langmuir_jac3.i)
- (test/tests/restart/duplicate_node/duplicate_node.i)
- (modules/stochastic_tools/test/tests/multiapps/dynamic_sub_app_number_error_with_transient/sub.i)
- (modules/chemical_reactions/test/tests/desorption/langmuir_desorption.i)
- (test/tests/multiapps/check_error/check_error.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/two_vars.i)
- (test/tests/bounds/old_value_bounds.i)
- (test/tests/controls/time_periods/kernels/kernels.i)
- (modules/chemical_reactions/test/tests/desorption/langmuir_lumping_problem.i)
- (tutorials/tutorial02_multiapps/step02_transfers/03_parent_uot.i)
- (modules/phase_field/test/tests/initial_conditions/polycrystalcircles_fromfile.i)
- (tutorials/tutorial02_multiapps/step03_coupling/01_parent.i)
- (modules/combined/test/tests/CHSplitFlux/flux_gb.i)
- (modules/phase_field/test/tests/initial_conditions/SmoothSuperellipsoidIC_3D.i)
- (modules/phase_field/test/tests/initial_conditions/BoundingBoxIC.i)
- (test/tests/vectorpostprocessors/time_data/time_data.i)
- (test/tests/multiapps/picard/function_dt_sub.i)
- (modules/phase_field/test/tests/phase_field_kernels/nonuniform_barrier_coefficient.i)
- (test/tests/kernels/ad_vector_couple/ad_vector_couple.i)
- (modules/stochastic_tools/test/tests/samplers/mcmc/sub.i)
- (test/tests/multiapps/move_and_reset/multilevel_parent.i)
- (modules/phase_field/test/tests/flood_counter_aux_test/flood_counter_boundary_restrictable.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except04.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_missing_local_object.i)
- (test/tests/misc/exception/parallel_exception_residual_transient.i)
- (test/tests/interfaces/random/random_uo.i)
- (modules/porous_flow/test/tests/jacobian/line_sink01.i)
- (test/tests/multiapps/secant_postprocessor/transient_sub.i)
- (modules/rdg/test/tests/advection_1d/1d_aefv_square_wave.i)
- (test/tests/time_integrators/dirk/dirk-2d-heat-adap.i)
- (test/tests/kernels/tag_errors/tag_doesnt_exist/bad_transient.i)
- (test/tests/misc/dont_overghost/test_vector_type.i)
- (test/tests/userobjects/shape_element_user_object/jacobian.i)
- (test/tests/outputs/dofmap/simple_transient.i)
- (modules/phase_field/test/tests/KKS_system/kks_xevac.i)
- (test/tests/restart/restart_subapp_not_parent/two_step_solve_parent.i)
- (test/tests/multiapps/restart_multilevel/parent2.i)
- (modules/phase_field/test/tests/flood_counter_aux_test/flood_aux.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_sub.i)
- (test/tests/transfers/get_transfers_from_feproblem/sub.i)
- (test/tests/thewarehouse/test1.i)
- (test/tests/restart/restart_subapp_not_parent/two_step_solve_sub.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except13.i)
- (modules/thermal_hydraulics/test/tests/controls/terminate/terminate.i)
- (test/tests/multiapps/picard_sub_cycling/fully_coupled.i)
- (modules/phase_field/test/tests/KKS_system/kks_multiphase.i)
- (test/tests/restart/restart_diffusion/restart_diffusion_from_end_part2.i)
- (modules/porous_flow/test/tests/numerical_diffusion/framework.i)
- (test/tests/kernels/ad_vector_couple/ad_vector_couple_default.i)
- (test/tests/transfers/transfer_interpolation/sub.i)
- (test/tests/multiapps/move_and_reset/multilevel_sub.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropyAntitrap.i)
- (test/tests/outputs/recover/recover_nemesis.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/quad_sub1.i)
- (test/tests/variables/coupled_scalar/coupled_scalar_old.i)
- (test/tests/test_harness/output_csv_and_exodus.i)
- (test/tests/materials/output/block_via_outputs.i)
- (test/tests/outputs/system_info/system_info_mesh.i)
- (test/tests/time_integrators/explicit-euler/ee-2d-quadratic.i)
- (modules/phase_field/test/tests/rigidbodymotion/grain_motion_fauxGT.i)
- (test/tests/outputs/recover/recover1.i)
- (modules/porous_flow/test/tests/energy_conservation/heat02.i)
- (modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_3d.i)
- (modules/phase_field/test/tests/KKS_system/nonlinear.i)
- (test/tests/multiapps/time_offset/parent.i)
- (test/tests/postprocessors/num_failed_timesteps/failed_timesteps_composition.i)
- (modules/level_set/test/tests/reinitialization/parent.i)
- (modules/phase_field/test/tests/phase_field_kernels/CoupledAllenCahn.i)
- (modules/porous_flow/test/tests/jacobian/line_sink04.i)
- (tutorials/tutorial02_multiapps/step03_coupling/01_sub.i)
- (test/tests/time_steppers/time_stepper_system/AB2PredictorCorrector.i)
- (test/tests/restart/restart_diffusion/restart_diffusion_test_transient_new_name.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/3d_1d_parent.i)
- (modules/chemical_reactions/test/tests/desorption/langmuir_jac2.i)
- (modules/rdg/test/tests/advection_1d/rdgP0.i)
- (modules/thermal_hydraulics/test/tests/components/form_loss_from_external_app_1phase/phy.form_loss_1phase.parent.i)
- (modules/porous_flow/test/tests/poroperm/poro_tm.i)
- (test/tests/multiapps/picard/picard_abs_tol_parent.i)
- (test/tests/multiapps/picard_failure/picard_parent.i)
- (test/tests/multiapps/petsc_options/parent.i)
- (test/tests/outputs/csv/csv_transient.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/SinteringDilute.i)
- (test/tests/functions/solution_function/solution_function_rot4.i)
- (modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_except.i)
- (test/tests/multiapps/catch_up/sub.i)
- (test/tests/multiapps/picard_multilevel/picard_parent.i)
- (test/tests/mesh/adapt/adapt_time_test.i)
- (test/tests/parser/cli_multiapp_all/dt_from_parent.i)
- (modules/external_petsc_solver/test/tests/external_petsc_problem/moose_as_sub.i)
- (test/tests/functions/linear_combination_function/except1.i)
- (modules/stochastic_tools/test/tests/vectorpostprocessors/stochastic_results_complete_history/sub.i)
- (test/tests/time_integrators/aee/aee.i)
- (test/tests/mesh/adapt/displaced_adapt_test.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/parent.i)
- (modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_wrong_lib.i)
- (modules/phase_field/test/tests/initial_conditions/polycrystalcircles_clipped.i)
- (test/tests/auxkernels/flux_average/flux_average.i)
- (test/tests/time_steppers/time_stepper_system/multiple_timesequences.i)
- (modules/phase_field/test/tests/conserved_noise/normal_masked.i)
- (modules/level_set/test/tests/reinitialization/reinit_modified.i)
- (test/tests/misc/exception/parallel_exception_jacobian_transient.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/matrix_app_heat.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/07_parent_multilevel.i)
- (test/tests/controls/time_periods/aux_kernels/control.i)
- (modules/phase_field/test/tests/flood_counter_periodic_test/nodal_flood_periodic.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_sub_1.i)
- (modules/optimization/examples/simpleTransient/adjoint.i)
- (modules/functional_expansion_tools/test/tests/standard_use/volume_coupled.i)
- (test/tests/transfers/multiapp_projection_transfer/fixed_meshes_parent.i)
- (test/tests/time_integrators/explicit-euler/ee-2d-linear-adapt.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_shrink_init_dt.i)
- (test/tests/multiapps/multilevel/time_dt_from_parent_sub.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/04_sub2_multiple.i)
- (test/tests/auxkernels/time_integration/time_integration.i)
- (test/tests/time_integrators/convergence/implicit_convergence.i)
- (modules/thermal_hydraulics/test/tests/misc/count_iterations/count_iterations.i)
- (test/tests/time_integrators/actually_explicit_euler/diverged.i)
- (test/tests/time_integrators/explicit-euler/ee-1d-quadratic.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/06_parent_twoapps.i)
- (modules/level_set/examples/circle/circle_16.i)
- (test/tests/misc/signal_handler/simple_transient_diffusion_scaled.i)
- (test/tests/outputs/variables/output_vars_test.i)
- (modules/level_set/examples/vortex/vortex_supg.i)
- (modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_objects2.i)
- (modules/phase_field/test/tests/Nucleation/parallel.i)
- (test/tests/controls/time_periods/aux_scalar_kernels/control.i)
- (test/tests/auxkernels/execute_on_cyclic/execute_on_cyclic.i)
- (modules/phase_field/test/tests/phase_field_kernels/MatGradSquareCoupled.i)
- (test/tests/misc/rename-parameters/rename-coupled-scalar-var.i)
- (modules/solid_mechanics/test/tests/jacobian/phe01.i)
- (modules/phase_field/test/tests/KKS_system/kks_example_offset.i)
- (modules/functional_expansion_tools/test/tests/standard_use/interface_coupled.i)
- (modules/phase_field/test/tests/KKS_system/kks_example_nested.i)
- (test/tests/adaptivity/scalar/scalar_adaptivity.i)
- (test/tests/time_integrators/newmark-beta/newmark_beta_prescribed_parameters.i)
- (test/tests/test_harness/csvdiff_comparison.i)
- (test/tests/multiapps/output_in_position/sub.i)
- (test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler.i)
- (test/tests/controls/time_periods/nodalkernels/nodal.i)
- (modules/phase_field/examples/kim-kim-suzuki/kks_example_noflux.i)
- (test/tests/mesh/named_entities/periodic_bc_names_test.i)
- (modules/phase_field/test/tests/MultiPhase/mixedswitchingfunctionmaterial.i)
- (test/tests/auxkernels/forcing_function_aux/forcing_function_aux.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_aux_ts_test.i)
- (test/tests/kernels/ode/ode_sys_impl_test.i)
- (test/tests/executioners/nl_divergence_tolerance/nl_divergence_tolerance.i)
- (modules/phase_field/test/tests/phase_field_kernels/CahnHilliard.i)
- (test/tests/functions/generic_function_material/generic_function_material_test.i)
- (test/tests/postprocessors/pps_interval/pps_bad_interval3.i)
- (test/tests/multiapps/output_in_position/multilevel_parent.i)
- (test/tests/time_integrators/explicit-euler/ee-1d-linear.i)
- (test/tests/userobjects/setup_interface_count/internal_side.i)
- (test/tests/multiapps/reset/sub.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_transfer/sub.i)
- (test/tests/postprocessors/change_over_time/change_over_time.i)
- (modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i)
- (test/tests/materials/derivative_material_interface/ad_parsed_material.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/sub2.i)
- (modules/solid_mechanics/test/tests/power_law_creep/restart1.i)
- (test/tests/postprocessors/pps_interval/pps_interval_mismatch.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/3d_1d_sub.i)
- (test/tests/materials/stateful_prop/stateful_prop_test.i)
- (test/tests/misc/dont_overghost/test_properly_ghosted.i)
- (modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower.i)
- (modules/level_set/examples/vortex/vortex_reinit.i)
- (test/tests/nodalkernels/constraint_enforcement/vi-bounding.i)
- (modules/phase_field/examples/anisotropic_interfaces/snow.i)
- (modules/phase_field/test/tests/MultiPhase/acmultiinterface_aux.i)
- (test/tests/auxkernels/mesh_integer/mesh_integer.i)
- (test/tests/outputs/iterative/output_start_step.i)
- (modules/stochastic_tools/examples/surrogates/combined/trans_diff_2d/trans_diff_sub.i)
- (test/tests/materials/stateful_prop/stateful_prop_on_bnd_only.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test12.i)
- (test/tests/scalar_kernels/ad_scalar_kernel/ad_scalar_kernel.i)
- (modules/phase_field/test/tests/anisotropic_mobility/diffusion.i)
- (modules/stochastic_tools/test/tests/multiapps/sampler_full_solve_multiapp/sub.i)
- (test/tests/outputs/csv/csv_no_time.i)
- (test/tests/time_integrators/tvdrk2/1d-linear.i)
- (test/tests/controls/time_periods/bcs/bcs_integrated.i)
- (test/tests/kernels/2d_diffusion/matdiffusion.i)
- (test/tests/userobjects/shape_element_user_object/shape_element_user_object.i)
- (modules/phase_field/test/tests/PolynomialFreeEnergy/direct_order4_test.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_parent.i)
- (test/tests/mesh/adapt/adapt_test_cycles.i)
- (test/tests/userobjects/force_aux_ordering/force_preaux.i)
- (modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/power_profile.i)
- (test/tests/executioners/executioner/sln-time-adapt.i)
- (modules/external_petsc_solver/test/tests/partition/moose_as_parent.i)
- (test/tests/transfers/transfer_with_reset/sub.i)
- (modules/phase_field/test/tests/initial_conditions/polycrystalcircles_fromvector.i)
- (modules/level_set/test/tests/verification/1d_level_set_mms/level_set_mms.i)
- (modules/phase_field/test/tests/initial_conditions/SmoothCircleIC_3D.i)
- (examples/ex04_bcs/periodic_bc.i)
- (test/tests/materials/material/exception_material.i)
- (modules/phase_field/examples/kim-kim-suzuki/kks_example_ternary.i)
- (modules/level_set/test/tests/kernels/olsson_reinitialization/olsson_1d.i)
- (modules/phase_field/test/tests/rigidbodymotion/grain_motion.i)
- (test/tests/postprocessors/print_perf_data/use_log_data_no_print.i)
- (test/tests/restart/restart_diffusion/exodus_refined_restart_2_test.i)
- (test/tests/materials/stateful_prop/stateful_prop_spatial_test.i)
- (test/tests/postprocessors/pps_interval/pps_out_interval.i)
- (modules/porous_flow/test/tests/jacobian/esbc01.i)
- (test/tests/userobjects/pointwise_renormalize_vector/test.i)
- (test/tests/multiapps/secant_postprocessor/transient_main.i)
- (test/tests/multiapps/picard_sub_cycling/picard_parent.i)
- (modules/porous_flow/test/tests/jacobian/line_sink03.i)
- (modules/porous_flow/test/tests/hysteresis/vary_sat_1.i)
- (test/tests/postprocessors/average_variable_change/transient.i)
- (test/tests/multiapps/sub_cycling/parent.i)
- (test/tests/materials/output/ad_output.i)
- (python/peacock/tests/input_tab/InputTree/gold/lcf1.i)
- (modules/phase_field/test/tests/PolynomialFreeEnergy/direct_order8_test.i)
- (modules/phase_field/test/tests/misc/interface_grad.i)
- (modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv_action.i)
- (test/tests/outputs/recover/recover2.i)
- (modules/functional_expansion_tools/examples/2D_interface_no_material/sub.i)
- (test/tests/time_steppers/timesequence_stepper/timesequence_restart_failure.i)
- (modules/thermal_hydraulics/test/tests/controls/thm_solve_postprocessor_control/test.i)
- (test/tests/userobjects/nodal_patch_recovery/nodal_patch_recovery.i)
- (modules/phase_field/test/tests/initial_conditions/RndBoundingBoxIC.i)
- (modules/scalar_transport/test/tests/multiple-species/single-specie.i)
- (test/tests/transfers/multiapp_projection_transfer/fixed_meshes_sub.i)
- (test/tests/postprocessors/nodal_var_value/screen_output_test.i)
- (modules/porous_flow/test/tests/jacobian/heat_advection01.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven_split.i)
- (test/tests/transfers/multiapp_userobject_transfer/parent.i)
- (modules/porous_flow/test/tests/jacobian/heat_advection01_fullsat_upwind.i)
- (modules/functional_expansion_tools/examples/2D_interface_no_material/main.i)
- (modules/functional_expansion_tools/test/tests/standard_use/volume_coupling_custom_norm.i)
- (modules/porous_flow/test/tests/heat_mass_transfer/variable_transfer_0D.i)
- (test/tests/meshgenerators/file_mesh_generator/2d_diffusion_iga.i)
- (tutorials/tutorial02_multiapps/step02_transfers/01_sub_meshfunction.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test7.i)
- (modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_coupled_test.i)
- (test/tests/time_steppers/time_stepper_system/multiple_timesteppers.i)
- (test/tests/actions/add_auxkernel_action/flux_average.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/restricted_node_parent.i)
- (test/tests/executioners/aux-ss-detection/simple_transient_diffusion.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test2.i)
- (test/tests/outputs/iterative/iterative_inline.i)
- (test/tests/transfers/multiapp_userobject_transfer/two_pipe_parent.i)
- (test/tests/outputs/vtk/vtk_diff_serial_mesh_parallel.i)
- (test/tests/time_steppers/zero_dt/test.i)
- (test/tests/vectorpostprocessors/element_variables_difference_max/element_variables_difference_max.i)
- (modules/porous_flow/test/tests/jacobian/esbc02.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/fracture_app_heat.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub.i)
- (test/tests/multiapps/transient_multiapp/dt_from_parent.i)
- (test/tests/postprocessors/element_time_derivative/el_time_deriv_1d_test.i)
- (test/tests/nodalkernels/constraint_enforcement/lower-bound.i)
- (modules/phase_field/test/tests/free_energy_material/CoupledValueFunctionFreeEnergy.i)
- (modules/richards/test/tests/darcy/pp.i)
- (test/tests/multiapps/restart_subapp_ic/sub.i)
- (test/tests/userobjects/force_aux_ordering/force_postaux.i)
- (test/tests/parser/cli_multiapp_group/dt_from_parent.i)
- (test/tests/variables/block_aux_kernel/block_aux_kernel_test.i)
- (test/tests/multiapps/positions_from_file/dt_from_multi_sub.i)
- (python/peacock/tests/input_tab/InputTree/gold/transient.i)
- (test/tests/multiapps/reset/multilevel_sub.i)
- (test/tests/bcs/periodic/parallel_pbc_using_trans.i)
- (test/tests/restart/restart_transient_from_transient/restart_trans_with_2subs.i)
- (modules/combined/examples/publications/rapid_dev/fig8.i)
- (test/tests/multiapps/initial_failure/parent.i)
- (modules/phase_field/examples/anisotropic_interfaces/GrandPotentialSolidification.i)
- (modules/phase_field/test/tests/MultiPhase/switchingfunctionmultiphasematerial.i)
- (test/tests/restart/restart_subapp_not_parent/complete_solve_no_subapp.i)
- (test/tests/postprocessors/nodal_var_value/nodal_aux_var_value.i)
- (test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/picard_sub2.i)
- (test/tests/multiapps/picard_catch_up/parent.i)
- (test/tests/multiapps/transient_multiapp/dt_from_multi_sub.i)
- (modules/combined/test/tests/DiffuseCreep/strain.i)
- (test/tests/tag/tag_nodal_kernels.i)
- (test/tests/multiapps/grid-sequencing/vi-coarse.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/parent_quad.i)
- (modules/optimization/examples/simpleTransient/forward_and_adjoint.i)
- (test/tests/time_steppers/timesequence_stepper/timesequence.i)
- (modules/xfem/test/tests/moving_interface/cut_mesh_3d.i)
- (modules/combined/examples/publications/rapid_dev/fig7a.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_dtfunc.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/parent2_wrong_order.i)
- (test/tests/multiapps/relaxation/picard_relaxed_sub.i)
- (modules/phase_field/test/tests/phase_field_kernels/ACInterfaceStress_jacobian.i)
- (test/tests/controls/time_periods/bcs/adbcs.i)
- (python/peacock/tests/common/transient_big.i)
- (test/tests/multiapps/sub_cycling_failure/sub.i)
- (test/tests/test_harness/bad_kernel.i)
- (test/tests/test_harness/exception_transient.i)
- (test/tests/outputs/csv/csv_restart_part2.i)
- (test/tests/auxkernels/time_derivative_second_aux/test.i)
- (test/tests/outputs/output_on/postprocessors.i)
- (modules/phase_field/test/tests/SimpleACInterface/SimpleCoupledACInterface.i)
- (test/tests/outputs/vtk/vtk_parallel.i)
- (test/tests/dgkernels/ad_dg_convection/ad_dg_convection.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/sub.i)
- (test/tests/functions/linear_combination_function/lcf_grad.i)
- (test/tests/multiapps/relaxation/bad_relax_factor_parent.i)
- (test/tests/test_harness/good.i)
- (test/tests/userobjects/setup_interface_count/general.i)
- (test/tests/meshgenerators/file_mesh_generator/2d_diffusion_iga_nosplines.i)
- (test/tests/controls/real_function_control/real_function_control.i)
- (modules/combined/examples/phase_field-mechanics/Pattern1.i)
- (modules/phase_field/test/tests/KKS_system/auxkernel.i)
- (modules/phase_field/test/tests/Nucleation/soft.i)
- (test/tests/test_harness/500_num_steps.i)
- (test/tests/outputs/console/additional_execute_on.i)
- (test/tests/materials/output/output_multiple_files.i)
- (modules/porous_flow/test/tests/poroperm/except1.i)
- (modules/phase_field/test/tests/KKS_system/kks_example_multiphase_nested_damped.i)
- (test/tests/nodalkernels/constraint_enforcement/upper-and-lower-bound.i)
- (test/tests/multiapps/detect_steady_state/sub.i)
- (test/tests/adaptivity/recompute_markers_during_cycles/recompute_markers_during_cycles.i)
- (test/tests/transfers/multiapp_userobject_transfer/restricted_elem_parent.i)
- (test/tests/multiapps/sub_cycling/parent_iteration_adaptive.i)
- (modules/phase_field/test/tests/MaskedBodyForce/MaskedBodyForce_test.i)
- (test/tests/functions/function_setup/function_setup_test.i)
- (test/tests/misc/check_error/scalar_old_integrity_check.i)
- (test/tests/outputs/oversample/over_sampling_test_gen.i)
- (test/tests/multiapps/reset/multilevel_sub_sub.i)
- (test/tests/multiapps/check_error/sub2.i)
- (modules/combined/examples/publications/rapid_dev/fig6.i)
- (test/tests/multiapps/picard_sub_cycling/picard_sub.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_elem_3eqn.parent.i)
- (test/tests/time_integrators/rk-2/1d-linear.i)
- (modules/phase_field/examples/anisotropic_interfaces/GrandPotentialTwophaseAnisotropy.i)
- (test/tests/meshgenerators/distributed_rectilinear/dmg_displaced_mesh/adaptivity.i)
- (tutorials/tutorial02_multiapps/step02_transfers/02_sub_nearestnode.i)
- (modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv.i)
- (test/tests/functions/solution_function/solution_function_rot1.i)
- (test/tests/interfaces/random/random_material.i)
- (modules/phase_field/test/tests/mobility_derivative/coupledmatdiffusion.i)
- (test/tests/executioners/nl_forced_its/many_nl_forced_its.i)
- (modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_normal_test.i)
- (test/tests/bcs/mat_neumann_bc/mat_neumann.i)
- (modules/heat_transfer/test/tests/convective_heat_flux/t_inf.i)
- (test/tests/time_steppers/postprocessor_dt/postprocessor_dt.i)
- (test/tests/vectorpostprocessors/dynamic_point_sampler/dynamic_point_sampler.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-quadratic.i)
- (test/tests/outputs/postprocessor_final/execute_pps_on_final.i)
- (modules/phase_field/test/tests/MultiPhase/barrierfunctionmaterial.i)
- (modules/stochastic_tools/test/tests/actions/parameter_study_action/sub_pseudo_transient.i)
- (test/tests/outputs/csv/csv_align.i)
- (test/tests/time_steppers/timesequence_stepper/exodustimesequence.i)
- (test/tests/multiapps/max_procs_per_app/sub.i)
- (test/tests/executioners/nl_divergence_tolerance/nl_abs_divergence_tolerance.i)
- (test/tests/meshgenerators/file_mesh_generator/2d_discontinuous_iga_l2.i)
- (modules/phase_field/test/tests/feature_volume_vpp_test/centroid.i)
- (test/tests/time_integrators/central-difference/central_difference.i)
- (test/tests/auxkernels/element_var/element_var_test.i)
- (test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler_lumped.i)
- (test/tests/outputs/variables/output_vars_hidden_shown_check.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialPFM.i)
- (modules/level_set/examples/vortex/vortex.i)
- (test/tests/functions/piecewise_multilinear/except4.i)
- (modules/optimization/test/tests/executioners/transient_and_adjoint/nonlinear_diffusivity.i)
- (test/tests/misc/check_error/bad_stateful_material.i)
- (modules/porous_flow/test/tests/jacobian/heat_vol_exp01.i)
- (modules/optimization/examples/materialTransient/forward_and_adjoint.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test14.i)
- (test/tests/multiapps/sub_cycling_failure/sub_gold.i)
- (test/tests/bcs/periodic/periodic_level_1_test.i)
- (test/tests/time_integrators/implicit-euler/ie.i)
- (test/tests/controls/time_periods/kernels/adkernels.i)
- (modules/phase_field/test/tests/TotalFreeEnergy/TotalFreeEnergy_2var_test.i)
- (test/tests/multiapps/picard_multilevel/picard_sub2.i)
- (examples/ex18_scalar_kernel/ex18_parsed.i)
- (test/tests/meshgenerators/lower_d_block_generator/names.i)
- (test/tests/multiapps/reset/parent.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/errors/sub.i)
- (test/tests/restart/restart_transient_from_steady/restart_from_steady.i)
- (modules/combined/test/tests/elastic_patch/ad_elastic_patch_rz.i)
- (modules/porous_flow/test/tests/energy_conservation/except03.i)
- (test/tests/multiapps/sub_cycling/parent_short.i)
- (test/tests/executioners/executioner/transient.i)
- (modules/stochastic_tools/test/tests/vectorpostprocessors/multiple_stochastic_results/sub.i)
- (modules/combined/test/tests/elastic_patch/elastic_patch_rspherical.i)
- (test/tests/bcs/periodic/auto_periodic_bc_non_generated.i)
- (test/tests/vectorpostprocessors/spherical_average/spherical_average.i)
- (test/tests/meshgenerators/file_mesh_generator/1d_discontinuous_iga.i)
- (modules/combined/test/tests/elastic_patch/ad_elastic_patch_rz_nonlinear.i)
- (test/tests/outputs/checkpoint/checkpoint_block.i)
- (test/tests/variables/previous_newton_iteration/test.i)
- (tutorials/tutorial02_multiapps/step02_transfers/04_parent_multiscale.i)
- (test/tests/restart/new_dt/new_dt.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_shrink_init_dt_restart.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/parent2.i)
- (test/tests/materials/output/output_block_displaced.i)
- (test/tests/time_integrators/abort/abort.i)
- (modules/heat_transfer/test/tests/directional_flux_bc/3d.i)
- (python/chigger/tests/input/sub.i)
- (test/tests/mesh/adapt/adapt_test.i)
- (test/tests/controls/time_periods/aux_scalar_kernels/control_different.i)
- (modules/combined/test/tests/GBDependentTensors/gb_property.i)
- (modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_test.i)
- (test/tests/multiapps/application_block_multiapps/application_block_sub.i)
- (test/tests/restart/restart_transient_from_transient/pseudo_trans_with_2subs.i)
- (test/tests/nodalkernels/constraint_enforcement/upper-bound.i)
- (test/tests/multiapps/sub_cycling/parent_sub_output.i)
- (modules/phase_field/test/tests/SplitCH/forward_split_math_test.i)
- (modules/combined/test/tests/DiffuseCreep/strain_gb_relax.i)
- (test/tests/postprocessors/old_older_values/old_value.i)
- (modules/phase_field/test/tests/MultiPhase/acmultiinterface.i)
- (test/tests/postprocessors/coupled_solution_dofs/coupled_solution_dofs.i)
- (modules/combined/test/tests/elastic_patch/elastic_patch_rz.i)
- (test/tests/outputs/vtk/vtk_serial.i)
- (test/tests/functions/solution_function/solution_function_scale_mult.i)
- (test/tests/functions/linear_combination_function/lcf1.i)
- (test/tests/multiapps/sub_cycling_failure/parent_gold.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test9.i)
- (test/tests/time_steppers/logconstant_dt/logconstant_dt.i)
- (test/tests/restart/restart_transient_from_steady/steady_with_sub_sub.i)
- (test/tests/userobjects/postprocessor_spatial_user_object/sub.i)
- (test/tests/outputs/iterative/output_end_step.i)
- (tutorials/tutorial02_multiapps/step02_transfers/02_parent_nearestnode.i)
- (test/tests/postprocessors/find_value_on_line/findvalueonline.i)
- (modules/external_petsc_solver/test/tests/external_petsc_problem/moose_as_parent.i)
- (modules/phase_field/test/tests/KKS_system/lagrange_multiplier.i)
- (test/tests/vectorpostprocessors/variable_value_volume_histogram/volume_histogram.i)
- (test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value.i)
- (test/tests/auxkernels/function_scalar_aux/function_scalar_aux.i)
- (test/tests/outputs/variables/output_vars_nonexistent.i)
- (test/tests/parser/cli_multiapp_group/dt_from_parent_sub.i)
- (modules/heat_transfer/test/tests/convective_heat_flux/coupled.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/parent2_quad.i)
- (modules/stochastic_tools/test/tests/likelihoods/gaussian_derived/sub.i)
- (test/tests/multiapps/sub_cycling/main_negative.i)
- (test/tests/materials/stateful_prop/stateful_prop_test_older.i)
- (test/tests/restart/kernel_restartable/kernel_restartable_custom_name.i)
- (test/tests/controls/real_function_control/multi_real_function_control.i)
- (test/tests/dgkernels/1d_advection_dg/1d_advection_dg.i)
- (test/tests/tag/tag_dirac_kernels.i)
- (test/tests/outputs/displacement/displaced_eq_transient_test.i)
- (modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_2d.i)
- (test/tests/multiapps/secant/transient_main.i)
- (test/tests/multiapps/slow_sub/sub.i)
- (tutorials/tutorial02_multiapps/step03_coupling/03_sub_subcycling_picard.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test10.i)
- (test/tests/outputs/csv/csv_transient_vpp.i)
- (test/tests/meshgenerators/file_mesh_generator/2d_discontinuous_iga.i)
- (modules/phase_field/examples/anisotropic_interfaces/GrandPotentialPlanarGrowth.i)
- (test/tests/misc/initial_solution_copy/solutions_equal.i)
- (test/tests/userobjects/toggle_mesh_adaptivity/toggle_mesh_adaptivity_gaussian_ic_stop_time.i)
- (test/tests/parser/cli_multiapp_single/dt_from_parent_sub.i)
- (test/tests/transfers/multiapp_userobject_transfer/tosub_sub.i)
- (modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i)
- (modules/heat_transfer/test/tests/thermal_materials/2d.i)
- (test/tests/multiapps/steffensen_postprocessor/transient_main.i)
- (modules/phase_field/test/tests/initial_conditions/RndSmoothCircleIC.i)
- (modules/level_set/test/tests/transfers/markers/multi_level/parent.i)
- (test/tests/outputs/console/console_final.i)
- (modules/phase_field/test/tests/phase_field_kernels/AllenCahnVariableL.i)
- (test/tests/multiapps/move/sub.i)
- (test/tests/outputs/console/multiapp/picard_parent_both.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_reporter/sub.i)
- (test/tests/executioners/nl_forced_its/nl_forced_its.i)
- (test/tests/outputs/iterative/iterative.i)
- (test/tests/time_steppers/iteration_adaptive/hit_function_knot.i)
- (test/tests/outputs/intervals/no_output.i)
- (modules/phase_field/examples/anisotropic_transport/diffusion.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/parent.i)
- (modules/scalar_transport/test/tests/multiple-species/multiple-species.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-quadratic.i)
- (test/tests/time_steppers/function_dt/function_dt_min.i)
- (test/tests/outputs/vtk/vtk_diff.i)
- (test/tests/scaling/ignore-variables/ignore.i)
- (test/tests/postprocessors/mms_polynomial/mms_polynomial_test.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub_missing_control.i)
- (modules/combined/test/tests/feature_volume_fraction/feature_volume_fraction.i)
- (test/tests/userobjects/pre_aux_based_on_exec_flag/pre_post_aux_test.i)
- (test/tests/controls/error/non_controllable_error.i)
- (test/tests/transfers/multiapp_userobject_transfer/restricted_node_parent.i)
- (test/tests/outputs/variables/show_single_vars.i)
- (test/tests/functions/parsed/mms_transient_coupled.i)
- (test/tests/geomsearch/patch_update_strategy/never.i)
- (modules/phase_field/examples/slkks/CrFe.i)
- (modules/porous_flow/test/tests/energy_conservation/except02.i)
- (test/tests/materials/derivative_sum_material/random_ic.i)
- (modules/thermal_hydraulics/test/tests/controls/unit_trip_control/test.i)
- (test/tests/time_integrators/convergence/explicit_convergence.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-linear.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_aux_init_test.i)
- (modules/combined/examples/publications/rapid_dev/fig7b.i)
- (test/tests/postprocessors/time_extreme_value/time_extreme_value.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test5.i)
- (test/tests/multiapps/multilevel/time_dt_from_parent_subsub.i)
- (test/tests/multiapps/picard/picard_rel_tol_parent.i)
- (modules/phase_field/test/tests/polycrystal_diffusion/polycrystal_void_diffusion_parsed.i)
- (test/tests/multiapps/multiple_position_files/multiple_position_files.i)
- (test/tests/multiapps/picard_postprocessor/transient_sub.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/05_parent_parallel.i)
- (test/tests/interfaces/random/random.i)
- (test/tests/transfers/multiapp_userobject_transfer/sub.i)
- (test/tests/time_steppers/timesequence_stepper/csvtimesequence.i)
- (test/tests/controls/time_periods/constraints/constraints.i)
- (test/tests/time_steppers/timesequence_stepper/timesequence_restart3.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except03.i)
- (test/tests/postprocessors/real_parameter_reporter/real_parameter_reporter.i)
- (test/tests/scalar_kernels/ad_coupled_scalar/ad_coupled_scalar.i)
- (test/tests/outputs/iterative/iterative_vtk.i)
- (modules/porous_flow/test/tests/jacobian/heat_advection01_fully_saturated.i)
- (modules/phase_field/test/tests/MultiPhase/lagrangemult.i)
- (modules/scalar_transport/test/tests/ncp-lms/interpolated-ncp-lm-nodal-enforcement-nodal-forces.i)
- (test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/between_multiapp/main.i)
- (modules/porous_flow/test/tests/basic_advection/1phase.i)
- (test/tests/materials/output/output.i)
- (test/tests/multiapps/transient_multiapp/dt_from_multi.i)
- (test/tests/geomsearch/patch_update_strategy/always.i)
- (test/tests/bcs/conditional_bc/conditional_bc_test.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/restricted_elem_sub.i)
- (test/tests/postprocessors/cumulative_value_postprocessor/cumulative_value_postprocessor.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/sub.i)
- (modules/phase_field/test/tests/initial_conditions/circles_from_file_ic.i)
- (test/tests/materials/stateful_internal_side_uo/internal_side_uo_stateful.i)
- (test/tests/bcs/periodic/orthogonal_pbc_on_square.i)
- (test/tests/controls/time_periods/transfers/sub.i)
- (test/tests/multiapps/relaxation/picard_sub.i)
- (test/tests/restart/kernel_restartable/kernel_restartable_custom_name_second.i)
- (test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-linear.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/07_sub_multilevel.i)
- (test/tests/controls/output/controllable.i)
- (test/tests/executioners/executioner/steady_state_check_test.i)
- (test/tests/multiapps/initial_intactive/sub.i)
- (test/tests/bcs/misc_bcs/weak_gradient_bc_test.i)
- (test/tests/time_steppers/iteration_adaptive/piecewise_linear.i)
- (test/tests/multiapps/grid-sequencing/vi-fine-alone.i)
- (test/tests/outputs/debug/show_execution_adaptivity.i)
- (test/tests/transfers/multiapp_userobject_transfer/3d_1d_sub.i)
- (test/tests/restart/restart_subapp_not_parent/two_step_solve_sub_restart.i)
- (test/tests/outputs/console/console_off.i)
- (test/tests/materials/stateful_prop/many_stateful_props.i)
- (test/tests/bcs/dmg_periodic/dmg_periodic_bc.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.q_wall_transfer_3eqn.parent.i)
- (python/peacock/tests/common/transient_with_date.i)
- (test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_inside.i)
- (test/tests/outputs/console/multiapp/picard_parent.i)
- (test/tests/test_harness/csvdiff.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/between_multiapp/main.i)
- (examples/ex20_user_objects/ex20.i)
- (modules/phase_field/test/tests/rigidbodymotion/update_orientation_verify.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/SinteringIdeal.i)
- (test/tests/multiapps/restart_subapp_ic/parent2.i)
- (test/tests/multiapps/sub_cycling/sub_short.i)
- (test/tests/controls/time_periods/user_objects/user_object.i)
- (modules/porous_flow/test/tests/jacobian/pls01.i)
- (modules/porous_flow/test/tests/heat_conduction/two_phase.i)
- (modules/stochastic_tools/test/tests/actions/parameter_study_action/sub_transient.i)
- (test/tests/userobjects/setup_interface_count/element.i)
- (test/tests/test_harness/long_running.i)
- (test/tests/outputs/png/wedge.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/SinteringParabolic.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/parent.i)
- (test/tests/geomsearch/patch_update_strategy/auto.i)
- (test/tests/time_steppers/time_stepper_system/active_timesteppers.i)
- (test/tests/materials/output/output_boundary.i)
- (modules/porous_flow/test/tests/energy_conservation/except01.i)
- (modules/phase_field/test/tests/phase_field_kernels/ACInterfaceStress.i)
- (test/tests/ics/from_exodus_solution/array.i)
- (modules/phase_field/test/tests/rigidbodymotion/grain_motion2.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_init_dt_restart.i)
- (modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i)
- (modules/level_set/examples/rotating_circle/circle_rotate.i)
- (test/tests/mesh/custom_partitioner/custom_linear_partitioner_restart_test.i)
- (modules/xfem/test/tests/moving_interface/phase_transition_2d.i)
- (modules/porous_flow/test/tests/radioactive_decay/exponential_decay.i)
- (modules/porous_flow/test/tests/poroperm/poro_thm.i)
- (test/tests/meshgenerators/distributed_rectilinear/ghosting_elements/num_layers.i)
- (test/tests/misc/serialized_solution/adapt.i)
- (modules/phase_field/test/tests/misc/interface_flux.i)
- (test/tests/time_integrators/crank-nicolson/cranic.i)
- (modules/phase_field/test/tests/MultiPhase/penalty.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except09.i)
- (test/tests/outputs/intervals/no_intermediate.i)
- (modules/stochastic_tools/test/tests/reporters/stochastic_reporter/sub.i)
- (test/tests/vectorpostprocessors/point_value_sampler_history/point_value_sampler_history.i)
- (test/tests/materials/stateful_coupling/stateful_aux.i)
- (modules/phase_field/test/tests/anisotropic_interfaces/kobayashi.i)
- (modules/phase_field/test/tests/free_energy_material/MathFreeEnergy.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test8.i)
- (test/tests/functions/piecewise_multilinear/fourDa.i)
- (modules/phase_field/test/tests/polycrystal_diffusion/polycrystal_void_diffusion.i)
- (test/tests/userobjects/Terminator/terminator_soft.i)
- (test/tests/time_integrators/implicit-euler/ie-monomials.i)
- (test/tests/controls/error/disable_executioner.i)
- (test/tests/multiapps/restart_multilevel/parent.i)
- (test/tests/multiapps/picard_multilevel/fullsolve_multilevel/sub_level1.i)
- (modules/optimization/examples/simpleTransient/forward.i)
- (modules/porous_flow/test/tests/jacobian/hcs02.i)
- (test/tests/multiapps/relaxation/picard_relaxed_parent.i)
- (modules/porous_flow/test/tests/energy_conservation/heat01.i)
- (modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i)
- (test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value_ts_begin.i)
- (modules/phase_field/test/tests/GrandPotentialPFM/SinteringBase.i)
- (test/tests/time_integrators/multi_stage_time_integrator/unconverged_1st_stage.i)
- (test/tests/bcs/periodic/wedge_sys.i)
- (modules/chemical_reactions/test/tests/desorption/mollified_langmuir_desorption.i)
- (test/tests/mesh/adapt/patch_recovery_test.i)
- (test/tests/outputs/residual/output_residual_elem.i)
- (modules/phase_field/test/tests/rigidbodymotion/update_orientation.i)
- (test/tests/time_steppers/iteration_adaptive/multi_piecewise_linear.i)
- (test/tests/dirackernels/front_tracking/front_tracking.i)
- (test/tests/outputs/console/moose_console.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/04_sub1_multiple.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_aniso_cleavage_plane.i)
- (test/tests/multiapps/sub_cycling/sub_iteration_adaptive.i)
- (test/tests/userobjects/layered_average/layered_average_1d_displaced.i)
- (test/tests/outputs/postprocessor_final/postprocessor_final.i)
- (test/tests/multiapps/restart_subapp_ic/sub2.i)
- (modules/solid_mechanics/test/tests/power_law_creep/ad_restart1.i)
- (modules/phase_field/test/tests/SimpleACInterface/SimpleACInterface.i)
- (test/tests/kernels/conservative_advection/no_upwinding_2D.i)
- (test/tests/functormaterials/time_derivatives/functor_time_derivatives.i)
- (test/tests/controls/time_periods/bcs/bcs_enable_disable.i)
- (modules/optimization/test/tests/simp/2d_twoconstraints.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_multi_pps_lim.i)
- (test/tests/materials/stateful_prop/stateful_prop_adaptivity_test.i)
- (test/tests/time_steppers/dt2/dt2_adapt.i)
- (modules/phase_field/test/tests/flood_counter_aux_test/nodal_flood_periodic_2var.i)
- (test/tests/mortar/continuity-2d-conforming/equalgradient.i)
- (test/tests/outputs/intervals/output_final.i)
- (modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_parent_bad.i)
- (test/tests/time_steppers/timesequence_stepper/timesequence_restart1.i)
- (test/tests/mesh/unique_ids/unique_ids.i)
- (test/tests/outputs/iterative/output_step_window.i)
- (modules/optimization/test/tests/executioners/transient_and_adjoint/nonuniform_tstep.i)
- (modules/level_set/test/tests/verification/1d_level_set_supg_mms/1d_level_set_supg_mms.i)
- (test/tests/problems/reference_residual_problem/abs_ref.i)
- (test/tests/multiapps/restart/sub.i)
- (modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i)
- (test/tests/time_steppers/function_dt/function_dt_no_interpolation.i)
- (test/tests/controls/error/no_parameter_found.i)
- (test/tests/materials/output/output_block.i)
- (modules/stochastic_tools/examples/paper/sub.i)
- (modules/stochastic_tools/test/tests/reporters/AISActiveLearning/sub.i)
- (test/tests/parser/cli_multiapp_single/dt_from_parent.i)
- (modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/master.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except11.i)
- (test/tests/transfers/multiapp_userobject_transfer/main_nearest_sub_app.i)
- (test/tests/mesh/adapt/interval.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/tosub_sub.i)
- (test/tests/time_steppers/cutback_factor_at_failure/constant_dt_cutback.i)
- (test/tests/kernels/coupled_time_derivative/ad_coupled_time_derivative_test.i)
- (modules/functional_expansion_tools/test/tests/standard_use/multiapp_print_coefficients.i)
- (test/tests/postprocessors/nodal_var_value/pps_output_test.i)
- (test/tests/misc/deprecation/deprecate-old-for-new-param.i)
- (test/tests/multiapps/petsc_options/sub.i)
- (test/tests/bcs/dmg_periodic/dmg_simple_periodic_bc.i)
- (test/tests/markers/two_circle_marker/two_circle_marker.i)
- (test/tests/bcs/periodic/no_add_scalar.i)
- (test/tests/bcs/periodic/trapezoid.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_pps_lim.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/fromsub_fixed_meshes_sub.i)
- (modules/xfem/test/tests/moving_interface/phase_transition_3d.i)
- (modules/phase_field/test/tests/KKS_system/kks_example_multiphase_nested.i)
- (test/tests/bcs/periodic/all_periodic_trans.i)
- (test/tests/transfers/multiapp_conservative_transfer/parent_userobject.i)
- (test/tests/outputs/png/adv_diff_reaction_transient_test.i)
- (test/tests/multiapps/time_offset/sub.i)
- (modules/level_set/test/tests/transfers/markers/multi_level/sub.i)
- (modules/porous_flow/test/tests/sinks/s11_act.i)
- (modules/phase_field/test/tests/phase_field_crystal/PFCTrad/pfct_newton_split1_asm5.i)
- (modules/geochemistry/test/tests/nodal_void_volume/nodal_void_volume_adaptive.i)
- (test/tests/outputs/displacement/displacement_transient_test.i)
- (test/tests/postprocessors/default_value/real_value_override.i)
- (test/tests/markers/two_circle_marker/two_circle_marker_gaussian_ic.i)
- (tutorials/tutorial02_multiapps/step03_coupling/02_parent_picard.i)
- (modules/level_set/examples/rotating_circle/circle_rotate_sub.i)
- (modules/level_set/test/tests/reinitialization/reinit.i)
- (modules/combined/test/tests/elastic_patch/ad_elastic_patch_rspherical.i)
- (modules/phase_field/examples/cahn-hilliard/Math_CH.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test3.i)
- (test/tests/outputs/perf_graph/multi_app/sub_full.i)
- (modules/scalar_transport/test/tests/ncp-lms/interpolated-ncp-lm-nodal-enforcement.i)
- (modules/phase_field/test/tests/initial_conditions/BimodalInverseSuperellipsoidsIC.i)
- (modules/phase_field/test/tests/phase_field_kernels/AllenCahn.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/parent2_wrong_positions.i)
- (test/tests/controls/bool_function_control/bool_function_control.i)
- (test/tests/outputs/perf_graph/multi_app/sub_sub_cycle.i)
Child Objects
- (modules/navier_stokes/include/kernels/INSTemperatureTimeDerivative.h)
- (modules/heat_transfer/include/kernels/HeatConductionTimeDerivative.h)
- (examples/ex06_transient/include/kernels/ExampleTimeDerivative.h)
- (modules/navier_stokes/include/kernels/INSMomentumTimeDerivative.h)
- (modules/navier_stokes/include/kernels/PINSFEFluidVelocityTimeDerivative.h)
- (modules/navier_stokes/include/kernels/PINSFEFluidTemperatureTimeDerivative.h)
- (modules/xfem/test/include/kernels/TestMatTimeDerivative.h)
- (modules/chemical_reactions/include/kernels/CoupledBEKinetic.h)
- (modules/richards/include/kernels/RichardsMassChange.h)
- (modules/chemical_reactions/include/kernels/PrimaryTimeDerivative.h)
- (framework/include/kernels/CoefTimeDerivative.h)
- (modules/chemical_reactions/include/kernels/CoupledBEEquilibriumSub.h)
- (examples/ex16_timestepper/include/kernels/ExampleImplicitEuler.h)
(test/tests/kernels/adv_diff_reaction/adv_diff_reaction_transient_test.i)
[Mesh]
dim = 2
file = Mesh12.e
[]
[Variables]
active = 'phi'
[./phi]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
active = 'trans advection diffusion source'
[./trans]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = Advection0
variable = phi
Au = 10.
Bu = -6.
Cu = 5.
Av = 10.
Bv = 8.
Cv = -1.
[../]
[./diffusion]
type = Diffusion0
variable = phi
Ak = 10.
Bk = 0.1
Ck = 0.1
[../]
[./source]
type = ForcingFunctionXYZ0
variable = phi
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
Au = 10.
Bu = -6.
Cu = 5.
Av = 10.
Bv = 8.
Cv = -1.
Ak = 10.
Bk = 0.1
Ck = 0.1
[../]
[]
[BCs]
active = 'btm_sca rgt_sca top_sca lft_sca'
[./btm_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 1
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[./rgt_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 2
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[./top_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 3
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[./lft_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 4
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[]
[Executioner]
type = Transient #Steady
scheme = bdf2
nl_rel_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_factor_levels -pc_factor_mat_ordering_type'
petsc_options_value = '20 rcm'
start_time = 0.0
end_time = 1.
num_steps = 60000
dt = .2
n_startup_steps = 0
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/console/console_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = -1
end_time = 0
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
execute_on = 'timestep_end'
[./screen]
type = Console
verbose = true
time_precision = 6
execute_on = 'failed nonlinear linear timestep_begin timestep_end'
[../]
[]
(modules/porous_flow/test/tests/jacobian/hcs01.i)
# apply a half-cubic sink flux and observe the correct behavior
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph1_sp0]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater ppgas massfrac_ph0_sp0 massfrac_ph1_sp0'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[ICs]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[]
[Kernels]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[]
[BCs]
[flux_w]
type = PorousFlowHalfCubicSink
boundary = 'left'
center = 0.1
cutoff = -1.1
max = 2.2
variable = ppwater
mass_fraction_component = 0
fluid_phase = 0
use_relperm = true
use_mobility = true
flux_function = 'x*y'
[]
[flux_g]
type = PorousFlowHalfCubicSink
boundary = 'top left front'
center = 0.5
cutoff = -1.1
max = -2.2
mass_fraction_component = 0
variable = ppgas
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '-x*y'
[]
[flux_1]
type = PorousFlowHalfCubicSink
boundary = 'right'
center = -0.1
cutoff = -1.1
max = 1.2
mass_fraction_component = 1
variable = massfrac_ph0_sp0
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '-1.1*x*y'
[]
[flux_2]
type = PorousFlowHalfCubicSink
boundary = 'bottom'
center = 3.2
cutoff = -1.1
max = 1.2
mass_fraction_component = 1
variable = massfrac_ph1_sp0
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '0.5*x*y'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 2
[]
[Outputs]
file_base = hcs01
[]
(test/tests/postprocessors/num_iterations/num_iterations.i)
# This tests if the correct number of nonlinear and linear iterations for a time
# step are recovered for each time integrator scheme.
#
# The gold files for each time integrator scheme were created manually by
# observing the numbers of iterations per time step.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time_der]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
# The time integrator type is provided by the tests file
[../]
num_steps = 2
abort_on_solve_fail = true
dt = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 0
nl_max_its = 5
[]
[Postprocessors]
[./num_nonlinear_iterations]
type = NumNonlinearIterations
[../]
[./num_linear_iterations]
type = NumLinearIterations
[../]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/move/multilevel_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = sub.i
output_in_position = true
[../]
[]
(test/tests/multiapps/relaxation/sub_relaxed_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/from_full_solve/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/parsed_aux/xyzt.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
[]
# [Variables]
# [u]
# []
# []
#
# [Kernels]
# [diff]
# type = CoefDiffusion
# variable = u
# coef = 0.1
# []
# [dt]
# type = TimeDerivative
# variable = u
# []
# []
[AuxVariables]
[xvar]
family = MONOMIAL
order = FIRST
[]
[yvar]
[]
[zvar]
family = MONOMIAL
order = CONSTANT
[]
[tvar]
[]
[]
[AuxKernels]
[xvar]
type = ParsedAux
variable = xvar
use_xyzt = true
expression = 'x+1'
[]
[yvar]
type = ParsedAux
variable = yvar
use_xyzt = true
expression = 'y+2'
[]
[zvar]
type = ParsedAux
variable = zvar
use_xyzt = true
expression = 'z+3'
[]
[tvar]
type = ParsedAux
variable = tvar
use_xyzt = true
expression = 't+0.1*(x+y+z)'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Problem]
solve = false
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 3
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/mobility_derivative/AC_mobility_derivative_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 40
xmax = 25
[]
[Variables]
[./op]
[../]
[]
[ICs]
[./op_IC]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 1
outvalue = 0
int_width = 3.0
variable = op
[../]
[]
[Kernels]
[./op_dot]
type = TimeDerivative
variable = op
[../]
[./op_bulk]
type = AllenCahn
variable = op
f_name = F
mob_name = L
[../]
[./op_interface]
type = ACInterface
variable = op
kappa_name = 1
mob_name = L
[../]
[]
[Materials]
[./consts]
type = DerivativeParsedMaterial
property_name = L
expression = 'if(op<0, 0.01, if(op>1, 0.01, 1*op^2*(1-op)^2+0.01))'
coupled_variables = 'op'
outputs = exodus
output_properties = 'L dL/dop dL/dv'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'op'
expression = '2*op^2*(1-op)^2 - 0.2*op'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 15
nl_rel_tol = 1.0e-9
start_time = 0.0
num_steps = 20
dt = 2.0
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/porous_flow/test/tests/basic_advection/except1.i)
# phase number is too high in PorousFlowBasicAdvection
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[P]
[]
[]
[ICs]
[P]
type = FunctionIC
variable = P
function = '2*(1-x)'
[]
[u]
type = FunctionIC
variable = u
function = 'if(x<0.1,1,0)'
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[u_advection]
type = PorousFlowBasicAdvection
variable = u
phase = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = ''
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 4
thermal_expansion = 0
viscosity = 150.0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = P
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[darcy_velocity]
type = PorousFlowDarcyVelocityMaterial
gravity = '0.25 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 1
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_rtol'
petsc_options_value = ' lu 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(test/tests/outputs/intervals/sync_times.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 15
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
execute_on = 'timestep_end'
[out]
type = Exodus
sync_times = '0.15 0.375 0.892'
sync_only = true
[]
[]
(modules/porous_flow/test/tests/poroperm/poro_hm.i)
# Test that porosity is correctly calculated.
# Porosity = biot + (phi0 - biot) * exp(-vol_strain + (biot_prime - 1) / solid_bulk * (porepressure - ref_pressure))
# The parameters used are:
# biot = 0.7
# biot_prime = 0.75
# phi0 = 0.5
# vol_strain = 0.5
# solid_bulk = 0.3
# porepressure = 2
# ref_pressure = 3
# which yield porosity = 0.420877515
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
biot_coefficient = 0.7
[]
[Variables]
[porepressure]
initial_condition = 2
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[ICs]
[disp_x]
type = FunctionIC
function = '0.5 * x'
variable = disp_x
[]
[]
[Kernels]
[dummy_p]
type = TimeDerivative
variable = porepressure
[]
[dummy_x]
type = TimeDerivative
variable = disp_x
[]
[dummy_y]
type = TimeDerivative
variable = disp_y
[]
[dummy_z]
type = TimeDerivative
variable = disp_z
[]
[]
[AuxVariables]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[Postprocessors]
[porosity]
type = PointValue
variable = porosity
point = '0 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 3
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[total_strain]
type = ComputeSmallStrain
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
ensure_positive = false
porosity_zero = 0.5
solid_bulk = 0.3
reference_porepressure = 3
biot_coefficient_prime = 0.75
[]
[]
[Executioner]
solve_type = Newton
type = Transient
num_steps = 1
[]
[Outputs]
csv = true
[]
(modules/phase_field/test/tests/MultiSmoothCircleIC/multismoothcircleIC_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 15
ny = 15
nz = 15
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./c]
type = MultiSmoothCircleIC
variable = c
invalue = 1.0
outvalue = 0.0001
bubspac = 30.0 # This spacing is from bubble center to bubble center
numbub = 6
radius = 10.0
int_width = 12.0
radius_variation = 0.2
radius_variation_type = uniform
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
[../]
[../]
[]
[Materials]
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps = 1
dt = 100.0
[./Adaptivity]
refine_fraction = .5
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/jacobian/pls03.i)
# PorousFlowPiecewiseLinearSink with 2-phase, 3-components
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 2
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph0_sp1]
[]
[massfrac_ph1_sp0]
[]
[massfrac_ph1_sp1]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater ppgas massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[ICs]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph0_sp1]
type = RandomIC
variable = massfrac_ph0_sp1
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp1]
type = RandomIC
variable = massfrac_ph1_sp1
min = 0
max = 1
[]
[]
[Kernels]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m01]
type = TimeDerivative
variable = massfrac_ph0_sp1
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[dummy_m11]
type = TimeDerivative
variable = massfrac_ph1_sp1
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[]
[BCs]
[flux_w]
type = PorousFlowPiecewiseLinearSink
boundary = 'left'
pt_vals = '-1 -0.5 0'
multipliers = '1 2 4'
variable = ppwater
mass_fraction_component = 0
fluid_phase = 0
use_relperm = true
use_mobility = true
flux_function = 'x*y'
[]
[flux_g]
type = PorousFlowPiecewiseLinearSink
boundary = 'top'
pt_vals = '0 0.5 1'
multipliers = '1 -2 4'
mass_fraction_component = 0
variable = ppgas
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '-x*y'
[]
[flux_1]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
pt_vals = '0 0.5 1'
multipliers = '1 3 4'
mass_fraction_component = 1
variable = massfrac_ph0_sp0
fluid_phase = 0
use_relperm = true
use_mobility = true
[]
[flux_2]
type = PorousFlowPiecewiseLinearSink
boundary = 'back top'
pt_vals = '0 0.5 1'
multipliers = '0 1 -3'
mass_fraction_component = 1
variable = massfrac_ph1_sp0
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '0.5*x*y'
[]
[flux_3]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
pt_vals = '0 0.5 1'
multipliers = '1 3 4'
mass_fraction_component = 2
variable = ppwater
fluid_phase = 0
use_relperm = true
use_mobility = true
[]
[flux_4]
type = PorousFlowPiecewiseLinearSink
boundary = 'back top'
pt_vals = '0 0.5 1'
multipliers = '0 1 -3'
mass_fraction_component = 2
variable = massfrac_ph1_sp0
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '-0.5*x*y'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 2
[]
[Outputs]
file_base = pls03
[]
(test/tests/functions/piecewise_multilinear/except1.i)
# PiecewiseMultilinear function exception test
# Data file does not exist
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 1
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./f]
[../]
[]
[AuxKernels]
[./f_auxK]
type = FunctionAux
variable = f
function = except1_fcn
[../]
[]
[Functions]
[./except1_fcn]
type = PiecewiseMultilinear
data_file = except1.txt
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = except1
hide = dummy
csv = true
[]
(test/tests/materials/output/limited_via_outputs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 10
ymax = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./test_material]
type = OutputTestMaterial
block = 0
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
output_material_properties = true
show_material_properties = 'real_property vector_property'
[../]
[]
(test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_outside.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
#uniform_refine = 2
[]
[./subdomains]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
location = OUTSIDE
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[../]
[./inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/anisotropic_mobility/nonsplit.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmax = 15.0
ymax = 15.0
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[]
[Kernels]
[./cres]
type = CahnHilliardAniso
variable = c
mob_name = M
f_name = F
[../]
[./int]
type = CHInterfaceAniso
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = ConstantAnisotropicMobility
tensor = '0.1 0 0
0 1 0
0 0 0'
M_name = M
[../]
[./free_energy]
type = MathEBFreeEnergy
property_name = F
c = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(test/tests/multiapps/restart/parent2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
ymin = 0
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[Functions]
[v_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[]
[AuxVariables]
[v]
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[ufn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = v_fn
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
app_type = MooseTestApp
type = TransientMultiApp
input_files = 'sub2.i'
execute_on = timestep_end
positions = '0 -1 0'
[]
[]
[Transfers]
[from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[]
[]
[Problem]
restart_file_base = parent_out_cp/0005
[]
(test/tests/restart/restart_diffusion/exodus_refined_refined_restart_2_test.i)
[Mesh]
file = exodus_refined_restart_1.e
uniform_refine = 1
# Restart relies on the ExodusII_IO::copy_nodal_solution()
# functionality, which only works with ReplicatedMesh.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
initial_from_file_var = u
initial_from_file_timestep = 2
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
file_base = exodus_refined_refined_restart_2
exodus = true
[]
(test/tests/outputs/csv_final_and_latest/latest.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
# Vector Postprocessor System
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
execute_on = 'timestep_end'
variable = 'u'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
[../]
[]
[Outputs]
[./out]
type = CSV
execute_on = 'TIMESTEP_END'
create_latest_symlink = true
[../]
[]
(test/tests/multiapps/steffensen_postprocessor/transient_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[sink]
type = BodyForce
variable = u
value = -1
[]
[]
[BCs]
[right]
type = PostprocessorDirichletBC
variable = u
boundary = right
postprocessor = 'from_main'
[]
[]
[Postprocessors]
[from_main]
type = Receiver
default = 0
[]
[to_main]
type = SideAverageValue
variable = u
boundary = left
[]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'steffensen'
[]
[Outputs]
[csv]
type = CSV
start_step = 6
[]
exodus = false
[]
(modules/phase_field/test/tests/SoretDiffusion/direct.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 1000
nx = 25
[]
[GlobalParams]
polynomial_order = 8
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 175.0
y1 = 0.0
radius = 100
invalue = 1.0
outvalue = 0.01
int_width = 100.0
variable = c
[../]
[]
[AuxVariables]
[./T]
[../]
[]
[Kernels]
[./c_int]
type = CHInterface
variable = c
kappa_name = kappa
mob_name = M
[../]
[./c_bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./c_soret]
type = SoretDiffusion
variable = c
T = T
diff_name = D
Q_name = Qstar
[../]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./Temp]
type = FunctionAux
variable = T
function = 1000.0+0.025*x
[../]
[]
[Materials]
[./Copper]
type = PFParamsPolyFreeEnergy
block = 0
c = c
T = T # K
int_width = 80.0
length_scale = 1.0e-9
time_scale = 1.0e-6
D0 = 3.1e-5 # m^2/s, from Brown1980
Em = 0.71 # in eV, from Balluffi1978 Table 2
Ef = 1.28 # in eV, from Balluffi1978 Table 2
surface_energy = 0.708 # Total guess
[../]
[./free_energy]
type = PolynomialFreeEnergy
block = 0
c = c
outputs = exodus
derivative_order = 3
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 10
l_tol = 1.0e-4
nl_max_its = 25
nl_rel_tol = 1.0e-9
start_time = 0.0
num_steps = 60
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/delete_interior_parents.i)
[Mesh]
[twoquad]
type = GeneratedMeshGenerator
dim = 2
nx = 3
ny = 4
xmax = 2
[]
[subdomain]
type = SubdomainBoundingBoxGenerator
input = twoquad
block_id = 1
bottom_left = '1 0 0'
top_right = '2 1 0'
[]
[sideset1]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain
primary_block = 0
paired_block = 1
new_boundary = bar
[]
[lowerblock1]
type = LowerDBlockFromSidesetGenerator
input = sideset1
sidesets = bar
new_block_id = 2
[]
[sideset2]
type = SideSetsBetweenSubdomainsGenerator
input = lowerblock1
primary_block = 1
paired_block = 0
new_boundary = baz
[]
[delete]
type = BlockDeletionGenerator
input = sideset2
block = 0
[]
[lowerblock2]
type = LowerDBlockFromSidesetGenerator
input = delete
sidesets = baz
new_block_id = 3
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/bdf2/bdf2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0.5 0.5 0'
type = TransientMultiApp
input_files = 'phase_field_sub.i'
# Here we'll attempt to load a different module that's not compiled into this module
app_type = PhaseFieldApp
# Here we set an input file specific relative library path instead of using MOOSE_LIBRARY_PATH
library_path = '../../../../../phase_field/lib'
[../]
[]
(test/tests/auxkernels/old_older_material_aux/old_mat_in_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./old_mat_aux]
type = OldMaterialAux
property_name = prop
variable = aux
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./func]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericFunctionMaterial
prop_names = prop
prop_values = func
block = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/3d_1d_parent.i)
# This does a dummy diffusion solve in 3D space, then computes a layered average
# in the z direction. Those values are transferred into a sub-app that has 1D mesh
# in the z-direction (the mesh was displaced so that it is aligned in such a way).
# The sub-app also does a dummy diffusion solve and then computes layered average
# in the z-direction. Those value are transferred back to the parent app.
#
# Physically the 1D sub-app is placed in the center of the 3D mesh and is oriented
# in the z-direction. The bounding box of the sub-app is expanded such that it
# contains the 4 central elements of the 3D mesh (i.e. the values are transferred
# only into a part of parent mesh)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 10
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[AuxVariables]
[./from_sub_app_var]
order = CONSTANT
family = MONOMIAL
[../]
[]
[UserObjects]
[main_uo]
type = LayeredAverage
direction = z
num_layers = 10
variable = u
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = front
value = -1
[]
[right]
type = DirichletBC
variable = u
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 5
solve_type = 'NEWTON'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = final
[]
[MultiApps]
[sub_app]
positions = '0.5 0.5 0.0'
type = TransientMultiApp
input_files = 3d_1d_sub.i
app_type = MooseTestApp
bounding_box_padding = '0.25 0.25 0'
bounding_box_inflation = 0
use_displaced_mesh = true
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[layered_transfer_to_sub_app]
type = MultiAppUserObjectTransfer
user_object = main_uo
variable = sub_app_var
to_multi_app = sub_app
displaced_target_mesh = true
[]
[layered_transfer_from_sub_app]
type = MultiAppUserObjectTransfer
user_object = sub_app_uo
variable = from_sub_app_var
from_multi_app = sub_app
displaced_source_mesh = true
[]
[]
(python/peacock/tests/common/lcf1.i)
# LinearCombinationFunction function test
# See [Functions] block for a description of the tests
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 10
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./the_linear_combo]
[../]
[]
[AuxKernels]
[./the_linear_combo]
type = FunctionAux
variable = the_linear_combo
function = the_linear_combo
[../]
[]
[Functions]
[./xtimes]
type = ParsedFunction
expression = 1.1*x
[../]
[./twoxplus1]
type = ParsedFunction
expression = 2*x+1
[../]
[./xsquared]
type = ParsedFunction
expression = (x-2)*x
[../]
[./tover2]
type = ParsedFunction
expression = 0.5*t
[../]
[./the_linear_combo]
type = LinearCombinationFunction
functions = 'xtimes twoxplus1 xsquared tover2'
w = '3 -1.2 0.4 3'
[../]
[./should_be_answer]
type = ParsedFunction
expression = 3*1.1*x-1.2*(2*x+1)+0.4*(x-2)*x+3*0.5*t
[../]
[]
[Postprocessors]
[./should_be_zero]
type = NodalL2Error
function = should_be_answer
variable = the_linear_combo
[../]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = lcf1
hide = dummy
exodus = false
csv = true
[]
(modules/level_set/test/tests/transfers/markers/single_level/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Adaptivity]
marker = marker
max_h_level = 1
[./Markers]
[./marker]
type = BoxMarker
bottom_left = '0.25 0.25 0'
top_right = '0.75 0.75 0'
outside = DO_NOTHING
inside = REFINE
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = LevelSetProblem
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = LevelSetReinitializationMultiApp
input_files = 'sub.i'
execute_on = TIMESTEP_BEGIN
[../]
[]
[Transfers]
[./marker_to_sub]
type = LevelSetMeshRefinementTransfer
to_multi_app = sub
source_variable = marker
variable = marker
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/restart/kernel_restartable/kernel_restartable.i)
###########################################################
# This test exercises the restart system and verifies
# correctness with parallel computation, but distributed
# and with threading.
#
# See kernel_restartable_second.i
#
# @Requirement F1.60
# @Requirement P1.10
# @Requirement P1.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = RestartDiffusion
variable = u
coef = 1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1e-2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./restart]
type = Checkpoint
num_files = 100
[../]
[]
(modules/phase_field/test/tests/phase_field_crystal/PFCEnergyDensity/auxkernel.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmax = 6
ymax = 6
zmax = 0
[]
[Variables]
[./n]
[./InitialCondition]
type = RandomIC
min = 0.0
max = 0.1
[../]
[../]
[./u]
scaling = 1e2
[../]
[./v]
scaling = 1e1
[../]
[]
[AuxVariables]
[./ed]
order = CONSTANT
family = MONOMIAL
[../]
[./edrff0]
order = CONSTANT
family = MONOMIAL
[../]
[./edrff1]
order = CONSTANT
family = MONOMIAL
[../]
[./edrff2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./ndot]
type = TimeDerivative
variable = n
[../]
[./n_bulk]
type = CHBulkPFCTrad
variable = n
[../]
[./u_term]
type = MatDiffusion
variable = n
v = u
diffusivity = C2
[../]
[./v_term]
type = MatDiffusion
variable = n
v = v
diffusivity = C4
[../]
[./u_rctn]
type = Reaction
variable = u
[../]
[./u_gradn]
type = LaplacianSplit
variable = u
c = n
[../]
[./v_rctn]
type = Reaction
variable = v
[../]
[./v_gradu]
type = LaplacianSplit
variable = v
c = u
[../]
[]
[AuxKernels]
[./Energy_n]
type = PFCEnergyDensity
execute_on = 'initial timestep_end'
variable = ed
v = 'n u v'
[../]
[./Energy_rff0]
type = PFCRFFEnergyDensity
execute_on = 'initial timestep_end'
variable = edrff0
log_approach = tolerance
v = 'n u v'
[../]
[./Energy_rff1]
type = PFCRFFEnergyDensity
execute_on = 'initial timestep_end'
variable = edrff1
log_approach = cancelation
v = 'n u v'
[../]
[./Energy_rff2]
type = PFCRFFEnergyDensity
execute_on = 'initial timestep_end'
variable = edrff2
log_approach = expansion
v = 'n u v'
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./PFCTrad]
type = PFCTradMaterial
order = FOURTH
[../]
[]
[Postprocessors]
[./Total_free_energy]
type = PFCElementEnergyIntegral
variable = ed
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
active = 'SMP'
[./SMP]
type = SMP
full = false
off_diag_row = 'u n n v'
off_diag_column = 'n u v u'
[../]
[./FDP]
type = FDP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
# petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
# petsc_options_value = 'hypre boomeramg 101'
# petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
# petsc_options_value = 'asm 101 preonly lu 1'
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu '
l_max_its = 100
l_tol = 1e-04
nl_rel_tol = 1e-09
nl_abs_tol = 1e-11
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/transfer_on_final/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
initial_condition = 10
[]
[]
[AuxVariables]
[v]
initial_condition = 20
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 10
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 20
[]
[]
[Executioner]
type = Transient
num_steps = 4
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[final]
type = Exodus
execute_on = 'FINAL'
execute_input_on = 'NONE' # This is needed to avoid problems with creating a file w/o data during --recover testing
[]
[]
(test/tests/multiapps/multiple_position_files/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/functions/piecewise_multilinear/oneDa.i)
# PiecewiseMultilinear function tests in 1D
# See [Functions] block for a description of the tests
# All tests yield variable = 1 everywhere, so they are compared using postprocessors
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 10
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./end1_var]
[../]
[./end2_var]
[../]
[./end3_var]
[../]
[./end4_var]
[../]
[./one_pt1_var]
[../]
[./one_pt2_var]
[../]
[./one_pt3_var]
[../]
[./other_axis1_var]
[../]
[./other_axis2_var]
[../]
[./other_axis3_var]
[../]
[]
[AuxKernels]
[./end1_auxK]
type = FunctionAux
variable = end1_var
function = end1_fcn
[../]
[./end2_auxK]
type = FunctionAux
variable = end2_var
function = end2_fcn
[../]
[./end3_auxK]
type = FunctionAux
variable = end3_var
function = end3_fcn
[../]
[./end4_auxK]
type = FunctionAux
variable = end4_var
function = end4_fcn
[../]
[./one_pt1_auxK]
type = FunctionAux
variable = one_pt1_var
function = one_pt1_fcn
[../]
[./one_pt2_auxK]
type = FunctionAux
variable = one_pt2_var
function = one_pt2_fcn
[../]
[./one_pt3_auxK]
type = FunctionAux
variable = one_pt3_var
function = one_pt3_fcn
[../]
[./other_axis1_auxK]
type = FunctionAux
variable = other_axis1_var
function = other_axis1_fcn
[../]
[./other_axis2_auxK]
type = FunctionAux
variable = other_axis2_var
function = other_axis2_fcn
[../]
[./other_axis3_auxK]
type = FunctionAux
variable = other_axis3_var
function = other_axis3_fcn
[../]
[]
[Functions]
# The result (which is unity) that all the functions should yield
[./answer_fcn]
type = ConstantFunction
value = 1
[../]
# Function that is 1 for all x>=0, due to data only being defined on x<0
[./end1_fcn]
type = PiecewiseMultilinear
data_file = end1.txt
[../]
# Function that is 1 for all x>=0, due to data only being defined on x<=0
[./end2_fcn]
type = PiecewiseMultilinear
data_file = end2.txt
[../]
# Function that is 1 for all x<=2, due to data only being defined on x>2
[./end3_fcn]
type = PiecewiseMultilinear
data_file = end3.txt
[../]
# Function that is 1 for all x<=2, due to data only being defined on x>=2
[./end4_fcn]
type = PiecewiseMultilinear
data_file = end4.txt
[../]
# Function that is 1 for all x, due to only one point being defined on X at x=2
[./one_pt1_fcn]
type = PiecewiseMultilinear
data_file = one_pt1.txt
[../]
# Function that is 1 for all x, due to only one point being defined on X at x=1
[./one_pt2_fcn]
type = PiecewiseMultilinear
data_file = one_pt2.txt
[../]
# Function that is 1 for all x, due to only one point being defined on X at x=-1
[./one_pt3_fcn]
type = PiecewiseMultilinear
data_file = one_pt3.txt
[../]
# Function that is 1 for all x, and data is defined on Y axis only
[./other_axis1_fcn]
type = PiecewiseMultilinear
data_file = other_axis1.txt
[../]
# Function that is 1 for all x, and data is defined on T axis only for t>=1
[./other_axis2_fcn]
type = PiecewiseMultilinear
data_file = other_axis2.txt
[../]
# Function that is 1 for all x, and data that is unity and defined on T axis for -1<=t<=1
[./other_axis3_fcn]
type = PiecewiseMultilinear
data_file = other_axis3.txt
[../]
[]
[Postprocessors]
[./end1_pp]
type = NodalL2Error
function = answer_fcn
variable = end1_var
[../]
[./end2_pp]
type = NodalL2Error
function = answer_fcn
variable = end2_var
[../]
[./end3_pp]
type = NodalL2Error
function = answer_fcn
variable = end3_var
[../]
[./one_pt1_pp]
type = NodalL2Error
function = answer_fcn
variable = one_pt1_var
[../]
[./one_pt2_pp]
type = NodalL2Error
function = answer_fcn
variable = one_pt2_var
[../]
[./one_pt3_pp]
type = NodalL2Error
function = answer_fcn
variable = one_pt3_var
[../]
[./other_axis1_pp]
type = NodalL2Error
function = answer_fcn
variable = other_axis1_var
[../]
[./other_axis2_pp]
type = NodalL2Error
function = answer_fcn
variable = other_axis2_var
[../]
[./other_axis3_pp]
type = NodalL2Error
function = answer_fcn
variable = other_axis3_var
[../]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = oneDa
hide = dummy
exodus = false
csv = true
[]
(modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_2D.i)
# checking that the PorousFlowDarcyVelocityComponentLowerDimensional AuxKernel works as expected in 1D+2D situation
# for the fully-saturated case (relative-permeability = 1)
# The 1_frac_in_2D_example.e has size 0.3x0.2x0, and a fracture running through its
# centre, with normal = (0, 1, 0)
# Porepressure is initialised to grad(P) = (1, 2, 0)
# Fluid_density = 2
# viscosity = 10
# relative_permeability = 1
# permeability = (5, 5, 5) (in the bulk, measured in m^2)
# permeability = (10, 10, 10) (in the fracture, measured in m^3)
# aperture = 0.01
# gravity = (1, 0.5, 0)
# So Darcy velocity in the bulk = (0.5, -0.5, 0)
# in the fracture grad(P) = (1, 0, 0)
# In the fracture the projected gravity vector is
# tangential_gravity = (1, 0, 0)
# So the Darcy velocity in the fracture = (100, 0, 0)
[Mesh]
type = FileMesh
file = 1_frac_in_2D_example.e
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '1 0.5 0'
[]
[Variables]
[pp]
[]
[]
[ICs]
[pinit]
type = FunctionIC
function = 'x+2*y'
variable = pp
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = pp
[]
[]
[AuxVariables]
[bulk_vel_x]
order = CONSTANT
family = MONOMIAL
block = '2 3'
[]
[bulk_vel_y]
order = CONSTANT
family = MONOMIAL
block = '2 3'
[]
[bulk_vel_z]
order = CONSTANT
family = MONOMIAL
block = '2 3'
[]
[fracture_vel_x]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[fracture_vel_y]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[fracture_vel_z]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[]
[AuxKernels]
[bulk_vel_x]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_x
component = x
fluid_phase = 0
[]
[bulk_vel_y]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_y
component = y
fluid_phase = 0
[]
[bulk_vel_z]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_z
component = z
fluid_phase = 0
[]
[fracture_vel_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_x
component = x
fluid_phase = 0
aperture = 0.01
[]
[fracture_vel_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_y
component = y
fluid_phase = 0
aperture = 0.01
[]
[fracture_vel_z]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_z
component = z
fluid_phase = 0
aperture = 0.01
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1E16
viscosity = 10
density0 = 2
thermal_expansion = 0
[]
[]
[Postprocessors]
[bulk_vel_x]
type = PointValue
variable = bulk_vel_x
point = '0 -0.05 0'
[]
[bulk_vel_y]
type = PointValue
variable = bulk_vel_y
point = '0 -0.05 0'
[]
[bulk_vel_z]
type = PointValue
variable = bulk_vel_z
point = '0 -0.05 0'
[]
[fracture_vel_x]
type = PointValue
point = '0 0 0'
variable = fracture_vel_x
[]
[fracture_vel_y]
type = PointValue
point = '0 0 0'
variable = fracture_vel_y
[]
[fracture_vel_z]
type = PointValue
point = '0 0 0'
variable = fracture_vel_z
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
block = '2 3'
[]
[permeability_fracture]
type = PorousFlowPermeabilityConst
permeability = '10 0 0 0 10 0 0 0 10'
block = 1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
csv = true
[]
(test/tests/functions/parsed/scalar.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./scalar]
family = SCALAR
initial_condition = 0
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./scalar_aux]
type = FunctionScalarAux
variable = scalar
function = func
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = left
function = left_bc
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Functions]
[./left_bc]
type = ParsedFunction
expression = s
symbol_values = scalar
symbol_names = s
[../]
[./func]
type = ParsedFunction
expression = t
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/convective_heat_flux/equilibrium.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
[]
[Variables]
[./temp]
initial_condition = 200.0
[../]
[]
[Kernels]
[./heat_dt]
type = TimeDerivative
variable = temp
[../]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[]
[BCs]
[./right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = 'right'
T_infinity = 100.0
heat_transfer_coefficient = 1
heat_transfer_coefficient_dT = 0
[../]
[]
[Postprocessors]
[./left_temp]
type = SideAverageValue
variable = temp
boundary = left
execute_on = 'TIMESTEP_END initial'
[../]
[./right_temp]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1e1
nl_abs_tol = 1e-12
[]
[Outputs]
[./out]
type = CSV
time_step_interval = 10
[../]
[]
(modules/combined/test/tests/elastic_patch/ad_elastic_patch_plane_strain.i)
#
# This problem is taken from the Abaqus verification manual:
# "1.5.1 Membrane patch test"
# The stress solution is given as:
# xx = yy = 1600
# zz = 800
# xy = 400
# yz = zx = 0
#
# Since the strain is 1e-3 in both directions, the new density should be
# new_density = original_density * V_0 / V
# new_density = 0.283 / (1 + 1e-3 + 1e-3) = 0.282435
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
[]
[Mesh]
file = elastic_patch_rz.e
[]
[Variables]
[temp]
initial_condition = 117.56
[]
[]
[Physics/SolidMechanics/QuasiStatic/All]
strain = SMALL
incremental = true
planar_formulation = PLANE_STRAIN
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[heat]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[ur]
type = FunctionDirichletBC
variable = disp_x
boundary = 10
function = '1e-3*(x+0.5*y)'
[]
[uz]
type = FunctionDirichletBC
variable = disp_y
boundary = 10
function = '1e-3*(y+0.5*x)'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
[]
[stress]
type = ComputeStrainIncrementBasedStress
[]
[]
[Materials]
[density]
type = ADDensity
density = 0.283
outputs = all
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test11.i)
[Mesh]
[fmg]
type = FileMeshGenerator
file = pyramid.e
[]
[sbb2]
type = SubdomainBoundingBoxGenerator
input = fmg
block_id = 2
bottom_left = '-0.5 -0.5 -0.5'
top_right = '0.5 0.5 0.5'
[]
[swiss_cheese2]
type = BlockDeletionGenerator
block = 2
input = 'sbb2'
[]
[sbb3]
type = SubdomainBoundingBoxGenerator
input = swiss_cheese2
block_id = 3
bottom_left = '-5 -5 -3'
top_right = '-2 -2 -1'
[]
[swiss_cheese3]
type = BlockDeletionGenerator
block = 3
input = 'sbb3'
[]
[sbb4]
type = SubdomainBoundingBoxGenerator
input = swiss_cheese3
block_id = 4
bottom_left = '-1 2 -2'
top_right = '1 5 0'
[]
[swiss_cheese4]
type = BlockDeletionGenerator
block = 4
input = 'sbb4'
[]
[sbb5]
type = OrientedSubdomainBoundingBoxGenerator
input = swiss_cheese4
block_id = 5
center = '2.4 -1.4 0.4'
height = 3
length = 8
length_direction = '-2 1 -1'
width = 3
width_direction = '1 2 0'
[]
[swiss_cheese5]
type = BlockDeletionGenerator
block = 5
input = 'sbb5'
[]
[sbb6]
type = OrientedSubdomainBoundingBoxGenerator
input = swiss_cheese5
block_id = 6
center = '-1 0.4 2.2'
height = 1
length = 8
length_direction = '2 -1 -1'
width = 1
width_direction = '1 2 0'
[]
[swiss_cheese6]
type = BlockDeletionGenerator
block = 6
input = 'sbb6'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = top
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 100
dt = 100
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(examples/ex18_scalar_kernel/ex18.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
# ODEs
[./exact_x_fn]
type = ParsedFunction
expression = (-1/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[./exact_y_fn]
type = ParsedFunction
expression = (2/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
[./right]
type = ScalarDirichletBC
variable = diffused
boundary = 1
scalar_var = x
[../]
[./left]
type = ScalarDirichletBC
variable = diffused
boundary = 3
scalar_var = y
[../]
[]
[Postprocessors]
# to print the values of x, y into a file so we can plot it
[./x_pp]
type = ScalarVariable
variable = x
execute_on = timestep_end
[../]
[./y_pp]
type = ScalarVariable
variable = y
execute_on = timestep_end
[../]
[./exact_x]
type = FunctionValuePostprocessor
function = exact_x_fn
execute_on = timestep_end
point = '0 0 0'
[../]
[./exact_y]
type = FunctionValuePostprocessor
function = exact_y_fn
execute_on = timestep_end
point = '0 0 0'
[../]
# Measure the error in ODE solution for 'x'.
[./l2err_x]
type = ScalarL2Error
variable = x
function = exact_x_fn
[../]
# Measure the error in ODE solution for 'y'.
[./l2err_y]
type = ScalarL2Error
variable = y
function = exact_y_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.01
num_steps = 10
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/power_law_creep/smallstrain.i)
# 1x1x1 unit cube with uniform pressure on top face for the case of small strain.
# This test does not have a solid mechanics analog because there is not an equvialent
# small strain with rotations strain calculator material in solid mechanics
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[]
[]
[Functions]
[top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[]
[u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[]
[radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
tangent_operator = elastic
[]
[power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_missing_sub_object.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/time_steppers/timesequence_stepper/timesequence_failed_solve.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
# This timestepper does not use dt to set the timestep, it uses the time_sequence.
# dt = 250
dtmin=250
end_time = 3000.0
[./TimeStepper]
type = TimeSequenceStepperFailTest
time_sequence = '0 1000.0 2000.0'
[../]
nl_rel_tol=1.e-10
[]
[Outputs]
file_base = timesequence_failed_solve
exodus = true
[]
(modules/solid_mechanics/test/tests/power_law_creep/restart2.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[]
[]
[Problem]
allow_initial_conditions_with_restart = true
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[]
[]
[Functions]
[top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[]
[u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[]
[radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
tangent_operator = elastic
[]
[power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.6
end_time = 1.0
num_steps = 12
dt = 0.1
[]
[Outputs]
# file_base = power_law_creep_out
exodus = true
[]
[Problem]
restart_file_base = restart1_out_cp/0006
[]
(test/tests/kernels/ode/ode_expl_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 5
ny = 5
elem_type = QUAD4
[]
[Functions]
[./f_fn]
type = ParsedFunction
expression = -4
[../]
[./bc_all_fn]
type = ParsedFunction
expression = x*x+y*y
[../]
[]
# NL
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./uff]
type = BodyForce
variable = u
function = f_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = bc_all_fn
[../]
[]
# Aux
[AuxVariables]
[./y]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[]
[AuxScalarKernels]
[./ode1]
type = ExplicitODE
variable = y
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.1
num_steps = 10
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/time_derivative/time_derivative_nl.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = -5.0
xmax = 5.0
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./c_dot]
order = FIRST
family = LAGRANGE
[../]
[./c_dot_elem]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./coupled_dot]
type = DotCouplingAux
variable = c_dot
v = c
[../]
[./coupled_dot_elem]
type = DotCouplingAux
variable = c_dot_elem
v = c
[../]
[]
[ICs]
[./centered_gauss_func]
type = FunctionIC
variable = c
function = gaussian_1d
[../]
[]
[Functions]
[./gaussian_1d]
type = ParsedFunction
expression = exp(-x*x/2.0/1.0/1.0)
[../]
[]
[Kernels]
[./dot]
type = TimeDerivative
variable = c
[../]
[./diff]
type = Diffusion
variable = c
[../]
[]
[BCs]
[./Periodic]
[./auto]
variable = c
auto_direction = 'x'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
dt = 0.1
num_steps = 5
petsc_options_iname = -ksp_rtol
petsc_options_value = 1e-12
[]
[Outputs]
exodus = true
#
[]
(test/tests/controls/time_periods/dirackernels/dirac.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[DiracKernels]
[./point_source]
type = ConstantPointSource
variable = u
value = 1
point = '0.25 0.25'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./point_source]
type = TimePeriod
disable_objects = 'DiracKernel::point_source'
start_time = '0.15'
end_time = '0.35'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/outputs/intervals/multiple_sync_times.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus_3]
type = Exodus
time_step_interval = 3
file_base = multiple_sync_times_out_3
[../]
[./exodus_5]
type = Exodus
time_step_interval = 5
file_base = multiple_sync_times_out_5
[../]
[./exodus_sync_0]
type = Exodus
sync_times = '0.45 0.525 0.6'
sync_only = true
file_base = multiple_sync_times_sync_0
[../]
[./exodus_sync_1]
type = Exodus
sync_times = '0.475 0.485'
file_base = multiple_sync_times_sync_1
[../]
[]
(test/tests/mesh/custom_partitioner/custom_linear_partitioner_test_displacement.i)
[Mesh]
[gen]
dim = 2
type = GeneratedMeshGenerator
nx = 3
ny = 3
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
uniform_refine = 2
displacements = 'u aux_v'
[./Partitioner]
type = LibmeshPartitioner
partitioner = linear
[../]
parallel_type = replicated
[]
[Functions]
[./aux_v_fn]
type = ParsedFunction
expression = x*(y-0.5)/5
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./udiff]
type = Diffusion
variable = u
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./uleft]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 2
value = 0.1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 1
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 2
value = 0
[../]
[]
[AuxVariables]
[./aux_v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./aux_k_1]
type = FunctionAux
variable = aux_v
function = aux_v_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
file_base = custom_linear_partitioner_test_displacement
[./out]
type = Exodus
use_displaced = true
[../]
[]
(test/tests/multiapps/restart_multilevel/subsub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
expression = t*x
[../]
[./ffn]
type = ParsedFunction
expression = x
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/aux_scalar_deps/aux_scalar_deps.i)
#
# Testing a solution that is second order in space and first order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[AuxVariables]
[./a]
family = SCALAR
order = FIRST
[../]
[./b]
family = SCALAR
order = FIRST
[../]
[./c]
family = SCALAR
order = FIRST
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./a_ic]
type = ScalarConstantIC
variable = a
value = 0
[../]
[./b_ic]
type = ScalarConstantIC
variable = b
value = 2
[../]
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t
[../]
[./a_fn]
type = ParsedFunction
expression = t
[../]
[./b_fn]
type = ParsedFunction
expression = (4-t)/2
[../]
[]
# NOTE: The execute_on = 'timestep_end' is crucial for this test. Without it
# the aux values would be updated during the residual formation and we would
# end up with the right value at the end of the time step. With this flag on,
# the dependencies has to be correct for this test to work. Otherwise the
# values of 'c' will be lagged.
[AuxScalarKernels]
[./c_saux]
type = QuotientScalarAux
variable = c
numerator = a
denominator = b
execute_on = 'timestep_end'
[../]
[./a_saux]
type = FunctionScalarAux
variable = a
function = a_fn
execute_on = 'timestep_end'
[../]
[./b_saux]
type = FunctionScalarAux
variable = b
function = b_fn
execute_on = 'timestep_end'
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
(modules/optimization/test/tests/executioners/transient_and_adjoint/self_adjoint.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
[]
[Variables]
[u]
[]
[u_adjoint]
solver_sys = adjoint
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[src]
type = BodyForce
variable = u
value = 1
[]
[src_adjoint]
type = BodyForce
variable = u_adjoint
value = 10
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'top right'
value = 0
[]
[]
[Executioner]
type = TransientAndAdjoint
forward_system = nl0
adjoint_system = adjoint
dt = 0.2
num_steps = 5
nl_rel_tol = 1e-12
l_tol = 1e-12
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[u_adjoint_avg]
type = ElementAverageValue
variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[inner_product]
type = VariableInnerProduct
variable = u
second_variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[]
[Outputs]
[forward]
type = CSV
[]
[adjoint]
type = CSV
execute_on = 'INITIAL ADJOINT_TIMESTEP_END'
[]
[console]
type = Console
execute_postprocessors_on = 'INITIAL TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[]
(modules/phase_field/test/tests/MultiSmoothCircleIC/specifiedsmoothcircleIC_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[ICs]
[./c]
type = SpecifiedSmoothCircleIC
variable = c
x_positions = '10 50 90'
y_positions = '30 20 80'
z_positions = '30 50 75'
radii = '21 25 16'
invalue = 1.0
outvalue = 0.0001
int_width = 4
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps = 1
dt = 100.0
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard_postprocessor/transient_main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[source]
type = BodyForce
variable = u
value = 1
[]
[]
[BCs]
[left]
type = PostprocessorDirichletBC
variable = u
boundary = left
postprocessor = 'from_sub'
[]
[]
[Postprocessors]
[coupling_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[from_sub]
type = Receiver
default = 0
[]
[to_sub]
type = SideAverageValue
variable = u
boundary = right
[]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
# App coupling parameters
fixed_point_max_its = 30
relaxation_factor = 0.8
transformed_postprocessors = 'from_sub'
[]
[Outputs]
csv = true
exodus = false
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'transient_sub.i'
clone_parent_mesh = true
execute_on = 'timestep_begin'
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[left_from_sub]
type = MultiAppPostprocessorTransfer
from_multi_app = sub
from_postprocessor = 'to_main'
to_postprocessor = 'from_sub'
reduction_type = 'average'
[]
[right_to_sub]
type = MultiAppPostprocessorTransfer
to_multi_app = sub
from_postprocessor = 'to_sub'
to_postprocessor = 'from_main'
[]
[]
(test/tests/materials/derivative_material_interface/construction_order.i)
#
# Test the the getDefaultMaterialProperty in DerivativeMaterialInterface.
# This test should only pass, if the construction order of the Materials
# using this interface does not influence the outcome.
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
elem_type = QUAD4
[]
[]
[GlobalParams]
derivative_order = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[]
[Kernels]
[./dummy1]
type = Diffusion
variable = c
[../]
[./dummy2]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
# derivatives used both before and after being declared
[./sum_a_1]
type = DerivativeSumMaterial
property_name = Fa1
sum_materials = 'Fa'
coupled_variables = 'c'
outputs = exodus
[../]
[./free_energy_a]
type = DerivativeParsedMaterial
property_name = Fa
coupled_variables = 'c'
expression = 'c^4'
[../]
[./sum_a_2]
type = DerivativeSumMaterial
property_name = Fa2
sum_materials = 'Fa'
coupled_variables = 'c'
outputs = exodus
[../]
# derivatives declared after being used
[./sum_b_1]
type = DerivativeSumMaterial
property_name = Fb1
sum_materials = 'Fb'
coupled_variables = 'c'
outputs = exodus
[../]
[./free_energy_b]
type = DerivativeParsedMaterial
property_name = Fb
coupled_variables = 'c'
expression = 'c^4'
[../]
# derivatives declared before being used
[./free_energy_c]
type = DerivativeParsedMaterial
property_name = Fc
coupled_variables = 'c'
expression = 'c^4'
[../]
[./sum_c_2]
type = DerivativeSumMaterial
property_name = Fc2
sum_materials = 'Fc'
coupled_variables = 'c'
outputs = exodus
[../]
# non-existing derivatives
[./free_energy_d]
type = ParsedMaterial
property_name = Fd
coupled_variables = 'c'
expression = 'c^4'
[../]
[./sum_d_1]
type = DerivativeSumMaterial
property_name = Fd1
sum_materials = 'Fd'
coupled_variables = 'c'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
num_steps = 1
dt = 1e-5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/phase_field/test/tests/phase_field_crystal/PFCTrad/PFCTrad_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
xmax = 8
ymax = 8
[]
[Variables]
[./n]
[./InitialCondition]
type = RandomIC
min = -1
max = 4
[../]
[../]
[./u]
scaling = 1e2
[../]
[./v]
scaling = 1e1
[../]
[]
[Kernels]
[./ndot]
type = TimeDerivative
variable = n
[../]
[./n_bulk]
type = CHBulkPFCTrad
variable = n
[../]
[./u_term]
type = MatDiffusion
variable = n
v = u
diffusivity = C2
[../]
[./v_term]
type = MatDiffusion
variable = n
v = v
diffusivity = C4
[../]
[./u_rctn]
type = Reaction
variable = u
[../]
[./u_gradn]
type = LaplacianSplit
variable = u
c = n
[../]
[./v_rctn]
type = Reaction
variable = v
[../]
[./v_gradu]
type = LaplacianSplit
variable = v
c = u
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./PFCTrad]
type = PFCTradMaterial
order = FOURTH
[../]
[]
[Preconditioning]
active = 'SMP'
[./SMP]
type = SMP
full = false
off_diag_row = 'u n n v'
off_diag_column = 'n u v u'
[../]
[./FDP]
type = FDP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
# petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
# petsc_options_value = 'hypre boomeramg 101'
# petsc_options_iname = -pc_type
# petsc_options_value = lu
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 101 preonly lu 5'
l_max_its = 100
l_tol = 1e-04
nl_rel_tol = 1e-09
nl_abs_tol = 1e-11
num_steps = 2
dt = 0.1
[]
[Outputs]
exodus = true
[]
(test/tests/controls/error/multiple_parameters_found.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./diff2]
type = CoefDiffusion
variable = u
coef = 0.2
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Functions]
[./func_coef]
type = ParsedFunction
expression = '2*t + 0.1'
[../]
[]
[Controls]
[./func_control]
type = TestControl
test_type = 'real'
parameter = '*/*/coef'
[../]
[]
(test/tests/materials/stateful_prop/computing_initial_residual_test.i)
[Mesh]
dim = 3
file = cube.e
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[prop1]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[]
[]
[Kernels]
[heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
[]
[ie]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[]
[top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[]
[]
[Materials]
[stateful]
type = ComputingInitialTest
block = 1
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 10
start_time = 0.0
num_steps = 5
dt = .1
use_pre_SMO_residual = true
[]
[Outputs]
file_base = computing_initial_residual_test_out
[out]
type = Exodus
elemental_as_nodal = true
execute_elemental_on = none
[]
[]
(test/tests/kernels/simple_transient_diffusion/simple_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/phase_field-mechanics/Nonconserved.i)
#
# Example 2
# Phase change driven by a mechanical (elastic) driving force.
# An oversized phase inclusion grows under a uniaxial tensile stress.
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 30.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = 1
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
#
# Try visualizing the stress tensor components as done in Conserved.i
#
[Materials]
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'L'
prop_values = '1'
[../]
# matrix phase
[./stiffness_a]
type = ComputeElasticityTensor
base_name = phasea
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 for symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
[../]
[./strain_a]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phasea
[../]
[./stress_a]
type = ComputeLinearElasticStress
block = 0
base_name = phasea
[../]
[./elastic_free_energy_a]
type = ElasticEnergyMaterial
base_name = phasea
f_name = Fea
block = 0
args = ''
[../]
# oversized precipitate phase (simulated using thermal expansion)
[./stiffness_b]
type = ComputeElasticityTensor
base_name = phaseb
block = 0
# Stiffness tensor lambda, mu values
# Note that the two phases could have different stiffnesses.
# Try reducing the precipitate stiffness (to '1 1') rather than making it oversized
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_b]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phaseb
eigenstrain_names = eigenstrain
[../]
[./eigenstrain_b]
type = ComputeEigenstrain
base_name = phaseb
eigen_base = '0.1 0.1 0.1'
eigenstrain_name = eigenstrain
[../]
[./stress_b]
type = ComputeLinearElasticStress
block = 0
base_name = phaseb
[../]
[./elastic_free_energy_b]
type = ElasticEnergyMaterial
base_name = phaseb
f_name = Feb
block = 0
args = ''
[../]
# Generate the global free energy from the phase free energies
[./switching]
type = SwitchingFunctionMaterial
block = 0
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
block = 0
eta = eta
g_order = SIMPLE
[../]
[./free_energy]
type = DerivativeTwoPhaseMaterial
block = 0
f_name = F
fa_name = Fea
fb_name = Feb
eta = eta
args = ''
W = 0.1
derivative_order = 2
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = TwoPhaseStressMaterial
block = 0
base_A = phasea
base_B = phaseb
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/executioners/adapt_and_modify/adapt_and_modify.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./rh_uo]
type = RandomHitUserObject
execute_on = 'initial timestep_begin'
num_hits = 1
[../]
[./rhsm]
type = RandomHitSolutionModifier
execute_on = 'custom'
modify = u
random_hits = rh_uo
amount = 1000
[../]
[]
[Executioner]
type = AdaptAndModify
num_steps = 4
dt = 1e-3
solve_type = 'PJFNK'
nl_rel_tol = 1e-15
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
adapt_cycles = 2
[]
[Adaptivity]
marker = rhm # Switch to combo to get the effect of both
[./Indicators]
[./gji]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./rhm]
type = RandomHitMarker
random_hits = rh_uo
[../]
[./efm]
type = ErrorFractionMarker
coarsen = 0.001
indicator = gji
refine = 0.8
[../]
[./combo]
type = ComboMarker
markers = 'efm rhm'
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/rigidbodymotion/AC_CH_advection_constforce_rect.i)
#
# Tests the Rigid Body Motion of grains due to applied forces.
# Concenterated forces and torques have been applied and corresponding
# advection velocities are calculated.
# Grain motion kernels make the grains translate and rotate as a rigidbody,
# applicable to grain movement in porous media
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 25
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vadvx]
order = CONSTANT
family = MONOMIAL
[../]
[./vadvy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
# advection kernel corrsponding to CH equation
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
# advection kernel corrsponding to AC equation
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
coupled_variables = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
coupled_variables = c
[../]
[]
[AuxKernels]
[./vadv_x]
type = GrainAdvectionAux
component = x
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvx
[../]
[./vadv_y]
type = GrainAdvectionAux
component = y
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvy
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
coupled_variables = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
expression = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[VectorPostprocessors]
[./forces]
# VectorPostprocessor for outputting grain forces and torques
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '0.2 0.0 0.0 ' # size should be 3 * no. of grains
torque = '0.0 0.0 5.0 ' # size should be 3 * no. of grains
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
nl_max_its = 30
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.1
end_time = 10
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
(modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_objects.i)
# This input file contains objects only available in phase_field
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
xmax = 50
ymax = 25
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
inside = 1.0
outside = -0.8
variable = c
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
block = 0
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 2
dt = 1.0
[]
[Outputs]
exodus = true
[]
[Problem]
register_objects_from = 'PhaseFieldApp'
library_path = '../../../../../phase_field/lib'
[]
(test/tests/time_steppers/time_stepper_system/testRejectStep.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dtmin = 5
[TimeSteppers]
[TestStepper]
type = TestSourceStepper
dt = 10
[]
[SolutionTimeAdaptiveDT]
type = SolutionTimeAdaptiveDT
dt = 5
[]
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[]
[Outputs]
csv = true
[]
(python/peacock/tests/common/oversample.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[./refine_2]
type = Exodus
file_base = oversample_2
refinements = 2
[../]
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/main_nearest_sub_app.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0.3 0.1 0.3 0.7 0.1 0.3'
type = TransientMultiApp
input_files = sub.i
app_type = MooseTestApp
[../]
[]
[Transfers]
[./layered_transfer]
type = MultiAppGeneralFieldUserObjectTransfer
source_user_object = layered_average
variable = multi_layered_average
from_multi_app = sub_app
# nearest_sub_app = true
[../]
[./element_layered_transfer]
type = MultiAppGeneralFieldUserObjectTransfer
source_user_object = layered_average
variable = element_multi_layered_average
from_multi_app = sub_app
# nearest_sub_app = true
[../]
[]
(test/tests/outputs/checkpoint/checkpoint_interval.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 11
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[out]
type = Checkpoint
time_step_interval = 3
num_files = 2
wall_time_interval = 3600 # seconds
[]
[]
(test/tests/controls/error/tid_warehouse_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[./func_control]
type = TestControl
test_type = 'tid_warehouse_error'
parameter = 'coef'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/multiapps/cliargs_from_file/cliargs_sub_2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/flood_counter_aux_test/flood_aux_elemental.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./bubble_map]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff forcing_1 forcing_2 forcing_3 forcing_4 dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing_1]
type = GaussContForcing
variable = u
x_center = 1.0
y_center = 1.0
x_spread = 0.5
y_spread = 0.5
amplitude = 2.0
[../]
[./forcing_2]
type = GaussContForcing
variable = u
x_center = 20.0
y_center = 39.0
x_spread = 0.5
y_spread = 0.5
amplitude = 2.0
[../]
[./forcing_3]
type = GaussContForcing
variable = u
x_center = 39.0
y_center = 20.0
x_spread = 0.5
y_spread = 0.5
amplitude = 2.0
[../]
[./forcing_4]
type = GaussContForcing
variable = u
x_center = 15.0
y_center = 15.0
x_spread = 0.5
y_spread = 0.5
amplitude = 2.0
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./mapper]
type = FeatureFloodCountAux
variable = bubble_map
execute_on = timestep_end
flood_counter = bubbles
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
[./bubbles]
type = FeatureFloodCount
variable = u
threshold = 0.3
execute_on = timestep_end
[../]
[]
[Executioner]
active = ''
type = Transient
dt = 4.0
num_steps = 5
# [./Adaptivity]
# refine_fraction = .40
# coarsen_fraction = .02
# max_h_level = 3
# error_estimator = KellyErrorEstimator
# [../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/misc/solution_invalid/solution_invalid_recover.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 1
ymax = 1
[]
[Variables]
[u]
[]
[]
# Sets solution invalid using the SolutionInvalidInterface, as diffusivity exceeds the set threshold.
[Materials]
[filter]
type = NonsafeMaterial
diffusivity = 0.5
threshold = 0.3
invalid_after_time = 1
[]
[]
[Kernels]
[du_dt]
type = TimeDerivative
variable = u
[]
[diffusion]
type = MatDiffusion
variable = u
diffusivity = diffusivity
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Problem]
type = FEProblem
allow_invalid_solution = true
immediately_print_invalid_solution = false
[]
[Executioner]
type = Transient
num_steps=3
error_on_dtmin=false
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
[]
[Reporters/solution_invalidity]
type = SolutionInvalidityReporter
[]
[Outputs]
file_base = 'solution_invalid_recover'
json = true
[]
(test/tests/restart/restart_transient_from_steady/restart_trans_with_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Problem]
restart_file_base = steady_with_sub_out_cp/LATEST
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
expression = '1e3*x*(1-x)+5e2' # increase this function to drive transient
[]
[]
[Kernels]
[timedt]
type = TimeDerivative
variable = power_density
[]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3
dt = 1.0
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
fixed_point_rel_tol = 1e-7
fixed_point_abs_tol = 1e-07
fixed_point_max_its = 4
line_search = none
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = restart_trans_with_sub_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[p_to_sub]
type = MultiAppShapeEvaluationTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppShapeEvaluationTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/userobjects/Terminator/terminator_message.i)
###########################################################
# This is a test of the UserObject System. The
# Terminator UserObject executes independently after
# each solve and can terminate the solve early due to
# user-defined criteria. (Type: GeneralUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 6
xmin = -15.0
xmax = 15.0
ymin = -3.0
ymax = 3.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[Postprocessors]
[./time]
type = TimePostprocessor
[../]
[]
[UserObjects]
[./arnold1]
type = Terminator
expression = 'time = 1'
execute_on = TIMESTEP_END
message = "This is an info"
fail_mode = SOFT
error_level = INFO
[../]
[./arnold2]
type = Terminator
expression = 'time = 0.5'
execute_on = TIMESTEP_END
message = "This is a warning!"
fail_mode = SOFT
error_level = WARNING
[../]
[./arnold3]
type = Terminator
expression = 'time = 0.25'
execute_on = TIMESTEP_END
message = "This is an error!"
error_level = ERROR
[../]
[]
[Kernels]
[./cres]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[BCs]
[./c]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 6
nl_abs_step_tol = 1e-10
[]
[Outputs]
csv = true
print_linear_residuals = false
[]
(test/tests/outputs/checkpoint/checkpoint_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[MultiApps]
[sub_app]
type = FullSolveMultiApp
input_files = "checkpoint_child.i"
positions = '0 0 0'
[]
[]
[Executioner]
type = Transient
num_steps = 11
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
checkpoint=true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/06_sub_twoapps.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test1.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 3'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/07_sub_sub_multilevel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/optimization/examples/simpleTransient/forward_mesh.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[]
[Variables]
[u]
[]
[]
[ICs]
[initial]
type = FunctionIC
variable = u
function = exact
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[src]
type = BodyForce
variable = u
function = source
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'left right top bottom'
value = 0
[]
[]
[Functions]
[exact]
type = ParsedFunction
value = '2*exp(-2.0*(x - sin(2*pi*t))^2)*exp(-2.0*(y - cos(2*pi*t))^2)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/pi'
[]
[source]
type = ParameterMeshFunction
exodus_mesh = source_mesh_in.e
time_name = src_values/time
parameter_name = src_values/values
[]
[]
[Executioner]
type = Transient
num_steps = 100
end_time = 1
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Reporters]
[measured_data]
type = OptimizationData
measurement_file = mms_data.csv
file_xcoord = x
file_ycoord = y
file_zcoord = z
file_time = t
file_value = u
variable = u
objective_name = objective_value
execute_on = timestep_end
outputs = csv
[]
[src_values]
type = ConstantReporter
real_vector_names = 'time values'
real_vector_values = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0;
0' # dummy
[]
[]
[AuxVariables/source]
[]
[AuxKernels]
[source_aux]
type = FunctionAux
variable = source
function = source
[]
[]
[Outputs]
console = false
exodus = true
[]
(test/tests/functions/piecewise_multilinear/except5.i)
# PiecewiseMultilinear function exception test
# No valid AXIS lines in the data_file
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 1
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./f]
[../]
[]
[AuxKernels]
[./f_auxK]
type = FunctionAux
variable = f
function = except5_fcn
[../]
[]
[Functions]
[./except5_fcn]
type = PiecewiseMultilinear
data_file = except5.txt
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
hide = dummy
[]
(test/tests/outputs/residual/output_residual_test.i)
[Mesh]
file = sq-2blk.e
uniform_refine = 3
[]
[Variables]
# variable in the whole domain
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
# subdomain restricted variable
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[./exact_fn_v]
type = ParsedFunction
expression = t+1
[../]
[]
[Kernels]
[./ie_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./ie_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1 2 3 4'
function = exact_fn
[../]
[./bottom_v]
type = DirichletBC
variable = v
boundary = 5
value = 0
[../]
[./top_v]
type = FunctionDirichletBC
variable = v
boundary = 6
function = exact_fn_v
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
[Debug]
show_var_residual = 'u v'
show_var_residual_norms = true
[]
(test/tests/time_steppers/time_stepper_system/timestepper_input_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient # Here we use the Transient Executioner
[TimeSteppers]
type = TimeSequenceStepper
time_sequence = '0 43200 86400 172800 432000 864000'
[]
start_time = 0.0
end_time = 864000
[]
[Postprocessors]
[timestep]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
file_base='multiple_timesequence'
[]
(modules/combined/test/tests/multiphase_mechanics/gradientcomponent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.5
y1 = 0.5
radius = 0.2
invalue = 1
outvalue = 0
int_width = 0.2
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = v
[../]
[./dt]
type = TimeDerivative
variable = v
[../]
[./gradientcomponent]
type = GradientComponent
variable = u
v = v
component = 0
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
solve_type = 'NEWTON'
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/time_stepper_system/lower_bound.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 0.8
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[TimeSteppers]
lower_bound = 'LogConstDT'
[ConstDT1]
type = ConstantDT
dt = 0.2
[]
[ConstDT2]
type = ConstantDT
dt = 0.1
[]
[LogConstDT]
type = LogConstantDT
log_dt = 2
first_dt = 0.01
[]
[]
[]
[Postprocessors]
[timestep]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
file_base='lower_bound'
[]
(test/tests/meshgenerators/distributed_rectilinear/dmg_displaced_mesh/pbc_adaptivity.i)
[Mesh]
[dmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 40
ny = 40
xmax = 40
ymax = 40
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./pid]
order = CONSTANT
family = monomial
[]
[]
[AuxKernels]
[./pidaux]
type = ProcessorIDAux
variable = pid
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
primary = 'left'
secondary = 'right'
translation = '40 0 0'
[../]
[./y]
variable = u
primary = 'bottom'
secondary = 'top'
translation = '0 40 0'
[../]
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = -0.01
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.01
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = -0.01
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = right
value = 0.01
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 5
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
[Adaptivity]
initial_steps = 2
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[../]
[../]
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-linear-adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = (x+y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
[./Markers]
[./box]
bottom_left = '-0.4 -0.4 0'
inside = refine
top_right = '0.4 0.4 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 4
dt = 0.005
l_tol = 1e-12
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(modules/phase_field/examples/interfacekernels/interface_gradient.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
[]
[./box1]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.51 1 0'
[../]
[./box2]
input = box1
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.49 0 0'
top_right = '1 1 0'
[../]
[./iface]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 10
input = box2
[../]
[./rotate]
type = TransformGenerator
transform = ROTATE
vector_value = '5 0 0'
input = iface
[../]
[]
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Variables]
[./u]
block = 1
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt((x-0.4)^2+(y-0.5)^2);if(r<0.05,5,1)'
[../]
[../]
[./v]
block = 2
initial_condition = 0.8
[../]
[]
[Kernels]
[./u_diff]
type = Diffusion
variable = u
block = 1
[../]
[./u_dt]
type = TimeDerivative
variable = u
block = 1
[../]
[./v_diff]
type = Diffusion
variable = v
block = 2
[../]
[./v_dt]
type = TimeDerivative
variable = v
block = 2
[../]
[]
[InterfaceKernels]
[./flux_continuity]
type = InterfaceDiffusionFluxMatch
variable = u
boundary = 10
neighbor_var = v
[../]
[./diffusion_surface_term]
type = InterfaceDiffusionBoundaryTerm
boundary = 10
variable = u
neighbor_var = v
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 0.001
num_steps = 20
[]
[Outputs]
[./out]
type = Exodus
use_problem_dimension = false
[../]
print_linear_residuals = false
[]
(modules/combined/test/tests/feature_volume_fraction/Avrami.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 20
y1 = 20
radius = 10
int_width = 1
invalue = 1
outvalue = 0
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[VectorPostprocessors]
[./feature_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = feature_counter
execute_on = 'initial timestep_end'
outputs = none
[../]
[]
[Postprocessors]
[./feature_counter]
type = FeatureFloodCount
variable = u
compute_var_to_feature_map = true
execute_on = 'initial timestep_end'
[../]
[./Volume]
type = VolumePostprocessor
execute_on = 'initial'
[../]
[./Avrami]
type = FeatureVolumeFraction
execute_on = 'initial timestep_end'
mesh_volume = Volume
feature_volumes = feature_volumes
equil_fraction = 0.5
value_type = AVRAMI
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
[]
[Outputs]
csv = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test13.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 3'
[]
[rename]
type = RenameBlockGenerator
input = SubdomainBoundingBox
old_block = 1
new_block = 'my_name'
[]
[ed0]
type = BlockDeletionGenerator
input = rename
block = 'my_name'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 22
ny = 22
nz = 22
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./c]
type = LatticeSmoothCircleIC
variable = c
invalue = 1.0
outvalue = 0.0001
circles_per_side = '3 3 3'
pos_variation = 0.0
radius = 10.0
int_width = 12.0
radius_variation = 0.2
radius_variation_type = uniform
[../]
[]
[Kernels]
active = 'ie_c diff'
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[BCs]
[]
[Materials]
active = 'Dv'
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
active = 'bubbles'
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
flood_entity_type = NODAL
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps =1
dt = 100.0
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/initial_conditions/SmoothCircleIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SmoothCircleIC
variable = c
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
(test/tests/materials/parsed/parsed_material_with_functors.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 10
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[phi]
[]
[]
[ICs]
[phi_IC]
type = FunctionIC
variable = phi
function = ic_func_phi
[]
[]
[Functions]
[ic_func_phi]
type = ParsedFunction
expression = '0.5 * (1 - tanh((x - 5) / 0.8))'
[]
[test_func]
type = ParsedFunction
expression = '1 + sin(y)'
[]
[]
[BCs]
[top]
type = MatNeumannBC
variable = u
boundary = top
value = 2
boundary_material = hm
[]
[]
[Kernels]
[dudt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[Materials]
[hm]
type = ParsedMaterial
property_name = hm
coupled_variables = 'phi'
functor_names = 'test_func'
functor_symbols = 'tf'
expression = '3*phi^2 - 2*phi^3 + tf'
outputs = exodus
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 10
[]
[Outputs]
exodus = true
[]
(test/tests/functions/solution_function/solution_function_scale_transl.i)
# checking scale and translation, with ordering scale first, then translation second
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
nx = 3
ymin = -1
ymax = 1
ny = 3
zmin = -1
zmax = 1
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = 1
system_variables = u
scale = '0.5 1 1'
translation = '2 0 0'
transformation_order = 'scale translation'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_scale_transl
exodus = true
[]
(test/tests/time_integrators/implicit-euler/ie_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/restart/kernel_restartable/kernel_restartable_second.i)
###########################################################
# This test exercises the restart system and verifies
# correctness with parallel computation, but distributed
# and with threading.
#
# See kernel_restartable.i
#
# @Requirement F1.60
# @Requirement P1.10
# @Requirement P1.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = RestartDiffusion
variable = u
coef = 1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1e-2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
restart_file_base = kernel_restartable_restart_cp/LATEST
[]
(test/tests/multiapps/check_error/sub_unused.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
foo = bar
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i)
# KKS phase-field model coupled with elasticity using the Voigt-Taylor scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170329e
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
expression = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
symbol_names = 'delta_eta'
symbol_values = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
expression = '0.2388*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1338*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
symbol_names = 'delta'
symbol_values = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
expression = 'volume*psi_alpha'
symbol_names = 'volume psi_alpha'
symbol_values = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
expression = '(psi_int - psi_eq_int) / dy / dz'
symbol_names = 'psi_int psi_eq_int dy dz'
symbol_values = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22
[../]
[./matl_e33]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = e33
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
coupled_variables = 'Fglobal w c f_el sigma11 e11'
expression = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
property_name = fm
coupled_variables = 'cm'
expression = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
outputs = exodus
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
property_name = f_total_matrix
sum_materials = 'fm fe_m'
coupled_variables = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
property_name = fp
coupled_variables = 'cp'
expression = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
outputs = exodus
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
property_name = f_total_ppt
sum_materials = 'fp fe_p'
coupled_variables = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
base_name = matrix
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = ppt
fill_method = symmetric9
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./strain_matrix]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = matrix
[../]
[./strain_ppt]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = ppt
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeEigenstrain
base_name = ppt
eigen_base = '1 1 1 0 0 0'
prefactor = misfit
eigenstrain_name = 'eigenstrain_ppt'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./global_strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[VectorPostprocessors]
#[./eta]
# type = LineValueSampler
# start_point = '-10 0 0'
# end_point = '10 0 0'
# variable = eta
# num_points = 321
# sort_by = id
#[../]
#[./eta_position]
# type = FindValueOnLineSample
# vectorpostprocessor = eta
# variable_name = eta
# search_value = 0.5
#[../]
# [./f_el]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = f_el
# [../]
# [./f_el_a]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_m
# [../]
# [./f_el_b]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_p
# [../]
# [./h_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = h
# [../]
# [./fm_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fm
# [../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
time_step_interval = 20
[../]
[./csv]
type = CSV
execute_on = 'final'
[../]
#[./console]
# type = Console
# output_file = true
# [../]
[]
(test/tests/problems/reference_residual_problem/no_ref.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Problem]
type = ReferenceResidualProblem
# reference_vector = 'absref'
# extra_tag_vectors = 'absref'
[]
[Variables]
[u][]
[v]
scaling = 1e-6
[]
[]
[Functions]
[ramp]
type = ParsedFunction
expression = 'if(t < 5, t - 5, 0) * x'
[]
[]
[Kernels]
[u_dt]
type = TimeDerivative
variable = u
[]
[u_coupled_rx]
type = CoupledForce
variable = u
v = v
coef = 1
[]
[v_dt]
type = TimeDerivative
variable = v
[]
[v_neg_force]
type = BodyForce
variable = v
value = ${fparse -1 / 2}
function = ramp
[]
[v_force]
type = BodyForce
variable = v
value = 1
function = ramp
[]
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END INITIAL'
[]
[v_avg]
type = ElementAverageValue
variable = v
execute_on = 'TIMESTEP_END INITIAL'
[]
[timestep]
type = TimePostprocessor
outputs = 'none'
[]
[v_old]
type = ElementAverageValue
variable = v
execute_on = TIMESTEP_BEGIN
outputs = none
[]
[u_old]
type = ElementAverageValue
variable = u
execute_on = TIMESTEP_BEGIN
outputs = none
[]
[v_exact]
type = ParsedPostprocessor
pp_names = 'timestep v_old'
expression = 't := if(timestep > 5, 5, timestep); (t^2 - 9 * t) / 8'
[]
[u_exact]
type = ParsedPostprocessor
pp_names = 'u_old v_exact'
expression = 'u_old + v_exact'
[]
[]
[Executioner]
type = Transient
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = none
num_steps = 10
nl_rel_tol = 1e-06
verbose = true
[]
[Outputs]
csv = true
perf_graph = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/02_parent_sublimit.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = '02_sub_sublimit.i'
[]
[]
(test/tests/materials/output/output_via_outputs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 10
ymax = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./test_material]
type = OutputTestMaterial
block = 0
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
output_material_properties = true
[../]
[]
(modules/phase_field/test/tests/Nucleation/marker.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 20
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
variable = c
value = 0
[../]
[./right]
type = DirichletBC
boundary = right
variable = c
value = 1
[../]
[./Periodic]
[./all]
auto_direction = y
[../]
[../]
[]
[Kernels]
[./c]
type = Diffusion
variable = c
[../]
[./dt]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./nucleation]
type = DiscreteNucleation
op_names = c
op_values = 1
map = map
outputs = exodus
[../]
[]
[UserObjects]
[./inserter]
type = DiscreteNucleationInserter
hold_time = 1
probability = 0.01
radius = 3.27
[../]
[./map]
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Adaptivity]
[./Markers]
[./nuc]
type = DiscreteNucleationMarker
map = map
[../]
[../]
marker = nuc
cycles_per_step = 3
recompute_markers_during_cycles = true
max_h_level = 3
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 10
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
hide = c
[]
(test/tests/functions/default_function/default_function.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = FuncCoefDiffusion
variable = u
# No default function supplied
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/markers/two_circle_marker/two_circle_marker_coarsen.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.02
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
num_steps = 6
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 1
initial_marker = two_circle_marker
cycles_per_step = 1
marker = two_circle_marker
max_h_level = 1
[./Markers]
[./two_circle_marker]
type = TwoCircleMarker
point1 = '0.5 0.5 0'
radius1 = 0.3
point2 = '0.35 0.25 0'
radius2 = 0.3
shut_off_time = 0.15
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
print_mesh_changed_info = true
[../]
[]
(test/tests/dirackernels/function_dirac_source/function_dirac_source.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
[./point_source]
type = FunctionDiracSource
variable = u
function = switch_off
point = '0.1 0.2 0.0'
[../]
[]
[Functions]
[./switch_off]
type = ParsedFunction
expression = 'if(t < 1.0001, 1, 0)'
[../]
[]
[BCs]
[./external]
type = NeumannBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[]
[Postprocessors]
[./total_internal_energy]
type = ElementIntegralVariablePostprocessor
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1
l_tol = 1e-03
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/directional_flux_bc/2d.i)
[Mesh]
[planet]
type = ConcentricCircleMeshGenerator
has_outer_square = false
radii = 1
num_sectors = 10
rings = 2
preserve_volumes = false
[]
[moon]
type = ConcentricCircleMeshGenerator
has_outer_square = false
radii = 0.5
num_sectors = 8
rings = 2
preserve_volumes = false
[]
[combine]
type = CombinerGenerator
inputs = 'planet moon'
positions = '0 0 0 -1.5 -0.5 0'
[]
[]
[GlobalParams]
illumination_flux = '1 1 0'
[]
[Variables]
[u]
[]
[v]
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[dt_u]
type = TimeDerivative
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[dt_v]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[flux_u]
type = DirectionalFluxBC
variable = u
boundary = outer
[]
[flux_v]
type = DirectionalFluxBC
variable = v
boundary = outer
self_shadow_uo = shadow
[]
[]
[Postprocessors]
[ave_v_all]
type = SideAverageValue
variable = v
boundary = outer
[]
[ave_v_exposed]
type = ExposedSideAverageValue
variable = v
boundary = outer
self_shadow_uo = shadow
[]
[]
[UserObjects]
[shadow]
type = SelfShadowSideUserObject
boundary = outer
execute_on = INITIAL
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/max_procs_per_app/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
max_procs_per_app = 1
[../]
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_bad_user_object.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[./AnotheruserObject]
type = EmptyPostprocessor
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = AnotheruserObject
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/executioners/time_period/time_period_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./exact_p1]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./ffn_p1]
type = ParsedFunction
expression = (x*x+y*y)-4*t
[../]
[./exact_p2]
type = ParsedFunction
expression = t*((x*x*x)+(y*y*y))
[../]
[./ffn_p2]
type = ParsedFunction
expression = (x*x*x+y*y*y)-6*t*(x+y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn1]
type = BodyForce
variable = u
function = ffn_p1
[../]
[./ffn2]
type = BodyForce
variable = u
function = ffn_p2
[../]
[]
[BCs]
[./all1]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_p1
[../]
[./all2]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_p2
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.1
num_steps = 10
[]
[Controls]
[./first_period]
type = TimePeriod
start_time = 0.0
end_time = 0.45
enable_objects = '*/ffn1 */all1'
disable_objects = '*/ffn2 */all2'
execute_on = 'initial timestep_begin'
set_sync_times = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/cliargs_from_file/cliargs_parent_inline.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0 0.5 0.5 0
0.6 0.6 0 0.7 0.7 0'
cli_args_files = cliargs.txt
type = TransientMultiApp
input_files = 'cliargs_sub.i'
app_type = MooseTestApp
[../]
[]
(test/tests/kernels/ode/parsedode_sys_impl_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[Functions]
[./f_fn]
type = ParsedFunction
expression = -4
[../]
[./bc_all_fn]
type = ParsedFunction
expression = x*x+y*y
[../]
# ODEs
[./exact_x_fn]
type = ParsedFunction
expression = (-1/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[]
# NL
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./uff]
type = BodyForce
variable = u
function = f_fn
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ParsedODEKernel
expression = '-3*x - 2*y'
variable = x
coupled_variables = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ParsedODEKernel
expression = '-4*x - y'
variable = y
coupled_variables = x
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = bc_all_fn
[../]
[]
[Postprocessors]
active = 'exact_x l2err_x'
[./exact_x]
type = FunctionValuePostprocessor
function = exact_x_fn
execute_on = 'initial timestep_end'
point = '0 0 0'
[../]
[./l2err_x]
type = ScalarL2Error
variable = x
function = exact_x_fn
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.01
num_steps = 100
solve_type = 'PJFNK'
[]
[Outputs]
file_base = ode_sys_impl_test_out
exodus = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except01.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 1
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(test/tests/functions/solution_function/solution_function_rot2.i)
# checking rotation of points by 45 deg about y axis in a SolutionUserObject
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y or z direction
type = GeneratedMesh
dim = 3
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
zmin = -0.70710678
zmax = 0.70710678
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = 1
system_variables = u
rotation0_vector = '0 1 0'
rotation0_angle = 45
transformation_order = rotation0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot2
exodus = true
[]
(test/tests/bcs/periodic/auto_dir_repeated_id.i)
[Mesh]
type = FileMesh
file = auto_dir_repeated_id.e
dim = 3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dot]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./z_all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = 'z_all'
function = 'z'
[../]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = .1
num_steps = 1
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/functions/solution_function/solution_function_rot3.i)
# checking rotation of points by 90 deg about z axis, then 45 deg about x axis in a SolutionUserObject
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y or z direction
type = GeneratedMesh
dim = 3
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
zmin = -0.70710678
zmax = 0.70710678
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = 1
system_variables = u
# the following takes:
# (0.7, 0.7, +/-0.7) -> (-0.7, 0.7, +/-0.7)
# (-0.7, 0.7, +/-0.7) -> (-0.7, -0.7, +/-0.7)
# (0.7, -0.7, +/-0.7) -> (0.7, 0.7, +/-0.7)
# (-0.7, -0.7, +/-0.7) -> (0.7, -0.7, +/-0.7)
rotation0_vector = '0 0 1'
rotation0_angle = 90
# then the following takes:
# (+/-0.7, 0.7, 0.7) -> (+/-0.7, 0, 1)
# (+/-0.7, 0.7, -0.7) -> (+/-0.7, 1, 0)
# (+/-0.7, -0.7, 0.7) -> (+/-0.7, -1, 0)
# (+/-0.7, -0.7, -0.7) -> (+/-0.7, 0, -1)
rotation1_vector = '1 0 0'
rotation1_angle = 45
# so, in total: a point y = +/-0.7 takes values from x = -/+0.7, so solution_function_rot3 should have u = -y
transformation_order = 'rotation0 rotation1'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot3
exodus = true
[]
(modules/porous_flow/test/tests/sinks/s11.i)
# Test PorousFlowEnthalpySink boundary condition
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
zmin = 0
zmax = 10
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0.1
[]
[]
[Variables]
[pp]
initial_condition = 1
[]
[temp]
initial_condition = 2
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[heat_conduction]
type = TimeDerivative
variable = temp
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 10
thermal_expansion = 0
viscosity = 11
[]
[]
[Materials]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.125
[]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[]
[BCs]
[left_p]
type = PorousFlowSink
variable = pp
boundary = left
flux_function = -1
[]
[left_T]
# Note, there is no `fluid_phase` or `porepressure_var` prescribed, since they are passed in from the `tests` file
type = PorousFlowEnthalpySink
variable = temp
boundary = left
T_in = 300
fp = simple_fluid
flux_function = -1
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.25
end_time = 1
nl_rel_tol = 1E-12
nl_abs_tol = 1E-12
[]
[Outputs]
file_base = s11
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[]
(modules/optimization/test/tests/dirackernels/reporter_time_point_source.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[dot]
type = TimeDerivative
variable = u
[]
[]
[DiracKernels]
[vpp_point_source]
type = ReporterTimePointSource
variable = u
value_name = values4D/value
x_coord_name = values4D/coordx
y_coord_name = values4D/coordy
z_coord_name = values4D/coordz
weight_name = values4D/weight
time_name = values4D/time
combine_duplicates=true
[]
[]
[Reporters]
[values4D]
type = ConstantReporter
real_vector_names = 'coordx coordy coordz time value weight'
real_vector_values = '0.25 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
0.25 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
0.25 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75;
0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.75 0.75
0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.75 0.75
0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.75 0.75;
0.25 0.25 0.25 0.25 0.25 0.75 0.75 0.75 0.75
0.25 0.25 0.25 0.25 0.25 0.75 0.75 0.75 0.75
0.25 0.25 0.25 0.25 0.25 0.75 0.75 0.75 0.75;
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30;
0.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
4.00 1.00 9.00 10.0 11.0 12.0 13.0 14.0 15.0
4.0 1.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0;
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 8.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00'
outputs = none
[]
[]
[VectorPostprocessors]
[sample]
type = PointValueSampler
variable = u
points = '0.25 0.25 0.25
0.75 0.25 0.25
0.25 0.75 0.25
0.75 0.75 0.25
0.25 0.25 0.75
0.75 0.25 0.75
0.25 0.75 0.75
0.75 0.75 0.75'
sort_by = id
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[bc]
type = DirichletBC
variable = u
boundary = 'left right top bottom front back'
value = 0
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 3
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
csv = true
execute_on = 'initial timestep_end'
[]
(test/tests/transfers/multiapp_userobject_transfer/restricted_node_sub.i)
# yy is passed in from the parent app
[Mesh]
[line]
type = GeneratedMeshGenerator
dim = 1
nx = 5
xmax = 2.5
[]
[box]
type = SubdomainBoundingBoxGenerator
input = line
bottom_left = '0 -0.1 -0.1'
top_right = '1.5 0.1 0.1'
# need a different block ID than what is in the parent app to make sure the transfer works properly
block_id = 20
[]
[]
[AuxVariables]
[A]
[]
[S]
[]
[]
[AuxKernels]
[A_ak]
type = ParsedAux
variable = A
use_xyzt = true
expression = '2*x+4*${yy}'
execute_on = 'TIMESTEP_BEGIN'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[UserObjects]
[A_avg]
type = LayeredAverage
block = 20
num_layers = 2
direction = x
variable = A
execute_on = TIMESTEP_END
[]
[]
[Executioner]
type = Transient
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/ad_heat_conduction/test.i)
# This test solves a 1D transient heat equation with a complicated thermal
# conductivity in order to verify jacobian calculation via AD
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 0.001
ymax = 0.001
[]
[Variables]
[./T]
initial_condition = 1.5
[../]
[./c]
initial_condition = 1.5
[../]
[]
[Kernels]
[./HeatDiff]
type = ADHeatConduction
variable = T
thermal_conductivity = thermal_conductivity
[../]
[./heat_dt]
type = ADHeatConductionTimeDerivative
variable = T
specific_heat = thermal_conductivity
density_name = thermal_conductivity
[../]
[./c]
type = ADDiffusion
variable = c
[../]
[]
[Kernels]
[./c_dt]
type = TimeDerivative
variable = c
[../]
[]
[BCs]
[./left_c]
type = DirichletBC
variable = c
boundary = left
value = 2
[../]
[./right_c]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[./left_T]
type = DirichletBC
variable = T
boundary = top
value = 1
[../]
[./right_T]
type = DirichletBC
variable = T
boundary = bottom
value = 2
[../]
[]
[Materials]
[./k]
type = ADThermalConductivityTest
c = c
temperature = T
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
(tutorials/tutorial02_multiapps/step01_multiapps/02_sub_sublimit.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/moving_interface/moving_diffusion.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 3
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
elem_type = QUAD4
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
expression = 'x-0.76+0.21*t'
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[Constraints]
[./u_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = u
jump = 0
use_penalty = true
alpha = 1e5
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./diffusivity_A]
type = GenericConstantMaterial
prop_names = A_diffusion_coefficient
prop_values = 5
[../]
[./diffusivity_B]
type = GenericConstantMaterial
prop_names = B_diffusion_coefficient
prop_values = 0.5
[../]
[./diff_combined]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = diffusion_coefficient
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
l_max_its = 20
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-5
start_time = 0.0
dt = 1
end_time = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
perf_graph = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/outputs/png/simple_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[png]
type = PNGOutput
resolution = 25
color = RWB
variable = 'u'
[]
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/between_multiapp/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[MultiApps]
[pp_sub_0]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub0.i
[]
[pp_sub_1]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub1.i
[]
[]
[Transfers]
[pp_transfer_1]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub_0
to_multi_app = pp_sub_1
from_postprocessor = average_0
to_aux_scalar = from_0
[]
[pp_transfer_2]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub_1
to_multi_app = pp_sub_0
from_postprocessor = average_1
to_aux_scalar = from_1
[]
[]
(test/tests/test_harness/csv_validation_tester_01.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmax = 3
[]
[Functions]
[./fn]
type = PiecewiseLinear
axis = x
x = '0 2'
y = '1.01 2.99'
[../]
[]
[AuxVariables]
[./a]
[../]
[]
[AuxKernels]
[./a_ak]
type = FunctionAux
variable = a
function = fn
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./value1]
type = PointValue
variable = a
point = '0 0 0'
[../]
[./value2]
type = PointValue
variable = a
point = '1 0 0'
[../]
[./value3]
type = PointValue
variable = a
point = '2 0 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
solve_type = NEWTON
[]
[Outputs]
[./csv]
type = CSV
file_base = csv_validation_tester_01
execute_on = 'final'
[../]
[]
(examples/ex07_ics/transient.i)
[Mesh]
file = half-cone.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
# Use the initial Condition block underneath the variable
# for which we want to apply this initial condition
[./InitialCondition]
type = ExampleIC
coefficient = 2.0
[../]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 2
[../]
[./right]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 8
[../]
[]
[Executioner]
type = Transient
dt = 0.1
start_time = 0
num_steps = 10
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Outputs]
# Request that we output the initial condition so we can inspect
# the values with our visualization tool
exodus = true
[]
(test/tests/bcs/periodic/wedge.i)
[Mesh]
file = wedge.e
uniform_refine = 1
[]
[Functions]
active = 'tr_x tr_y'
[./tr_x]
type = ParsedFunction
expression = -x
[../]
[./tr_y]
type = ParsedFunction
expression = y
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = -0.5
y_center = 3.0
x_spread = 0.2
y_spread = 0.2
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
#active = ' '
[./Periodic]
[./x]
primary = 1
secondary = 2
transform_func = 'tr_x tr_y'
inv_transform_func = 'tr_x tr_y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_wedge
exodus = true
[]
(test/tests/multiapps/grid-sequencing/vi-fine.i)
l = 10
nx = 80
num_steps = 2
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds]
[]
[]
[Bounds]
[u_upper_bounds]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[]
[u_lower_bounds]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options = '-snes_vi_monitor'
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = 'upper_violations lower_violations'
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = '${fparse 10+1e-8}'
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
[MultiApps]
[coarse]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = vi-coarse.i
[]
[]
[Transfers]
[mesh_function_begin]
type = MultiAppGeneralFieldShapeEvaluationTransfer
from_multi_app = coarse
source_variable = u
variable = u
execute_on = timestep_begin
[]
[]
(test/tests/outputs/intervals/output_limiting_function.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Functions]
[test_function]
type = PiecewiseLinear
x = '0.15 0.375 0.892'
y = '1 1 1'
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 15
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
execute_on = 'timestep_end'
[out]
type = Exodus
output_limiting_function = test_function
sync_only = true
[]
[]
(modules/phase_field/test/tests/KKS_system/kks_example_nested_damped.i)
#
# Two-phase damped nested KKS with log-free energies
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = -2.5
xmax = 2.5
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Variables]
# order parameter
[eta]
order = FIRST
family = LAGRANGE
[]
# hydrogen concentration
[c]
order = FIRST
family = LAGRANGE
[]
# chemical potential
[w]
order = FIRST
family = LAGRANGE
[]
[]
[ICs]
[eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 1
outvalue = 0.0
int_width = 0.75
[]
[c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.9
outvalue = 0.1
int_width = 0.75
[]
[]
[BCs]
[Periodic]
[all]
variable = 'eta w c'
auto_direction = 'x y'
[]
[]
[]
[Materials]
# Free energy of the matrix
[fm]
type = DerivativeParsedMaterial
property_name = fm
expression = 'cm*log(cm/1e-4) + (1-cm)*log((1-cm)/(1-1e-4))'
material_property_names = 'cm'
additional_derivative_symbols = 'cm'
compute = false
[]
# Free energy of the delta phase
[fd]
type = DerivativeParsedMaterial
property_name = fd
expression = 'cd*log(cd/0.9999) + (1-cd)*log((1-cd)/(1-0.9999))'
material_property_names = 'cd'
additional_derivative_symbols = 'cd'
compute = false
[]
[C]
type = DerivativeParsedMaterial
property_name = 'C'
material_property_names = 'cm cd'
expression = '(cm>0)&(cm<1)&(cd>0)&(cd<1)'
compute = false
[]
# Compute phase concentrations
[PhaseConcentrationMaterial]
type = KKSPhaseConcentrationMaterial
global_cs = 'c'
ci_names = 'cm cd'
ci_IC = '0.1 0.9'
fa_name = fm
fb_name = fd
h_name = h
min_iterations = 1
max_iterations = 100
absolute_tolerance = 1e-15
relative_tolerance = 1e-8
step_size_tolerance = 1e-05
nested_iterations = iter
outputs = exodus
damped_Newton = true
conditions = C
damping_factor = 0.8
[]
# Compute chain rule terms
[PhaseConcentrationDerivatives]
type = KKSPhaseConcentrationDerivatives
global_cs = 'c'
eta = eta
ci_names = 'cm cd'
fa_name = fm
fb_name = fd
h_name = h
[]
# h(eta)
[h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[]
# g(eta)
[g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.4 '
[]
[]
[Kernels]
# full transient
active = 'CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
#
# Cahn-Hilliard Equation
#
[CHBulk]
type = NestedKKSSplitCHCRes
variable = c
global_cs = 'c'
w = w
all_etas = eta
ca_names = 'cm cd'
fa_name = fm
coupled_variables = 'eta w'
[]
[dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[]
[ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[]
#
# Allen-Cahn Equation
#
[ACBulkF]
type = NestedKKSACBulkF
variable = eta
global_cs = 'c'
ci_names = 'cm cd'
fa_name = fm
fb_name = fd
g_name = g
h_name = h
mob_name = L
w = 0.4
coupled_variables = 'c'
[]
[ACBulkC]
type = NestedKKSACBulkC
variable = eta
global_cs = 'c'
ci_names = 'cm cd'
fa_name = fm
h_name = h
mob_name = L
coupled_variables = 'c'
[]
[ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[]
[detadt]
type = TimeDerivative
variable = eta
[]
[]
[AuxKernels]
[GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fd
w = 0.4
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 3
dt = 1e-5
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[full]
type = SMP
full = true
[]
[]
[Outputs]
file_base = kks_example_nested_damped
exodus = true
[]
(test/tests/misc/check_error/time_integrator_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
# Don't allow multiple TimeIntegrators
scheme = 'implicit-euler'
[./TimeIntegrator]
type = 'ImplicitEuler'
[../]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(tutorials/tutorial02_multiapps/step01_multiapps/03_sub_subcycle.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/time_derivative_aux/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 2
[]
[Functions]
# These functions have implemented time derivatives
[some_function]
type = ParsedFunction
expression = t*(x+y)
[]
[some_other_function]
type = PiecewiseLinear
x = '0 0.05 0.15 0.25'
y = '1 2 3 4'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[reaction]
type = Reaction
variable = u
[]
[diffusion]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = NeumannBC
variable = u
value = 5
boundary = 'left'
[]
[]
[Materials]
[material]
type = GenericFunctorMaterial
prop_names = 'some_matprop'
prop_values = 'some_function'
[]
[]
[AuxVariables]
[variable_derivative]
family = MONOMIAL
order = CONSTANT
[]
inactive = 'variable_derivative_fv'
[variable_derivative_fv]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[function_derivative_qp]
family = MONOMIAL
order = FIRST
[]
[function_derivative_elem]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
# Time derivative of a nonlinear variable
[var_derivative]
type = TimeDerivativeAux
variable = variable_derivative
functor = u
factor = 10
execute_on = 'TIMESTEP_END'
[]
# this places the derivative of a FE variable in a FV one
# let's output a warning
inactive = 'var_derivative_to_fv'
[var_derivative_to_fv]
type = TimeDerivativeAux
variable = variable_derivative_fv
functor = u
[]
# Time derivative of a function: using the functor system
# Time derivative of a functor material property is not currently supported
[function_derivative_quadrature_point]
type = TimeDerivativeAux
variable = function_derivative_qp
functor = 'some_function'
factor = 2
execute_on = 'INITIAL TIMESTEP_END'
[]
[function_derivative_element]
type = TimeDerivativeAux
variable = function_derivative_elem
functor = 'some_other_function'
factor = 2
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/nodalkernels/high_order_time_integration/high_order_time_integration.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./exact_solution]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = v
[../]
[./f]
type = UserForcingFunctionNodalKernel
variable = v
function = t*t*t+4
[../]
[]
[AuxKernels]
[./exact]
type = FunctionAux
variable = exact_solution
function = exact_solution_function
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Functions]
[./exact_solution_function]
type = ParsedFunction
expression = (1.0/4.0)*(16*t+t*t*t*t)
[../]
[]
[Postprocessors]
[./error]
type = NodalL2Error
variable = v
function = exact_solution_function
[../]
[]
[Executioner]
type = Transient
end_time = 10
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
scheme = 'crank-nicolson'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/quad_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.01
ymax = 0.01
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.00001
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp]
type = Receiver
default = -1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_transient/pseudo_trans_with_2subs_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmax = 0.3
ymax = 0.3
[]
[AuxVariables]
[power_density]
[]
[]
[Variables]
[temp]
[]
[]
[Kernels]
[heat_timedt]
type = TimeDerivative
variable = temp
[]
[heat_conduction]
type = Diffusion
variable = temp
[]
[heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '1 3'
value = 100
[]
[bc2]
type = NeumannBC
variable = temp
boundary = '0 2'
value = 10.0
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
end_time = 20
dt = 2.0
[]
[Postprocessors]
[temp_fuel_avg]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[]
[pwr_density]
type = ElementIntegralVariablePostprocessor
variable = power_density
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_nonisothermal.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
initial_condition = 0.2
[]
[temperature]
initial_condition = 70
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.1
[]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_water]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_gas]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_water]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[enthalpy_water]
type = PorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = timestep_end
[]
[enthalpy_gas]
type = PorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = timestep_end
[]
[internal_energy_water]
type = PorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = timestep_end
[]
[internal_energy_gas]
type = PorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[heat]
type = TimeDerivative
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z temperature'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature = temperature
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/outputs/overwrite/overwrite.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
overwrite = true # testing this
[../]
[]
(test/tests/bcs/periodic/periodic_bc_displaced_problem.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
primary = 3
secondary = 1
translation = '40 0 0'
[../]
[./y]
variable = u
primary = 0
secondary = 2
translation = '0 40 0'
[../]
[../]
[./disp_0]
type = DirichletBC
variable = disp_x
boundary = '0'
value = 0.01
[../]
[./disp_1]
type = DirichletBC
variable = disp_y
boundary = '0'
value = 0.01
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 20
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_displaced_problem
exodus = true
[]
(test/tests/bcs/sin_bc/sin_dirichlet_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Functions]
[./initial_value]
type = ParsedFunction
expression = 'x'
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_value
[../]
[../]
[]
[Kernels]
active = 'diff ie'
[./diff]
type = Diffusion
variable = u
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = SinDirichletBC
variable = u
boundary = 3
initial = 0.0
final = 1.0
duration = 10.0
[../]
[./right]
type = SinDirichletBC
variable = u
boundary = 1
initial = 1.0
final = 0.0
duration = 10.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 10
dt = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard/picard_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
clone_parent_mesh = true
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(modules/stochastic_tools/test/tests/transfers/sobol/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[left_bc]
type = PointValue
point = '0 0 0'
variable = u
[]
[right_bc]
type = PointValue
point = '1 0 0'
variable = u
[]
[]
[Outputs]
csv = true
[]
(test/tests/misc/check_error/multi_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
# We can't control perf log output from a subapp
perf_graph = true
[]
(test/tests/interfacekernels/1d_interface/reaction_1D_transient.i)
# Transient-state test for the InterfaceReaction kernel.
#
# Same to steady-state, except the following
#
# Natural BCs are applied (i.e. NewmannBC h=0 at left and right)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'subdomain1'
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = MatDiffusion
diffusivity = D
variable = u
block = '0'
[../]
[./diff_v]
type = MatDiffusion
diffusivity = D
variable = v
block = '1'
[../]
[./diff_u_dt]
type = TimeDerivative
variable = u
block = '0'
[../]
[./diff_v_dt]
type = TimeDerivative
variable = v
block = '1'
[../]
[./source_u]
type = BodyForce
variable = u
block = '0'
[../]
[]
[InterfaceKernels]
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
D = D
D_neighbor = D
[../]
[./interface_reaction]
type = InterfaceReaction
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
kf = 1 # Forward reaction rate coefficient
kb = 2 # Backward reaction rate coefficient
[../]
[]
[Materials]
[./block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[../]
[./block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except07.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/single_var.i)
# No heat transfer between matrix and fracture, with the matrix and fracture being identical spatial domains
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 1
nx = 100
xmin = 0
xmax = 50.0
[]
[]
[Variables]
[T]
[]
[]
[ICs]
[T]
type = FunctionIC
variable = T
function = 'if(x<0.5, 2, 0)' # delta function
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = T
[]
[fracture_diffusion]
type = Diffusion
variable = T
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[VectorPostprocessors]
[final_results]
type = LineValueSampler
start_point = '0 0 0'
end_point = '50 0 0'
num_points = 11
sort_by = x
variable = T
outputs = final_csv
[]
[]
[Outputs]
print_linear_residuals = false
[final_csv]
type = CSV
sync_times = 100
sync_only = true
[]
[]
(test/tests/ics/from_exodus_solution/elem_part1.i)
# We run a simple problem (5 time steps and save off the solution)
# In part2, we load the solution and solve a steady problem. The test check, that the initial state in part 2 is the same as the last state from part1
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
[]
[Functions]
[exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[]
[forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[]
[]
[AuxVariables]
[e]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[ak]
type = FunctionAux
variable = e
function = exact_fn
[]
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'ie diff ffn'
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.2
start_time = 0
num_steps = 5
[]
[Outputs]
exodus = true
checkpoint = true
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_init_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 20.0
n_startup_steps = 2
dtmax = 6.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
dt = 1.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(modules/phase_field/test/tests/KKS_system/two_phase.i)
#
# This test ensures that the equilibrium solution using the dedicated two phase
# formulation is identical to the two order parameters with a Lagrange multiplier
# constraint in lagrange_multiplier.i
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 5
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Variables]
# order parameter
[eta]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# hydrogen concentration
[c]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = FunctionIC
function = x/5
[]
[]
# chemical potential
[w]
order = FIRST
family = LAGRANGE
[]
# hydrogen phase concentration (matrix)
[cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.2
[]
# hydrogen phase concentration (delta phase)
[cd]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
[]
[Materials]
# Free energy of the matrix
[fm]
type = DerivativeParsedMaterial
property_name = fm
coupled_variables = 'cm'
expression = '(0.1-cm)^2'
[]
# Free energy of the delta phase
[fd]
type = DerivativeParsedMaterial
property_name = fd
coupled_variables = 'cd'
expression = '(0.9-cd)^2'
[]
# h(eta)
[h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[]
# g(eta)
[g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.4 '
[]
[]
[Kernels]
# full transient
active = 'PhaseConc ChemPotVacancies CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cm + h(eta)*cd
[PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[]
# enforce pointwise equality of chemical potentials
[ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[]
#
# Cahn-Hilliard Equation
#
[CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[]
[dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[]
[ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[]
#
# Allen-Cahn Equation
#
[ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
coupled_variables = 'cm cd'
w = 0.4
[]
[ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
mob_name = L
[]
[ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
mob_name = L
[]
[detadt]
type = TimeDerivative
variable = eta
[]
[]
[AuxKernels]
[GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fd
w = 0.4
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
num_steps = 35
dt = 10
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[full]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[c]
type = LineValueSampler
variable = c
start_point = '0 0 0'
end_point = '5 0 0'
num_points = 21
sort_by = x
[]
[]
[Outputs]
csv = true
execute_on = FINAL
[]
(test/tests/outputs/intervals/no_final_repeat.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
execute_on = 'final timestep_end'
[../]
[]
(modules/phase_field/test/tests/initial_conditions/SpecifiedSmoothSuperellipsoidIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SpecifiedSmoothSuperellipsoidIC
variable = c
x_positions = '15 35'
y_positions = '25.0 25.0'
z_positions = '0 0'
as = '8.0 8.0'
bs = '12.0 8.0'
cs = '60.0 8.0'
ns = '3.5 2.0'
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
(test/tests/postprocessors/memory_usage/print_memory_usage.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Adaptivity]
[./Markers]
[./uni]
type = UniformMarker
mark = REFINE
[../]
[../]
# this marker will tag every element for refinement, growing the problem
# exponentially with each timestep
marker = uni
# avoid a refine after the final step
stop_time = 4.5
[]
[Postprocessors]
[./physical]
type = MemoryUsage
mem_type = physical_memory
value_type = total
# by default MemoryUsage reports the peak value for the current timestep
# out of all samples that have been taken (at linear and non-linear iterations)
execute_on = 'INITIAL TIMESTEP_END NONLINEAR LINEAR'
[../]
[./virtual]
type = MemoryUsage
mem_type = virtual_memory
value_type = total
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./page_faults]
type = MemoryUsage
mem_type = page_faults
value_type = total
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./DOFs]
type = NumDOFs
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./walltime]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_abs_tol = 1e-10
num_steps = 5
dt = 1
[]
[Outputs]
csv = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
perf_graph = true
[]
(test/tests/multiapps/relaxation/picard_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
initial_condition = 1
[]
[inverse_v]
initial_condition = 1
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = inverse_v
[]
[]
[AuxKernels]
[invert_v]
type = QuotientAux
variable = inverse_v
denominator = v
numerator = 20.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[Neumann_right]
type = NeumannBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = picard_relaxed_sub.i
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(modules/phase_field/test/tests/Nucleation/material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 20
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
variable = c
value = 0
[../]
[./right]
type = DirichletBC
boundary = right
variable = c
value = 1
[../]
[./Periodic]
[./all]
auto_direction = y
[../]
[../]
[]
[Kernels]
[./c]
type = Diffusion
variable = c
[../]
[./dt]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./nucleation]
type = DiscreteNucleation
op_names = c
op_values = 1
map = map
outputs = exodus
[../]
[]
[UserObjects]
[./inserter]
type = DiscreteNucleationInserter
hold_time = 1
probability = 0.01
radius = 3.27
[../]
[./map]
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 10
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
hide = c
[]
(test/tests/time_integrators/crank-nicolson/cranic_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = sin(pi*x)*sin(pi*y)+2*t*pi*pi*sin(pi*x)*sin(pi*y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*sin(pi*x)*sin(pi*y)
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
# Use the block format instead of the scheme parameter
[./TimeIntegrator]
type = CrankNicolson
[../]
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/userobjects/setup_interface_count/side.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = SideSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./timestep] # once per timestep
type = SideSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./subdomain] # 1 on initial and for each timestep
type = SideSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = SideSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = SideSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./execute] # 4 for initial and 8 for each timestep
type = SideSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./threadjoin] # 1 for initial and 2 for each timestep
type = SideSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/misc/intermittent_failure/intermittent_failure.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
# This object will behave different on different invocations if
# MOOSE_ENABLE_INTERMITTENT_FAILURES is set
[UserObjects]
[intermittent_failure]
type = IntermittentFailureUO
timestep_to_fail = 2
[]
[]
(test/tests/postprocessors/default_value/default_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = DefaultPostprocessorDiffusion
variable = u
#pps_name = invalid_postprocessor_name
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.1
num_steps = 10
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/calc_const_dt/calc_const_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
end_time = 2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_parent_no_path.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
positions = '0.5 0.5 0'
type = TransientMultiApp
input_files = 'phase_field_sub.i'
# Here we'll attempt to load a different module that's not compiled into this module
app_type = PhaseFieldApp
[]
[]
(modules/porous_flow/test/tests/functions/mpf_except1.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = u
[]
[]
[Functions]
[moving_planar_front]
type = MovingPlanarFront
start_posn = '1 1 0'
end_posn = '1 1 0'
active_length = 1
distance = t
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 10
[]
[Outputs]
file_base = mpf_except1.i
exodus = true
[]
(modules/solid_mechanics/test/tests/jacobian/poro01.i)
# tests of the poroelasticity kernel, PoroMechanicsCoupling
# in conjunction with the usual StressDivergenceTensors Kernel
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = -1
max = 1
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = -1
max = 1
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = -1
max = 1
[../]
[./p]
type = RandomIC
variable = p
min = -1
max = 1
[../]
[]
[Kernels]
[./unimportant_p]
type = TimeDerivative
variable = p
[../]
[./grad_stress_x]
type = StressDivergenceTensors
displacements = 'disp_x disp_y disp_z'
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = p
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
porepressure = p
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
porepressure = p
component = 2
[../]
[./This_is_not_poroelasticity._It_is_checking_diagonal_jacobian]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = disp_x
component = 0
[../]
[./This_is_not_poroelasticity._It_is_checking_diagonal_jacobian_again]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = disp_x
component = 1
[../]
[./This_is_not_poroelasticity._It_is_checking_offdiagonal_jacobian_for_disps]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = disp_y
component = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 0.54
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(test/tests/outputs/csv/csv_restart_part1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./mid]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
checkpoint = true
[]
(test/tests/multiapps/picard_multilevel/2level_picard/sub_level2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[w]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = w
[]
[diffusion]
type = Diffusion
variable = w
[]
[source]
type = CoupledForce
variable = w
v = v
[]
[]
[BCs]
[dirichlet0]
type = DirichletBC
variable = w
boundary = '3'
value = 0
[]
[dirichlet]
type = DirichletBC
variable = w
boundary = '1'
value = 100
[]
[]
[Postprocessors]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_begin timestep_end'
[]
[avg_w]
type = ElementAverageValue
variable = w
execute_on = 'initial timestep_begin timestep_end'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
end_time = 0.1
dt = 0.02
[]
[Outputs]
exodus = true
[screen]
type = Console
execute_postprocessors_on= "timestep_end timestep_begin"
[]
[]
(test/tests/userobjects/layered_base_restartable/layered_base_restartable.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./np_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./np_layered_average]
type = SpatialUserObjectAux
variable = np_layered_average
execute_on = 'timestep_begin'
user_object = npla
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./one]
type = DirichletBC
variable = u
boundary = 'right back top'
value = 12
[../]
[]
[UserObjects]
[./npla]
type = NearestPointLayeredAverage
direction = y
points = '0.25 0 0.25 0.75 0 0.25 0.25 0 0.75 0.75 0 0.75'
num_layers = 10
variable = u
execute_on = 'timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 8
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/dirackernels/point_caching/point_caching_moving_mesh.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
# Mesh is dispaced by Aux variables computed by predetermined functions
displacements = 'disp_x disp_y'
[]
[Functions]
[disp_x_fn]
type = ParsedFunction
expression = t
[]
[disp_y_fn]
type = ParsedFunction
expression = 0
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxKernels]
[disp_x_auxk]
type = FunctionAux
variable = disp_x
function = disp_x_fn
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[disp_y_auxk]
type = FunctionAux
variable = disp_y
function = disp_y_fn
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[DiracKernels]
[point_source]
type = CachingPointSource
variable = u
# This is appropriate for this test, since we want the Dirac
# points to be found in elements on the displaced Mesh.
use_displaced_mesh = true
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 4
dt = .1
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/multiapps/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '1. 0. 0.'
input_files = sub.i
execute_on = 'initial timestep_end'
output_in_position = true
[../]
[]
[Controls]
[./multiapp]
type = TimePeriod
disable_objects = 'MultiApps::sub'
start_time = '0'
end_time = '0.25'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/variables/get_elemental_value/get_elemental_value.i)
# Tests the getElementalValue function of MooseVariableFE.
#
# The tested aux copies the first elemental value of another variable. The
# setup is the following IVP:
# du/dt = 1
# u(0) = 0
# Therefore the solution is u(t) = t. Five time steps of dt = 1 are taken.
# The expected output for each time level is thus the following:
# current: [0,1,2,3,4,5]
# old: [0,0,1,2,3,4]
# older: [0,0,0,1,2,3]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./copied_var]
[../]
[]
[AuxVariables]
[./test_var]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./test_var_aux]
type = GetElementalValueAux
variable = test_var
copied_variable = copied_var
# The parameter "time_level" is provided by tests file
[../]
[]
[ICs]
[./copied_var_ic]
type = ConstantIC
variable = copied_var
value = 0
[../]
[]
[Kernels]
[./time_der]
type = TimeDerivative
variable = copied_var
[../]
[./src]
type = BodyForce
variable = copied_var
function = 1
[../]
[]
[Executioner]
type = Transient
scheme = implicit-euler
dt = 1
num_steps = 5
abort_on_solve_fail = true
solve_type = NEWTON
[]
[Postprocessors]
[./test_pp]
type = ElementAverageValue
variable = test_var
[../]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/multiple_position_files/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/checkpoint/checkpoint_child.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[]
(test/tests/multiapps/restart_multilevel/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[u_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[fn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
app_type = MooseTestApp
type = TransientMultiApp
input_files = 'subsub.i'
execute_on = timestep_end
positions = '0 -1 0'
[]
[]
[Transfers]
[from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[]
[]
(test/tests/restart/restart_add_variable/transient_with_stateful.i)
# We run a simple problem (5 time steps and save off the solution)
# In part2, we load the solution and solve a steady problem. The test check, that the initial state in part 2 is the same as the last state from part1
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./diffusivity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./out_diffusivity]
type = MaterialRealAux
variable = diffusivity
property = diffusivity
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = diffusivity
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Materials]
[./mat]
type = StatefulMaterial
block = 0
initial_diffusivity = 0.5
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.2
start_time = 0
num_steps = 5
[]
[Outputs]
checkpoint = true
[./out]
type = Exodus
elemental_as_nodal = true
execute_elemental_on = none
[../]
[]
(test/tests/multiapps/detect_steady_state/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmax = 10
ymax = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
steady_state_tol = 1e-5
detect_steady_state = true
[../]
[]
(tutorials/tutorial02_multiapps/step03_coupling/02_sub_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[ut]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[force]
type = CoupledForce
variable = v
v = ut
coef = 100
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
nl_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[average_v]
type = ElementAverageValue
variable = v
[]
[]
(modules/phase_field/test/tests/initial_conditions/CrossIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
x1 = 0.0
x2 = 50.0
y1 = 0.0
y2 = 50.0
variable = c
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 2.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 2
dt = 20.0
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/no_multiapp.i)
# A fracture, which is a 1D line of elements, is embedded in a matrix, which is a 2D surface of elements.
# The meshes conform: all fracture nodes are also matrix nodes (the fracture elements are sides of matrix elements).
# The overall mesh has two blocks, named "matrix" and "fracture".
#
# Two variables are defined:
# - frac_T, which is the temperature inside the fracture;
# - matrix_T, which is the temperature in the matrix.
# frac_T is governed by a diffusion equation along the 1D fracture.
# matrix_T is governed by a diffusion equation in the 2D matrix, with small diffusion coefficient.
# Heat is exchanged between the two systems via a heat-transfer coefficient, defined on the fracture subdomain, using two PorousFlowHeatMassTransfer Kernels
#
# If the mesh is too coarse, overshoots and undershoots in matrix_T can be observed.
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 20
xmin = 0
xmax = 10.0
ny = 20 # anything less than this produces over/under-shoots
ymin = -2
ymax = 2
[]
[matrix_subdomain]
type = RenameBlockGenerator
input = generate
old_block = 0
new_block = matrix
[]
[fracture_sideset]
type = ParsedGenerateSideset
input = matrix_subdomain
combinatorial_geometry = 'y>-1E-6 & y<1E-6'
normal = '0 1 0'
new_sideset_name = fracture_sideset
[]
[fracture_subdomain]
type = LowerDBlockFromSidesetGenerator
input = fracture_sideset
new_block_id = 1
new_block_name = fracture
sidesets = fracture_sideset
[]
[]
[Variables]
[frac_T]
block = fracture
[]
[matrix_T]
# Needs to be defined on both blocks, so PorousFlowHeatMassTransfer works appropriately
# Kernels for diffusion are on block=matrix only
[]
[]
[BCs]
[frac_T]
type = DirichletBC
variable = frac_T
boundary = left
value = 1
[]
[]
[Kernels]
[dot_frac_T]
type = CoefTimeDerivative
Coefficient = 1E-2
variable = frac_T
block = fracture
[]
[fracture_diffusion]
type = AnisotropicDiffusion
variable = frac_T
tensor_coeff = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
block = fracture
[]
[toMatrix]
type = PorousFlowHeatMassTransfer
block = fracture
variable = frac_T
v = matrix_T
transfer_coefficient = 0.02
[]
[dot_matrix_T]
type = TimeDerivative
variable = matrix_T
block = matrix
[]
[matrix_diffusion]
type = AnisotropicDiffusion
variable = matrix_T
tensor_coeff = '1E-3 0 0 0 1E-3 0 0 0 1E-3'
block = matrix
[]
[fromFracture]
type = PorousFlowHeatMassTransfer
block = fracture
variable = matrix_T
v = frac_T
transfer_coefficient = 0.02
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[VectorPostprocessors]
[frac_T]
type = NodalValueSampler
block = fracture
outputs = frac_T
sort_by = x
variable = frac_T
[]
[]
[Outputs]
print_linear_residuals = false
exodus = false
[frac_T]
type = CSV
execute_on = FINAL
[]
[]
(test/tests/multiapps/picard_multilevel/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[v2]
[]
[]
[Kernels]
[diff_v]
type = Diffusion
variable = v
[]
[coupled_force]
type = CoupledForce
variable = v
v = v2
[]
[td_v]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[]
[]
[Postprocessors]
# Accumulate the number of times 'timestep_end' is reached
# (which is an indicator of the number of Picard iterations)
[cumulative_picard_its_pp]
type = TestPostprocessor
test_type = custom_execute_on
execute_on = 'timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub2]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub2.i
sub_cycling = true
execute_on = timestep_end
[]
[]
[Transfers]
[v2]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub2
source_variable = v
variable = v2
[]
[]
(modules/stochastic_tools/test/tests/samplers/AdaptiveImportanceSampler/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0.0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1.0
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
(modules/phase_field/test/tests/mobility_derivative/AC_mobility_derivative_coupled_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
xmax = 50
ymin = 25
ymax = 50
[]
[Variables]
[./op]
[../]
[./v]
[../]
[]
[ICs]
[./op_IC]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 15.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
variable = op
[../]
[./v_IC]
type = BoundingBoxIC
x1 = 0.0
x2 = 25.0
y1 = 0.0
y2 = 50.0
inside = 1.0
outside = 0.0
variable = v
[../]
[]
[Kernels]
[./op_dot]
type = TimeDerivative
variable = op
[../]
[./op_bulk]
type = AllenCahn
variable = op
f_name = F
mob_name = L
coupled_variables = v
[../]
[./op_interface]
type = ACInterface
variable = op
kappa_name = 1
mob_name = L
coupled_variables = v
[../]
[./v_dot]
type = TimeDerivative
variable = v
[../]
[./v_diff]
type = MatDiffusion
variable = v
diffusivity = 50.0
[../]
[]
[Materials]
[./consts]
type = DerivativeParsedMaterial
property_name = L
expression = 'l:=0.1+1*(v+op)^2; if(l<0.01, 0.01, l)'
coupled_variables = 'op v'
outputs = exodus
output_properties = 'L dL/dop dL/dv'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'op'
expression = '2*op^2*(1-op)^2 - 0.2*op'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 15
nl_rel_tol = 1.0e-9
start_time = 0.0
num_steps = 10
dt = 0.2
[]
[Outputs]
time_step_interval = 5
print_linear_residuals = false
exodus = true
[]
(test/tests/kernels/adv_diff_reaction/adv_diff_reaction_transient_test.i)
[Mesh]
dim = 2
file = Mesh12.e
[]
[Variables]
active = 'phi'
[./phi]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
active = 'trans advection diffusion source'
[./trans]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = Advection0
variable = phi
Au = 10.
Bu = -6.
Cu = 5.
Av = 10.
Bv = 8.
Cv = -1.
[../]
[./diffusion]
type = Diffusion0
variable = phi
Ak = 10.
Bk = 0.1
Ck = 0.1
[../]
[./source]
type = ForcingFunctionXYZ0
variable = phi
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
Au = 10.
Bu = -6.
Cu = 5.
Av = 10.
Bv = 8.
Cv = -1.
Ak = 10.
Bk = 0.1
Ck = 0.1
[../]
[]
[BCs]
active = 'btm_sca rgt_sca top_sca lft_sca'
[./btm_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 1
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[./rgt_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 2
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[./top_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 3
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[./lft_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 4
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[]
[Executioner]
type = Transient #Steady
scheme = bdf2
nl_rel_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_factor_levels -pc_factor_mat_ordering_type'
petsc_options_value = '20 rcm'
start_time = 0.0
end_time = 1.
num_steps = 60000
dt = .2
n_startup_steps = 0
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except02.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
mass_fraction_component = 1
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(test/tests/multiapps/sub_cycling/sub_negative.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = -1.0
end_time = 0
[TimeStepper]
type = IterationAdaptiveDT
cutback_factor = 0.666
dt = 0.2
[]
[]
[Outputs]
exodus = true
[]
(test/tests/dirackernels/nonlinear_source/nonlinear_source.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./ddt_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ddt_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[DiracKernels]
[./nonlinear_source]
type = NonlinearSource
variable = u
coupled_var = v
scale_factor = 1000
point = '0.2 0.3 0'
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Preconditioning]
[./precond]
type = SMP
# 'full = true' is required for computeOffDiagJacobian() to get
# called. If you comment this out, you should see that this test
# requires more linear and nonlinear iterations.
full = true
# Added to test Jacobian contributions for Dirac Kernels
# Options that do not seem to do anything for this problem? -snes_check_jacobian -snes_check_jacobian_view
# petsc_options = '-snes_test_display' # print out all the matrix entries
# petsc_options_iname = '-snes_type'
# petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON' # NEWTON provides a more stringent test of off-diagonal Jacobians
num_steps = 5
dt = 1
dtmin = 1
l_max_its = 100
nl_max_its = 6
nl_abs_tol = 1.e-13
[]
[Postprocessors]
# A PointValue postprocessor at the Dirac point location
[./point_value]
type = PointValue
variable = u
point = '0.2 0.3 0'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/to_sub/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./b]
family = SCALAR
order = SIXTH
[../]
[]
[Kernels]
[./diffusion]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
[]
[Outputs]
hide = 'u'
exodus = true
[]
(test/tests/postprocessors/relative_solution_difference_norm/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
expression = '2 - t'
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Postprocessors]
[./rsn]
type = RelativeSolutionDifferenceNorm
execute_on = TIMESTEP_END
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/power_law_creep/ad_restart2.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[]
[]
[Functions]
[top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[u_top_pull]
type = ADPressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[]
[u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[]
[radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[]
[power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.6
end_time = 1.0
num_steps = 12
dt = 0.1
[]
[Outputs]
exodus = true
[]
[Problem]
restart_file_base = ad_restart1_out_cp/0006
# temp has an initial condition despite the restart
allow_initial_conditions_with_restart = true
[]
(test/tests/mesh/adapt_weight/adapt_weight_test.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
weight_names = 'u'
weight_values = '1.0'
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/multiapps/reset/multilevel_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub.i
output_in_position = true
reset_apps = 0
reset_time = 0.05
[../]
[]
(test/tests/auxkernels/element_aux_boundary/high_order_boundary_aux.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[real_property]
family = MONOMIAL
order = SECOND
[]
[]
[AuxKernels]
[real_property]
type = MaterialRealAux
variable = real_property
property = real_property
boundary = '0 2'
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 0
value = 3
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[]
[Materials]
[boundary_mat]
type = OutputTestMaterial
boundary = '0 1 2 3'
real_factor = 2
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/two_pipe_parent.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 5
nx = 5
ymin = 0
ymax = 5
ny = 5
zmin = 0
zmax = 5
nz = 5
[]
[./blocks]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '1 1 0'
top_right = '4 4 5'
[../]
[]
[AuxVariables]
[./from_sub_app_var]
order = CONSTANT
family = MONOMIAL
block = 1
initial_condition = 0
[../]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = front
value = -1
[]
[right]
type = DirichletBC
variable = u
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 5
solve_type = 'NEWTON'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = final
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = two_pipe_sub.i
app_type = MooseTestApp
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[layered_transfer_from_sub_app]
type = MultiAppGeneralFieldUserObjectTransfer
source_user_object = sub_app_uo
variable = from_sub_app_var
from_multi_app = sub_app
# Bounding box checks miss the right locations because of mismatch of coordinates
fixed_bounding_box_size = '100 100 100'
from_app_must_contain_point = false
[]
[]
(python/peacock/tests/common/transient.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
(modules/optimization/test/tests/executioners/transient_and_adjoint/multi_variable.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
[]
[Variables]
[u]
[]
[v]
[]
[u_adjoint]
solver_sys = adjoint
[]
[v_adjoint]
solver_sys = adjoint
[]
[]
[Kernels]
[time_u]
type = TimeDerivative
variable = u
[]
[time_v]
type = TimeDerivative
variable = v
[]
[diff_u]
type = Diffusion
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[uv]
type = CoupledForce
variable = u
v = v
coef = 10
[]
[vu]
type = CoupledForce
variable = v
v = u
coef = 1
[]
[src_u]
type = BodyForce
variable = u
value = 1
[]
[src_u_adjoint]
type = BodyForce
variable = u_adjoint
value = 0
[]
[src_v_adjoint]
type = BodyForce
variable = v_adjoint
value = 1
[]
[]
[BCs]
[dirichlet_u]
type = DirichletBC
variable = u
boundary = 'top right'
value = 0
[]
[dirichlet_v]
type = DirichletBC
variable = v
boundary = 'top right'
value = 0
[]
[]
[Executioner]
type = TransientAndAdjoint
forward_system = nl0
adjoint_system = adjoint
dt = 0.2
num_steps = 5
nl_rel_tol = 1e-12
l_tol = 1e-12
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[u_adjoint_avg]
type = ElementAverageValue
variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[v_avg]
type = ElementAverageValue
variable = v
execute_on = 'TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[v_adjoint_avg]
type = ElementAverageValue
variable = v_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[u_inner_product]
type = VariableInnerProduct
variable = u
second_variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[v_inner_product]
type = VariableInnerProduct
variable = v
second_variable = v_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[]
[Outputs]
[forward]
type = CSV
[]
[adjoint]
type = CSV
execute_on = 'INITIAL ADJOINT_TIMESTEP_END'
[]
[console]
type = Console
execute_postprocessors_on = 'INITIAL TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[]
(modules/phase_field/test/tests/initial_conditions/SmoothSuperellipsoidIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SmoothSuperellipsoidIC
variable = c
x1 = 25.0
y1 = 25.0
a = 8.0
b = 12.0
n = 3.5
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
(test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[v2]
[]
[v3]
[]
[w]
[]
[]
[AuxKernels]
[set_w]
type = NormalizationAux
variable = w
source_variable = v
normal_factor = 0.1
[]
[]
[Kernels]
[diff_v]
type = Diffusion
variable = v
[]
[coupled_force]
type = CoupledForce
variable = v
v = v2
[]
[coupled_force2]
type = CoupledForce
variable = v
v = v3
[]
[td_v]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left_v]
type = FunctionDirichletBC
variable = v
boundary = left
function = func
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[]
[]
[Functions]
[func]
type = ParsedFunction
expression = 'if(t < 2.5, 1, 1 / t)'
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[parent_time]
type = Receiver
execute_on = 'timestep_end'
[]
[parent_dt]
type = Receiver
execute_on = 'timestep_end'
[]
[time]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[dt]
type = TimestepSize
execute_on = 'timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 2 # deliberately make it fail at 2 to test the time step rejection behavior
nl_rel_tol = 1e-5 # loose enough to force multiple Picard iterations on this example
l_tol = 1e-5 # loose enough to force multiple Picard iterations on this example
fixed_point_rel_tol = 1e-8
num_steps = 2
[]
[MultiApps]
[sub2]
type = TransientMultiApp
positions = '0 0 0'
input_files = picard_sub2.i
execute_on = timestep_end
[]
[]
[Transfers]
[v_to_v3]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub2
source_variable = v
variable = v3
[]
[w]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub2
source_variable = w
variable = w
[]
[time_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = time
to_postprocessor = sub_time
to_multi_app = sub2
[]
[dt_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = dt
to_postprocessor = sub_dt
to_multi_app = sub2
[]
[matser_time_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = time
to_postprocessor = parent_time
to_multi_app = sub2
[]
[parent_dt_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = dt
to_postprocessor = parent_dt
to_multi_app = sub2
[]
[]
(modules/porous_flow/test/tests/jacobian/line_sink02.i)
# PorousFlowPolyLineSink with 2-phase, 3-components, with enthalpy, internal_energy, and thermal_conductivity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 2
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph0_sp1]
[]
[massfrac_ph1_sp0]
[]
[massfrac_ph1_sp1]
[]
[temp]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp ppwater ppgas massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[dummy_outflow]
type = PorousFlowSumQuantity
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
min = 1
max = 2
[]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph0_sp1]
type = RandomIC
variable = massfrac_ph0_sp1
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp1]
type = RandomIC
variable = massfrac_ph1_sp1
min = 0
max = 1
[]
[]
[Kernels]
[dummy_temp]
type = TimeDerivative
variable = temp
[]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m01]
type = TimeDerivative
variable = massfrac_ph0_sp1
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[dummy_m11]
type = TimeDerivative
variable = massfrac_ph1_sp1
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
cv = 1.1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
cv = 1.8
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.1 0.2 0.3 0.2 0 0.1 0.3 0.1 0.1'
[]
[]
[DiracKernels]
[dirac0]
type = PorousFlowPolyLineSink
fluid_phase = 0
variable = ppwater
point_file = one_point.bh
line_length = 1
SumQuantityUO = dummy_outflow
p_or_t_vals = '-0.9 1.5'
fluxes = '-1.1 2.2'
[]
[dirac1]
type = PorousFlowPolyLineSink
fluid_phase = 1
variable = ppgas
line_length = 1
use_relative_permeability = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -2.2'
[]
[dirac2]
type = PorousFlowPolyLineSink
fluid_phase = 0
variable = massfrac_ph0_sp0
line_length = 1.3
use_mobility = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -0.2'
[]
[dirac3]
type = PorousFlowPolyLineSink
fluid_phase = 0
variable = massfrac_ph0_sp1
line_length = 1.3
use_enthalpy = true
mass_fraction_component = 0
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -0.2'
[]
[dirac4]
type = PorousFlowPolyLineSink
fluid_phase = 1
variable = massfrac_ph1_sp0
function_of = temperature
line_length = 0.9
mass_fraction_component = 1
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -0.2'
[]
[dirac5]
type = PorousFlowPolyLineSink
fluid_phase = 1
variable = temp
line_length = 0.9
mass_fraction_component = 2
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -0.2'
[]
[dirac6]
type = PorousFlowPolyLineSink
fluid_phase = 1
variable = massfrac_ph0_sp0
use_mobility = true
function_of = temperature
mass_fraction_component = 1
use_relative_permeability = true
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '0 -0.2'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = line_sink02
[]
(test/tests/constraints/overwrite_variables/test_balance.i)
# Test to exemplify the use of overwriting of variables in the framework.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
diffusivity = 1e3
use_displaced_mesh = true
[]
[Mesh]
[block_one]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = 4.5
xmax = 5.5
ymin = 4.5
ymax = 5.5
zmin = 0.0001
zmax = 1.0001
boundary_name_prefix = 'ball'
[]
[block_two]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 10
ymin = 0.0
ymax = 10
zmin = -2
zmax = 0
boundary_name_prefix = 'base'
boundary_id_offset = 10
[]
[block_one_id]
type = SubdomainIDGenerator
input = block_one
subdomain_id = 1
[]
[block_two_id]
type = SubdomainIDGenerator
input = block_two
subdomain_id = 2
[]
[combine]
type = MeshCollectionGenerator
inputs = ' block_one_id block_two_id'
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[gap_rate]
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[disp_z]
type = MatDiffusion
variable = disp_z
[]
[vel_x]
type = TimeDerivative
variable = disp_x
[]
[vel_y]
type = TimeDerivative
variable = disp_y
[]
[vel_z]
type = TimeDerivative
variable = disp_z
[]
[source_m]
type = BodyForce
variable = disp_z
value = -100
[]
[]
[BCs]
[x_front]
type = DirichletBC
variable = disp_x
boundary = 'ball_front'
preset = false
value = 0.0
[]
[y_front]
type = DirichletBC
variable = disp_y
boundary = 'ball_front'
preset = false
value = 0.0
[]
[x_fixed]
type = DirichletBC
variable = disp_x
boundary = 'base_back'
value = 0.0
preset = true
[]
[y_fixed]
type = DirichletBC
variable = disp_y
boundary = 'base_back'
value = 0.0
preset = true
[]
[z_fixed]
type = DirichletBC
variable = disp_z
boundary = 'base_back'
value = 0.0
preset = true
[]
[z_fixed_front]
type = DirichletBC
variable = disp_z
boundary = 'base_front'
value = 0.0
preset = true
[]
[]
[Constraints]
[overwrite]
type = ExplicitDynamicsOverwrite
model = frictionless_balance
primary = base_front
secondary = ball_back
vel_x = 'vel_x'
vel_y = 'vel_y'
vel_z = 'vel_z'
primary_variable = disp_x
boundary = 'base_front'
component = 0
variable = disp_x
gap_rate = gap_rate
[]
[]
[Materials]
[density_one]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e5
outputs = 'exodus'
output_properties = 'density'
block = '1'
[]
[density_two]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e5
outputs = 'exodus'
output_properties = 'density'
block = '2'
[]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = -0.008
dt = 1.0e-5
timestep_tolerance = 1e-6
[TimeIntegrator]
type = CentralDifference
solve_type = lumped
[]
[]
[Outputs]
interval = 50
exodus = true
csv = true
[]
[Postprocessors]
[]
(test/tests/postprocessors/element_variable_value/elemental_variable_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 1
ymax = 0.1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 10
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./elem_left]
type = ElementalVariableValue
variable = u
elementid = 0
[]
[./elem_right]
type = ElementalVariableValue
variable = u
elementid = 9
[]
[]
[Outputs]
csv = true
[]
(test/tests/functions/piecewise_multilinear/twoD_const.i)
# PiecewiseMultilinear function tests in 2D
# See [Functions] block for a description of the tests
# The functions are compared with ParsedFunctions using postprocessors
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 2
nx = 4
ymin = -1
ymax = 1
ny = 4
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./constant]
family = MONOMIAL
order = CONSTANT
[../]
[./constant_ref]
family = MONOMIAL
order = CONSTANT
[../]
[./diff]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./const_AuxK]
type = FunctionAux
variable = constant
function = const_fcn
[../]
[./const_ref_AuxK]
type = FunctionAux
variable = constant_ref
function = const_ref
[../]
[./diff]
type = ParsedAux
variable = diff
expression = 'constant - constant_ref'
coupled_variables = 'constant constant_ref'
[../]
[]
[Functions]
[./const_fcn]
type = PiecewiseMulticonstant
direction = 'left right'
data_file = twoD_const.txt
[../]
[./const_ref]
type = ParsedFunction
expression = '
ix := if(x < 0.5, 0, if(x < 1, 1, 2));
iy := if(y > 0, 2, if(y > -0.5, 1, 0));
iy * 3 + ix
'
[../]
[]
[Postprocessors]
[./diff_pp]
type = ElementIntegralVariablePostprocessor
variable = diff
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = twoD_const
hide = dummy
exodus = true
[]
(modules/porous_flow/test/tests/jacobian/hfrompps.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[pressure]
[]
[temperature]
[]
[]
[ICs]
[pressure_ic]
type = ConstantIC
variable = pressure
value = 1
[]
[temperature_ic]
type = ConstantIC
variable = temperature
value = 4
[]
[]
[Kernels]
[p_td]
type = TimeDerivative
variable = pressure
[]
[energy_dot]
type = TimeDerivative
variable = temperature
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
[]
[]
[DiracKernels]
[source_h]
type = PorousFlowPointEnthalpySourceFromPostprocessor
variable = temperature
mass_flux = mass_flux_in
point = '0.5 0.5 0'
T_in = T_in
pressure = pressure
fp = simple_fluid
[]
[]
[Preconditioning]
[preferred]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_test_err'
petsc_options_value = ' lu 1e-6'
[]
[]
[Postprocessors]
[mass_flux_in]
type = FunctionValuePostprocessor
function = 1
execute_on = 'initial timestep_end'
[]
[T_in]
type = FunctionValuePostprocessor
function = 1
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-14
dt = 1
num_steps = 1
[]
(test/tests/controls/time_periods/multiapps/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.2
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
start_time = 0.3 # set to match start time of MultiApp in parent
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/power_law_creep/cp_power_law_creep.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[]
[]
[Functions]
[top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[]
[u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[]
[radial_return_stress]
type = ComputeCreepPlasticityStress
creep_model = power_law_creep
plasticity_model = isotropic_plasticity
tangent_operator = elastic
[]
[power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 1e30
hardening_constant = 0.0
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
(test/tests/controls/output/controllable_clear.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = u
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Outputs]
controls = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/*/point'
execute_on = 'initial'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/unstabilized-velocity-component-objects.i)
[Mesh]
file = '2d_cone.msh'
coord_type = RZ
[]
[Variables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[p][]
[]
[Kernels]
[momentum_x_time]
type = TimeDerivative
variable = vel_x
[]
[momentum_x_convection]
type = ADAdvection
variable = vel_x
velocity = 'velocity'
[]
[momentum_x_diffusion]
type = MatDiffusion
variable = vel_x
diffusivity = 1
[]
[momentum_x_diffusion_rz]
type = ADMomentumViscousRZ
variable = vel_x
mu_name = 1
component = 0
[]
[momentum_x_pressure]
type = PressureGradient
integrate_p_by_parts = true
variable = vel_x
pressure = p
component = 0
[]
[momentum_y_time]
type = TimeDerivative
variable = vel_y
[]
[momentum_y_convection]
type = ADAdvection
variable = vel_y
velocity = 'velocity'
[]
[momentum_y_diffusion]
type = MatDiffusion
variable = vel_y
diffusivity = 1
[]
[momentum_y_diffusion_rz]
type = ADMomentumViscousRZ
variable = vel_y
mu_name = 1
component = 1
[]
[momentum_y_pressure]
type = PressureGradient
integrate_p_by_parts = true
variable = vel_y
pressure = p
component = 1
[]
[mass]
type = ADMassAdvection
variable = p
vel_x = vel_x
vel_y = vel_y
[]
[]
[BCs]
[u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[]
[v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[]
[u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[]
[v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[]
[]
[Materials]
[vel]
type = ADVectorFromComponentVariablesMaterial
vector_prop_name = 'velocity'
u = vel_x
v = vel_y
[]
[]
[Functions]
[inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(test/tests/functions/piecewise_multilinear/twoDa.i)
# PiecewiseMultilinear function tests in 2D
# See [Functions] block for a description of the tests
# The functions are compared with ParsedFunctions using postprocessors
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 6
ymin = 0
ymax = 1
ny = 6
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./bilinear1_var]
[../]
[]
[AuxKernels]
[./bilinear1_AuxK]
type = FunctionAux
variable = bilinear1_var
function = bilinear1_fcn
[../]
[]
[Functions]
# This is just f = 1 + 2x + 3y
[./bilinear1_fcn]
type = PiecewiseMultilinear
data_file = twoD1.txt
[../]
[./bilinear1_answer]
type = ParsedFunction
expression = 1+2*x+3*y
[../]
[]
[Postprocessors]
[./bilinear1_pp]
type = NodalL2Error
function = bilinear1_answer
variable = bilinear1_var
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = twoDa
hide = dummy
csv = true
[]
(test/tests/postprocessors/pps_interval/pps_bad_interval2.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
file_base = ignore_bad
exodus = true
[./console]
type = Console
time_step_interval = 2
[../]
[]
(test/tests/tag/controls-tagging.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Controls]
[doff]
type = TimePeriod
enable_objects = 'DiracKernel::point_source'
disable_objects = 'DiracKernel::point_source2'
start_time = 0
end_time = 2
[]
[]
[DiracKernels]
[./point_source]
type = FunctionDiracSource
variable = u
function = 1
point = '0.3 0.3 0.0'
[../]
[./point_source2]
type = FunctionDiracSource
variable = u
function = 1
point = '-0.3 -0.3 0.0'
[../]
[]
[BCs]
[./external]
type = NeumannBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1
l_tol = 1e-03
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/grid-sequencing/fine.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 40
[]
[Variables]
[u]
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[rxn]
type = Reaction
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = 'PJFNK'
petsc_options = '-snes_monitor_solution'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[coarse]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = coarse.i
[]
[]
[Transfers]
[mesh_function_begin]
type = MultiAppGeneralFieldShapeEvaluationTransfer
from_multi_app = coarse
source_variable = u
variable = u
execute_on = timestep_begin
[]
[]
(modules/phase_field/test/tests/KKS_system/kks_example_split.i)
#
# KKS toy problem in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = -2.5
xmax = 2.5
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# hydrogen phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
# hydrogen phase concentration (delta phase)
[./cd]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.2
outvalue = 0.1
int_width = 0.75
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.6
outvalue = 0.4
int_width = 0.75
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'eta w c cm cd'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
property_name = fm
coupled_variables = 'cm'
expression = '(0.1-cm)^2'
[../]
# Free energy of the delta phase
[./fd]
type = DerivativeParsedMaterial
property_name = fd
coupled_variables = 'cd'
expression = '(0.9-cd)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.4 '
[../]
[]
[Kernels]
# full transient
active = 'PhaseConc ChemPotVacancies CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cm + h(eta)*cd
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
coupled_variables = 'cm cd'
w = 0.4
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fd
w = 0.4
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 3
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kks_example_split
exodus = true
[]
(modules/stochastic_tools/test/tests/multiapps/dynamic_sub_app_number/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[center]
type = PointValue
variable = u
point = '0.5 0 0'
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
(test/tests/meshgenerators/distributed_rectilinear/generator/distributed_rectilinear_mesh_generator_adaptivity.i)
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 2
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[../]
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/application_block_multiapps/application_block_unregistered_sub.i)
[Application]
type = DummyApp
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/perf_graph/multi_app/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(test/tests/time_steppers/constant_dt_regrowth/constant_dt_regrowth.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_steps = '3'
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialSintering_test.i)
#input file to test the materials GrandPotentialTensorMaterial
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 17
xmin = 0
xmax = 680
ymin = 0
ymax = 680
uniform_refine = 1
[]
[GlobalParams]
op_num = 4
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./T]
order = CONSTANT
family = MONOMIAL
[../]
[./F_loc]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 490 190 490'
y_positions = '190 190 490 490'
z_positions = ' 0 0 0 0'
radii = '150 150 150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 490
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr2_IC]
type = SmoothCircleIC
variable = gr2
x1 = 190
y1 = 490
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr3_IC]
type = SmoothCircleIC
variable = gr3
x1 = 490
y1 = 490
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[]
[Materials]
# Free energy coefficients for parabolic curves
[./ks]
type = ParsedMaterial
property_name = ks
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.0025 157.16'
expression = 'a*T + b'
[../]
[./kv]
type = ParsedMaterial
property_name = kv
material_property_names = 'ks'
expression = '10*ks'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
outputs = exodus
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 gr2 gr3 T'
constant_names = 'Ef c_GB kB'
constant_expressions = '2.69 0.189 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2 + gr2^2 + gr3^2; exp(-Ef/kB/T) + 4.0 * c_GB * (1 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
solid_energy_coefficient = ks
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = PARABOLIC
[../]
# Concentration is only meant for output
[./c]
type = ParsedMaterial
property_name = c
material_property_names = 'hs rhos hv rhov'
constant_names = 'Va'
constant_expressions = '0.04092'
expression = 'Va*(hs*rhos + hv*rhov)'
outputs = exodus
[../]
[./f_bulk]
type = ParsedMaterial
property_name = f_bulk
coupled_variables = 'phi gr0 gr1 gr2 gr3'
material_property_names = 'mu gamma'
expression = 'mu*(phi^4/4-phi^2/2 + gr0^4/4-gr0^2/2 + gr1^4/4-gr1^2/2
+ gr2^4/4-gr2^2/2 + gr3^4/4-gr3^2/2
+ gamma*(phi^2*(gr0^2+gr1^2+gr2^2+gr3^2) + gr0^2*(gr1^2+gr2^2+gr3^2)
+ gr1^2*(gr2^2 + gr3^2) + gr2^2*gr3^2) + 0.25)'
outputs = exodus
[../]
[./f_switch]
type = ParsedMaterial
property_name = f_switch
coupled_variables = 'w'
material_property_names = 'chi'
expression = '0.5*w^2*chi'
outputs = exodus
[../]
[./f0]
type = ParsedMaterial
property_name = f0
material_property_names = 'f_bulk f_switch'
expression = 'f_bulk + f_switch'
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_gr2]
type = TimeDerivative
variable = gr2
[../]
[./dt_gr3]
type = TimeDerivative
variable = gr3
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[./F_aux]
type = TotalFreeEnergy
variable = F_loc
f_name = f0
interfacial_vars = 'phi gr0 gr1 gr2 gr3'
kappa_names = 'kappa kappa kappa kappa kappa'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/dt2/dt2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD4
[]
[GlobalParams]
slope = 1
t_jump = 2
[]
[Functions]
active = 'u_func'
[./u_func]
type = ParsedFunction
expression = 'atan((t-2)*pi)' # atan((t-t_jump)*pi*slope) - has to match global params above
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = TEIC
[../]
[../]
[]
[Kernels]
active = 'td diff ffn'
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = TEJumpFFN
variable = u
[../]
[]
[BCs]
active = 'all'
[./all]
type = TEJumpBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Postprocessors]
active = 'dt l2'
[./dt]
type = TimestepSize
[../]
[./l2]
type = ElementL2Error
variable = u
function = u_func
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-7
# l_tol = 1e-5
start_time = 0.0
end_time = 5
num_steps = 500000
dtmax = 0.25
[./TimeStepper]
type = DT2
dt = 0.1
e_max = 3e-1
e_tol = 1e-1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/outputs/intervals/minimum_time_interval.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
[out]
type = CSV
minimum_time_interval = 0.21
[]
[]
(tutorials/tutorial02_multiapps/step02_transfers/01_parent_meshfunction.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[tv]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = '01_sub_meshfunction.i'
[]
[]
[Transfers]
[pull_v]
type = MultiAppShapeEvaluationTransfer
# Transfer from the sub-app to this app
from_multi_app = sub_app
# The name of the variable in the sub-app
source_variable = v
# The name of the auxiliary variable in this app
variable = tv
[]
[push_u]
type = MultiAppShapeEvaluationTransfer
# Transfer to the sub-app from this app
to_multi_app = sub_app
# The name of the variable in this app
source_variable = u
# The name of the auxiliary variable in the sub-app
variable = tu
[]
[]
(test/tests/multiapps/catch_up/failing_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_steps = '2'
[../]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the parent solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/jacobian/pls02.i)
# PorousFlowPiecewiseLinearSink with 2-phase, 2-components
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 3
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph1_sp0]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater ppgas massfrac_ph0_sp0 massfrac_ph1_sp0'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[ICs]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[]
[Kernels]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[]
[BCs]
[flux_w]
type = PorousFlowPiecewiseLinearSink
boundary = 'left'
pt_vals = '-1 -0.5 0'
multipliers = '1 2 4'
variable = ppwater
mass_fraction_component = 0
fluid_phase = 0
use_relperm = true
use_mobility = true
flux_function = 'x*y'
[]
[flux_g]
type = PorousFlowPiecewiseLinearSink
boundary = 'top'
pt_vals = '0 0.5 1'
multipliers = '1 -2 4'
mass_fraction_component = 0
variable = ppgas
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '-x*y'
[]
[flux_1]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
pt_vals = '0 0.5 1'
multipliers = '1 3 4'
mass_fraction_component = 1
variable = massfrac_ph0_sp0
fluid_phase = 0
use_relperm = true
use_mobility = true
[]
[flux_2]
type = PorousFlowPiecewiseLinearSink
boundary = 'back top'
pt_vals = '0 0.5 1'
multipliers = '0 1 -3'
mass_fraction_component = 1
variable = massfrac_ph1_sp0
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '0.5*x*y'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 2
[]
[Outputs]
file_base = pls02
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_dtfunc_restart.i)
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[]
[Executioner]
type = Transient
end_time = 20.0
verbose = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 1.0
optimal_iterations = 10
time_t = '0.0 5.0'
time_dt = '1.0 5.0'
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[]
[Outputs]
csv = true
checkpoint = false
[]
[Problem]
restart_file_base=adapt_tstep_grow_dtfunc_ckp_cp/0003
[]
(modules/optimization/examples/materialTransient/forward.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[]
[Variables/u]
initial_condition = 0
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = MatDiffusion
variable = u
diffusivity = D
[]
[src]
type = BodyForce
variable = u
value = 1
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'right top'
value = 0
[]
[]
[Materials]
[diffc]
type = GenericFunctionMaterial
prop_names = 'D'
prop_values = 'diffc_fun'
output_properties = 'D'
outputs = 'exodus'
[]
[]
[Functions]
[diffc_fun]
type = NearestReporterCoordinatesFunction
value_name = 'diffc_rep/D_vals'
x_coord_name = 'diffc_rep/D_x_coord'
y_coord_name = 'diffc_rep/D_y_coord'
[]
[]
[Reporters]
[diffc_rep]
type = ConstantReporter
real_vector_names = 'D_x_coord D_y_coord D_vals'
real_vector_values = '0.25 0.75 0.25 0.75;
0.25 0.25 0.75 0.75;
1 0.2 0.2 0.05' # Reference solution
outputs = none
[]
[data]
type = OptimizationData
variable = u
measurement_points = '0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0
0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0
0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0
0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0
0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0
0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0
0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0
0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0
0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0
0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0'
measurement_times = '0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2
0.3 0.3 0.3 0.3
0.4 0.4 0.4 0.4
0.5 0.5 0.5 0.5
0.6 0.6 0.6 0.6
0.7 0.7 0.7 0.7
0.8 0.8 0.8 0.8
0.9 0.9 0.9 0.9
1.0 1.0 1.0 1.0'
measurement_values = '0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0'
objective_name = objective_value
outputs = none
[]
[]
[Postprocessors]
[D1]
type = PointValue
variable = D
point = '0.25 0.25 0'
[]
[D2]
type = PointValue
variable = D
point = '0.75 0.25 0'
[]
[D3]
type = PointValue
variable = D
point = '0.25 0.75 0'
[]
[D4]
type = PointValue
variable = D
point = '0.75 0.75 0'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-12
dt = 0.1
num_steps = 10
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/outputs/perf_graph/multi_app/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0'
type = TransientMultiApp
input_files = 'sub.i'
app_type = MooseTestApp
[../]
[]
(test/tests/dampers/min_damping/min_elem_damping.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./u_dt]
type = TimeDerivative
variable = u
[../]
[./u_source]
type = BodyForce
variable = u
value = 1
[../]
[]
[BCs]
[./u_left]
type = DirichletBC
boundary = left
variable = u
value = 0.0
[../]
[]
[Dampers]
[./limit]
type = BoundingValueElementDamper
variable = u
max_value = 1.5
min_value = -1.5
min_damping = 0.001
[../]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
[../]
[./dt]
type = TimestepSize
[../]
[]
(test/tests/multiapps/restart_subapp_ic/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
ymin = 0
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[Functions]
[v_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[]
[AuxVariables]
[v]
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[ufn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = v_fn
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
checkpoint = true
[]
[MultiApps]
[sub_app]
app_type = MooseTestApp
type = TransientMultiApp
input_files = 'sub.i'
execute_on = timestep_end
positions = '0 -1 0'
[]
[]
[Transfers]
[from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[]
[]
(test/tests/bcs/sin_bc/sin_neumann_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Functions]
[./initial_value]
type = ParsedFunction
expression = 'x'
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
# [./InitialCondition]
# type = FunctionIC
# function = initial_value
# [../]
[../]
[]
[Kernels]
active = 'diff ie'
[./diff]
type = Diffusion
variable = u
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right]
type = SinNeumannBC
variable = u
boundary = 1
initial = 1.0
final = 2.0
duration = 10.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 10
dt = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/fixed_point_iteration_adaptive_dt/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
execute_on = 'TIMESTEP_END'
[]
[fp_its]
type = NumFixedPointIterations
execute_on = 'TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 10
fixed_point_rel_tol = 1e-8
nl_abs_tol = 1e-14
verbose = true
[TimeStepper]
type = FixedPointIterationAdaptiveDT
dt_initial = 0.1
target_iterations = 6
target_window = 0
increase_factor = 2.0
decrease_factor = 0.5
[]
[]
[Outputs]
file_base = 'increase_dt'
[csv]
type = CSV
execute_on = 'TIMESTEP_END'
[]
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test4.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i)
# Test for ComputeExtraStressVDWGas
# Gas bubble with r = 15 nm in a solid matrix
# The gas pressure is counterbalanced by the surface tension of the solid-gas interface,
# which is included with ComputeSurfaceTensionKKS
[Mesh]
type = GeneratedMesh
dim = 1
nx = 300
xmin = 0
xmax = 30
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# gas concentration
[./cg]
order = FIRST
family = LAGRANGE
[../]
# vacancy concentration
[./cv]
order = FIRST
family = LAGRANGE
[../]
# gas chemical potential
[./wg]
order = FIRST
family = LAGRANGE
[../]
# vacancy chemical potential
[./wv]
order = FIRST
family = LAGRANGE
[../]
# Matrix phase gas concentration
[./cgm]
order = FIRST
family = LAGRANGE
initial_condition = 1.01e-31
[../]
# Matrix phase vacancy concentration
[./cvm]
order = FIRST
family = LAGRANGE
initial_condition = 2.25e-11
[../]
# Bubble phase gas concentration
[./cgb]
order = FIRST
family = LAGRANGE
initial_condition = 0.2714
[../]
# Bubble phase vacancy concentration
[./cvb]
order = FIRST
family = LAGRANGE
initial_condition = 0.7286
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./cv_ic]
variable = cv
type = FunctionIC
function = ic_func_cv
[../]
[./cg_ic]
variable = cg
type = FunctionIC
function = ic_func_cg
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
symbol_names = 'delta_eta r0'
symbol_values = '0.321 15'
[../]
[./ic_func_cv]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cvbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cvmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
symbol_names = 'delta r0 cvbubinit cvmatrixinit'
symbol_values = '0.321 15 0.7286 2.25e-11'
[../]
[./ic_func_cg]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cgbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cgmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
symbol_names = 'delta r0 cgbubinit cgmatrixinit'
symbol_values = '0.321 15 0.2714 1.01e-31'
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce cg = (1-h(eta))*cgm + h(eta)*cgb
[./PhaseConc_g]
type = KKSPhaseConcentration
ca = cgm
variable = cgb
c = cg
eta = eta
[../]
# enforce cv = (1-h(eta))*cvm + h(eta)*cvb
[./PhaseConc_v]
type = KKSPhaseConcentration
ca = cvm
variable = cvb
c = cv
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cvm
cb = cvb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cgm'
args_b = 'cgb'
[../]
[./ChemPotGas]
type = KKSPhaseChemicalPotential
variable = cgm
cb = cgb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cvm'
args_b = 'cvb'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk_g]
type = KKSSplitCHCRes
variable = cg
ca = cgm
fa_name = f_total_matrix
w = wg
args_a = 'cvm'
[../]
[./CHBulk_v]
type = KKSSplitCHCRes
variable = cv
ca = cvm
fa_name = f_total_matrix
w = wv
args_a = 'cgm'
[../]
[./dcgdt]
type = CoupledTimeDerivative
variable = wg
v = cg
[../]
[./dcvdt]
type = CoupledTimeDerivative
variable = wv
v = cv
[../]
[./wgkernel]
type = SplitCHWRes
mob_name = M
variable = wg
[../]
[./wvkernel]
type = SplitCHWRes
mob_name = M
variable = wv
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_bub
w = 0.356
args = 'cvm cvb cgm cgb'
[../]
[./ACBulkCv]
type = KKSACBulkC
variable = eta
ca = cvm
cb = cvb
fa_name = f_total_matrix
args = 'cgm'
[../]
[./ACBulkCg]
type = KKSACBulkC
variable = eta
ca = cgm
cb = cgb
fa_name = f_total_matrix
args = 'cvm'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
property_name = fm
coupled_variables = 'cvm cgm'
material_property_names = 'kvmatrix kgmatrix cvmatrixeq cgmatrixeq'
expression = '0.5*kvmatrix*(cvm-cvmatrixeq)^2 + 0.5*kgmatrix*(cgm-cgmatrixeq)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
property_name = f_total_matrix
sum_materials = 'fm fe_m'
coupled_variables = 'cvm cgm'
[../]
# Free energy of the bubble phase
[./fb]
type = DerivativeParsedMaterial
property_name = fb
coupled_variables = 'cvb cgb'
material_property_names = 'kToverV nQ Va b f0 kpen kgbub kvbub cvbubeq cgbubeq'
expression = '0.5*kgbub*(cvb-cvbubeq)^2 + 0.5*kvbub*(cgb-cgbubeq)^2'
[../]
# Elastic energy of the bubble
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = bub
f_name = fe_b
args = ' '
[../]
# Total free energy of the bubble
[./Total_energy_bub]
type = DerivativeSumMaterial
property_name = f_total_bub
sum_materials = 'fb fe_b'
# sum_materials = 'fb'
coupled_variables = 'cvb cgb'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa Va kvmatrix kgmatrix kgbub kvbub f0 kpen cvbubeq cgbubeq b T'
prop_values = '0.7 0.7 0.0368 0.03629 223.16 223.16 2.23 2.23 0.0224 1.0 0.6076 0.3924 0.085 800'
[../]
[./cvmatrixeq]
type = ParsedMaterial
property_name = cvmatrixeq
material_property_names = 'T'
constant_names = 'kB Efv'
constant_expressions = '8.6173324e-5 1.69'
expression = 'exp(-Efv/(kB*T))'
[../]
[./cgmatrixeq]
type = ParsedMaterial
property_name = cgmatrixeq
material_property_names = 'T'
constant_names = 'kB Efg'
constant_expressions = '8.6173324e-5 4.92'
expression = 'exp(-Efg/(kB*T))'
[../]
[./kToverV]
type = ParsedMaterial
property_name = kToverV
material_property_names = 'T Va'
constant_names = 'k C44dim' #k in J/K and dimensional C44 in J/m^3
constant_expressions = '1.38e-23 63e9'
expression = 'k*T*1e27/Va/C44dim'
[../]
[./nQ]
type = ParsedMaterial
property_name = nQ
material_property_names = 'T'
constant_names = 'k Pi M hbar' #k in J/K, M is Xe atomic mass in kg, hbar in J s
constant_expressions = '1.38e-23 3.14159 2.18e-25 1.05459e-34'
expression = '(M*k*T/2/Pi/hbar^2)^1.5 * 1e-27' #1e-27 converts from #/m^3 to #/nm^3
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '0.778 0.7935'
fill_method = symmetric_isotropic
base_name = matrix
[../]
[./Stiffness_bub]
type = ComputeElasticityTensor
C_ijkl = '0.0778 0.07935'
fill_method = symmetric_isotropic
base_name = bub
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_bub]
type = ComputeRSphericalSmallStrain
base_name = bub
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_bub]
type = ComputeLinearElasticStress
base_name = bub
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = bub
[../]
[./surface_tension]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.356
[../]
[./gas_pressure]
type = ComputeExtraStressVDWGas
T = T
b = b
cg = cgb
Va = Va
nondim_factor = 63e9
base_name = bub
outputs = exodus
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-11
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_small_invalue_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SpecifiedSmoothCircleIC
variable = c
invalue = -0.8
outvalue = 1
int_width = 5
x_positions = '25 32'
z_positions = '0 0'
y_positions = '25 32'
radii = '6 5'
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.5'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 5
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/flood_counter_aux_test/boundary_intersection.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 50
xmax = 10
ymax = 50
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
order = CONSTANT
family = MONOMIAL
[]
[pid]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[dot]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[intersect]
type = FeatureFloodCountAux
variable = v
flood_counter = intersection
field_display = INTERSECTS_SPECIFIED_BOUNDARY
execute_on = 'initial timestep_end'
[]
[pid]
type = ProcessorIDAux
variable = pid
[]
[]
[ICs]
[v]
type = BoundingBoxIC
variable = u
inside = 1
outside = 0
x1 = 3
x2 = 7
y1 = 0
y2 = 45
[]
[]
[Postprocessors]
[intersection]
type = FeatureFloodCount
variable = u
threshold = 0.3
specified_boundaries = bottom
compute_var_to_feature_map = true
execute_on = 'initial timestep_end'
[]
[vint]
type = ElementIntegralVariablePostprocessor
variable = v
[]
[]
[Executioner]
type = Transient
dt = 0.01
num_steps = 2
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(test/tests/outputs/oversample/over_sampling_test_file.i)
[Mesh]
type = FileMesh
file = square_3x3.e
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[../]
[]
[Variables]
active = 'u'
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'ie diff ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '1 2 3 4'
function = exact_fn
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.2
start_time = 0
num_steps = 5
[]
[Outputs]
file_base = out_file
exodus = true
[./oversampling]
file_base = out_file_oversample
type = Exodus
refinements = 3
[../]
[]
(modules/phase_field/test/tests/mobility_derivative/matdiffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmax = 15.0
ymax = 15.0
elem_type = QUAD4
[]
[Variables]
[./c]
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[./d]
[./InitialCondition]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 8
int_width = 3
invalue = 2
outvalue = 0
[../]
[../]
[]
[Kernels]
[./cres]
type = MatDiffusion
variable = c
diffusivity = Dc
args = d
[../]
[./ctime]
type = TimeDerivative
variable = c
[../]
[./dres]
type = MatDiffusion
variable = d
diffusivity = Dd
args = c
[../]
[./dtime]
type = TimeDerivative
variable = d
[../]
[]
[Materials]
[./Dc]
type = DerivativeParsedMaterial
property_name = Dc
expression = '0.01+c^2+d'
coupled_variables = 'c d'
derivative_order = 1
[../]
[./Dd]
type = DerivativeParsedMaterial
property_name = Dd
expression = 'd^2+c+1.5'
coupled_variables = 'c d'
derivative_order = 1
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
dt = 1
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler_lump_preconditioned.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.0001
l_tol = 1e-12
[./TimeIntegrator]
type = ActuallyExplicitEuler
solve_type = lump_preconditioned
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/displaced/displaced_adapt_test.i)
# Adaptivity on displaced problem
# - testing initial_refinement and adaptivity as well
#
# variables:
# - u and v_aux are used for displacing the problem
# - v is used to get some refinements
#
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 3
displacements = 'u aux_v'
[]
[Functions]
[./aux_v_fn]
type = ParsedFunction
expression = x*(y-0.5)/5
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 0.1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[AuxVariables]
[./aux_v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./aux_k_1]
type = FunctionAux
variable = aux_v
function = aux_v_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
[./out]
type = Exodus
use_displaced = true
[../]
[]
(test/tests/problems/reference_residual_problem/abs_ref_acceptable.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[GlobalParams]
absolute_value_vector_tags = 'absref'
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'absref'
extra_tag_vectors = 'absref'
acceptable_iterations = 1
acceptable_multiplier = 1e6
[]
[Variables]
[u][]
[v]
scaling = 1e-6
[]
[]
[Functions]
[ramp]
type = ParsedFunction
expression = 'if(t < 5, t - 5, 0) * x'
[]
[]
[Kernels]
[u_dt]
type = TimeDerivative
variable = u
[]
[u_coupled_rx]
type = CoupledForce
variable = u
v = v
coef = 1
[]
[v_dt]
type = TimeDerivative
variable = v
[]
[v_neg_force]
type = BodyForce
variable = v
value = ${fparse -1 / 2}
function = ramp
[]
[v_force]
type = BodyForce
variable = v
value = 1
function = ramp
[]
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END INITIAL'
[]
[v_avg]
type = ElementAverageValue
variable = v
execute_on = 'TIMESTEP_END INITIAL'
[]
[timestep]
type = TimePostprocessor
outputs = 'none'
[]
[v_old]
type = ElementAverageValue
variable = v
execute_on = TIMESTEP_BEGIN
outputs = none
[]
[u_old]
type = ElementAverageValue
variable = u
execute_on = TIMESTEP_BEGIN
outputs = none
[]
[v_exact]
type = ParsedPostprocessor
pp_names = 'timestep v_old'
expression = 't := if(timestep > 5, 5, timestep); (t^2 - 9 * t) / 8'
[]
[u_exact]
type = ParsedPostprocessor
pp_names = 'u_old v_exact'
expression = 'u_old + v_exact'
[]
[]
[Executioner]
type = Transient
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = none
num_steps = 3
nl_rel_tol = 1e-06
verbose = true
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/postprocessors/element_time_derivative/element_time_derivative_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./forcing_fn2]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
expression = t*x*y
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn2
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./elementAvgTimeDerivative]
type = ElementAverageTimeDerivative
variable = u
[../]
[./elementAvgValue]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
scheme = implicit-euler
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_elm_time_deriv
csv = true
[]
(modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/phase_field_sub.i)
# This input file contains objects only available in phase_field
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[./InitialCondition]
type = BoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
inside = 1.0
outside = -0.8
variable = c
[../]
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
block = 0
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 2
dt = 1.0
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/matrix_app_nonconforming.i)
# A fracture, which is a 1D line of elements, is embedded in a matrix, which is a 2D surface of elements.
# The meshes conform: all fracture nodes are also matrix nodes (the fracture elements are sides of matrix elements).
#
# The heat equation governs temperature in the fracture and matrix system, and heat energy is transferred between the two using a MultiApp approach
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 20
xmin = 0
xmax = 10.0
ny = 20
ymin = -1.9
ymax = 2.1
[]
[]
[Variables]
[matrix_T]
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = matrix_T
[]
[matrix_diffusion]
type = AnisotropicDiffusion
variable = matrix_T
tensor_coeff = '1E-3 0 0 0 1E-3 0 0 0 1E-3'
[]
[]
[DiracKernels]
[heat_from_fracture]
type = ReporterPointSource
variable = matrix_T
value_name = heat_transfer_rate/transferred_joules_per_s
x_coord_name = heat_transfer_rate/x
y_coord_name = heat_transfer_rate/y
z_coord_name = heat_transfer_rate/z
[]
[]
[VectorPostprocessors]
[heat_transfer_rate]
type = ConstantVectorPostprocessor
vector_names = 'transferred_joules_per_s x y z'
value = '0; 0; 0; 0'
outputs = none
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[Outputs]
print_linear_residuals = false
exodus = false
[]
[MultiApps]
[fracture_app]
type = TransientMultiApp
input_files = fracture_app_dirac.i
cli_args = 'Kernels/toMatrix/transfer_coefficient=0.01'
execute_on = TIMESTEP_BEGIN
[]
[]
[Transfers]
[T_to_fracture]
type = MultiAppGeometricInterpolationTransfer
to_multi_app = fracture_app
source_variable = matrix_T
variable = transferred_matrix_T
[]
[heat_from_fracture]
type = MultiAppReporterTransfer
from_multi_app = fracture_app
from_reporters = 'heat_transfer_rate/joules_per_s heat_transfer_rate/x heat_transfer_rate/y heat_transfer_rate/z'
to_reporters = 'heat_transfer_rate/transferred_joules_per_s heat_transfer_rate/x heat_transfer_rate/y heat_transfer_rate/z'
[]
[]
(test/tests/kernels/conservative_advection/no_upwinding_1D.i)
# ConservativeAdvection with upwinding_type = None
# Apply a velocity = (1, 0, 0) and see a pulse advect to the right
# Note there are overshoots and undershoots
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./u]
[../]
[]
[BCs]
[./u_injection_left]
type = InflowBC
boundary = left
variable = u
velocity = '1 0 0'
inlet_conc = 1
[../]
[]
[Kernels]
[./udot]
type = TimeDerivative
variable = u
[../]
[./advection]
type = ConservativeAdvection
variable = u
velocity = '1 0 0'
[../]
[]
[Executioner]
type = Transient
solve_type = LINEAR
dt = 0.1
end_time = 1
l_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/steffensen/transient_main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[coupling_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[unorm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'steffensen'
fixed_point_max_its = 30
transformed_variables = 'u'
[]
[Outputs]
csv = true
exodus = false
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'transient_sub.i'
clone_parent_mesh = true
execute_on = 'timestep_begin'
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
execute_on = 'timestep_begin'
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
execute_on = 'timestep_begin'
[]
[]
(test/tests/transfers/multiapp_userobject_transfer/tosub_displaced_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
initial_condition = 0.0
[../]
[./disp_y]
initial_condition = 0.5
[../]
[]
[Functions]
[./axial_force]
type = ParsedFunction
expression = 1000*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = axial_force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
coord_type = rz
type = FEProblem
[]
(modules/porous_flow/test/tests/jacobian/hgs01.i)
# apply a half-gaussian sink flux and observe the correct behavior
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph1_sp0]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater ppgas massfrac_ph0_sp0 massfrac_ph1_sp0'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[ICs]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[]
[Kernels]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[]
[BCs]
[flux_w]
type = PorousFlowHalfGaussianSink
boundary = 'left'
center = 0.1
sd = 1.1
max = 2.2
variable = ppwater
mass_fraction_component = 0
fluid_phase = 0
use_relperm = true
use_mobility = true
flux_function = 'x*y'
[]
[flux_g]
type = PorousFlowHalfGaussianSink
boundary = 'top left front'
center = 0.5
sd = 1.1
max = -2.2
mass_fraction_component = 0
variable = ppgas
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '-x*y'
[]
[flux_1]
type = PorousFlowHalfGaussianSink
boundary = 'right'
center = -0.1
sd = 1.1
max = 1.2
mass_fraction_component = 1
variable = massfrac_ph0_sp0
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '-1.1*x*y'
[]
[flux_2]
type = PorousFlowHalfGaussianSink
boundary = 'bottom'
center = 3.2
sd = 1.1
max = 1.2
mass_fraction_component = 1
variable = massfrac_ph1_sp0
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '0.5*x*y'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 2
[]
[Outputs]
file_base = pls03
[]
(test/tests/postprocessors/scalar_variable/scalar_variable_pps.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[ScalarKernels]
[time]
type = ODETimeDerivative
variable = v
[]
[flux_sink]
type = PostprocessorSinkScalarKernel
variable = v
postprocessor = scale_flux
[]
[]
[BCs]
[right]
type = DirichletBC
value = 0
variable = u
boundary = 'right'
[]
[left]
type = ADMatchedScalarValueBC
variable = u
v = v
boundary = 'left'
[]
[]
[Variables]
[u][]
[v]
family = SCALAR
order = FIRST
initial_condition = 1
[]
[]
[Postprocessors]
[flux]
type = SideDiffusiveFluxIntegral
variable = u
diffusivity = 1
boundary = 'left'
execute_on = 'initial nonlinear linear timestep_end'
[]
[scale_flux]
type = ScalePostprocessor
scaling_factor = -1
value = flux
execute_on = 'initial nonlinear linear timestep_end'
[]
[reporter]
type = ScalarVariable
variable = v
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
dt = .1
end_time = 1
solve_type = PJFNK
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
(test/tests/misc/check_error/invalid_steady_exec_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
# Time kernel in a steady state simulation
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
[]
(modules/phase_field/examples/multiphase/GrandPotential3Phase_masscons.i)
# This is an example of implementation of the multi-phase, multi-order parameter
# grand potential based phase-field model described in Phys. Rev. E, 98, 023309
# (2018). It includes 3 phases with 1 grain of each phase.
# This is a revised version of the model that eliminates small variations in mass
# that have been observed with the original formulation. In this version, rather
# than evolving the chemical potential as a field variable, we evolve the composition
# field using a normal Cahn-Hilliard equation, then relate chemical potential to
# composition using Eq. (22) from the paper (this relationship is derived from the
# grand potential functional and is valid only for parabolic free energies).
[Mesh]
type = GeneratedMesh
dim = 2
nx = 60
ny = 60
xmin = -15
xmax = 15
ymin = -15
ymax = 15
[]
[Variables]
[w]
[]
[c]
[]
[etaa0]
[]
[etab0]
[]
[etad0]
[]
[]
[ICs]
[IC_etaa0]
type = BoundingBoxIC
variable = etaa0
x1 = -10
y1 = -10
x2 = 10
y2 = 10
inside = 1.0
outside = 0.0
[]
[IC_etad0]
type = BoundingBoxIC
variable = etad0
x1 = -10
y1 = -10
x2 = 10
y2 = 10
inside = 0.0
outside = 1.0
[]
[IC_c]
type = BoundingBoxIC
variable = c
x1 = -10
y1 = -10
x2 = 10
y2 = 10
inside = 0.1
outside = 0.5
[]
[IC_w]
type = FunctionIC
variable = w
function = ic_func_w
[]
[]
[Functions]
[ic_func_w]
type = ConstantFunction
value = 0
[]
[]
[Kernels]
# Order parameter eta_alpha0
[ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etad0'
gamma_names = 'gab gad'
[]
[ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etab0 etad0 w'
[]
[ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[]
[ea0_dot]
type = TimeDerivative
variable = etaa0
[]
# Order parameter eta_beta0
[ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etad0'
gamma_names = 'gab gbd'
[]
[ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etad0 w'
[]
[ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[]
[eb0_dot]
type = TimeDerivative
variable = etab0
[]
# Order parameter eta_delta0
[ACd0_bulk]
type = ACGrGrMulti
variable = etad0
v = 'etaa0 etab0'
gamma_names = 'gad gbd'
[]
[ACd0_sw]
type = ACSwitching
variable = etad0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 w'
[]
[ACd0_int]
type = ACInterface
variable = etad0
kappa_name = kappa
[]
[ed0_dot]
type = TimeDerivative
variable = etad0
[]
#Concentration
[c_dot]
type = TimeDerivative
variable = c
[]
[Diffusion]
type = MatDiffusion
variable = c
v = w
diffusivity = DchiVm
args = ''
[]
#The following relate chemical potential to composition using Eq. (22)
[w_rxn]
type = MatReaction
variable = w
v = c
reaction_rate = -1
[]
[ca_rxn]
type = MatReaction
variable = w
reaction_rate = 'hoverk_a'
args = 'etaa0 etab0 etad0'
[]
[ca_bodyforce]
type = MaskedBodyForce
variable = w
mask = ha
coupled_variables = 'etaa0 etab0 etad0'
value = 0.1 #caeq
[]
[cb_rxn]
type = MatReaction
variable = w
reaction_rate = 'hoverk_b'
args = 'etaa0 etab0 etad0'
[]
[cb_bodyforce]
type = MaskedBodyForce
variable = w
mask = hb
coupled_variables = 'etaa0 etab0 etad0'
value = 0.9 #cbeq
[]
[cd_rxn]
type = MatReaction
variable = w
reaction_rate = 'hoverk_d'
args = 'etaa0 etab0 etad0'
[]
[cd_bodyforce]
type = MaskedBodyForce
variable = w
mask = hd
coupled_variables = 'etaa0 etab0 etad0'
value = 0.5 #cdeq
[]
[]
[Materials]
[ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etaa0'
[]
[hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etab0'
[]
[hd_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hd
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etad0'
[]
[omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
[]
[omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
[]
[omegad]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegad
material_property_names = 'Vm kd cdeq'
expression = '-0.5*w^2/Vm^2/kd-w/Vm*cdeq'
derivative_order = 2
[]
[rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
[]
[rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
[]
[rhod]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhod
material_property_names = 'Vm kd cdeq'
expression = 'w/Vm^2/kd + cdeq/Vm'
derivative_order = 2
[]
[const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D Vm ka caeq kb cbeq kd cdeq gab gad gbd mu tgrad_corr_mult'
prop_values = '0 1 1.0 1.0 1.0 10.0 0.1 10.0 0.9 10.0 0.5 1.5 1.5 1.5 1.0 0.0'
[]
[Mobility]
type = DerivativeParsedMaterial
property_name = DchiVm
material_property_names = 'D chi Vm' #Factor of Vm is needed to evolve c instead of rho
expression = 'D*chi*Vm'
derivative_order = 2
[]
[chi]
type = DerivativeParsedMaterial
property_name = chi
material_property_names = 'Vm ha(etaa0,etab0,etad0) ka hb(etaa0,etab0,etad0) kb hd(etaa0,etab0,etad0) kd'
expression = '(ha/ka + hb/kb + hd/kd) / Vm^2'
coupled_variables = 'etaa0 etab0 etad0'
derivative_order = 2
[]
[hoverk_a]
type = DerivativeParsedMaterial
material_property_names = 'ha(etaa0,etab0,etad0) Vm ka'
property_name = hoverk_a
expression = 'ha / Vm / ka'
[]
[hoverk_b]
type = DerivativeParsedMaterial
material_property_names = 'hb(etaa0,etab0,etad0) Vm kb'
property_name = hoverk_b
expression = 'hb / Vm / kb'
[]
[hoverk_d]
type = DerivativeParsedMaterial
material_property_names = 'hd(etaa0,etab0,etad0) Vm kd'
property_name = hoverk_d
expression = 'hd / Vm / kd'
[]
[]
[Postprocessors]
[c_total]
type = ElementIntegralVariablePostprocessor
variable = c
[]
[]
[Executioner]
type = Transient
nl_max_its = 15
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = -pc_type
petsc_options_value = asm
l_max_its = 15
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 20
nl_abs_tol = 1e-10
dt = 1.0
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/outputs/iterative/iterative_start_time.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
nonlinear_residual_dt_divisor = 100
linear_residual_dt_divisor = 100
nonlinear_residual_start_time = 1.8
linear_residual_start_time = 1.8
[../]
[]
(test/tests/multiapps/grid-sequencing/vi-coarser.i)
l=10
nx=20
num_steps=2
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds][]
[]
[Bounds]
[./u_upper_bounds]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[../]
[./u_lower_bounds]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[../]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options = '-snes_vi_monitor'
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = 'upper_violations lower_violations'
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
(modules/combined/test/tests/DiffuseCreep/stress.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
expression = 'c*(1.0-c)'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/basic_advection/2phase.i)
# Basic advection of u in a 2-phase situation
#
# grad(P) = -2
# density * gravity = 4 * 0.25
# grad(P) - density * gravity = -3
# permeability = 10
# relative permeability = 0.5
# viscosity = 150
# so Darcy velocity = 0.1
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[P0]
[]
[P1]
[]
[]
[ICs]
[P0]
type = FunctionIC
variable = P0
function = '0'
[]
[P1]
type = FunctionIC
variable = P1
function = '2*(1-x)'
[]
[u]
type = FunctionIC
variable = u
function = 'if(x<0.1,1,0)'
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[u_advection]
type = PorousFlowBasicAdvection
variable = u
phase = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = ''
number_fluid_phases = 2
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
density0 = 32
viscosity = 123
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 4
thermal_expansion = 0
viscosity = 150.0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = P0
phase1_porepressure = P1
capillary_pressure = pc
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '10 0 0 0 10 0 0 0 10'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityConst
kr = 0.5
phase = 1
[]
[darcy_velocity]
type = PorousFlowDarcyVelocityMaterial
gravity = '0.25 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 1
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_rtol'
petsc_options_value = ' lu 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/phase_field/examples/multiphase/GrandPotential3Phase.i)
# This is an example of implementation of the multi-phase, multi-order parameter
# grand potential based phase-field model described in Phys. Rev. E, 98, 023309
# (2018). It includes 3 phases with 1 grain of each phase. This example was used
# to generate the results shown in Fig. 3 of the paper.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 60
xmin = -15
xmax = 15
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etad0]
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etad0]
type = ConstantIC
variable = etad0
value = 0.1
[../]
[./IC_w]
type = FunctionIC
variable = w
function = ic_func_w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
expression = '0.9*0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
expression = '0.9*0.5*(1.0+tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_w]
type = ParsedFunction
expression = 0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etad0'
gamma_names = 'gab gad'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etab0 etad0 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etad0'
gamma_names = 'gab gbd'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etad0 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_delta0
[./ACd0_bulk]
type = ACGrGrMulti
variable = etad0
v = 'etaa0 etab0'
gamma_names = 'gad gbd'
[../]
[./ACd0_sw]
type = ACSwitching
variable = etad0
Fj_names = 'omegaa omegab omegad'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 w'
[../]
[./ACd0_int]
type = ACInterface
variable = etad0
kappa_name = kappa
[../]
[./ed0_dot]
type = TimeDerivative
variable = etad0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
coupled_variables = 'etaa0 etab0 etad0'
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 etad0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 etad0'
[../]
[./coupled_etad0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etad0
Fj_names = 'rhoa rhob rhod'
hj_names = 'ha hb hd'
coupled_variables = 'etaa0 etab0 etad0'
[../]
[]
[Materials]
[./ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etaa0'
[../]
[./hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etab0'
[../]
[./hd_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hd
all_etas = 'etaa0 etab0 etad0'
phase_etas = 'etad0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
[../]
[./omegad]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegad
material_property_names = 'Vm kd cdeq'
expression = '-0.5*w^2/Vm^2/kd-w/Vm*cdeq'
derivative_order = 2
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
[../]
[./rhod]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhod
material_property_names = 'Vm kd cdeq'
expression = 'w/Vm^2/kd + cdeq/Vm'
derivative_order = 2
[../]
[./c]
type = ParsedMaterial
material_property_names = 'Vm rhoa rhob rhod ha hb hd'
expression = 'Vm * (ha * rhoa + hb * rhob + hd * rhod)'
property_name = c
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D Vm ka caeq kb cbeq kd cdeq gab gad gbd mu tgrad_corr_mult'
prop_values = '0 1 1.0 1.0 1.0 10.0 0.1 10.0 0.9 10.0 0.5 1.5 1.5 1.5 1.0 0.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
derivative_order = 2
[../]
[./chi]
type = DerivativeParsedMaterial
property_name = chi
material_property_names = 'Vm ha(etaa0,etab0,etad0) ka hb(etaa0,etab0,etad0) kb hd(etaa0,etab0,etad0) kd'
expression = '(ha/ka + hb/kb + hd/kd) / Vm^2'
coupled_variables = 'etaa0 etab0 etad0'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./etaa0]
type = LineValueSampler
variable = etaa0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etab0]
type = LineValueSampler
variable = etab0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[./etad0]
type = LineValueSampler
variable = etad0
start_point = '-15 0 0'
end_point = '15 0 0'
num_points = 61
sort_by = x
execute_on = 'initial timestep_end final'
[../]
[]
[Executioner]
type = Transient
nl_max_its = 15
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = -pc_type
petsc_options_value = asm
l_max_its = 15
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 20
nl_abs_tol = 1e-10
dt = 1.0
[]
[Outputs]
[./exodus]
type = Exodus
execute_on = 'initial timestep_end final'
time_step_interval = 1
[../]
[./csv]
type = CSV
execute_on = 'initial timestep_end final'
time_step_interval = 1
[../]
[]
(test/tests/auxkernels/element_aux_boundary/element_aux_boundary.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./real_property]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./real_property]
type = MaterialRealAux
variable = real_property
property = real_property
boundary = '1 2'
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./boundary_1]
type = OutputTestMaterial
boundary = 1
real_factor = 2
variable = u
[../]
[./boundary_2]
type = OutputTestMaterial
boundary = 2
real_factor = 2
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/grain_tracker_test/grain_tracker_reserve.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[AuxVariables]
[./c]
[../]
[]
[Variables]
[./gr0]
[../]
[./gr1]
[../]
[]
[ICs]
[./gr0]
type = MultiSmoothCircleIC
variable = gr0
invalue = 1.0
outvalue = 0.0001
bubspac = 20.0
numbub = 2
radius = 10.0
int_width = 12.0
radius_variation = 0.2
radius_variation_type = uniform
[../]
[./c_IC]
type = SmoothCircleIC
int_width = 12.0
x1 = 50
y1 = 50
radius = 10.0
outvalue = 0
variable = c
invalue = 1
[../]
[]
[Kernels]
[./ie_gr0]
type = TimeDerivative
variable = gr0
[../]
[./diff_gr0]
type = Diffusion
variable = gr0
[../]
[./ie_gr1]
type = TimeDerivative
variable = gr1
[../]
[./diff_gr1]
type = Diffusion
variable = gr1
[../]
[./source]
type = MaskedBodyForce
variable = gr1
function = t
mask = mask
[../]
[]
[Materials]
[./mask]
type = ParsedMaterial
expression = 'c'
property_name = mask
coupled_variables = 'c'
[../]
[]
[Postprocessors]
[./grain_tracker]
type = GrainTracker
# Reserve the first "op" variable
reserve_op = 1
threshold = 0.1
connecting_threshold = 0.001
variable = 'gr0 gr1'
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
num_steps = 6
dt = 0.25
[]
[Outputs]
exodus = true
[]
[Problem]
kernel_coverage_check = false
[]
(test/tests/kernels/coupled_time_derivative/coupled_time_derivative_test.i)
###########################################################
# This is a simple test of the CoupledTimeDerivative kernel.
# The expected solution for the variable v is
# v(x) = 1/2 * (x^2 + x)
###########################################################
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./fn_u]
type = BodyForce
variable = u
function = 1
[../]
[./time_v]
type = CoupledTimeDerivative
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = v
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_diffusion/restart_diffusion_test_transient.i)
[Mesh]
file = steady_out.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_from_file_var = u
initial_from_file_timestep = 2
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/phase_field/test/tests/slkks/full_solve.i)
#
# SLKKS two phase example for the BCC and SIGMA phases. The sigma phase contains
# multiple sublattices. Free energy from
# Jacob, Aurelie, Erwin Povoden-Karadeniz, and Ernst Kozeschnik. "Revised thermodynamic
# description of the Fe-Cr system based on an improved sublattice model of the sigma phase."
# Calphad 60 (2018): 16-28.
#
# In this simulation we consider diffusion (Cahn-Hilliard) and phase transformation.
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 30
ny = 1
xmin = -25
xmax = 25
[]
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Variables]
# order parameters
[eta1]
initial_condition = 0.5
[]
[eta2]
initial_condition = 0.5
[]
# solute concentration
[cCr]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.5+0.1'
[]
[]
# sublattice concentrations (good guesses are needed here! - they can be obtained
# form a static solve like in sublattice_concentrations.i)
[BCC_CR]
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.5+0.1'
[]
[]
[SIGMA_0CR]
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.17+0.01'
[]
[]
[SIGMA_1CR]
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.36+0.02'
[]
[]
[SIGMA_2CR]
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.33+0.20'
[]
[]
# Lagrange multiplier
[lambda]
[]
[]
[Materials]
# CALPHAD free energies
[F_BCC_A2]
type = DerivativeParsedMaterial
property_name = F_BCC_A2
outputs = exodus
output_properties = F_BCC_A2
expression = 'BCC_FE:=1-BCC_CR; G := 8.3145*T*(1.0*if(BCC_CR > 1.0e-15,BCC_CR*log(BCC_CR),0) + '
'1.0*if(BCC_FE > 1.0e-15,BCC_FE*plog(BCC_FE,eps),0) + 3.0*if(BCC_VA > '
'1.0e-15,BCC_VA*log(BCC_VA),0))/(BCC_CR + BCC_FE) + 8.3145*T*if(T < '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(0.525599232981783*BCC_CR*BCC_FE*BCC_'
'VA*(BCC_CR - BCC_FE) - 0.894055608820709*BCC_CR*BCC_FE*BCC_VA + '
'0.298657718120805*BCC_CR*BCC_VA - BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T < -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(-0.525599232981783*BCC_CR*BCC_FE*BCC'
'_VA*(BCC_CR - BCC_FE) + 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - '
'0.298657718120805*BCC_CR*BCC_VA + BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) '
'+ 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(-548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T > -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA & '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA < '
'0,-79209031311018.7*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,if(T > '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA & 548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - '
'BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA > '
'0,-79209031311018.7*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,0))))*log((2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA)*if(2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA <= 0,-1.0,1.0) + 1)/(BCC_CR + BCC_FE) + '
'1.0*(BCC_CR*BCC_VA*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + '
'BCC_FE*BCC_VA*if(T >= 298.15 & T < 1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T '
'- 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < '
'6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - 25383.581,0)))/(BCC_CR '
'+ BCC_FE) + 1.0*(BCC_CR*BCC_FE*BCC_VA*(500.0 - 1.5*T)*(BCC_CR - BCC_FE) + '
'BCC_CR*BCC_FE*BCC_VA*(24600.0 - 14.98*T) + BCC_CR*BCC_FE*BCC_VA*(9.15*T - '
'14000.0)*(BCC_CR - BCC_FE)^2)/(BCC_CR + BCC_FE); G/100000'
coupled_variables = 'BCC_CR'
constant_names = 'BCC_VA T eps'
constant_expressions = '1 1000 0.01'
[]
[F_SIGMA]
type = DerivativeParsedMaterial
property_name = F_SIGMA
outputs = exodus
output_properties = F_SIGMA
expression = 'SIGMA_0FE := 1-SIGMA_0CR; SIGMA_1FE := 1-SIGMA_1CR; SIGMA_2FE := 1-SIGMA_2CR; G := '
'8.3145*T*(10.0*if(SIGMA_0CR > 1.0e-15,SIGMA_0CR*plog(SIGMA_0CR,eps),0) + '
'10.0*if(SIGMA_0FE > 1.0e-15,SIGMA_0FE*plog(SIGMA_0FE,eps),0) + 4.0*if(SIGMA_1CR > '
'1.0e-15,SIGMA_1CR*plog(SIGMA_1CR,eps),0) + 4.0*if(SIGMA_1FE > '
'1.0e-15,SIGMA_1FE*plog(SIGMA_1FE,eps),0) + 16.0*if(SIGMA_2CR > '
'1.0e-15,SIGMA_2CR*plog(SIGMA_2CR,eps),0) + 16.0*if(SIGMA_2FE > '
'1.0e-15,SIGMA_2FE*plog(SIGMA_2FE,eps),0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + '
'4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*SIGMA_2FE*(-70.0*T - 170400.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*SIGMA_2FE*(-10.0*T - 330839.0))/(10.0*SIGMA_0CR + '
'10.0*SIGMA_0FE + 4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0CR*SIGMA_1CR*SIGMA_2CR*(30.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - '
'26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= '
'2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) '
'+ 132000.0) + SIGMA_0CR*SIGMA_1CR*SIGMA_2FE*(-110.0*T + 16.0*if(T >= 298.15 & T < '
'1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - '
'5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - '
'46.0*T*log(T) + 299.31255*T - 25383.581,0)) + 14.0*if(T >= 298.15 & T < '
'2180.0,139250.0*1/T - 26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - '
'1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - '
'50.0*T*log(T) + 344.18*T - 34869.344,0)) + 123500.0) + '
'SIGMA_0CR*SIGMA_1FE*SIGMA_2CR*(4.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 26.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 140486.0) '
'+ SIGMA_0CR*SIGMA_1FE*SIGMA_2FE*(20.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 10.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 148800.0) '
'+ SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*(10.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 20.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 56200.0) + '
'SIGMA_0FE*SIGMA_1CR*SIGMA_2FE*(26.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 4.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 152700.0) '
'+ SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*(14.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 16.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 46200.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2FE*(30.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 173333.0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + 4.0*SIGMA_1CR + '
'4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE); G/100000'
coupled_variables = 'SIGMA_0CR SIGMA_1CR SIGMA_2CR'
constant_names = 'T eps'
constant_expressions = '1000 0.01'
[]
# h(eta)
[h1]
type = SwitchingFunctionMaterial
function_name = h1
h_order = HIGH
eta = eta1
[]
[h2]
type = SwitchingFunctionMaterial
function_name = h2
h_order = HIGH
eta = eta2
[]
# g(eta)
[g1]
type = BarrierFunctionMaterial
function_name = g1
g_order = SIMPLE
eta = eta1
[]
[g2]
type = BarrierFunctionMaterial
function_name = g2
g_order = SIMPLE
eta = eta2
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'D L kappa'
prop_values = '10 1 0.1 '
[]
# Coefficients for diffusion equation
[Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1(eta1)'
expression = D*h1
property_name = Dh1
coupled_variables = eta1
derivative_order = 1
[]
[Dh2a]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*10/30
property_name = Dh2a
coupled_variables = eta2
derivative_order = 1
[]
[Dh2b]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*4/30
property_name = Dh2b
coupled_variables = eta2
derivative_order = 1
[]
[Dh2c]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*16/30
property_name = Dh2c
coupled_variables = eta2
derivative_order = 1
[]
[]
[Kernels]
#Kernels for diffusion equation
[diff_time]
type = TimeDerivative
variable = cCr
[]
[diff_c1]
type = MatDiffusion
variable = cCr
diffusivity = Dh1
v = BCC_CR
args = eta1
[]
[diff_c2a]
type = MatDiffusion
variable = cCr
diffusivity = Dh2a
v = SIGMA_0CR
args = eta2
[]
[diff_c2b]
type = MatDiffusion
variable = cCr
diffusivity = Dh2b
v = SIGMA_1CR
args = eta2
[]
[diff_c2c]
type = MatDiffusion
variable = cCr
diffusivity = Dh2c
v = SIGMA_2CR
args = eta2
[]
# enforce pointwise equality of chemical potentials
[chempot1a2a]
# The BCC phase has only one sublattice
# we tie it to the first sublattice with site fraction 10/(10+4+16) in the sigma phase
type = KKSPhaseChemicalPotential
variable = BCC_CR
cb = SIGMA_0CR
kb = '${fparse 10/30}'
fa_name = F_BCC_A2
fb_name = F_SIGMA
args_b = 'SIGMA_1CR SIGMA_2CR'
[]
[chempot2a2b]
# This kernel ties the first two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_0CR
a = 10
cs = SIGMA_1CR
as = 4
F = F_SIGMA
coupled_variables = 'SIGMA_2CR'
[]
[chempot2b2c]
# This kernel ties the remaining two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_1CR
a = 4
cs = SIGMA_2CR
as = 16
F = F_SIGMA
coupled_variables = 'SIGMA_0CR'
[]
[phaseconcentration]
# This kernel ties the sum of the sublattice concentrations to the global concentration cCr
type = SLKKSMultiPhaseConcentration
variable = SIGMA_2CR
c = cCr
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g1
eta_i = eta1
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta2'
[]
[ACBulkC1]
type = SLKKSMultiACBulkC
variable = eta1
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
[lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
coupled_variables = 'eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta2dt]
type = TimeDerivative
variable = eta2
[]
[ACBulkF2]
type = KKSMultiACBulkF
variable = eta2
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g2
eta_i = eta2
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta1'
[]
[ACBulkC2]
type = SLKKSMultiACBulkC
variable = eta2
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[]
[lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
coupled_variables = 'eta1'
[]
# Lagrange-multiplier constraint kernel for lambda
[lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
h_names = 'h1 h2'
etas = 'eta1 eta2'
epsilon = 1e-6
[]
[]
[AuxKernels]
[GlobalFreeEnergy]
type = KKSMultiFreeEnergy
variable = Fglobal
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gj_names = 'g1 g2'
interfacial_vars = 'eta1 eta2'
kappa_names = 'kappa kappa'
w = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
line_search = none
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu nonzero 30'
l_max_its = 100
nl_max_its = 20
nl_abs_tol = 1e-10
end_time = 1000
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 12
iteration_window = 2
growth_factor = 2
cutback_factor = 0.5
dt = 0.1
[]
[]
[Postprocessors]
[F]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[]
[cmin]
type = NodalExtremeValue
value_type = min
variable = cCr
[]
[cmax]
type = NodalExtremeValue
value_type = max
variable = cCr
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
# exclude lagrange multiplier from output, it can diff more easily
hide = lambda
[]
(modules/phase_field/test/tests/phase_field_crystal/PFCTrad/pfct_newton_split1_asm1_10.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
xmax = 8
ymax = 8
[]
[Variables]
[./n]
[./InitialCondition]
type = RandomIC
min = -1
max = 4
[../]
[../]
[./u]
scaling = 1e2
[../]
[./v]
scaling = 1e1
[../]
[]
[Kernels]
[./ndot]
type = TimeDerivative
variable = n
[../]
[./n_bulk]
type = CHBulkPFCTrad
variable = n
[../]
[./u_term]
type = MatDiffusion
variable = n
v = u
diffusivity = C2
[../]
[./v_term]
type = MatDiffusion
variable = n
v = v
diffusivity = C4
[../]
[./u_rctn]
type = Reaction
variable = u
[../]
[./u_gradn]
type = LaplacianSplit
variable = u
c = n
[../]
[./v_rctn]
type = Reaction
variable = v
[../]
[./v_gradu]
type = LaplacianSplit
variable = v
c = u
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./PFCTrad]
type = PFCTradMaterial
order = 4
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 100
l_tol = 1e-04
nl_rel_tol = 1e-09
nl_abs_tol = 1e-11
splitting = 'nuv'
petsc_options = '-snes_view'
num_steps = 2
dt = 0.1
[]
[Splits]
[./nuv]
splitting = 'v nu'
splitting_type = schur
schur_type = full
schur_pre = Sp
#petsc_options = '-dm_view'
[../]
[./nu]
vars = 'n u'
petsc_options = '-ksp_monitor'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_asm_nblocks -pc_asm_overlap -sub_pc_type'
petsc_options_value = ' 101 asm 10 1 lu'
[../]
[./v]
vars = 'v'
#petsc_options = '-ksp_monitor'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 101 preonly lu 0'
#full = true
[../]
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/01_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = '01_sub.i'
[]
[]
(test/tests/nodalkernels/jac_test/jac_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./nodal_ode]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = nodal_ode
[../]
[./constant_rate]
type = ConstantRate
variable = nodal_ode
rate = 1.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 1
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/directional_flux_bc/3d_elem.i)
[Mesh]
[shade]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 3
nz = 3
xmax = 0.2
ymax = 0.5
zmax = 0.5
[]
[screen]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 20
nz = 20
xmax = 0.05
[]
[screen_block]
type = SubdomainIDGenerator
input = screen
subdomain_id = 1
[]
[combine]
type = CombinerGenerator
inputs = 'shade screen_block'
positions = '0 0 0 1 0 0'
[]
[all_sides]
type = SideSetsAroundSubdomainGenerator
block = '0 1'
new_boundary = 100
input = combine
[]
[shaded_side]
type = SideSetsAroundSubdomainGenerator
normal = '-1 0 0'
block = 1
input = all_sides
new_boundary = 101
[]
[]
[GlobalParams]
illumination_flux = '1 0 0'
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[dt]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[flux]
type = DirectionalFluxBC
variable = u
boundary = 101
self_shadow_uo = shadow
[]
[]
[UserObjects]
[shadow]
type = SelfShadowSideUserObject
boundary = 100
execute_on = INITIAL
[]
[]
[Postprocessors]
[light]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 101
[]
[]
[Executioner]
type = Transient
dt = 0.01
num_steps = 1
[]
[Outputs]
csv = true
[]
(test/tests/restart/start_time_override/transient.i)
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Postprocessors]
[u_norm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 5
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
checkpoint = true
csv = true
[]
(modules/porous_flow/test/tests/heat_mass_transfer/variable_transfer_variable_0D.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[u]
initial_condition = 1
[]
[]
[AuxVariables]
[v]
initial_condition = 10
[]
[c]
initial_condition = 1e-1
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[value_transfer]
type = PorousFlowHeatMassTransfer
variable = u
v = v
transfer_coefficient = c
[]
[]
[Postprocessors]
[point_value]
type = PointValue
variable = u
point = '0.5 0.5 0.'
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
num_steps = 11
dt = 1
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except12.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = does_not_exist
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(test/tests/restart/start_time_override/start_time_override.i)
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Problem]
restart_file_base = transient_out_cp/LATEST
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[bodyforce]
type = BodyForce
variable = u
value = 10.0
[]
[ie]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 10
[]
[]
[Postprocessors]
[u_norm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
# Start time can be set explicitly here or be picked up from the restart file
num_steps = 5
dt = 0.1
[]
[Outputs]
csv = true
[]
(test/tests/controls/time_periods/bcs/bcs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./right2]
type = FunctionDirichletBC
variable = u
boundary = right
function = (y*(t-1))+1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./period0]
type = TimePeriod
disable_objects = 'BCs::right2'
start_time = '0'
end_time = '0.95'
execute_on = 'initial timestep_begin'
[../]
[./period2]
type = TimePeriod
disable_objects = 'BCs::right'
start_time = '1'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/materials/output/output_warning.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 10
ymax = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./test_material]
type = OutputTestMaterial
block = 0
variable = u
stdvector_property_name = vec
outputs = all
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/mobility_derivative/mobility_derivative_split_coupled_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 30.0
ymax = 30.0
elem_type = QUAD4
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./d]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
variable = c
[../]
[./d_IC]
type = BoundingBoxIC
x1 = 0.0
x2 = 15.0
y1 = 0.0
y2 = 30.0
inside = 1.0
outside = 0.0
variable = d
[../]
[]
[Kernels]
[./cres]
type = SplitCHParsed
variable = c
kappa_name = kappa_c
w = w
f_name = F
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
coupled_variables = 'c d'
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./d_dot]
type = TimeDerivative
variable = d
[../]
[./d_diff]
type = MatDiffusion
variable = d
diffusivity = diffusivity
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = DerivativeParsedMaterial
property_name = M
coupled_variables = 'c d'
expression = 'if(d>0.001,d,0.001)*(1-0.5*c^2)'
outputs = exodus
derivative_order = 1
[../]
[./free_energy]
type = MathEBFreeEnergy
property_name = F
c = c
[../]
[./d_diff]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 0.1
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/meta_data_store/mesh_meta_data_store.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 12
ny = 10
xmin = 4
xmax = 7
[]
[]
[Debug]
show_mesh_meta_data = true
[]
[Variables]
[./u]
[../]
[]
[AutoLineSamplerTest]
# Add a line sampler on the variable right at the nodes based on the GeneratedMeshGenerator
variable = u
mesh_generator = 'gmg'
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i)
#
# Martensitic transformation
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta1]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[./eta2]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain1 eigenstrain2'
[../]
[]
[Kernels]
[./eta_bulk1]
type = AllenCahn
variable = eta1
args = 'eta2'
f_name = F
[../]
[./eta_bulk2]
type = AllenCahn
variable = eta2
args = 'eta1'
f_name = F
[../]
[./eta_interface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./eta_interface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
property_name = Fc
coupled_variables = 'eta1 eta2'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
expression = 'A2/2*(eta1^2+eta2^2) + A3/3*(eta1^3+eta2^3) + A4/4*(eta1^2+eta2^2)^2'
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '700 300 300 700 300 700 300 300 300'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence1]
type = DerivativeParsedMaterial
property_name = var_dep1
coupled_variables = 'eta1'
expression = eta1
enable_jit = true
derivative_order = 2
[../]
[./var_dependence2]
type = DerivativeParsedMaterial
property_name = var_dep2
coupled_variables = 'eta2'
expression = eta2
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain1]
type = ComputeVariableEigenstrain
eigen_base = '0.1 -0.1 0 0 0 0'
prefactor = var_dep1
args = 'eta1'
eigenstrain_name = eigenstrain1
[../]
[./eigenstrain2]
type = ComputeVariableEigenstrain
eigen_base = '-0.1 0.1 0 0 0 0'
prefactor = var_dep2
args = 'eta2'
eigenstrain_name = eigenstrain2
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta1 eta2'
derivative_order = 2
[../]
[./totol_free_energy]
type = DerivativeSumMaterial
property_name = F
sum_materials = 'Fc Fe'
coupled_variables = 'eta1 eta2'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/sub_cycling/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/01_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/explicit-euler/ee-2d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = (x+y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
lumping = true
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
function = exact_fn
implicit = true
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 20
dt = 0.00005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/multiapps/relaxation/sub_relaxed_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
initial_condition = 1
[]
[inverse_v]
initial_condition = 1
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = inverse_v
[]
[]
[AuxKernels]
[invert_v]
type = QuotientAux
variable = inverse_v
denominator = v
numerator = 20.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[Neumann_right]
type = NeumannBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = sub_relaxed_sub.i
transformed_variables = v
relaxation_factor = 0.94
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(test/tests/outputs/csv_final_and_latest/final.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
# Vector Postprocessor System
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
execute_on = 'timestep_end final'
variable = 'u'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
[../]
[]
[Outputs]
[./out]
type = CSV
execute_on = 'TIMESTEP_END FINAL'
create_final_symlink = true
[../]
[]
(test/tests/dampers/min_damping/min_general_damping.i)
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./u_dt]
type = TimeDerivative
variable = u
[../]
[./u_source]
type = BodyForce
variable = u
value = 1
[../]
[]
[Dampers]
[./limit]
type = ConstantDamper
damping = 0.25
min_damping = 0.5
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1.0
dtmin = 0.5
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
[../]
[./dt]
type = TimestepSize
[../]
[]
(test/tests/misc/check_error/bad_enum_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
error_estimator = PatchRecoveryFooBar # This is a bad error estimator
[../]
[]
[Outputs]
file_base = out
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-quadratic-neumann.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 10
elem_type = EDGE3
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x*x-2*t+t*x*x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x*x
[../]
[./left_bc_fn]
type = ParsedFunction
expression = -t*2*x
[../]
[./right_bc_fn]
type = ParsedFunction
expression = t*2*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./abs]
type = Reaction
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./left]
type = FunctionNeumannBC
variable = u
boundary = '0'
function = left_bc_fn
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = '1'
function = right_bc_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
l_tol = 1e-12
start_time = 0.0
num_steps = 10
dt = 0.001
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(modules/optimization/examples/materialTransient/gradient.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[]
[Variables/u_adjoint]
initial_condition = 0
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u_adjoint
[]
[diff]
type = MatDiffusion
variable = u_adjoint
diffusivity = D
[]
[]
[DiracKernels]
[misfit]
type = ReporterTimePointSource
variable = u_adjoint
value_name = data/misfit_values
x_coord_name = data/measurement_xcoord
y_coord_name = data/measurement_ycoord
z_coord_name = data/measurement_zcoord
time_name = data/measurement_time
reverse_time_end = 1
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u_adjoint
boundary = 'right top'
value = 0
[]
[]
[Materials]
[diffc]
type = GenericFunctionMaterial
prop_names = 'D'
prop_values = 'diffc_fun'
[]
[]
[Functions]
[diffc_fun]
type = NearestReporterCoordinatesFunction
value_name = 'diffc_rep/D_vals'
x_coord_name = 'diffc_rep/D_x_coord'
y_coord_name = 'diffc_rep/D_y_coord'
[]
[]
[Reporters]
[diffc_rep]
type = ConstantReporter
real_vector_names = 'D_x_coord D_y_coord D_vals'
real_vector_values = '0.25 0.75 0.25 0.75;
0.25 0.25 0.75 0.75;
0.1 10 10 0.1' # Reference solution
outputs = none
[]
[data]
type = OptimizationData
[]
[]
[AuxVariables/u]
[]
[UserObjects]
[load_u]
type = AdjointSolutionUserObject
mesh = forward_out.e
system_variables = 'u'
reverse_time_end = 1
execute_on = 'timestep_begin'
[]
[]
[AuxKernels]
[u_aux]
type = SolutionAux
variable = u
solution = load_u
direct = true
execute_on = 'timestep_begin'
[]
[]
[VectorPostprocessors]
[adjoint]
type = ElementOptimizationDiffusionCoefFunctionInnerProduct
variable = u_adjoint
forward_variable = u
function = diffc_fun
reverse_time_end = 1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-12
dt = 0.1
num_steps = 10
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/tosub_displaced_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
displacements = 'disp_x disp_y'
coord_type = rz
[]
[Variables]
[u]
initial_condition = 1
[]
[]
[AuxVariables]
[multi_layered_average]
[]
[element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[]
[disp_x]
initial_condition = 0.0
[]
[disp_y]
initial_condition = 0.5
[]
[]
[Functions]
[axial_force]
type = ParsedFunction
expression = 1000*y
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[force]
type = BodyForce
variable = u
function = axial_force
[]
[]
[BCs]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/quad_sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp]
type = Receiver
default = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except08.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
at_nodes = false # Needed to force expected error
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(test/tests/executioners/adapt_and_modify/adapt_and_modify_heavy.i)
[Mesh]
# This example uses Adaptivity Indicators, which are written out as
# CONSTANT MONOMIAL variables, which don't currently work correctly
# 2122 for more information.
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
# parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./elem]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./elem]
type = UniqueIDAux
variable = elem
execute_on = timestep_begin
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./rh_uo]
type = RandomHitUserObject
execute_on = timestep_begin
num_hits = 1
[../]
[./rhsm]
type = RandomHitSolutionModifier
execute_on = custom
modify = u
random_hits = rh_uo
amount = 10
[../]
[]
[Executioner]
type = AdaptAndModify
num_steps = 400
dt = 2e-4
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
adapt_cycles = 2
[]
[Adaptivity]
marker = rhm # Switch to combo to get the effect of both
[./Indicators]
[./gji]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./rhm]
type = RandomHitMarker
random_hits = rh_uo
[../]
[./efm]
type = ErrorFractionMarker
coarsen = 0.2
indicator = gji
refine = 0.8
[../]
[./combo]
type = ComboMarker
markers = 'efm rhm'
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/initial_conditions/BimodalSuperellipsoidsIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = BimodalSuperellipsoidsIC
variable = c
x_positions = '10.0 40.0'
y_positions = '25.0 25.0'
z_positions = '0.0 0.0'
as = '8.0 8.0'
bs = '8.0 8.0'
cs = '1 1'
ns = '3.5 3.5'
npart = 5
invalue = 1.0
outvalue = -0.8
int_width = 4.0
large_spac = 5
small_spac = 2
small_a = 5
small_b = 5
small_c = 5
small_n = 2
size_variation_type = normal
size_variation = 0.5
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
(modules/phase_field/test/tests/SoretDiffusion/direct_temp.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 30
xmax = 500
elem_type = EDGE
[]
[GlobalParams]
polynomial_order = 8
[]
[Variables]
[./c]
family = HERMITE
order = THIRD
[../]
[./T]
initial_condition = 1000.0
scaling = 1.0e5
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 125.0
y1 = 0.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 100.0
variable = c
[../]
[]
[Kernels]
[./c_int]
type = CHInterface
variable = c
kappa_name = kappa
mob_name = M
[../]
[./c_bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./c_soret]
type = SoretDiffusion
variable = c
T = T
diff_name = D
Q_name = Qstar
[../]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[./HtCond]
type = MatDiffusion
variable = T
diffusivity = thermal_conductivity
[../]
[]
[BCs]
[./Left_T]
type = DirichletBC
variable = T
boundary = left
value = 1000.0
[../]
[./Right_T]
type = DirichletBC
variable = T
boundary = right
value = 1015.0
[../]
[]
[Materials]
[./Copper]
type = PFParamsPolyFreeEnergy
c = c
T = T # K
int_width = 60.0
length_scale = 1.0e-9
time_scale = 1.0e-9
D0 = 3.1e-5 # m^2/s, from Brown1980
Em = 0.71 # in eV, from Balluffi1978 Table 2
Ef = 1.28 # in eV, from Balluffi1978 Table 2
surface_energy = 0.708 # Total guess
[../]
[./thcond]
type = ParsedMaterial
coupled_variables = 'c'
expression = 'if(c>0.7,1e-8,4e-8)'
property_name = thermal_conductivity
outputs = exodus
[../]
[./free_energy]
type = PolynomialFreeEnergy
c = c
derivative_order = 3
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 25
nl_rel_tol = 1.0e-9
num_steps = 60
dt = 8.0
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/transfer_with_reset/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# This test currently diffs when run in parallel with DistributedMesh enabled,
# most likely due to the fact that it uses some geometric search stuff.
# For more information, see #2121.
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[t]
[]
[u_from_sub]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
reset_apps = 0
reset_time = 0.05
[]
[]
[Transfers]
[t_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = t
variable = t
[]
[u_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = u_from_sub
[]
[u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u_from_master
[]
[]
(test/tests/adaptivity/cycles_per_step/cycles_per_step.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 2
cycles_per_step = 2
marker = marker
initial_marker = marker
max_h_level = 2
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/CHSplitChemicalPotential/simple_transient_diffusion.i)
# Same problem as in moose/test/tests/kernels/simple_transient_diffusion
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
expression = '0.1'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility_tensor]
type = ConstantAnisotropicMobility
M_name = mobility_tensor
tensor = '1 0 0 0 1 0 0 0 1'
[../]
[./mobility]
type = CompositeMobilityTensor
M_name = mobility_prop
tensors = mobility_tensor
weights = var_dep
coupled_variables = c
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_tol = 1e-3
l_max_its = 20
nl_max_its = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/functions/piecewise_multilinear/time.i)
# PiecewiseMultilinear function tests for time-dependent data
# See [Functions] block for a description of the tests
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 1
nx = 1
ymin = 0
ymax = 1
ny = 1
zmin = 0
zmax = 1
nz = 1
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./time1_var]
[../]
[]
[AuxKernels]
[./time1_AuxK]
type = FunctionAux
variable = time1_var
function = time1_fcn
[../]
[]
[Functions]
# This increases linearly: f = t
[./time1_fcn]
type = PiecewiseMultilinear
data_file = time1.txt
[../]
[./time1_answer]
type = ParsedFunction
expression = t
[../]
[]
[Postprocessors]
[./time1_pp]
type = NodalL2Error
function = time1_answer
variable = time1_var
[../]
[]
[Executioner]
type = Transient
dt = 0.1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = time
hide = dummy
csv = true
[]
(modules/phase_field/test/tests/anisotropic_interfaces/adkobayashi.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 32
ny = 32
xmax = 0.7
ymax = 0.7
[]
[Variables]
[w]
[]
[T]
[]
[]
[ICs]
[wIC]
type = SmoothCircleIC
variable = w
int_width = 0.1
x1 = 0.35
y1 = 0.35
radius = 0.08
outvalue = 0
invalue = 1
[]
[]
[Kernels]
[w_dot]
type = TimeDerivative
variable = w
[]
[anisoACinterface1]
type = ADACInterfaceKobayashi1
variable = w
mob_name = M
[]
[anisoACinterface2]
type = ADACInterfaceKobayashi2
variable = w
mob_name = M
[]
[AllenCahn]
type = ADAllenCahn
variable = w
mob_name = M
f_name = fbulk
[]
[T_dot]
type = ADTimeDerivative
variable = T
[]
[CoefDiffusion]
type = ADDiffusion
variable = T
[]
[w_dot_T]
type = ADCoefCoupledTimeDerivative
variable = T
v = w
coef = -1.8 #This is -K from kobayashi's paper
[]
[]
[Materials]
[free_energy]
type = ADDerivativeParsedMaterial
property_name = fbulk
coupled_variables = 'w T'
constant_names = 'alpha gamma T_e pi'
constant_expressions = '0.9 10 1 4*atan(1)'
expression = 'm:=alpha/pi * atan(gamma * (T_e - T)); 1/4*w^4 - (1/2 - m/3) * w^3 + (1/4 - m/2) * '
'w^2'
derivative_order = 1
outputs = exodus
[]
[material]
type = ADInterfaceOrientationMaterial
op = w
[]
[consts]
type = ADGenericConstantMaterial
prop_names = 'M'
prop_values = '3333.333'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
scheme = bdf2
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu '
nl_rel_tol = 1e-08
l_tol = 1e-4
l_max_its = 30
dt = 0.001
num_steps = 6
[]
[Outputs]
exodus = true
perf_graph = true
execute_on = 'INITIAL FINAL'
[]
(modules/level_set/test/tests/transfers/markers/single_level/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./marker]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = LevelSetReinitializationProblem
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
execute_on = FINAL
[../]
[]
(test/tests/restart/restart_transient_from_steady/restart_trans_with_2subs_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmax = 0.3
ymax = 0.3
[]
[AuxVariables]
[power_density]
[]
[]
[Variables]
[temp]
[]
[]
[Kernels]
[heat_conduction]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '1 3'
value = 100
[]
[bc2]
type = NeumannBC
variable = temp
boundary = '0 2'
value = 10.0
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
start_time = 0
end_time = 3
dt = 1.0
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[temp_fuel_avg]
type = ElementAverageValue
variable = temp
block = '0'
execute_on = 'initial timestep_end'
[]
[pwr_density]
type = ElementIntegralVariablePostprocessor
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
[]
(test/tests/materials/derivative_material_interface/ad_derivative_parsed_material.i)
#
# Test the AD version of derivative parsed material
#
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[]
[Kernels]
[./diff]
type = ADMatDiffusion
variable = eta
diffusivity = F
[]
[./dt]
type = TimeDerivative
variable = eta
[]
[]
[Materials]
[./Fbar]
type = ADDerivativeParsedMaterial
coupled_variables = 'eta'
property_name = Fbar
expression ='1/3*(eta-0.5)^3'
[]
[./F]
type = ADParsedMaterial
coupled_variables = 'eta'
material_property_names = 'F:=D[Fbar,eta]'
expression ='F'
outputs = exodus
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/move/multilevel_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub.i
output_in_position = true
move_time = 0.05
move_positions = '2 2 0'
move_apps = 0
[../]
[]
(modules/rdg/test/tests/advection_1d/block_restrictable.i)
############################################################
[GlobalParams]
order = CONSTANT
family = MONOMIAL
u = u
slope_limiting = lslope
implicit = false
[]
############################################################
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 1
nx = 100
[]
[./subdomain1]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.5 0 0'
block_id = 1
top_right = '1.0 1.0 0'
input = gen
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
input = subdomain1
[../]
[./interface_again]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'primary1_interface'
input = interface
[../]
[]
############################################################
[Functions]
[./ic_u]
type = PiecewiseConstant
axis = x
direction = right
xy_data = '0.1 0.5
0.4 1.0
0.5 0.5'
[../]
[]
############################################################
[UserObjects]
[./lslope]
type = AEFVSlopeLimitingOneD
execute_on = 'linear'
scheme = 'superbee' #none | minmod | mc | superbee
block = 0
[../]
[./internal_side_flux]
type = AEFVUpwindInternalSideFlux
execute_on = 'linear'
[../]
[./free_outflow_bc]
type = AEFVFreeOutflowBoundaryFlux
execute_on = 'linear'
[../]
[]
############################################################
[Variables]
[./u]
block = 0
[../]
[./v]
block = 1
family = LAGRANGE
order = FIRST
[../]
[]
############################################################
[ICs]
[./u_ic]
type = FunctionIC
variable = 'u'
function = ic_u
[../]
[]
############################################################
[Kernels]
[./time_u]
implicit = true
type = TimeDerivative
variable = u
block = 0
[../]
[./diff_v]
implicit = true
type = Diffusion
variable = v
block = 1
[../]
[./time_v]
implicit = true
type = TimeDerivative
variable = v
block = 1
[../]
[]
############################################################
[DGKernels]
[./concentration]
type = AEFVKernel
variable = u
component = 'concentration'
flux = internal_side_flux
block = 0
[../]
[]
############################################################
[BCs]
[./concentration]
type = AEFVBC
boundary = 'left primary0_interface'
variable = u
component = 'concentration'
flux = free_outflow_bc
[../]
[./v_left]
type = DirichletBC
boundary = 'primary1_interface'
variable = v
value = 1
[../]
[./v_right]
type = DirichletBC
boundary = 'right'
variable = v
value = 0
[../]
[]
############################################################
[Materials]
[./aefv]
type = AEFVMaterial
block = 0
[../]
[./dummy_1]
type = GenericConstantMaterial
block = 1
prop_names = ''
prop_values = ''
[../]
[]
############################################################
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitMidpoint
[../]
solve_type = 'LINEAR'
l_tol = 1e-4
nl_rel_tol = 1e-20
nl_abs_tol = 1e-8
nl_max_its = 60
start_time = 0.0
num_steps = 4 # 4 | 400 for complete run
dt = 5e-4
dtmin = 1e-6
[]
[Outputs]
[./out]
type = Exodus
time_step_interval = 2
[../]
perf_graph = true
[]
(test/tests/auxkernels/material_rate_real/material_rate_real.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[AuxVariables]
[rate]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[rate]
type = MaterialRateRealAux
variable = rate
property = prop
[]
[]
[Variables]
[u]
[]
[]
[Functions]
[func]
type = ParsedFunction
expression = t*t/2
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[mat]
type = GenericFunctionMaterial
prop_names = prop
prop_values = func
block = 0
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Postprocessors]
[rate]
type = PointValue
point = '0.5 0.5 0'
variable = rate
[]
[]
[Outputs]
csv = True
[]
(modules/porous_flow/test/tests/dirackernels/bh_except10.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
compute_internal_energy = false
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
use_internal_energy = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/level_set/examples/rotating_circle/circle_rotate_supg.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 32
ny = 32
uniform_refine = 2
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[Variables]
[./phi]
[../]
[]
[Functions]
[./phi_exact]
type = LevelSetOlssonBubble
epsilon = 0.03
center = '0 0.5 0'
radius = 0.15
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '4*y'
expression_y = '-4*x'
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_exact
variable = phi
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = LevelSetAdvection
velocity = velocity
variable = phi
[../]
[./advection_supg]
type = LevelSetAdvectionSUPG
velocity = velocity
variable = phi
[../]
[./time_supg]
type = LevelSetTimeDerivativeSUPG
velocity = velocity
variable = phi
[../]
[]
[Postprocessors]
[./area]
type = LevelSetVolume
threshold = 0.5
variable = phi
location = outside
execute_on = 'initial timestep_end'
[../]
[./cfl]
type = LevelSetCFLCondition
velocity = velocity
execute_on = 'initial'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
end_time = 1.570796
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl
scale = 0.8
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/bcs/periodic/periodic_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
primary = 3
secondary = 1
translation = '40 0 0'
[../]
[./y]
variable = u
primary = 0
secondary = 2
translation = '0 40 0'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 20
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(modules/level_set/examples/vortex/vortex_reinit_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
nx = 16
ny = 16
uniform_refine = 2
elem_type = QUAD9
second_order = true
[]
[Variables/phi]
family = LAGRANGE
[]
[AuxVariables]
[phi_0]
family = LAGRANGE
[]
[marker]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = phi
[]
[reinit]
type = LevelSetOlssonReinitialization
variable = phi
phi_0 = phi_0
epsilon = 0.03
[]
[]
[Problem]
type = LevelSetReinitializationProblem
[]
[UserObjects]
[arnold]
type = LevelSetOlssonTerminator
tol = 0.5
min_steps = 3
[]
[]
[Preconditioning/smp]
type = SMP
full = true
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0
num_steps = 100
nl_abs_tol = 1e-14
scheme = crank-nicolson
line_search = none
dt = 0.003
[]
[Outputs]
[]
(test/tests/restart/restart_add_variable/add_variable_restart.i)
# Use the exodus file for restarting the problem:
# - restart one variable
# - and have one extra variable
# - have PBP active to have more system in Equation system
#
[Mesh]
file = transient_with_stateful_out.e
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./diffusivity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./out_diffusivity]
type = MaterialRealAux
variable = diffusivity
property = diffusivity
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = diffusivity
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[Materials]
[./mat]
type = StatefulMaterial
block = 0
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = '3'
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 1
[../]
[]
[Preconditioning]
[./PBP]
type = PBP
solve_order = 'u v'
preconditioner = 'AMG AMG'
[../]
[]
[Executioner]
type = Transient
solve_type = JFNK
dt = 0.1
reset_dt = true #NECESSARY to force a change in DT when using restart!
num_steps = 3
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
execute_elemental_on = none
[../]
[]
[Problem]
restart_file_base = transient_with_stateful_out_cp/LATEST
[]
(modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_blocks.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek
# 2D version with blocks
# Top block: tracer is defined here, with velocity = (0.1, 0, 0)
# Central block: tracer is not defined here
# Bottom block: tracer is defined here, with velocity = (-0.1, 0, 0)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
xmin = 0
xmax = 1
ny = 5
ymin = 0
ymax = 1
[]
[top]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0.6 0'
top_right = '1 1 0'
block_id = 1
[]
[center]
input = bottom
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0.4 0'
top_right = '1 0.6 0'
block_id = 2
[]
[bottom]
input = top
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.6 0'
block_id = 3
[]
[split_bdys]
type = BreakBoundaryOnSubdomainGenerator
input = center
boundaries = 'left right'
[]
[]
[GlobalParams]
block = '1 2 3'
[]
[Variables]
[tracer]
block = '1 3'
[]
[dummy]
[]
[]
[ICs]
[tracer_top]
type = FunctionIC
variable = tracer
function = 'if(x<0.1 | x>0.3, 0, 1)'
block = '1'
[]
[tracer_bot]
type = FunctionIC
variable = tracer
function = 'if(x<0.7 | x > 0.9, 0, 1)'
block = '3'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
block = '1 3'
[]
[flux_top]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo_top
block = '1'
[]
[flux_bot]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo_bot
block = '3'
[]
[.dummy]
type = TimeDerivative
variable = dummy
[]
[]
[UserObjects]
[fluo_top]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0 0'
block = '1'
[]
[fluo_bot]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '-0.1 0 0'
block = '3'
[]
[]
[BCs]
[no_tracer_on_left_top]
type = DirichletBC
variable = tracer
value = 0
boundary = 'left_to_1'
[]
[remove_tracer_top]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = 'right_to_1'
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[no_tracer_on_left_bot]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = 'left_to_3'
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[remove_tracer_bot]
type = DirichletBC
variable = tracer
value = 0
boundary = 'right_to_3'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer_bot]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 11
sort_by = x
variable = tracer
[]
[tracer_top]
type = LineValueSampler
start_point = '0 1 0'
end_point = '1 1 0'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/time_steppers/cutback_factor_at_failure/function_dt_cutback.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Functions]
[./dts]
type = PiecewiseLinear
x = '0 0.85 2'
y = '0.2 0.25 0.25'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_steps = '3'
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./TimeStepper]
type = FunctionDT
function = dts
min_dt = 0.01
cutback_factor_at_failure = 0.75
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/to_sub/sub_wrong_order.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./b]
family = SCALAR
order = SIXTH
[../]
[]
[Kernels]
[./diffusion]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
[]
[Outputs]
hide = 'u'
exodus = true
[]
(test/tests/postprocessors/element_integral_var_pps/initial_pps.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
elem_type = QUAD9
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 2.8
[../]
[../]
[./v]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 5.4
[../]
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 0
[../]
[]
[Postprocessors]
[./initial_u]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = initial
[../]
[./initial_v]
type = ElementIntegralVariablePostprocessor
variable = v
execute_on = initial
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 0.3
[]
[Outputs]
file_base = out_initial_pps
exodus = true
[]
(modules/solid_mechanics/test/tests/power_law_creep/ad_smallstrain.i)
# 1x1x1 unit cube with uniform pressure on top face for the case of small strain.
# This test does not have a solid mechanics analog because there is not an equvialent
# small strain with rotations strain calculator material in solid mechanics
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[]
[]
[Functions]
[top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[u_top_pull]
type = ADPressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[]
[u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[]
[radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[]
[power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/radiative_bcs/function_radiative_bc.i)
#
# If we assume that epsilon*sigma*(T_inf^4-T_s^4) is approximately equal to
# epsilon*sigma*4*T_inf^3*(T_inf-T_s), that form is equivalent to
# h*(T_inf-T_s), the convective flux bc. So, the radiative and convective
# flux bcs should give nearly the same answer if the leading terms are equal.
#
[Mesh]
[top]
type = GeneratedMeshGenerator
dim = 3
nx = 10
bias_x = 0.8
ymin = 1.2
ymax = 2.2
boundary_name_prefix = top
[]
[bottom]
type = GeneratedMeshGenerator
dim = 3
nx = 10
bias_x = 0.8
boundary_name_prefix = bot
boundary_id_offset = 6
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'top bottom'
[]
[]
[Variables]
[temp]
initial_condition = 600.0
[]
[]
[Kernels]
[heat_dt]
type = TimeDerivative
variable = temp
[]
[heat_conduction]
type = HeatConduction
variable = temp
[]
[]
[BCs]
[./top_right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = top_right
T_infinity = 300.0
heat_transfer_coefficient = 3.0
heat_transfer_coefficient_dT = 0
[../]
[./bot_right]
type = FunctionRadiativeBC
variable = temp
boundary = bot_right
# htc/(stefan-boltzmann*4*T_inf^3)
emissivity_function = '3/(5.670367e-8*4*300*300*300)'
[../]
[]
[Materials]
[./thermal]
type = GenericConstantMaterial
prop_names = 'density thermal_conductivity specific_heat'
prop_values = '1 10 100'
[../]
[]
[Postprocessors]
[./top_left_temp]
type = SideAverageValue
variable = temp
boundary = top_left
execute_on = 'TIMESTEP_END initial'
[../]
[./bot_left_temp]
type = SideAverageValue
variable = temp
boundary = bot_left
execute_on = 'TIMESTEP_END initial'
[../]
[./top_right_temp]
type = SideAverageValue
variable = temp
boundary = top_right
[../]
[./bot_right_temp]
type = SideAverageValue
variable = temp
boundary = bot_right
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1e1
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/functions/piecewise_multilinear/except3.i)
# PiecewiseMultilinear function exception test
# Incorrect number of data points
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 1
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./f]
[../]
[]
[AuxKernels]
[./f_auxK]
type = FunctionAux
variable = f
function = except3_fcn
[../]
[]
[Functions]
[./except3_fcn]
type = PiecewiseMultilinear
data_file = except3.txt
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
hide = dummy
[]
(test/tests/adaptivity/cycles_per_step/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 2
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[../]
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/system_info/system_info.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Adaptivity]
marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
coarsen = 0.1
indicator = indicator
refine = 0.7
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux_u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/phi_zero/simple_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./dummy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./phi_zero]
type = PhiZeroKernel
variable = dummy
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(python/peacock/tests/common/time_data.i)
###############################################################
# The following tests that the CSV output object can include an
# additional .csv file that contains the time and timestep
# data from VectorPostprocessor object.
###############################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'u v'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = 'time_data'
[./out]
type = CSV
time_data = true
interval = 2
[../]
[]
(test/tests/misc/exception/exception_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[exception]
type = ExceptionKernel
variable = u
when = residual
# throw after the first residual evaluation
counter = 1
[]
[diff]
type = Diffusion
variable = u
[]
[time_deriv]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[right]
type = DirichletBC
variable = u
preset = false
boundary = 2
value = 1
[]
[right2]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 0
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.005
solve_type = 'PJFNK'
petsc_options_iname = '--pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = true
[out]
type = CSV
execute_on = 'INITIAL TIMESTEP_END FAILED'
[]
[]
(test/tests/outputs/perf_graph/multi_app/parent_sub_cycle.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0'
type = TransientMultiApp
input_files = 'sub_sub_cycle.i'
app_type = MooseTestApp
sub_cycling = true
[../]
[]
(modules/phase_field/test/tests/MultiPhase/derivativetwophasematerial.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
coupled_variables = c
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = 'eta'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./switching]
type = SwitchingFunctionMaterial
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
g_order = SIMPLE
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
property_name = Fa
coupled_variables = 'c'
expression = '(c-0.1)^2*(c-1)^2 + c*0.01'
derivative_order = 2
enable_jit = true
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
property_name = Fb
coupled_variables = 'c'
expression = 'c^2*(c-0.9)^2 + (1-c)*0.01'
derivative_order = 2
enable_jit = true
[../]
[./free_energy]
type = DerivativeTwoPhaseMaterial
property_name = F
fa_name = Fa
fb_name = Fb
coupled_variables = 'c'
eta = eta
derivative_order = 2
outputs = exodus
output_properties = 'F dF/dc dF/deta d^2F/dc^2 d^2F/dcdeta d^2F/deta^2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
[]
(test/tests/interfacekernels/1d_interface/ADMatreaction_1D_transient.i)
# Transient-state test for the InterfaceReaction kernel.
#
# Same to steady-state, except the following
#
# Natural BCs are applied (i.e. NewmannBC h=0 at left and right)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'subdomain1'
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
block = '0'
[]
[v]
order = FIRST
family = LAGRANGE
block = '1'
[]
[]
[Kernels]
[diff_u]
type = MatDiffusion
variable = u
block = '0'
diffusivity = D
[]
[diff_v]
type = MatDiffusion
variable = v
block = '1'
diffusivity = D
[]
[diff_u_dt]
type = TimeDerivative
variable = u
block = '0'
[]
[diff_v_dt]
type = TimeDerivative
variable = v
block = '1'
[]
[source_u]
type = BodyForce
variable = u
block = '0'
[]
[]
[InterfaceKernels]
[interface]
type = InterfaceDiffusion
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
D = D
D_neighbor = D
[]
[interface_reaction]
type = ADMatInterfaceReaction
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
forward_rate = forward_rate
backward_rate = backward_rate
[]
[]
[Materials]
[block0]
type = 'ADGenericConstantMaterial'
block = '0'
prop_names = 'forward_rate backward_rate'
prop_values = '1.0 2.0'
[]
[block01]
type = 'GenericConstantMaterial'
block = '0'
prop_names = 'D'
prop_values = '4'
[]
[block1]
type = 'ADGenericConstantMaterial'
block = '1'
prop_names = 'forward_rate backward_rate'
prop_values = '1.0 2.0'
[]
[block11]
type = 'GenericConstantMaterial'
block = '1'
prop_names = 'D'
prop_values = '2'
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = NEWTON
[]
[Outputs]
print_linear_residuals = true
#execute_on = 'FINAL'
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/dampers/min_damping/min_nodal_damping.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./u_dt]
type = TimeDerivative
variable = u
[../]
[./u_source]
type = BodyForce
variable = u
value = 1
[../]
[]
[BCs]
[./u_left]
type = DirichletBC
boundary = left
variable = u
value = 0.0
[../]
[]
[Dampers]
[./limit]
type = BoundingValueNodalDamper
variable = u
max_value = 1.5
min_value = -1.5
min_damping = 0.001
[../]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
[../]
[./dt]
type = TimestepSize
[../]
[]
(test/tests/utils/apply_input_parameters/apply_input_parameters.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[ApplyInputParametersTest]
# Builds CoefDiffusion
coef = 0.1
variable = u
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropy.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = -2
xmax = 2
ymin = -2
ymax = 2
[]
# enable_jit set to false in many materials to make this test start up faster.
# It is recommended to set enable_jit = true or just remove these lines for
# production runs with this model
[GlobalParams]
radius = 1.0
int_width = 0.8
x1 = 0
y1 = 0
derivative_order = 2
enable_jit = false
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[BCs]
[./Periodic]
[./w]
variable = w
auto_direction = 'x y'
[../]
[./etaa0]
variable = etaa0
auto_direction = 'x y'
[../]
[./etab0]
variable = etab0
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa dkappadgrad_etaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab dkappadgrad_etab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
l_tol = 1.0e-5
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-12
num_steps = 2
dt = 0.001
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/controls/parsed_function_control/test.i)
# This test takes a value of (a) function, (b) postprocessor, (c) scalar variable,
# (d) real-valued control value and (f) bool-valued control value and evaluates it via
# ParsedFunctionControl object
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Functions]
[pps_fn]
type = ConstantFunction
value = 4
[]
[fn]
type = ConstantFunction
value = 5
[]
[]
[AuxVariables]
[sv]
family = SCALAR
order = FIRST
initial_condition = 0
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[AuxScalarKernels]
[sv_ak]
type = ConstantScalarAux
variable = sv
value = 3
execute_on = 'timestep_begin'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Components]
[]
[Postprocessors]
[pps]
type = FunctionValuePostprocessor
function = pps_fn
execute_on = 'timestep_begin'
[]
[result]
type = RealControlDataValuePostprocessor
control_data_name = eval_ctrl:value
execute_on = 'timestep_end'
[]
[]
[ControlLogic]
[ctrl]
type = GetFunctionValueControl
function = 2
[]
[trip]
type = UnitTripControl
condition = 't > 0'
[]
[eval_ctrl]
type = ParsedFunctionControl
function = 'a + b + c + d + f'
symbol_names = 'a b c d f'
symbol_values = 'fn pps sv ctrl:value trip:state'
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
abort_on_solve_fail = true
[]
[Outputs]
csv = true
show = 'result'
[]
(modules/stochastic_tools/test/tests/vectorpostprocessors/stochastic_results/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[]
(test/tests/controls/time_periods/error/control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = 'const_damp'
# Note: These numbers are quoted to get around an issue when
# overriding numeric types with vectors of numeric types
# on the CLI. They are still interpreted as numbers.
start_time = '0.25'
end_time = '0.55'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/restart/restart_transient_from_transient/restart_trans_with_2subs_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmax = 0.3
ymax = 0.3
[]
[AuxVariables]
[power_density]
[]
[]
[Variables]
[temp]
[]
[]
[Kernels]
[heat_conduction]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '1 3'
value = 100
[]
[bc2]
type = NeumannBC
variable = temp
boundary = '0 2'
value = 10.0
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
start_time = 0
end_time = 3
dt = 1.0
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[temp_fuel_avg]
type = ElementAverageValue
variable = temp
block = '0'
execute_on = 'initial timestep_end'
[]
[pwr_density]
type = ElementIntegralVariablePostprocessor
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
[]
(tutorials/tutorial02_multiapps/step02_transfers/03_sub_uot.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -0.05
xmax = 0.05
ymin = -0.05
ymax = 0.05
zmax = 3
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u_integral]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[front]
type = DirichletBC
variable = v
boundary = front
value = 0
[]
[back]
type = DirichletBC
variable = v
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[UserObjects]
[layered_average]
type = NearestPointLayeredAverage
points = '0 0 0'
direction = z
num_layers = 4
variable = v
[]
[]
(test/tests/time_steppers/timesequence_stepper/timesequence_restart2.i)
[Mesh]
file = timesequence_restart1_cp/0002-mesh.cpa.gz
[]
[Problem]
restart_file_base = timesequence_restart1_cp/0002
# There is an initial conditions overwriting the restart on the nonlinear variable u
# As you can see in the gold file, this makes the initial step output be from the
# initial condition
allow_initial_conditions_with_restart = true
[]
[Functions]
[exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[]
[forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[]
[]
[Variables]
[u]
family = LAGRANGE
order = SECOND
[]
[]
[ICs]
[u_var]
type = FunctionIC
variable = u
function = exact_fn
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[]
[]
[Executioner]
type = Transient
end_time = 4.0
[TimeStepper]
type = TimeSequenceStepper
time_sequence = '0 0.85 1.3 2 4'
[]
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/from_sub/sub_wrong_order.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./b]
family = SCALAR
order = FIFTH
[../]
[]
[ICs]
[./ic]
type = ScalarComponentIC
variable = b
values = '1.0 2.0 3.0 4.0 5.0'
[../]
[]
[Kernels]
[./diffusion]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
[]
[Outputs]
hide = 'u'
exodus = true
[]
(modules/porous_flow/test/tests/poroperm/linear_test_vals.i)
# Testing PorousFlowPorosityLinear produces correct values:
# porosity = porosity_ref + P_coeff * (P - P_ref) + T_coeff * (T - T_ref) + epv_coeff * (epv - epv_coeff)
# = 0.5 + 2 * (1 - 0.5) + 0.5 * (2 - -3) + 4 * (3 - 2.5)
# = 6
[GlobalParams]
PorousFlowDictator = dictator
[]
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
number_fluid_phases = 1
number_fluid_components = 1
porous_flow_vars = pp
[]
[]
[Variables]
[pp]
initial_condition = 1
[]
[T]
initial_condition = 2
[]
[disp]
[]
[]
[ICs]
[disp]
type = FunctionIC
variable = disp
function = '3 * x'
[]
[]
[Kernels]
[pp]
type = TimeDerivative
variable = pp
[]
[T]
type = TimeDerivative
variable = T
[]
[disp]
type = TimeDerivative
variable = disp
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[Postprocessors]
[porosity]
type = PointValue
point = '0 0 0'
variable = porosity
[]
[]
[Materials]
[ps]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[temperature]
type = PorousFlowTemperature
temperature = T
[]
[pf]
type = PorousFlowEffectiveFluidPressure
[]
[total_strain]
type = ComputeSmallStrain
displacements = disp
[]
[volstrain]
type = PorousFlowVolumetricStrain
displacements = disp
[]
[porosity]
type = PorousFlowPorosityLinear
porosity_ref = 0.5
P_ref = 0.5
P_coeff = 2.0
T_ref = -3.0
T_coeff = 0.5
epv_ref = 2.5
epv_coeff = 4.0
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 1
[]
[Outputs]
csv = true
[]
(test/tests/outputs/intervals/intervals.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
time_step_interval = 5
[../]
[]
(modules/optimization/test/tests/simp/2d.i)
vol_frac = 0.2
[Mesh]
[planet]
type = ConcentricCircleMeshGenerator
has_outer_square = false
radii = 1
num_sectors = 10
rings = 2
preserve_volumes = false
[]
[moon]
type = ConcentricCircleMeshGenerator
has_outer_square = false
radii = 0.5
num_sectors = 8
rings = 2
preserve_volumes = false
[]
[combine]
type = CombinerGenerator
inputs = 'planet moon'
positions = '0 0 0 -1.5 -0.5 0'
[]
[]
[AuxVariables]
[mat_den]
family = MONOMIAL
order = CONSTANT
initial_condition = 0.1
[]
[Dc]
family = MONOMIAL
order = CONSTANT
initial_condition = -1.0
[]
[]
[Variables]
[u]
[]
[v]
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[dt_u]
type = TimeDerivative
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[dt_v]
type = TimeDerivative
variable = v
[]
[]
[Materials]
[thermal_cond]
type = GenericFunctionMaterial
prop_values = '-1.4*abs(y)-2.7*abs(x)'
prop_names = thermal_cond
outputs = 'exodus'
[]
[thermal_compliance_sensitivity]
type = GenericFunctionMaterial
prop_values = '-3*abs(y)-1.5*abs(x)'
prop_names = thermal_sensitivity
outputs = 'exodus'
[]
[]
[BCs]
[flux_u]
type = DirichletBC
variable = u
boundary = outer
value = 3.0
[]
[flux_v]
type = DirichletBC
variable = v
boundary = outer
value = 7.0
[]
[]
[UserObjects]
[rad_avg]
type = RadialAverage
radius = 0.1
weights = linear
prop_name = thermal_sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[update]
type = DensityUpdate
density_sensitivity = Dc
design_density = mat_den
volume_fraction = ${vol_frac}
execute_on = TIMESTEP_BEGIN
[]
[calc_sense]
type = SensitivityFilter
density_sensitivity = Dc
design_density = mat_den
filter_UO = rad_avg
execute_on = TIMESTEP_END
force_postaux = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 15
nl_rel_tol = 1e-04
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_steady/restart_trans_with_sub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./power_density]
[../]
[]
[Variables]
[./temp]
# initial_condition = 1000000
[../]
[]
[Kernels]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat_ie]
type = TimeDerivative
variable = temp
[../]
[./heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[../]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '0 1 2 3'
value = 450
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
start_time = 0
end_time = 3
dt = 1.0
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[./temp_fuel_avg]
type = ElementAverageValue
variable = temp
block = '0'
execute_on = 'initial timestep_end'
[../]
[./pwr_density]
type = ElementIntegralVariablePostprocessor
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except05.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
mass_fraction_component = 0
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(test/tests/time_integrators/explicit-euler/ee-1d-quadratic-neumann.i)
[GlobalParams]
implicit = false
[]
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 10
elem_type = EDGE3
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x*x-2*t+t*x*x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x*x
[../]
[./left_bc_fn]
type = ParsedFunction
expression = -t*2*x
[../]
[./right_bc_fn]
type = ParsedFunction
expression = t*2*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./abs]
type = Reaction
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./left]
type = FunctionNeumannBC
variable = u
boundary = '0'
function = left_bc_fn
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = '1'
function = right_bc_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
l_tol = 1e-12
start_time = 0.0
num_steps = 10
dt = 0.001
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/multiapps/check_error/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/nodalkernels/constant_rate/constant_rate.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./nodal_ode]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = nodal_ode
[../]
[./constant_rate]
type = ConstantRate
variable = nodal_ode
rate = 1.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
[]
[Outputs]
exodus = true
[]
(test/tests/batch_material/test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
[]
[]
[Variables]
[v]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = v
[]
[diff]
type = Diffusion
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[UserObjects]
[batch]
type = BatchMaterialTest
var1 = v
prop1 = tensor
prop2 = number
execute_on = 'LINEAR'
[]
[]
[Materials]
[prop1]
type = GenericConstantRankTwoTensor
tensor_name = tensor
tensor_values = '1 2 3 4 5 6 7 8 9'
[]
[prop2]
type = GenericFunctionMaterial
prop_names = number
prop_values = 'x^2+sin(y*3)+cos(t*10)'
[]
[test]
type = BatchTestMaterial
var1 = v
prop1 = tensor
prop2 = number
batch_uo = batch
[]
[]
[Postprocessors]
[average1]
type = ElementAverageMaterialProperty
mat_prop = batch_out1
[]
[average2]
type = ElementAverageMaterialProperty
mat_prop = batch_out2
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.1
num_steps = 3
[]
(test/tests/postprocessors/postprocessor_dependency/element_side_pp.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
elem_type = QUAD9
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 2.8
[../]
[../]
[./v]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 5.4
[../]
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 0
[../]
[]
[Postprocessors]
[./sidepp]
type = SideIntegralVariablePostprocessor
variable = v
execute_on = timestep_end
boundary = '0 1 2 3'
[../]
[./passsidepp]
type = ElementSidePP
side_pp = sidepp
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 0.3
[]
[Outputs]
file_base = out
csv = true
[]
(test/tests/functions/piecewise_multilinear/twoDb.i)
# PiecewiseMultilinear function tests in 2D
# The spatial grid is 1<=x<=5 and 1<=y<=5
# At t<=1 a disk of radius 0.5 sits at (x,y)=(1.45,1.45): it has f=1. Elsewhere f=0
# At t>=0 a disk of radius 0.5 sits at (x,y)=(4,55,4,55): it has f=1. Elsewhere f=0
# The disks' centers were chosen specially so that the disk partially sits outside the grid
# which illustrates the extrapolation process used by GriddedData and PiecewiseMultilinear
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 6
nx = 60
ymin = 0
ymax = 6
ny = 60
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./moving_disk_var]
[../]
[]
[AuxKernels]
[./moving_disk_AuxK]
type = FunctionAux
variable = moving_disk_var
function = moving_disk_fcn
[../]
[]
[Functions]
[./moving_disk_fcn]
type = PiecewiseMultilinear
data_file = twoD2.txt
[../]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = twoDb
hide = dummy
exodus = true
csv = true
[]
(test/tests/functions/generic_function_material/generic_function_vector_material_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Functions]
[diff_func_x]
type = ParsedFunction
expression = 1/t
[]
[diff_func_y]
type = ParsedFunction
expression = 't*t + x'
[]
[]
[Kernels]
[diff]
type = VectorMatDiffusion
variable = u
coeff = diffusion
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = '0'
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = '1'
[]
[]
[Materials]
[gfm]
type = GenericFunctionVectorMaterial
block = 0
prop_names = diffusion
prop_values = 'diff_func_x diff_func_y 0'
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/output_in_position/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = sub.i
output_in_position = true
[../]
[]
(test/tests/outputs/debug/show_execution_auxkernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Debug]
show_execution_order = 'ALWAYS'
[]
[AuxVariables]
[a]
initial_condition = 1
[]
[b]
initial_condition = 2
[]
[c]
initial_condition = 3
[]
[a_elem]
order = CONSTANT
family = MONOMIAL
initial_condition = 1
[]
[b_elem]
order = CONSTANT
family = MONOMIAL
initial_condition = 2
[]
[c_elem]
order = CONSTANT
family = MONOMIAL
initial_condition = 3
[]
[d_elem]
order = CONSTANT
family = MONOMIAL
initial_condition = 3
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[exact_fn]
type = ParsedFunction
expression = t
[]
[a_fn]
type = ParsedFunction
expression = t
[]
[b_fn]
type = ParsedFunction
expression = (4-t)/2
[]
[]
[AuxKernels]
# Nodal
# this one needs a and b set, should run last
[c_saux]
type = QuotientAux
variable = c
numerator = a
denominator = b
execute_on = 'initial timestep_end'
[]
# setting b requires a
[b_saux]
type = ProjectionAux
variable = b
v = a
execute_on = 'linear timestep_end'
[]
# Elements
# this one needs a and b set, should run last
[c_saux_elem]
type = QuotientAux
variable = c_elem
numerator = a_elem
denominator = b_elem
execute_on = 'initial timestep_end'
[]
# setting b requires a
[b_saux_elem]
type = ProjectionAux
variable = b_elem
v = a_elem
execute_on = 'linear timestep_end'
[]
# boundary auxkernel
[real_property]
type = MaterialRealAux
variable = d_elem
property = 3
boundary = 'top bottom'
[]
[]
[Kernels]
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 1
dt = 1
[]
(test/tests/meshgenerators/lower_d_block_generator/ids.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./lower_d_block]
type = LowerDBlockFromSidesetGenerator
input = gmg
new_block_id = 10
sidesets = '0 0 1 2 3'
[]
[]
[Variables]
[./u]
block = 0
[../]
[./v]
block = 10
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
block = 0
[../]
[./srcv]
type = BodyForce
block = 10
variable = v
function = 1
[../]
[./time_v]
type = TimeDerivative
block = 10
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_bad_function_series.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[./AnotherFunction]
type = ConstantFunction
value = -1
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = AnotherFunction
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/bcs/periodic/trapezoid_non_periodic.i)
[Mesh]
file = trapezoid.e
uniform_refine = 1
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[periodic_dist]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[forcing]
type = GaussContForcing
variable = u
x_center = 2
y_center = -1
x_spread = 0.25
y_spread = 0.5
[]
[dot]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[periodic_dist]
type = PeriodicDistanceAux
variable = periodic_dist
point = '0.2 1.7 0.0'
[]
[]
[BCs]
[right]
type = DirichletBC
variable = u
value = 1
boundary = 2
[]
[left]
type = DirichletBC
variable = u
value = 2
boundary = 2
[]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_1d.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 2
[]
[]
[Variables/u]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.1
[]
[]
[UserObjects/study]
type = LotsOfRaysRayStudy
ray_kernel_coverage_check = false
vertex_to_vertex = true
centroid_to_vertex = true
centroid_to_centroid = true
execute_on = timestep_end
[]
[RayBCs/kill]
type = KillRayBC
boundary = 'left right'
[]
[Postprocessors]
[total_distance]
type = RayTracingStudyResult
study = study
result = total_distance
execute_on = timestep_end
[]
[total_rays]
type = RayTracingStudyResult
study = study
result = total_rays_started
execute_on = timestep_end
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test6.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 2
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 2
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[]
[SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[SubdomainBoundingBox3]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox2
block_id = 1
bottom_left = '2 2 1'
top_right = '3 3 2'
[]
[ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox3
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/initial_intactive/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '0 0 0'
type = TransientMultiApp
input_files = 'sub.i'
app_type = MooseTestApp
enable = false # Start with a multiapp that's disabled up front
sub_cycling = true
[../]
[]
[Controls]
[./multiapp_enable]
type = TimePeriod
disable_objects = 'MultiApps::sub'
start_time = 0
end_time = 1.3
execute_on = 'timestep_begin'
reverse_on_false = true
[../]
[]
(test/tests/time_steppers/constant_dt/constant_dt.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeStepper system.
#
# @Requirement F1.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
# Pluggable TimeStepper System
[./TimeStepper]
type = ConstantDT
dt = 0.2
[../]
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/directional_flux_bc/2d_elem.i)
[Mesh]
[shade]
type = GeneratedMeshGenerator
dim = 2
nx = 1
ny = 3
xmax = 0.2
ymax = 0.5
[]
[screen]
type = GeneratedMeshGenerator
dim = 2
nx = 1
ny = 20
xmax = 0.05
[]
[screen_block]
type = SubdomainIDGenerator
input = screen
subdomain_id = 1
[]
[combine]
type = CombinerGenerator
inputs = 'shade screen_block'
positions = '0 0 0 1 0 0'
[]
[all_sides]
type = SideSetsAroundSubdomainGenerator
block = '0 1'
new_boundary = 100
input = combine
[]
[shaded_side]
type = SideSetsAroundSubdomainGenerator
normal = '-1 0 0'
block = 1
input = all_sides
new_boundary = 101
[]
[]
[GlobalParams]
illumination_flux = '1 0 0'
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[dt]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[flux]
type = DirectionalFluxBC
variable = u
boundary = 101
self_shadow_uo = shadow
[]
[]
[UserObjects]
[shadow]
type = SelfShadowSideUserObject
boundary = 100
execute_on = INITIAL
[]
[]
[Postprocessors]
[light]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 101
[]
[]
[Executioner]
type = Transient
dt = 0.01
num_steps = 1
[]
[Outputs]
csv = true
[]
(test/tests/auxkernels/constant_scalar_aux/constant_scalar_aux.i)
#
# Testing a solution that is second order in space and first order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[AuxVariables]
[./x]
family = SCALAR
order = FIRST
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[ICs]
[./ic_x]
type = ScalarConstantIC
variable = x
value = 11
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[AuxScalarKernels]
[./const_x]
type = ConstantScalarAux
variable = x
value = 11
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/nodal_extreme_value/nodal_max_value_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
[]
[Functions]
[exact_fn]
type = ParsedFunction
expression = (sin(pi*t))
[]
[forcing_fn]
type = ParsedFunction
expression = sin(pi*t)
[]
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff' #ffn'
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
num_steps = 20
[]
[Postprocessors]
[max_nodal_val]
type = NodalExtremeValue
variable = u
[]
[]
[Outputs]
file_base = out_nodal_max
exodus = true
[]
(modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/fracture_app.i)
# Temperature is transferred between the fracture and matrix apps
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 1
nx = 100
xmin = 0
xmax = 50.0
[]
[]
[Variables]
[frac_T]
[]
[]
[ICs]
[frac_T]
type = FunctionIC
variable = frac_T
function = 'if(x<1E-6, 2, 0)' # delta function
[]
[]
[AuxVariables]
[transferred_matrix_T]
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = frac_T
[]
[fracture_diffusion]
type = Diffusion
variable = frac_T
[]
[toMatrix]
type = PorousFlowHeatMassTransfer
variable = frac_T
v = transferred_matrix_T
transfer_coefficient = 0.004
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[VectorPostprocessors]
[final_results]
type = LineValueSampler
start_point = '0 0 0'
end_point = '50 0 0'
num_points = 11
sort_by = x
variable = frac_T
outputs = final_csv
[]
[]
[Outputs]
print_linear_residuals = false
[final_csv]
type = CSV
sync_times = 100
sync_only = true
[]
[]
[MultiApps]
[matrix_app]
type = TransientMultiApp
input_files = matrix_app.i
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[T_to_matrix]
type = MultiAppCopyTransfer
to_multi_app = matrix_app
source_variable = frac_T
variable = transferred_frac_T
[]
[T_from_matrix]
type = MultiAppCopyTransfer
from_multi_app = matrix_app
source_variable = matrix_T
variable = transferred_matrix_T
[]
[]
(test/tests/restart/restart_steady_from_transient/transient.i)
# We run a simple problem (5 time steps and save off the solution)
# In part2, we load the solution and solve a steady problem. The test check, that the initial state in part 2 is the same as the last state from part1
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
parallel_type = replicated
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'ie diff ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.2
start_time = 0
num_steps = 5
[]
[Outputs]
exodus = true
checkpoint = true
[]
(test/tests/userobjects/postprocessor_spatial_user_object/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Functions]
[./ic_fn]
type = ParsedFunction
expression = 'x * y'
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = u
function = ic_fn
[../]
[./a_ic]
type = ConstantIC
variable = a
value = 1
[../]
[]
[AuxVariables]
[./a]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./rhs]
type = BodyForce
variable = u
function = 1
[../]
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub.i'
positions = '
0.25 0.25 0
0.75 0.75 0'
execute_on = 'initial timestep_end'
[../]
[]
[Transfers]
[./master_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = a
[../]
[./sub_to_master]
type = MultiAppUserObjectTransfer
from_multi_app = sub
user_object = fn_uo
variable = a
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 10
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/setup_interface_count/nodal.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = NodalSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./timestep] # once per timestep
type = NodalSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./subdomain] # 0, not execute for this type of object
type = NodalSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = NodalSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = NodalSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./execute] # 6 for initial and 12 for each timestep (3 nodes on two boundaries)
type = NodalSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./threadjoin] # 1 for initial and 2 for each timestep
type = NodalSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/num_failed_timesteps/failed_timesteps.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[TimeStepper]
type = ConstantDT
dt = 0.2
[]
[]
[Problem]
type = FailingProblem
fail_steps = '1 1 1 2 4 5'
[]
[Postprocessors]
[num_failed]
type = NumFailedTimeSteps
[]
[]
(test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/from_sub/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./b]
family = SCALAR
order = SIXTH
[../]
[]
[ICs]
[./ic]
type = ScalarComponentIC
variable = b
values = '1.0 2.0 3.0 4.0 5.0 6.0'
[../]
[]
[Kernels]
[./diffusion]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
[]
[Outputs]
hide = 'u'
exodus = true
[]
(test/tests/multiapps/picard_multilevel/2level_picard/sub_level1.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u]
[]
[w]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = v
[]
[diffusion]
type = Diffusion
variable = v
[]
[source]
type = CoupledForce
variable = v
v = u
[]
[]
[BCs]
[dirichlet0]
type = DirichletBC
variable = v
boundary = '0'
value = 0
[]
[dirichlet]
type = DirichletBC
variable = v
boundary = '2'
value = 100
[]
[]
[Postprocessors]
[avg_u]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_begin timestep_end'
[]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_begin timestep_end'
[]
[avg_w]
type = ElementAverageValue
variable = w
execute_on = 'initial timestep_begin timestep_end'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
end_time = 0.1
dt = 0.02
[]
[MultiApps]
[level2-]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = sub_level2.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[v_to_sub]
type = MultiAppGeneralFieldShapeEvaluationTransfer
source_variable = v
variable = v
to_multi_app = level2-
execute_on = 'timestep_end'
[]
[w_from_sub]
type = MultiAppGeneralFieldShapeEvaluationTransfer
source_variable = w
variable = w
from_multi_app = level2-
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
perf_graph = true
[screen]
type = Console
execute_postprocessors_on = "timestep_end timestep_begin"
[]
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialMultiphase.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -20
xmax = 20
ymin = -20
ymax = 20
[]
[GlobalParams]
op_num = 2
var_name_base = etab
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./etab1]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./IC_etaa0]
type = FunctionIC
variable = etaa0
function = ic_func_etaa0
[../]
[./IC_etab0]
type = FunctionIC
variable = etab0
function = ic_func_etab0
[../]
[./IC_etab1]
type = FunctionIC
variable = etab1
function = ic_func_etab1
[../]
[./IC_w]
type = ConstantIC
value = -0.05
variable = w
[../]
[]
[Functions]
[./ic_func_etaa0]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2);0.5*(1.0-tanh((r-10.0)/sqrt(2.0)))'
[../]
[./ic_func_etab0]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0+tanh((y)/sqrt(2.0)))'
[../]
[./ic_func_etab1]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2);0.5*(1.0+tanh((r-10)/sqrt(2.0)))*0.5*(1.0-tanh((y)/sqrt(2.0)))'
[../]
[]
[BCs]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0 etab1'
gamma_names = 'gab gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 etab1 w'
[../]
[./ACa0_int]
type = ACInterface
variable = etaa0
kappa_name = kappa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0 etab1'
gamma_names = 'gab gbb'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab1 w'
[../]
[./ACb0_int]
type = ACInterface
variable = etab0
kappa_name = kappa
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
# Order parameter eta_beta1
[./ACb1_bulk]
type = ACGrGrMulti
variable = etab1
v = 'etaa0 etab0'
gamma_names = 'gab gbb'
[../]
[./ACb1_sw]
type = ACSwitching
variable = etab1
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0 w'
[../]
[./ACb1_int]
type = ACInterface
variable = etab1
kappa_name = kappa
[../]
[./eb1_dot]
type = TimeDerivative
variable = etab1
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
coupled_variables = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0 etab1'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0 etab1'
[../]
[./coupled_etab1dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab1
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0 etab1'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[]
# enable_jit set to false in many materials to make this test start up faster.
# It is recommended to set enable_jit = true or just remove these lines for
# production runs with this model
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0 etab1'
phase_etas = 'etab0 etab1'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
derivative_order = 2
enable_jit = false
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
derivative_order = 2
enable_jit = false
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
derivative_order = 2
enable_jit = false
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa L D chi Vm ka caeq kb cbeq gab gbb mu'
prop_values = '0 1 1.0 1.0 1.0 1.0 10.0 0.1 10.0 0.9 4.5 1.5 1.0'
[../]
[./Mobility]
type = DerivativeParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
derivative_order = 2
enable_jit = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
num_steps = 2
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/matrix_app.i)
# Temperature is transferred between the fracture and matrix apps
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 1
nx = 100
xmin = 0
xmax = 50.0
[]
[]
[Variables]
[matrix_T]
[]
[]
[AuxVariables]
[transferred_frac_T]
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = matrix_T
[]
[matrix_diffusion]
type = Diffusion
variable = matrix_T
[]
[fromFrac]
type = PorousFlowHeatMassTransfer
variable = matrix_T
v = transferred_frac_T
transfer_coefficient = 0.004
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[Outputs]
print_linear_residuals = false
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/restricted_elem_parent.i)
num_layers = 2
[Mesh]
[box]
type = GeneratedMeshGenerator
dim = 3
nx = ${num_layers}
ny = 3
nz = 3
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[a]
family = MONOMIAL
order = CONSTANT
[]
[s]
[]
[]
[AuxKernels]
[s_ak]
type = ParsedAux
variable = s
use_xyzt = true
expression = 'x+(z*z)'
[]
[]
[Functions]
[]
[Postprocessors]
[a_avg]
type = ElementAverageValue
variable = a
[]
[]
[UserObjects]
[S_avg_front]
type = LayeredSideAverage
boundary = front
variable = s
num_layers = ${num_layers}
direction = x
[]
[S_avg_back]
type = LayeredSideAverage
boundary = back
variable = s
num_layers = ${num_layers}
direction = x
[]
[]
[MultiApps]
[ch0]
type = TransientMultiApp
input_files = 'restricted_elem_sub.i'
bounding_box_padding = '0 0.5 1'
positions = '0 0.5 -0.1'
output_in_position = true
cli_args = 'yy=0'
[]
[ch1]
type = TransientMultiApp
input_files = 'restricted_elem_sub.i'
bounding_box_padding = '0 0.5 1'
positions = '0 0.5 1.1'
output_in_position = true
cli_args = 'yy=1'
[]
[]
[Transfers]
[from_ch0]
type = MultiAppGeneralFieldUserObjectTransfer
to_boundaries = back
from_multi_app = ch0
variable = a
source_user_object = A_avg
# Bounding box padding is not obeyed
fixed_bounding_box_size = '0 1 1.5'
from_app_must_contain_point = false
[]
[from_ch1]
type = MultiAppGeneralFieldUserObjectTransfer
to_boundaries = front
from_multi_app = ch1
variable = a
source_user_object = A_avg
fixed_bounding_box_size = '0 1 1.5'
from_app_must_contain_point = false
[]
[to_ch0]
type = MultiAppGeneralFieldUserObjectTransfer
to_blocks = 20
to_multi_app = ch0
variable = S
source_user_object = S_avg_back
fixed_bounding_box_size = '0 1 1.5'
from_app_must_contain_point = false
[]
[to_ch1]
type = MultiAppGeneralFieldUserObjectTransfer
to_blocks = 20
to_multi_app = ch1
variable = S
source_user_object = S_avg_front
fixed_bounding_box_size = '0 1 1.5'
from_app_must_contain_point = false
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
nl_abs_tol = 1e-7
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/jacobian/mass01_fully_saturated.i)
# FullySaturatedMassTimeDerivative
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
bulk_modulus = 1.5
density0 = 1.0
[]
[]
[Variables]
[pp]
[]
[T]
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[ICs]
[disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[]
[disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[]
[disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[]
[pp]
type = RandomIC
variable = pp
min = 0
max = 1
[]
[T]
type = RandomIC
variable = T
min = 0
max = 1
[]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[]
[disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[]
[]
[Kernels]
[mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
variable = pp
coupling_type = ThermoHydroMechanical
biot_coefficient = 0.9
[]
[dummyT]
type = TimeDerivative
variable = T
[]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp disp_x disp_y disp_z T'
number_fluid_phases = 1
number_fluid_components = 1
[]
[simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1E20
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 2.0
shear_modulus = 3.0
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[temperature]
type = PorousFlowTemperature
temperature = T
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst # only the initial vaue of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.9
fluid_bulk_modulus = 1.5
solid_bulk_compliance = 0.5
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.9
fluid_coefficient = 0.5
drained_coefficient = 0.4
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 2
[]
[Outputs]
exodus = false
[]
(test/tests/bcs/periodic/auto_periodic_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./periodic_dist]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./periodic_dist]
type = PeriodicDistanceAux
variable = periodic_dist
point = '4 6 0'
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 20
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_auto
exodus = true
[]
(test/tests/executioners/nl_forced_its/many_nl_forced_its_ref_res.i)
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_vector_tags = ref
[../]
[./dt]
type = TimeDerivative
variable = u
extra_vector_tags = ref
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
line_search = none
nl_forced_its = 10
num_steps = 1
[]
(modules/stochastic_tools/test/tests/transfers/monte_carlo/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[left_bc]
type = PointValue
point = '0 0 0'
variable = u
[]
[right_bc]
type = PointValue
point = '1 0 0'
variable = u
[]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/restart/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
ymin = 0
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[Functions]
[v_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[]
[AuxVariables]
[v]
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[ufn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = v_fn
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
checkpoint = true
[]
[MultiApps]
[sub_app]
app_type = MooseTestApp
type = TransientMultiApp
input_files = 'sub.i'
execute_on = timestep_end
positions = '0 -1 0'
[]
[]
[Transfers]
[from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[]
[]
(test/tests/multiapps/multilevel/time_dt_from_parent_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 100
[]
[Functions]
[./dts]
type = PiecewiseLinear
x = '0 1'
y = '0.25 1'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.25
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
exodus = true
[./out]
type = Console
output_file = true
[../]
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = time_dt_from_parent_sub.i
[../]
[]
(test/tests/outputs/oversample/over_sampling_second_file.i)
[Mesh]
type = FileMesh
# Read in and work with a second order mesh
file = wedge18_mesh.e
# If we have an oversample mesh file, we haven not yet implemented
# synchronization of its partitioning with the problem mesh, so we
# need to keep the problem mesh replicated.
parallel_type = replicated
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[../]
[]
[Variables]
active = 'u'
[./u]
[../]
[]
[Kernels]
active = 'ie diff ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '1 2 4'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.2
start_time = 0
num_steps = 3
[]
[Outputs]
file_base = out_wedge
[./oversample]
type = Exodus
file_base = out_wedge_oversample
file = wedge6_mesh.e
[../]
[]
(test/tests/controls/time_periods/dampers/control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 0.95e-8
[]
[Postprocessors]
[./nlin]
type = NumNonlinearIterations
[../]
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Outputs]
csv = true
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = '*::const_damp'
start_time = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_3eqn.parent.i)
# This tests a temperature transfer using the MultiApp system. Simple heat
# conduction problem is solved, then the temperature is picked up by the child
# side of the solve, child side solves and transfers its variables back to the
# master
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 1
nx = 10
[]
[Functions]
[left_bc_fn]
type = PiecewiseLinear
x = '0 1'
y = '300 310'
[]
[]
[Variables]
[T]
[]
[]
[ICs]
[T_ic]
type = ConstantIC
variable = T
value = 300
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = T
[]
[diff]
type = Diffusion
variable = T
[]
[]
[BCs]
[left]
type = FunctionDirichletBC
variable = T
boundary = left
function = left_bc_fn
[]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 5
nl_abs_tol = 1e-10
abort_on_solve_fail = true
[]
[MultiApps]
[thm]
type = TransientMultiApp
app_type = ThermalHydraulicsApp
input_files = phy.T_wall_transfer_3eqn.child.i
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[T_to_child]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = thm
source_variable = T
variable = T_wall
[]
[]
[Outputs]
exodus = true
[]
(examples/ex08_materials/ex08.i)
[Mesh]
file = reactor.e
# Let's assign human friendly names to the blocks on the fly
block_id = '1 2'
block_name = 'fuel deflector'
boundary_id = '4 5'
boundary_name = 'bottom top'
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
initial_condition = 0.5 # shortcut/convenience for setting constant initial condition
[../]
[./convected]
order = FIRST
family = LAGRANGE
initial_condition = 0.0 # shortcut/convenience for setting constant initial condition
[../]
[]
[Kernels]
# This Kernel consumes a real-gradient material property from the active material
[./convection]
type = ExampleConvection
variable = convected
[../]
[./diff_convected]
type = Diffusion
variable = convected
[../]
[./example_diff]
# This Kernel uses "diffusivity" from the active material
type = ExampleDiffusion
variable = diffused
[../]
[./time_deriv_diffused]
type = TimeDerivative
variable = diffused
[../]
[./time_deriv_convected]
type = TimeDerivative
variable = convected
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 0
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 5
[../]
[./bottom_convected]
type = DirichletBC
variable = convected
boundary = 'bottom'
value = 0
[../]
[./top_convected]
type = NeumannBC
variable = convected
boundary = 'top'
value = 1
[../]
[]
[Materials]
[./example]
type = ExampleMaterial
block = 'fuel'
diffusion_gradient = 'diffused'
# Approximate Parabolic Diffusivity
independent_vals = '0 0.25 0.5 0.75 1.0'
dependent_vals = '1e-2 5e-3 1e-3 5e-3 1e-2'
[../]
[./example1]
type = ExampleMaterial
block = 'deflector'
diffusion_gradient = 'diffused'
# Constant Diffusivity
independent_vals = '0 1.0'
dependent_vals = '1e-1 1e-1'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.1
num_steps = 10
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(examples/ex09_stateful_materials/ex09.i)
[Mesh]
file = square.e
uniform_refine = 4
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./convected_ie]
type = TimeDerivative
variable = convected
[../]
[./example_diff]
# This Kernel uses "diffusivity" from the active material
type = ExampleDiffusion
variable = convected
[../]
[./conv]
type = ExampleConvection
variable = convected
some_variable = diffused
[../]
[./diffused_ie]
type = TimeDerivative
variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
[./left_convected]
type = DirichletBC
variable = convected
boundary = 'left'
value = 0
[../]
[./right_convected]
type = DirichletBC
variable = convected
boundary = 'right'
value = 1
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 1
[../]
[]
[Materials]
[./example_material]
type = ExampleMaterial
block = 1
initial_diffusivity = 0.05
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 10
dt = 1.0
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/positions_from_file/dt_from_multi.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions_file = positions.txt
type = TransientMultiApp
input_files = 'dt_from_multi_sub.i'
app_type = MooseTestApp
[../]
[]
(modules/porous_flow/test/tests/basic_advection/except2.i)
# PorousFlowDarcyVelocityMaterial attempts to have at_nodes = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[P]
[]
[]
[ICs]
[P]
type = FunctionIC
variable = P
function = '2*(1-x)'
[]
[u]
type = FunctionIC
variable = u
function = 'if(x<0.1,1,0)'
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[u_advection]
type = PorousFlowBasicAdvection
variable = u
phase = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = ''
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 4
thermal_expansion = 0
viscosity = 150.0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = P
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[darcy_velocity]
type = PorousFlowDarcyVelocityMaterial
gravity = '0.25 0 0'
at_nodes = true
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 1
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_rtol'
petsc_options_value = ' lu 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/combined/test/tests/elastic_patch/elastic_patch_plane_strain.i)
#
# This problem is taken from the Abaqus verification manual:
# "1.5.1 Membrane patch test"
# The stress solution is given as:
# xx = yy = 1600
# zz = 800
# xy = 400
# yz = zx = 0
#
# Since the strain is 1e-3 in both directions, the new density should be
# new_density = original_density * V_0 / V
# new_density = 0.283 / (1 + 1e-3 + 1e-3) = 0.282435
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
[]
[Mesh]
file = elastic_patch_rz.e
[]
[Variables]
[temp]
initial_condition = 117.56
[]
[]
[Physics/SolidMechanics/QuasiStatic/All]
strain = SMALL
incremental = true
planar_formulation = PLANE_STRAIN
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[heat]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[ur]
type = FunctionDirichletBC
variable = disp_x
boundary = 10
function = '1e-3*(x+0.5*y)'
[]
[uz]
type = FunctionDirichletBC
variable = disp_y
boundary = 10
function = '1e-3*(y+0.5*x)'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
[]
[stress]
type = ComputeStrainIncrementBasedStress
[]
[density]
type = Density
density = 0.283
outputs = all
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/old_vpp_value/old_vpp_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./point_sample]
type = PointValueSampler
variable = 'u'
points = '0.1 0.1 0'
sort_by = x
outputs = none
[../]
[]
[Postprocessors]
[./old_vpp_value]
type = UseOldVectorPostprocessor
vpp = point_sample
vector_name = u
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/sub_cycling_failure/failure_with_max_procs_set.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist '
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
max_procs_per_app = 1
[../]
[]
(modules/phase_field/test/tests/Nucleation/timestep.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 20
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
variable = c
value = 0
[../]
[./right]
type = DirichletBC
boundary = right
variable = c
value = 1
[../]
[./Periodic]
[./all]
auto_direction = y
[../]
[../]
[]
[Kernels]
[./c]
type = Diffusion
variable = c
[../]
[./dt]
type = TimeDerivative
variable = c
[../]
[]
[UserObjects]
[./inserter]
type = DiscreteNucleationInserter
hold_time = 1
probability = 0.0005
radius = 3.27
[../]
[./map]
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./dtnuc]
type = DiscreteNucleationTimeStep
inserter = inserter
p2nucleus = 0.1
dt_max = 0.5
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 20
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
iteration_window = 2
timestep_limiting_postprocessor = dtnuc
dt = 1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(test/tests/userobjects/toggle_mesh_adaptivity/toggle_mesh_adaptivity_gaussian_ic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./gaussian_ic]
type = FunctionIC
variable = u
function = gaussian_2d
[../]
[]
[Functions]
[./gaussian_2d]
type = ParsedFunction
expression = exp(-((x-x0)*(x-x0)+(y-y0)*(y-y0))/2.0/sigma/sigma)
symbol_names = 'sigma x0 y0'
symbol_values = '0.05 0.35 0.25'
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.02
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 1
initial_marker = marker
cycles_per_step = 1
marker = marker
max_h_level = 2
[./Markers]
[./marker]
type = CircleMarker
point = '0.35 0.25 0'
radius = 0.2
inside = refine
outside = coarsen
[../]
[../]
[]
[UserObjects]
[./mesh_adaptivity_off]
type = ToggleMeshAdaptivity
mesh_adaptivity = 'off'
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
print_mesh_changed_info = true
[../]
[]
(modules/solid_mechanics/test/tests/power_law_creep/ad_power_law_creep.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Variables]
[temp]
initial_condition = 1000.0
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[u_top_pull]
type = ADPressure
variable = disp_y
boundary = top
factor = -10.0e6
[]
[u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[]
[radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[]
[power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/newmark-beta/newmark_beta_inactive_steps.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeIntegrator system.
#
# Testing that the active_time parameter works as intended.
#
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 1
ny = 1
[]
[Variables]
[u]
[]
[]
[Functions]
[forcing_fn]
type = PiecewiseLinear
x = '0.0 0.1 0.6'
y = '0.0 1.0 1.0'
[]
[]
[Kernels]
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = forcing_fn
[]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 6
dt = 0.1
[TimeIntegrator]
type = NewmarkBeta
inactive_tsteps = 1
[]
[]
[Postprocessors]
[udot]
type = ElementAverageTimeDerivative
variable = u
[]
[udotdot]
type = ElementAverageSecondTimeDerivative
variable = u
[]
[u]
type = ElementAverageValue
variable = u
[]
[]
[Outputs]
csv = true
[]
(tutorials/tutorial02_multiapps/step03_coupling/03_parent_subcycling_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ParsedMaterial
property_name = D
coupled_variables = 'vt'
expression = 'vt'
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
fixed_point_max_its = 10
nl_abs_tol = 1e-10
fixed_point_rel_tol = 1e-6
fixed_point_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '03_sub_subcycling_picard.i'
execute_on = timestep_end
output_in_position = true
sub_cycling = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(test/tests/userobjects/Terminator/terminator_pass.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 6
xmin = -15.0
xmax = 15.0
ymin = -3.0
ymax = 3.0
elem_type = QUAD4
[]
[Variables]
[c]
order = FIRST
family = LAGRANGE
initial_condition = 1
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[]
[UserObjects]
[arnold]
type = Terminator
expression = 'dt > 20'
fail_mode = HARD
error_level = INFO
message = 'Arnold says this should end'
execute_on = TIMESTEP_END
[]
[]
[Kernels]
[cres]
type = Diffusion
variable = c
[]
[time]
type = TimeDerivative
variable = c
[]
[]
[BCs]
[c]
type = DirichletBC
variable = c
boundary = left
value = 0
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = IterationAdaptiveDT
dt = 4
[]
nl_abs_step_tol = 1e-10
[]
[Outputs]
csv = true
print_linear_residuals = false
[]
(modules/phase_field/test/tests/phase_field_kernels/SimpleCHInterface.i)
#
# Test the non-split parsed function free enery Cahn-Hilliard kernel
# The free energy used here has the same functional form as the CHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./cv]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = cv
[../]
[./CHSolid]
type = CahnHilliard
variable = cv
f_name = F
mob_name = M
[../]
[./CHInterface]
type = SimpleCHInterface
variable = cv
mob_name = M
kappa_name = kappa_c
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'cv'
expression = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.7
[]
[Outputs]
[./out]
type = Exodus
refinements = 1
[../]
[]
(test/tests/postprocessors/internal_side_jump/internal_side_jump.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[./box]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
family = L2_LAGRANGE
order = FIRST
[../]
[]
[ICs]
[./ic0]
type = ConstantIC
variable = u
block = 0
value = 4
[../]
[./ic1]
type = ConstantIC
variable = u
block = 1
value = 6
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[DGKernels]
[./dgdiff]
type = DGDiffusion
variable = u
sigma = 4
epsilon = 1
[../]
[]
[BCs]
[./all]
type = VacuumBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Postprocessors]
[./L2_norm]
type = ElementL2Norm
variable = u
[../]
[./jump]
type = InternalSideJump
variable = u
execute_on = 'initial timestep_end'
[../]
[./jumpold]
type = InternalSideJump
variable = u
implicit = false
[../]
[]
[Executioner]
type = Transient
num_steps = 3
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(test/tests/time_integrators/newmark-beta/newmark_beta_default_parameters.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeIntegrator system.
#
# Testing that the first and second time derivatives
# are calculated correctly using the Newmark-Beta method
#
# @Requirement F1.30
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 1
ny = 1
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./forcing_fn]
type = PiecewiseLinear
x = '0.0 0.1 0.2 0.3 0.4 0.5 0.6'
y = '0.0 0.0 0.0025 0.01 0.0175 0.02 0.02'
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
preset = false
boundary = 'left'
function = forcing_fn
[../]
[./right]
type = FunctionDirichletBC
variable = u
preset = false
boundary = 'right'
function = forcing_fn
[../]
[]
[Executioner]
type = Transient
# Time integrator scheme
scheme = "newmark-beta"
start_time = 0.0
num_steps = 6
dt = 0.1
[]
[Postprocessors]
[./udot]
type = ElementAverageTimeDerivative
variable = u
[../]
[./udotdot]
type = ElementAverageSecondTimeDerivative
variable = u
[../]
[./u]
type = ElementAverageValue
variable = u
[../]
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/element_integral_var_pps/pps_old_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[Functions]
[./force_fn]
type = ParsedFunction
expression = '1'
[../]
[./exact_fn]
type = ParsedFunction
expression = 't'
[../]
[]
[Kernels]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[]
[BCs]
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./a]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = 'initial timestep_end'
[../]
[./total_a]
type = TimeIntegratedPostprocessor
value = a
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 1
start_time = 1
end_time = 3
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/phase_field/test/tests/MultiPhase/crosstermfreeenergy.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = -8
xmax = 8
ymin = -8
ymax = 8
elem_type = QUAD4
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
f_name = F0
variable = local_energy
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 5.0
radius = 5.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = -4.0
y1 = -2.0
radius = 5.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 4.0
y1 = -2.0
radius = 5.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[]
[Kernels]
[./dummy_diff1]
type = Diffusion
variable = eta1
[../]
[./dummy_time1]
type = TimeDerivative
variable = eta1
[../]
[./dummy_diff2]
type = Diffusion
variable = eta2
[../]
[./dummy_time2]
type = TimeDerivative
variable = eta2
[../]
[./dummy_diff3]
type = Diffusion
variable = eta3
[../]
[./dummy_tim3]
type = TimeDerivative
variable = eta3
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'F0 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0 11 12 13 12 22 23 13 23 33 '
[../]
[]
[Executioner]
type = Transient
dt = 0.001
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
hide = 'eta1 eta2 eta3 local_energy'
[../]
[]
(test/tests/transfers/multiapp_reporter_transfer/between_multiapp/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[MultiApps]
[pp_sub_0]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub0.i
[]
[pp_sub_1]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub1.i
[]
[]
[Transfers]
[pp_transfer_1]
type = MultiAppReporterTransfer
from_multi_app = pp_sub_0
to_multi_app = pp_sub_1
from_reporters = 'base_sub0_vpp/a base_sub0_vpp/b'
to_reporters = 'from_sub0_vpp/a from_sub0_vpp/b'
[]
[pp_transfer_2]
type = MultiAppReporterTransfer
from_multi_app = pp_sub_1
to_multi_app = pp_sub_0
from_reporters = 'base_sub1_vpp/a base_sub1_vpp/b'
to_reporters = 'from_sub1_vpp/a from_sub1_vpp/b'
[]
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_reject_large_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./timestep_fn]
type = PiecewiseConstant
x = '0. 10.0'
y = '10.0 1.0'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 12.0
dtmax = 10.0
dtmin = 0.1
[./TimeStepper]
type = IterationAdaptiveDT
timestep_limiting_postprocessor = timestep_pp
reject_large_step = true
reject_large_step_threshold = 0.5
dt = 3.0
growth_factor = 1.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
# Just use a simple postprocessor to test capability to limit the time step length to the postprocessor value
[./timestep_pp]
type = FunctionValuePostprocessor
function = timestep_fn
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(test/tests/time_integrators/dirk/dirk-2d-heat.i)
#
# Testing a solution that is second order in space and first order in time.
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = exact_fn
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = 0.0
end_time = 1.0
dt = 1.0
nl_abs_tol=1e-13
nl_rel_tol=1e-13
[./TimeIntegrator]
type = LStableDirk2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(examples/ex21_debugging/ex21.i)
[Mesh]
file = reactor.e
#Let's assign human friendly names to the blocks on the fly
block_id = '1 2'
block_name = 'fuel deflector'
boundary_id = '4 5'
boundary_name = 'bottom top'
[]
[Variables]
#Use active lists to help debug problems. Switching on and off
#different Kernels or Variables is extremely useful!
active = 'diffused convected'
[diffused]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
[convected]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
[]
[Kernels]
#This Kernel consumes a real-gradient material property from the active material
active = 'convection diff_convected example_diff time_deriv_diffused time_deriv_convected'
[convection]
type = ExampleConvection
variable = convected
[]
[diff_convected]
type = Diffusion
variable = convected
[]
[example_diff]
type = ExampleDiffusion
variable = diffused
coupled_coef = convected
[]
[time_deriv_diffused]
type = TimeDerivative
variable = diffused
[]
[time_deriv_convected]
type = TimeDerivative
variable = convected
[]
[]
[BCs]
[bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 0
[]
[top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 5
[]
[bottom_convected]
type = DirichletBC
variable = convected
boundary = 'bottom'
value = 0
[]
[top_convected]
type = NeumannBC
variable = convected
boundary = 'top'
value = 1
[]
[]
[Materials]
[example]
type = ExampleMaterial
block = 'fuel'
diffusion_gradient = 'diffused'
#Approximate Parabolic Diffusivity
independent_vals = '0 0.25 0.5 0.75 1.0'
dependent_vals = '1e-2 5e-3 1e-3 5e-3 1e-2'
[]
[example1]
type = ExampleMaterial
block = 'deflector'
diffusion_gradient = 'diffused'
# Constant Diffusivity
independent_vals = '0 1.0'
dependent_vals = '1e-1 1e-1'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.1
num_steps = 10
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/stochastic_tools/test/tests/samplers/ParallelSubsetSimulation/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_transfer_vector/sub.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
# Give the far left element a block so that we can
# grab its value
[left_elem_block]
type = ParsedSubdomainMeshGenerator
input = gmg
combinatorial_geometry = 'x < 0.1'
block_id = 1
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[prop_a]
family = MONOMIAL
order = CONSTANT
[]
[prop_b]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[prop_a]
type = MaterialRealAux
variable = prop_a
property = prop_a
[]
[prop_b]
type = MaterialRealAux
variable = prop_b
property = prop_b
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Materials]
[mat]
type = GenericConstantMaterial
prop_names = 'prop_a prop_b'
prop_values = '100 200'
[]
[mat2]
type = GenericConstantMaterial
prop_names = 'prop_c prop_d prop_e'
prop_values = '300 400 500'
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[left_bc]
type = PointValue
point = '0 0 0'
variable = u
[]
[right_bc]
type = PointValue
point = '1 0 0'
variable = u
[]
[prop_a]
type = ElementAverageValue
variable = prop_a
block = 1
[]
[prop_b]
type = ElementAverageValue
variable = prop_b
block = 1
[]
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/CHSplitFlux/simple_transient_diffusion_flux.i)
# Same problem as in moose/test/tests/kernels/simple_transient_diffusion
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
expression = '0.1'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility_tensor]
type = ConstantAnisotropicMobility
block = 0
M_name = mobility_tensor
tensor = '1 0 0 0 1 0 0 0 1'
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = mobility_tensor
weights = var_dep
args = c
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 0.1
num_steps = 20
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/03_parent_subcycle.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = '03_sub_subcycle.i'
sub_cycling = true
# output_sub_cycles = true
[]
[]
(test/tests/parser/cli_multiapp_all/dt_from_parent_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the parent solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/postprocessors/nodal_var_value/nodal_var_value.i)
[Mesh]
file = square-2x2-nodeids.e
# NodalVariableValue is not safe on renumbered meshes
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 scalednode1 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./scalednode1]
type = NodalVariableValue
variable = u
nodeid = 15
scale_factor = 2
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_nodal_var_value
exodus = true
[]
(python/peacock/tests/common/spherical_average.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
xmin = -5
xmax = 5
ymin = -5
ymax = 5
zmin = -5
zmax = 5
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = sin(x*7.4+z*4.1)+cos(y*3.8+x*8.7)+sin(z*9.1+y*2.6)
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[VectorPostprocessors]
[./average]
type = SphericalAverage
variable = c
radius = 5
bin_number = 10
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = PJFNK
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
csv = true
[]
(modules/phase_field/test/tests/rigidbodymotion/grain_forcedensity.i)
# test file for showing reaction forces between particles
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta0]
[../]
[./eta1]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
coupled_variables = 'eta0 eta1'
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./eta0_dot]
type = TimeDerivative
variable = eta0
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta0
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
op_index = 0
[../]
[./acint_eta0]
type = ACInterface
variable = eta0
mob_name = M
#coupled_variables = c
kappa_name = kappa_eta
[../]
[./acbulk_eta0]
type = AllenCahn
variable = eta0
mob_name = M
f_name = F
coupled_variables = 'c eta1'
[../]
[./eta1_dot]
type = TimeDerivative
variable = eta1
[../]
[./vadv_eta1]
type = SingleGrainRigidBodyMotion
variable = eta1
c = c
v = 'eta0 eta1'
op_index = 1
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./acint_eta1]
type = ACInterface
variable = eta1
mob_name = M
#coupled_variables = c
kappa_name = kappa_eta
[../]
[./acbulk_eta1]
type = AllenCahn
variable = eta1
mob_name = M
f_name = F
coupled_variables = 'c eta0'
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 0.5 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'c eta0 eta1'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
expression = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+eta0*(1-eta0)*c+eta1*(1-eta1)*c
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./df01]
type = MaterialStdVectorRealGradientAux
variable = df01
index = 0
component = 1
property = force_density
[../]
[./df11]
type = MaterialStdVectorRealGradientAux
variable = df11
index = 1
component = 1
property = force_density
[../]
[./df00]
type = MaterialStdVectorRealGradientAux
variable = df00
index = 0
component = 0
property = force_density
[../]
[./df10]
type = MaterialStdVectorRealGradientAux
variable = df10
index = 1
component = 0
property = force_density
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta0]
int_width = 1.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 1.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[./ic_c]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 1.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ComputeGrainForceAndTorque
execute_on = 'linear nonlinear'
grain_data = grain_center
force_density = force_density
c = c
etas = 'eta0 eta1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/fromsub_fixed_meshes_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[from_sub]
[]
[elemental_from_sub]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.1 0.45 0'
input_files = fromsub_fixed_meshes_sub.i
[]
[]
[Transfers]
# Note: it's not generally advised to use "fixed_meshes = true" with displaced
# meshes. We only do that for this test to make sure the test will fail if
# "fixed_meshes" isn't working properly.
[from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = from_sub
fixed_meshes = true
displaced_source_mesh = true
[]
[elemental_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = elemental_from_sub
fixed_meshes = true
displaced_source_mesh = true
[]
[]
(test/tests/ics/from_exodus_solution/nodal_part1.i)
# We run a simple problem (5 time steps and save off the solution)
# In part2, we load the solution and solve a steady problem. The test check, that the initial state in part 2 is the same as the last state from part1
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'ie diff ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.2
start_time = 0
num_steps = 5
[]
[Outputs]
file_base = out_nodal_part1
exodus = true
xda = true
[]
(test/tests/multiapps/full_solve_multiapp/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/tvdrk2/2d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*((x*x)+(y*y))-(4*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*((x*x)+(y*y))
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = u
function = ic
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitTVDRK2
[../]
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 10
dt = 0.0001
l_tol = 1e-8
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/functional_expansion_tools/test/tests/standard_use/interface_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = Diffusion
variable = s
[../]
[./time_diff_s]
type = TimeDerivative
variable = s
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = 1.0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/multiapps/picard/fully_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
coord_type = rz
[]
[Variables]
[u]
initial_condition = 1
[]
[]
[AuxVariables]
[layered_average_value]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[axial_force]
type = ParsedFunction
expression = 1000*y
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[force]
type = BodyForce
variable = u
function = axial_force
[]
[]
[AuxKernels]
[layered_aux]
type = SpatialUserObjectAux
variable = layered_average_value
execute_on = timestep_end
user_object = layered_average
[]
[]
[BCs]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[UserObjects]
[layered_average]
type = LayeredAverage
variable = u
direction = y
num_layers = 4
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/block_kernel/block_kernel_test.i)
[Mesh]
file = rectangle.e
uniform_refine = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
function = 'x+y'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
num_steps = 10
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/kernels/ad_vector_couple/ad_grad_vector_couple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[u]
family = LAGRANGE
order = FIRST
[]
[v]
family = LAGRANGE_VEC
order = FIRST
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = ADDiffusion
variable = u
[]
[convection]
type = ADCoupledVectorConvection
variable = u
velocity_vector = v
use_grad_row = true
[]
[diff_v]
type = ADVectorDiffusion
variable = v
[]
[]
[BCs]
[left]
type = ADFunctionDirichletBC
variable = u
function = 1
boundary = 'left'
[]
[right]
type = ADFunctionDirichletBC
variable = u
function = 2
boundary = 'bottom'
[]
[left_v]
type = ADVectorFunctionDirichletBC
variable = v
function_x = 1
function_y = 2
boundary = 'left'
[]
[right_v]
type = ADVectorFunctionDirichletBC
variable = v
function_x = 4
function_y = 8
boundary = 'top'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 10
dt = 0.05
[]
[Outputs]
execute_on = TIMESTEP_END
exodus = true
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/restricted_node_sub.i)
# yy is passed in from the parent app
[Mesh]
[line]
type = GeneratedMeshGenerator
dim = 1
nx = 5
xmax = 2.5
[]
[box]
type = SubdomainBoundingBoxGenerator
input = line
bottom_left = '0 -0.1 -0.1'
top_right = '1.5 0.1 0.1'
# need a different block ID than what is in the parent app to make sure the transfer works properly
block_id = 20
[]
[]
[AuxVariables]
[A]
[]
[S]
[]
[]
[AuxKernels]
[A_ak]
type = ParsedAux
variable = A
use_xyzt = true
expression = '2*x+4*${yy}'
execute_on = 'TIMESTEP_BEGIN'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[UserObjects]
[A_avg]
type = LayeredAverage
block = 20
num_layers = 2
direction = x
variable = A
execute_on = TIMESTEP_END
[]
[]
[Executioner]
type = Transient
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/transfers/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
to_multi_app = pp_sub
from_postprocessor = average
to_aux_scalar = from_master_app
[../]
[]
[Controls]
[./transfers]
type = TimePeriod
enable_objects = Transfer::pp_transfer
start_time = 2
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/dirackernels/multiplicity/multiplicity.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./u1]
[../]
[./u2]
[../]
[./u3]
[../]
[]
[Kernels]
[./diff1]
type = Diffusion
variable = u1
[../]
[./diff2]
type = Diffusion
variable = u2
[../]
[./diff3]
type = Diffusion
variable = u3
[../]
[./dt1]
type = TimeDerivative
variable = u1
[../]
[./dt2]
type = TimeDerivative
variable = u2
[../]
[./dt3]
type = TimeDerivative
variable = u3
[../]
[]
[DiracKernels]
[./material_source1]
type = MaterialMultiPointSource
variable = u1
points = '0.2 0.3 0.0
0.7 0.5 0.0'
[../]
[./material_source2]
type = MaterialMultiPointSource
variable = u2
points = '0.2 0.3 0.0
0.2 0.3 0.0'
[../]
[./material_source3]
type = MaterialMultiPointSource
variable = u3
drop_duplicate_points = false
points = '0.2 0.3 0.0
0.2 0.3 0.0'
[../]
[]
[Postprocessors]
[./u1]
type = ElementIntegralVariablePostprocessor
variable = u1
[../]
[./u2]
type = ElementIntegralVariablePostprocessor
variable = u2
[../]
[./u3]
type = ElementIntegralVariablePostprocessor
variable = u3
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
prop_names = matp
prop_values = 1.0
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 1
[]
[Outputs]
csv = true
print_linear_residuals = false
[]
(test/tests/multiapps/sub_cycling_failure/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
[../]
[]
(modules/porous_flow/test/tests/functions/mpf1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = 0
xmax = 10
ymin = 0
ymax = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = u
[]
[]
[Functions]
[dist]
type = PiecewiseLinear
x = '1 10' # time
y = '0 9' # distance
[]
[moving_planar_front]
type = MovingPlanarFront
start_posn = '1 1 0'
end_posn = '2 2 0' # it does not matter that dist exceeds this
active_length = 5
activation_time = 1
deactivation_time = 9
distance = dist
[]
[]
[AuxVariables]
[mpf]
[]
[]
[AuxKernels]
[mpf]
type = FunctionAux
variable = mpf
function = moving_planar_front
[]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 10
[]
[Outputs]
file_base = mpf1
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_parent_app]
order = FIRST
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./from_parent]
type = ScalarVariable
variable = from_parent_app
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 1
dt = 1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
hide = from_parent_app
[]
(tutorials/tutorial02_multiapps/step02_transfers/04_sub_multiscale.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[ut]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[average_v]
type = ElementAverageValue
variable = v
[]
[]
(modules/phase_field/test/tests/free_energy_material/MathEBFreeEnergy.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SmoothCircleIC
variable = c
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[./free_energy]
type = MathEBFreeEnergy
property_name = F
c = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
execute_on = 'timestep_end'
[./oversample]
type = Exodus
refinements = 2
[../]
[]
(test/tests/auxkernels/mesh_integer/dg_mesh_integer.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 5
ny = 5
extra_element_integers = 'material_id'
[]
[set_material_id0]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0 0 0'
top_right = '0.8 0.6 0'
block_id = 0
location = INSIDE
integer_name = material_id
[]
[set_material_id1]
type = SubdomainBoundingBoxGenerator
input = set_material_id0
bottom_left = '0 0 0'
top_right = '0.8 0.6 0'
block_id = 1
location = OUTSIDE
integer_name = material_id
[]
[]
[Variables]
[u]
family = L2_LAGRANGE
order = FIRST
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
diffusivity = dc
[]
[timederivative]
type = TimeDerivative
variable = u
[]
[sourceterm]
type = BodyForce
variable = u
function = 1
[]
[]
[DGKernels]
[dg_diff]
type = DGDiffusion
variable = u
diff = dc
epsilon = -1
sigma = 6
[]
[]
[AuxVariables]
[id]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[id]
type = ElementIntegerAux
variable = id
integer_names = material_id
[]
[]
[BCs]
[vacuum]
type = VacuumBC
variable = u
boundary = 'right left top bottom'
[]
[]
[Materials]
[dc]
type = ConstantIDMaterial
prop_name = dc
prop_values = '1 2'
id_name = material_id
[]
[]
[Postprocessors]
[unorm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
end_time = 0.1
dt = 0.01
nl_abs_tol = 1.e-15
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/picard_multilevel/fullsolve_multilevel/sub_level2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[w]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = w
[]
[diffusion]
type = Diffusion
variable = w
[]
[source]
type = CoupledForce
variable = w
v = v
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = w
boundary = '0'
value = 0
[]
[]
[Postprocessors]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial linear'
[]
[avg_w]
type = ElementAverageValue
variable = w
execute_on = 'initial linear'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
end_time = 0.1
dt = 0.02
# steady_state_detection = true
[]
[Outputs]
exodus = true
# print_linear_residuals = false
[]
(modules/optimization/examples/simpleTransient/adjoint_mesh.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'left right top bottom'
value = 0
[]
[]
[Reporters]
[measured_data]
type = OptimizationData
measurement_file = mms_data.csv
file_xcoord = x
file_ycoord = y
file_zcoord = z
file_time = t
file_value = u
[]
[src_values]
type = ConstantReporter
real_vector_names = 'time values'
real_vector_values = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0;
0' # dummy
[]
[]
[DiracKernels]
[misfit]
type = ReporterTimePointSource
variable = u
value_name = measured_data/misfit_values
x_coord_name = measured_data/measurement_xcoord
y_coord_name = measured_data/measurement_ycoord
z_coord_name = measured_data/measurement_zcoord
time_name = measured_data/measurement_time
reverse_time_end = 1
[]
[]
[Functions]
[source]
type = ParameterMeshFunction
exodus_mesh = source_mesh_in.e
time_name = src_values/time
parameter_name = src_values/values
[]
[]
[VectorPostprocessors]
[adjoint]
type = ElementOptimizationSourceFunctionInnerProduct
variable = u
function = source
reverse_time_end = 1
[]
[]
[Executioner]
type = Transient
num_steps = 100
end_time = 1
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
console = false
[]
(test/tests/restart/new_dt/new_dt_restart.i)
[Mesh]
file = new_dt_out_cp/0010-mesh.cpa.gz
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
# Here we are supplying a different dt
dt = 0.25
start_time = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./exodus]
type = Exodus
execute_on = 'timestep_end final'
[../]
[]
[Problem]
restart_file_base = new_dt_out_cp/0010
[]
(test/tests/misc/check_error/missing_required_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = 0
ymax = 1
nx = 20
ny = 10
elem_type = QUAD9
[]
[Functions]
[./bc_fn_v]
type = ParsedFunction
expression = (x*x+y*y)
[../]
[]
[Variables]
[./v]
family = LAGRANGE
order = SECOND
[../]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
# V equation
[./td_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 0.5
[../]
[./conv_v]
type = CoupledConvection
variable = v
# Coupled parameter is missing for CoupledConvection
[../]
[]
[BCs]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = 'top'
function = bc_fn_v
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.05
num_steps = 10
[]
[Outputs]
execute_on = 'timestep_end'
[]
(test/tests/materials/stateful_prop/stateful_prop_copy_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 4
ny = 4
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 3
value = 0.0
[../]
[./top]
type = MTBC
variable = u
boundary = 1
grad = 1.0
prop_name = thermal_conductivity
[../]
[]
[Materials]
[./stateful]
type = StatefulSpatialTest
block = 0
[../]
[]
[UserObjects]
[./copy]
type = MaterialCopyUserObject
copy_times = 0.3
copy_from_element = 0
copy_to_element = 15
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out_stateful_copy
exodus = true
[]
(test/tests/test_harness/exodiff.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 10 # causes a diff
[../]
[]
[Executioner]
type = Transient
num_steps = 4 # Gold file only has 4 steps
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(modules/porous_flow/test/tests/poroperm/except2.i)
# Exception test: fluid=true but no solid_bulk is provided
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
biot_coefficient = 0.7
[]
[Variables]
[porepressure]
initial_condition = 2
[]
[temperature]
initial_condition = 4
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[ICs]
[disp_x]
type = FunctionIC
function = '0.5 * x'
variable = disp_x
[]
[]
[Kernels]
[dummy_p]
type = TimeDerivative
variable = porepressure
[]
[dummy_t]
type = TimeDerivative
variable = temperature
[]
[dummy_x]
type = TimeDerivative
variable = disp_x
[]
[dummy_y]
type = TimeDerivative
variable = disp_y
[]
[dummy_z]
type = TimeDerivative
variable = disp_z
[]
[]
[AuxVariables]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[Postprocessors]
[porosity]
type = PointValue
variable = porosity
point = '0 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure temperature'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[porosity]
type = PorousFlowPorosity
mechanical = true
fluid = true
thermal = true
ensure_positive = false
porosity_zero = 0.5
thermal_expansion_coeff = 0.5
reference_porepressure = 3
reference_temperature = 3.5
[]
[]
[Executioner]
solve_type = Newton
type = Transient
num_steps = 1
[]
[Outputs]
csv = true
[]
(modules/functional_expansion_tools/test/tests/standard_use/multiapp_different_physical_boundaries.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '1.0 9.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(modules/phase_field/examples/interfacekernels/interface_fluxbc.i)
#
# This test demonstrates an InterfaceKernel (InterfaceDiffusionFlux) that can
# replace a pair of integrated DiffusionFluxBC boundary conditions.
#
# The AuxVariable 'diff' shows the difference between the BC and the InterfaceKernel
# approach.
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
[]
[./box1]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.51 1 0'
[../]
[./box2]
input = box1
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.49 0 0'
top_right = '1 1 0'
[../]
[./iface_u]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 10
input = box2
[../]
[./iface_v]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 1
new_boundary = 11
input = iface_u
[../]
[]
[Variables]
[./u1]
block = 1
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt((x-0.4)^2+(y-0.5)^2);if(r<0.05,5,1)'
[../]
[../]
[./v1]
block = 2
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt((x-0.7)^2+(y-0.5)^2);if(r<0.05,5,1)'
[../]
[../]
[./u2]
block = 1
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt((x-0.4)^2+(y-0.5)^2);if(r<0.05,5,1)'
[../]
[../]
[./v2]
block = 2
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt((x-0.7)^2+(y-0.5)^2);if(r<0.05,5,1)'
[../]
[../]
[]
[Kernels]
[./u1_diff]
type = Diffusion
variable = u1
block = 1
[../]
[./u1_dt]
type = TimeDerivative
variable = u1
block = 1
[../]
[./v1_diff]
type = Diffusion
variable = v1
block = 2
[../]
[./v1_dt]
type = TimeDerivative
variable = v1
block = 2
[../]
[./u2_diff]
type = Diffusion
variable = u2
block = 1
[../]
[./u2_dt]
type = TimeDerivative
variable = u2
block = 1
[../]
[./v2_diff]
type = Diffusion
variable = v2
block = 2
[../]
[./v2_dt]
type = TimeDerivative
variable = v2
block = 2
[../]
[]
[AuxVariables]
[./diff]
[../]
[]
[AuxKernels]
[./u_side]
type = ParsedAux
variable = diff
block = 1
coupled_variables = 'u1 u2'
expression = 'u1 - u2'
[../]
[./v_side]
type = ParsedAux
variable = diff
block = 2
coupled_variables = 'v1 v2'
expression = 'v1 - v2'
[../]
[]
[InterfaceKernels]
[./iface]
type = InterfaceDiffusionBoundaryTerm
boundary = 10
variable = u2
neighbor_var = v2
[../]
[]
[BCs]
[./u_boundary_term]
type = DiffusionFluxBC
variable = u1
boundary = 10
[../]
[./v_boundary_term]
type = DiffusionFluxBC
variable = v1
boundary = 11
[../]
[]
[Executioner]
type = Transient
dt = 0.001
num_steps = 20
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/porous_flow/test/tests/dirackernels/bh_except06.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/phase_field/test/tests/KKS_system/kks_example.i)
#
# KKS toy problem in the non-split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
nz = 0
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
# order parameter
[./eta]
order = THIRD
family = HERMITE
[../]
# hydrogen concentration
[./c]
order = THIRD
family = HERMITE
[../]
# hydrogen phase concentration (matrix)
[./cm]
order = THIRD
family = HERMITE
initial_condition = 0.0
[../]
# hydrogen phase concentration (delta phase)
[./cd]
order = THIRD
family = HERMITE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 0.2
invalue = 0.2
outvalue = 0.1
int_width = 0.05
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 0.2
invalue = 0.6
outvalue = 0.4
int_width = 0.05
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'eta c cm cd'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
property_name = fm
coupled_variables = 'cm'
expression = '(0.1-cm)^2'
outputs = oversampling
[../]
# Free energy of the delta phase
[./fd]
type = DerivativeParsedMaterial
property_name = fd
coupled_variables = 'cd'
expression = '(0.9-cd)^2'
outputs = oversampling
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
outputs = oversampling
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = oversampling
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'L '
prop_values = '0.7 '
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cd
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSCHBulk
variable = c
ca = cm
cb = cd
fa_name = fm
fb_name = fd
mob_name = 0.7
[../]
[./dcdt]
type = TimeDerivative
variable = c
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
coupled_variables = 'cm cd'
w = 0.4
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 0.4
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-4
num_steps = 1
dt = 0.01
dtmin = 0.01
[]
[Preconditioning]
[./mydebug]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kks_example
[./oversampling]
type = Exodus
refinements = 3
[../]
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_incompatible_orders.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '36'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/outputs/checkpoint/checkpoint.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 11
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i)
#
# Martensitic transformation
# One structural order parameter (SOP) governed by AllenCahn Eqn.
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
# Eigenstrain as a function of SOP
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 50
y1 = 50
radius = 10.0
invalue = 1.0
outvalue = 0.0
int_width = 5.0
[../]
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain'
[../]
[]
[Kernels]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
property_name = Fc
coupled_variables = 'eta'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
expression = A2/2*eta^2+A3/3*eta^3+A4/4*eta^4
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '70 30 30 70 30 70 30 30 30'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence]
type = DerivativeParsedMaterial
expression = eta
coupled_variables = 'eta'
property_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.1 0.1 0 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'eta'
eigenstrain_name = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
property_name = F
sum_materials = 'Fc Fe'
coupled_variables = 'eta'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/preconditioners/reuse/convergence.i)
# Simple 3D test with diffusion, setup to make sure
# there is a sensible difference in the linear iteration
# counts with re-use versus without re-use
[Variables]
[u]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[Kernels]
[diffusion]
type = FunctionDiffusion
variable = u
function = 'arg'
[]
[time]
type = TimeDerivative
variable = u
[]
[body_force]
type = BodyForce
variable = u
function = body
[]
[]
[Functions]
[body]
type = ParsedFunction
expression = 100*sin(t)
[]
[arg]
type = ParsedFunction
expression = 'x*y*z*cos(t)+1'
[]
[]
[BCs]
[fix_concentration]
type = DirichletBC
preset = true
boundary = left
variable = u
value = 0.0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options = ''
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = 'lu gmres'
l_tol = 1e-8
l_max_its = 100
reuse_preconditioner = false
reuse_preconditioner_max_linear_its = 10
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 10.0
[./Adaptivity]
interval = 5
max_h_level = 1
start_time = 11.0
stop_time = 6.0
[../]
[]
[Reporters/iteration_info]
type = IterationInfo
[]
[Outputs]
exodus = false
[./csv]
type = CSV
file_base = base_case
[../]
[]
(test/tests/bcs/periodic/auto_periodic_bc_test_3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
xmax = 40
ymax = 40
zmax = 40
elem_type = HEX8
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y z'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 20
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_auto_3d
exodus = true
[]
(test/tests/multiapps/picard/picard_adaptive_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.1
# cutback_factor, growth_factor, optimal_iterations, time_dt and time_t added through CLI args
[]
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_adaptive_sub.i
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(test/tests/multiapps/catch_up/parent.i)
# ##########################################################
# This is a test of the Multiapp System. This test solves
# four independent applications spaced throughout a
# parent domain interleaved with a parent solve.
#
# @Requirement F7.10
# ##########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
type = TransientMultiApp
positions = '0 0 0 0.5 0.5 0'
input_files = 'sub.i failing_sub.i'
app_type = MooseTestApp
execute_on = 'timestep_end'
max_catch_up_steps = 100
max_failures = 100
catch_up = true
[../]
[]
(modules/porous_flow/test/tests/jacobian/pls04.i)
# PorousFlowPiecewiseLinearSink with 2-phase, 3-components, with enthalpy, internal_energy, and thermal_conductivity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 2
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph0_sp1]
[]
[massfrac_ph1_sp0]
[]
[massfrac_ph1_sp1]
[]
[temp]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp ppwater ppgas massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
min = 1
max = 2
[]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph0_sp1]
type = RandomIC
variable = massfrac_ph0_sp1
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp1]
type = RandomIC
variable = massfrac_ph1_sp1
min = 0
max = 1
[]
[]
[Kernels]
[dummy_temp]
type = TimeDerivative
variable = temp
[]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m01]
type = TimeDerivative
variable = massfrac_ph0_sp1
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[dummy_m11]
type = TimeDerivative
variable = massfrac_ph1_sp1
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
cv = 1.1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
cv = 1.8
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.1 0.2 0.3 0.2 0 0.1 0.3 0.1 0.1'
wet_thermal_conductivity = '10 2 31 2 40 1 31 1 10'
exponent = 0.5
[]
[]
[BCs]
[flux_w]
type = PorousFlowPiecewiseLinearSink
boundary = 'left'
pt_vals = '-1 -0.5 0'
multipliers = '1 2 4'
variable = ppwater
mass_fraction_component = 0
fluid_phase = 0
use_relperm = true
use_mobility = true
use_enthalpy = true
flux_function = 'x*y'
[]
[flux_g]
type = PorousFlowPiecewiseLinearSink
boundary = 'top'
pt_vals = '0 0.5 1'
multipliers = '1 -2 4'
mass_fraction_component = 0
variable = ppgas
fluid_phase = 1
use_relperm = true
use_mobility = true
use_internal_energy = true
flux_function = '-x*y'
[]
[flux_1]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
pt_vals = '0 0.5 1'
multipliers = '1 3 4'
mass_fraction_component = 1
variable = massfrac_ph0_sp0
fluid_phase = 0
use_relperm = true
use_mobility = true
use_internal_energy = true
[]
[flux_2]
type = PorousFlowPiecewiseLinearSink
boundary = 'back top'
pt_vals = '0 0.5 1'
multipliers = '0 1 -3'
mass_fraction_component = 1
variable = massfrac_ph1_sp0
fluid_phase = 1
use_relperm = true
use_mobility = true
use_enthalpy = true
flux_function = '0.5*x*y'
[]
[flux_3]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
pt_vals = '0 0.5 1'
multipliers = '1 3 4'
mass_fraction_component = 2
variable = ppwater
fluid_phase = 0
use_relperm = true
use_enthalpy = true
use_mobility = true
[]
[flux_4]
type = PorousFlowPiecewiseLinearSink
boundary = 'back top'
pt_vals = '0 0.5 1'
multipliers = '0 1 -3'
mass_fraction_component = 2
variable = massfrac_ph1_sp0
fluid_phase = 1
use_relperm = true
use_mobility = true
flux_function = '-0.5*x*y'
use_enthalpy = true
use_thermal_conductivity = true
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = pls04
[]
(modules/phase_field/test/tests/misc/equal_gradient_lagrange.i)
#
# This test demonstrates an InterfaceKernel set that can enforce the componentwise
# continuity of the gradient of a variable using the Lagrange multiplier method.
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./box1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.51 1 0'
input = gen
[../]
[./box2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.49 0 0'
top_right = '1 1 0'
input = box1
[../]
[./iface_u]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 10
input = box2
[../]
[]
[Variables]
[./u2]
block = 1
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt((x-0.4)^2+(y-0.5)^2);if(r<0.05,5,1)'
[../]
[../]
[./v2]
block = 2
initial_condition = 0.8
[../]
[./lambda]
[../]
[]
[Kernels]
[./u2_diff]
type = Diffusion
variable = u2
block = 1
[../]
[./u2_dt]
type = TimeDerivative
variable = u2
block = 1
[../]
[./v2_diff]
type = Diffusion
variable = v2
block = 2
[../]
[./v2_dt]
type = TimeDerivative
variable = v2
block = 2
[../]
[./lambda]
type = NullKernel
variable = lambda
[../]
[]
[InterfaceKernels]
[./iface]
type = InterfaceDiffusionBoundaryTerm
boundary = 10
variable = u2
neighbor_var = v2
[../]
[./lambda]
type = EqualGradientLagrangeMultiplier
variable = lambda
boundary = 10
element_var = u2
neighbor_var = v2
component = 0
[../]
[./constraint]
type = EqualGradientLagrangeInterface
boundary = 10
lambda = lambda
variable = u2
neighbor_var = v2
component = 0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./uv]
type = LineValueSampler
variable = 'u2 v2'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
sort_by = x
num_points = 100
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
dt = 0.002
num_steps = 10
[]
[Outputs]
exodus = true
csv = true
hide = lambda
print_linear_residuals = false
[]
(modules/phase_field/test/tests/MultiSmoothCircleIC/multismoothcircleIC_normal_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 15
ny = 15
nz = 15
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./c]
type = MultiSmoothCircleIC
variable = c
invalue = 1.0
outvalue = 0.0001
bubspac = 30.0 # This spacing is from bubble center to bubble center
numbub = 10
radius = 10.0
int_width = 12.0
rand_seed = 2000
radius_variation = 2 #This is the standard deviation
radius_variation_type = normal
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
[../]
[../]
[]
[Materials]
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps = 1
dt = 100.0
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/fluidstate/waterncg_nonisothermal.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pgas]
initial_condition = 1e6
[]
[z]
initial_condition = 0.25
[]
[temperature]
initial_condition = 70
[]
[]
[AuxVariables]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_water]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_gas]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_water]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[enthalpy_water]
type = PorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = timestep_end
[]
[enthalpy_gas]
type = PorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = timestep_end
[]
[internal_energy_water]
type = PorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = timestep_end
[]
[internal_energy_gas]
type = PorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[heat]
type = TimeDerivative
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z '
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature = temperature
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/phase_field/test/tests/phase_field_kernels/CoupledCoefAllenCahn.i)
#
# Test the CoefReaction kernel (which adds -L*v to the residual) for the case
# where v is a coupled variable
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = 0.0
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = CoupledAllenCahn
variable = w
v = eta
f_name = F
mob_name = 1
[../]
[./W]
type = MatReaction
variable = w
reaction_rate = -1
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
reaction_rate = L
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
mob_name = L
coupled_variables = w
[../]
[]
[Materials]
[./mobility]
type = DerivativeParsedMaterial
property_name = L
coupled_variables = 'eta w'
expression = '(1.5-eta)^2+(1.5-w)^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'eta'
expression = 'eta^2 * (1-eta)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Outputs]
hide = w
exodus = true
[]
(test/tests/multiapps/grid-sequencing/coarse.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[./diff]
type = Diffusion
variable = u
[../]
[rxn]
type = Reaction
variable = u
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = 'PJFNK'
petsc_options = '-snes_monitor_solution'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_diffusion/restart_diffusion_from_end_part1.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 6
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i)
#
# KKS simple example in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 50
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 0.4
zmin = 0
zmax = 0
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute concentration
[./cl]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Solid phase solute concentration
[./cs]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
expression = 0.5*(1.0-tanh((x)/sqrt(2.0)))
[../]
[./ic_func_c]
type = ParsedFunction
expression = '0.9*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[BCs]
[./left_c]
type = DirichletBC
variable = 'c'
boundary = 'left'
value = 0.5
[../]
[./left_eta]
type = DirichletBC
variable = 'eta'
boundary = 'left'
value = 0.5
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
property_name = fl
coupled_variables = 'cl'
expression = '(0.1-cl)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
property_name = fs
coupled_variables = 'cs'
expression = '(0.9-cs)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cl + h(eta)*cs
[./PhaseConc]
type = KKSPhaseConcentration
ca = cl
variable = cs
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute]
type = KKSPhaseChemicalPotential
variable = cl
cb = cs
fa_name = fl
fb_name = fs
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cl
fa_name = fl
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
coupled_variables = 'cl cs'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cl
cb = cs
fa_name = fl
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
nl_abs_tol = 1e-10
end_time = 800
dt = 4.0
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./integral]
type = ElementL2Error
variable = eta
function = ic_func_eta
[../]
[]
[Outputs]
exodus = true
console = true
gnuplot = true
[]
(test/tests/meshgenerators/file_mesh_generator/exact_discontinuous_iga.i)
[Mesh]
[cyl2d_iga]
type = FileMeshGenerator
file = test_quadratic.e
discontinuous_spline_extraction = true
[]
[]
[Variables]
[u]
order = SECOND # Must match mesh order
family = RATIONAL_BERNSTEIN
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
block = 0 # Avoid direct calculations on spline nodes
[]
[./time]
type = TimeDerivative
variable = u
block = 0
[../]
[null]
type = NullKernel
variable = u
block = 1 # Keep kernel coverage check happy
[]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = NEWTON
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/bdf2/bdf2_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/outputs/hide_vector_pp/hide_vector_pp.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp]
type = NumElements
outputs = csv
[../]
[]
[VectorPostprocessors]
[./vpp]
type = LineValueSampler
variable = u
start_point = '0 0 0'
end_point = '1 1 0'
num_points = 10
sort_by = id
outputs = 'test'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[./test]
type = CSV
execute_on = 'FINAL'
[../]
[]
(modules/porous_flow/examples/flow_through_fractured_media/diffusion.i)
[Mesh]
file = diffusion_1.e # or diffusion_5.e or diffusion_fine.e
[]
[Variables]
[T]
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = 2
variable = T
value = 1
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = T
[]
[fracture_diffusion]
type = AnisotropicDiffusion
block = 1
tensor_coeff = '1 0 0 0 1 0 0 0 1'
variable = T
[]
[matrix_diffusion]
type = AnisotropicDiffusion
block = '2 3'
tensor_coeff = '0 0 0 0 0 0 0 0 0'
variable = T
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 10
end_time = 100
nl_abs_tol = 1E-13
nl_rel_tol = 1E-12
[]
[Outputs]
print_linear_residuals = false
exodus = true
[]
(test/tests/variables/time_derivatives_neighbor/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 4
nx = 2
[]
[Functions]
[a_fn]
type = ParsedFunction
expression = 't*(t+x)'
[]
[]
[AuxVariables]
[a]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[a_ak]
type = FunctionAux
variable = a
function = a_fn
[]
[]
[Materials]
[cm]
type = CoupledValuesMaterial
variable = a
[]
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[]
[DGKernels]
[dgk]
type = MatDGKernel
variable = u
mat_prop = a_value
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 3
[TimeIntegrator]
type = NewmarkBeta
[]
[Quadrature]
type = GAUSS
order = FIRST
[]
[]
[Outputs]
[./out]
type = Exodus
output_material_properties = true
show_material_properties = 'a_value a_dot a_dot_dot a_dot_du a_dot_dot_du'
execute_on = 'TIMESTEP_END'
[../]
[]
(test/tests/postprocessors/nodal_extreme_value/nodal_extreme_pps_test.i)
[Mesh]
type = FileMesh
file = trapezoid.e
uniform_refine = 1
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in PeriodicBCs.
parallel_type = replicated
[]
[Functions]
[./tr_x]
type = ParsedFunction
expression = -x*cos(pi/3)
[../]
[./tr_y]
type = ParsedFunction
expression = x*sin(pi/3)
[../]
[./itr_x]
type = ParsedFunction
expression = -x/cos(pi/3)
[../]
[./itr_y]
type = ParsedFunction
expression = 0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = 2
y_center = -1
x_spread = 0.25
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
# active = ' '
[./Periodic]
[./x]
primary = 1
secondary = 4
transform_func = 'tr_x tr_y'
inv_transform_func = 'itr_x itr_y'
[../]
[../]
[]
[Postprocessors]
[./max_nodal_pps]
type = NodalExtremeValue
variable = u
[../]
[./max_node_id]
type = NodalMaxValueId
variable = u
[../]
[./min_nodal_pps]
type = NodalExtremeValue
variable = u
value_type = min
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/picard/function_dt_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
ymin = 0
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[Functions]
[v_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[dts]
type = PiecewiseLinear
x = '0.1 10'
y = '0.1 10'
[]
[]
[AuxVariables]
[v]
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[ufn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = v_fn
[]
[]
[Executioner]
type = Transient
dt = 0.1
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
fixed_point_max_its = 2
start_time = 0
num_steps = 3
[TimeStepper]
type = FunctionDT
function = dts
[]
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
app_type = MooseTestApp
type = TransientMultiApp
input_files = 'function_dt_sub.i'
execute_on = timestep_end
positions = '0 -1 0'
[]
[]
[Transfers]
[from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[]
[]
(test/tests/controls/time_periods/error/steady_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
# The TimeDerivative existing in a Steady calculation will trigger an error itself!
# [./time]
# type = TimeDerivative
# variable = u
# [../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = 'const_damp'
start_time = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/dirackernels/reporter_point_source/2d_vpp_transient.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
uniform_refine = 4
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[dot]
type = TimeDerivative
variable = u
[]
[]
[DiracKernels]
[vpp_point_source]
type = ReporterPointSource
variable = u
value_name = point_sample_source/u
x_coord_name = point_sample_source/x
y_coord_name = point_sample_source/y
z_coord_name = point_sample_source/z
[]
[]
[VectorPostprocessors]
[point_sample_source]
type = PointValueSampler
variable = u
points = '0.2 0.8 0.0 0.2 0.2 0.0'
sort_by = id
execute_on = 'timestep_begin'
outputs = none
[]
[point_sample_out]
type = PointValueSampler
variable = u
points = '0.2 0.8 0.0'
sort_by = id
execute_on = 'timestep_begin'
contains_complete_history = true
outputs = 'csv'
[]
[]
[Functions]
[left_bc_fn]
type = ParsedFunction
expression = 1+5*y*y
[]
[]
[BCs]
[left]
type = FunctionNeumannBC
variable = u
boundary = left
function = left_bc_fn
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
dt = 0.01
num_steps = 5
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
csv = true
[]
(test/tests/userobjects/shape_element_user_object/simple_shape_element_uo_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = (x-0.5)^2
[../]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./shape_u]
type = SimpleTestShapeElementKernel
user_object = example_uo
variable = u
[../]
[]
[UserObjects]
[./example_uo]
type = SimpleTestShapeElementUserObject
u = u
# as this userobject computes quantities for both the residual AND the jacobian
# it needs to have these execute_on flags set.
execute_on = 'linear nonlinear'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options = '-snes_test_display'
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
dt = 0.1
num_steps = 2
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/userobjects/Terminator/terminator.i)
###########################################################
# This is a test of the UserObject System. The
# Terminator UserObject executes independently after
# each solve and can terminate the solve early due to
# user-defined criteria. (Type: GeneralUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 6
xmin = -15.0
xmax = 15.0
ymin = -3.0
ymax = 3.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[Postprocessors]
[./max_c]
type = NodalExtremeValue
variable = c
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
[./arnold]
type = Terminator
expression = 'max_c < 0.5'
[../]
[]
[Kernels]
[./cres]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[BCs]
[./c]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 100
num_steps = 6
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_conservative_transfer/sub_userobject.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
coord_type = rz
[]
[Variables]
[u]
initial_condition = 1
[]
[]
[AuxVariables]
[layered_average_value]
order = CONSTANT
family = MONOMIAL
[]
[]
[Postprocessors]
[from_postprocessor]
type = ElementIntegralVariablePostprocessor
variable = layered_average_value
[]
[]
[Functions]
[axial_force]
type = ParsedFunction
expression = 1000*y
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[force]
type = BodyForce
variable = u
function = axial_force
[]
[]
[AuxKernels]
[layered_aux]
type = SpatialUserObjectAux
variable = layered_average_value
execute_on = 'nonlinear TIMESTEP_END'
user_object = layered_average
[]
[]
[BCs]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[UserObjects]
[layered_average]
type = LayeredAverage
variable = u
direction = y
num_layers = 4
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/04_parent_multiple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0 1 0 0 2 0 0'
# positions_file = 04_positions.txt
input_files = '04_sub1_multiple.i'
# input_files = '04_sub1_multiple.i 04_sub2_multiple.i 04_sub3_multiple.i'
# output_in_position = true
[]
[]
(python/chigger/tests/input/mug_blocks.i)
[Mesh]
type = FileMesh
file = mug.e
[]
[MeshModifiers]
[./subdomains]
type = SubdomainBoundingBox
top_right = '3 3 3'
bottom_left = '0 -3 -2.1'
block_id = '76'
[../]
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./aux_elem]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff_convected]
type = Diffusion
variable = convected
[../]
[./conv]
# Couple a variable into the convection kernel using local_name = simulationg_name syntax
type = Convection
variable = convected
velocity = '1 1 1'
[../]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[./diff_t]
type = TimeDerivative
variable = diffused
[../]
[./conv_t]
type = TimeDerivative
variable = convected
block = '76'
[../]
[]
[BCs]
[./bottom_convected]
type = DirichletBC
variable = convected
boundary = bottom
value = 1
[../]
[./top_convected]
type = DirichletBC
variable = convected
boundary = top
value = 0
[../]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = bottom
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = top
value = 0
[../]
[]
[Postprocessors]
[./func_pp]
type = FunctionValuePostprocessor
function = 2*t
[../]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Transient
num_steps = 20
solve_type = PJFNK
dt = 0.1
[]
[Outputs]
exodus = true
[]
[ICs]
[./aux_ic]
variable = aux_elem
max = 10
seed = 2
type = RandomIC
[../]
[]
(test/tests/multiapps/move/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = sub.i
output_in_position = true
move_time = 0.05
move_positions = '2 2 0'
move_apps = 0
[../]
[]
(test/tests/materials/stateful_coupling/stateful_coupling.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Materials]
# This material couples in a stateful property from StatefulTest
[./coupled_mat]
type = CoupledMaterial
mat_prop = 'some_prop'
coupled_mat_prop = 'thermal_conductivity'
use_old_prop = true
[../]
[./stateful_mat]
type = StatefulTest
prop_names = thermal_conductivity
prop_values = 1.0
output_properties = thermal_conductivity
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 4
[]
[Outputs]
exodus = true
[]
[Debug]
show_material_props = true
[]
(test/tests/multiapps/slow_sub/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[pg]
type = PerfGraphOutput
level = 3
[]
[]
[MultiApps]
[really_slow]
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub.i'
positions = '0 0 0'
[]
[]
(modules/combined/test/tests/elastic_patch/elastic_patch_rz_nonlinear.i)
#
# This problem is taken from the Abaqus verification manual:
# "1.5.4 Patch test for axisymmetric elements"
# The stress solution is given as:
# xx = yy = zz = 19900
# xy = 0
#
# If strain = log(1+1e-2) = 0.00995033...
# then
# stress = E/(1+PR)/(1-2*PR)*(1-PR +PR +PR)*strain = 19900.6617
# with E = 1e6 and PR = 0.25.
#
# The code computes stress = 19900.6617 when
# increment_calculation = eigen. There is a small error when the
# rashidapprox option is used.
#
# Since the strain is 1e-3 in all three directions, the new density should be
# new_density = original_density * V_0 / V
# new_density = 0.283 / (1 + 9.95e-3 + 9.95e-3 + 9,95e-3) = 0.2747973
#
# The code computes a new density of .2746770
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = elastic_patch_rz.e
[]
[Variables]
[temp]
initial_condition = 117.56
[]
[]
[Physics/SolidMechanics/QuasiStatic/All]
strain = FINITE
decomposition_method = EigenSolution
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[heat]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[ur]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 10
function = '1e-2*x'
[]
[uz]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 10
function = '1e-2*y'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[density]
type = Density
density = 0.283
outputs = all
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/move_and_reset/multilevel_sub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/05_sub_parallel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_steady/restart_trans_with_2subs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = 'replicated'
[]
[Problem]
restart_file_base = steady_with_2subs_out_cp/LATEST
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
expression = '1e3*x*(1-x)+5e2' # increase this function to drive transient
[]
[]
[Kernels]
[timedt]
type = TimeDerivative
variable = power_density
[]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 50
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3
dt = 1.0
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
fixed_point_rel_tol = 1e-7
fixed_point_abs_tol = 1e-07
fixed_point_max_its = 4
line_search = none
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0
0.5 0 0'
input_files = restart_trans_with_sub_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[p_to_sub]
type = MultiAppProjectionTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppGeometricInterpolationTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/power_law_creep/power_law_creep.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[]
[]
[Functions]
[top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[]
[u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[]
[radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
tangent_operator = elastic
[]
[power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/04_sub3_multiple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 3
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/move_and_reset/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/functions/piecewise_multilinear/except2.i)
# PiecewiseMultilinear function exception test
# Grid is not monotonic
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 1
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./f]
[../]
[]
[AuxKernels]
[./f_auxK]
type = FunctionAux
variable = f
function = except1_fcn
[../]
[]
[Functions]
[./except1_fcn]
type = PiecewiseMultilinear
data_file = except2.txt
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
hide = dummy
[]
(test/tests/multiapps/application_block_multiapps/application_block_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = application_block_sub.i
output_in_position = true
move_time = 0.05
move_positions = '2 2 0'
move_apps = 0
[]
[]
(modules/phase_field/test/tests/PolynomialFreeEnergy/direct_order6_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmax = 125
[]
[GlobalParams]
polynomial_order = 6
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 60.0
variable = c
[../]
[]
[Kernels]
[./local_energy]
type = CahnHilliard
variable = c
f_name = F
[../]
[./gradient_energy]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa
[../]
[./cdot]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./Copper]
type = PFParamsPolyFreeEnergy
c = c
T = 1000 # K
int_width = 30.0
length_scale = 1.0e-9
time_scale = 1.0e-9
D0 = 3.1e-5 # m^2/s, from Brown1980
Em = 0.71 # in eV, from Balluffi1978 Table 2
Ef = 1.28 # in eV, from Balluffi1978 Table 2
surface_energy = 0.7 # Total guess
[../]
[./free_energy]
type = PolynomialFreeEnergy
c = c
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = -pc_type
petsc_options_value = lu
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 100
dt = 4
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/move_and_reset/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = sub.i
reset_apps = 0
reset_time = 0.05
move_time = 0.05
move_positions = '2 2 0'
move_apps = 0
output_in_position = true
[../]
[]
(test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[AuxKernels]
[set_v]
type = FunctionAux
variable = v
function = 't'
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[coupled_force]
type = CoupledForce
variable = u
v = v
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
num_steps = 2
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 1
auto_advance = false
[]
[MultiApps]
[sub1]
type = TransientMultiApp
positions = '0 0 0'
input_files = picard_sub.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[u_to_v2]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub1
source_variable = u
variable = v2
[]
[time_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = time
to_postprocessor = parent_time
to_multi_app = sub1
[]
[dt_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = dt
to_postprocessor = parent_dt
to_multi_app = sub1
[]
[]
[Postprocessors]
[time]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[dt]
type = TimestepSize
execute_on = 'timestep_end'
[]
[]
(modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.01*v'
[../]
[../]
[./mu]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./eigen_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./eigen_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./eigenstrain_xx]
type = RankTwoAux
variable = eigen_strain_xx
rank_two_tensor = eigenstrain
index_i = 0
index_j = 0
[../]
[./eigenstrain_yy]
type = RankTwoAux
variable = eigen_strain_yy
rank_two_tensor = eigenstrain
index_i = 1
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
expression = 'c*(1.0-c)'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./eigenstrain_prefactor]
type = DerivativeParsedMaterial
block = 0
expression = 'c-0.1'
coupled_variables = c
property_name = eigenstrain_prefactor
derivative_order = 1
[../]
[./eigenstrain]
type = ComputeVariableBaseEigenStrain
base_tensor_property_name = aniso_tensor
prefactor = eigenstrain_prefactor
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeIncrementalStrain
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/transient_multiapp/dt_from_parent_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the parent solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/scalar_dot_integrity_check.i)
# Test that coupling a time derivative of a scalar variable (ScalarDotCouplingAux) and
# using a Steady executioner errors out
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Functions]
[./a_fn]
type = ParsedFunction
expression = t
[../]
[]
[AuxVariables]
[./v]
[../]
[./a]
family = SCALAR
order = FIRST
[../]
[]
[AuxScalarKernels]
[./a_sak]
type = FunctionScalarAux
variable = a
function = a_fn
[../]
[]
[AuxKernels]
[./ak_v]
type = ScalarDotCouplingAux
variable = v
v = a
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Steady
[]
(test/tests/multiapps/restart/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
expression = t*x
[../]
[./ffn]
type = ParsedFunction
expression = x
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/iterative/iterative_csv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./iterations]
type = NumResidualEvaluations
execute_on = linear
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = CSV
nonlinear_residual_dt_divisor = 100
linear_residual_dt_divisor = 100
start_time = 1.8
end_time = 1.85
execute_on = 'nonlinear linear timestep_end'
[../]
[]
(modules/stochastic_tools/test/tests/multiapps/sampler_transient_multiapp/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
# coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/restricted_elem_sub.i)
# yy is passed in from the parent app
[Mesh]
[line]
type = GeneratedMeshGenerator
dim = 1
nx = 4
xmax = 2
[]
[box]
type = SubdomainBoundingBoxGenerator
input = line
bottom_left = '0 -0.1 -0.1'
top_right = '1 0.1 0.1'
# need a different block ID than what is in the parent app to make sure the transfer works properly
block_id = 20
[]
[]
[AuxVariables]
[A]
family = MONOMIAL
order = CONSTANT
[]
[S]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[A_ak]
type = ParsedAux
variable = A
use_xyzt = true
expression = '2*x+4*${yy}'
execute_on = 'TIMESTEP_BEGIN'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[UserObjects]
[A_avg]
type = LayeredAverage
block = 20
num_layers = 2
direction = x
variable = A
execute_on = TIMESTEP_END
[]
[]
[Executioner]
type = Transient
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/parent_quad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./pp_aux]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./quad]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.1 0.1 0 0.9 0.1 0 0.1 0.9 0 0.9 0.9 0'
input_files = 'quad_sub1.i quad_sub1.i quad_sub2.i quad_sub2.i'
[../]
[]
[Transfers]
[./sub_to_parent_pp]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = quad
variable = pp_aux
postprocessor = pp
[../]
[]
(modules/level_set/examples/rotating_circle/circle_rotate_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 32
ny = 32
uniform_refine = 2
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[Variables]
[./phi]
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = phi
boundary = 'top bottom left right'
value = 0
[../]
[]
[Functions]
[./phi_exact]
type = LevelSetOlssonBubble
epsilon = 0.03
center = '0 0.5 0'
radius = 0.15
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '4*y'
expression_y = '-4*x'
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_exact
variable = phi
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = LevelSetAdvection
velocity = velocity
variable = phi
[../]
[]
[Postprocessors]
[./area]
type = LevelSetVolume
threshold = 0.5
variable = phi
location = outside
execute_on = 'initial timestep_end'
[../]
[./cfl]
type = LevelSetCFLCondition
velocity = velocity
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
end_time = 1.570796
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl
scale = 0.8
[../]
[]
[MultiApps]
[./reinit]
type = LevelSetReinitializationMultiApp
input_files = 'circle_rotate_sub.i'
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppCopyTransfer
source_variable = phi
variable = phi
to_multi_app = reinit
execute_on = 'timestep_end'
[../]
[./to_sub_init]
type = MultiAppCopyTransfer
source_variable = phi
variable = phi_0
to_multi_app = reinit
execute_on = 'timestep_end'
[../]
[./from_sub]
type = MultiAppCopyTransfer
source_variable = phi
variable = phi
from_multi_app = reinit
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/combined/examples/mortar/mortar_gradient.i)
#
# Compare a diffusion equation with (c) and without (v) periodic gradient
# constraints and a ramped sloped initial condition and value-periodic diffusion (p)
# without a slope.
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 40
[]
[secondary_x]
input = gen
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10
new_block_name = "secondary_x"
[]
[primary_x]
input = secondary_x
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = 12
new_block_name = "primary_x"
[]
[secondary_y]
input = primary_x
type = LowerDBlockFromSidesetGenerator
sidesets = '0'
new_block_id = 11
new_block_name = "secondary_y"
[]
[primary_y]
input = secondary_y
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 13
new_block_name = "primary_y"
[]
[]
[Functions]
[./init_slope]
# slope with a concentration spike close to the lower interface
type = ParsedFunction
expression = 'if(x>0.4 & x<0.6 & y>0.1 & y<0.3, 3+y, y)'
[../]
[./init_flat]
# no-slope and the same spike
type = ParsedFunction
expression = 'if(x>0.4 & x<0.6 & y>0.1 & y<0.3, 3, 0)'
[../]
[]
[Variables]
# gradient constrained concentration
[./c]
order = FIRST
family = LAGRANGE
block = 0
[./InitialCondition]
type = FunctionIC
function = init_slope
[../]
[../]
# unconstrained concentrarion
[./v]
order = FIRST
family = LAGRANGE
block = 0
[./InitialCondition]
type = FunctionIC
function = init_slope
[../]
[../]
# flat value periodic diffusion
[./p]
order = FIRST
family = LAGRANGE
block = 0
[./InitialCondition]
type = FunctionIC
function = init_flat
[../]
[../]
# Lagrange multipliers for gradient component in the horizontal directon
[./lm_left_right_x]
order = FIRST
family = LAGRANGE
block = "secondary_x"
[../]
[./lm_left_right_y]
order = FIRST
family = LAGRANGE
block = "secondary_x"
[../]
# Lagrange multipliers for gradient component in the vertical directon
[./lm_up_down_x]
order = FIRST
family = LAGRANGE
block = "secondary_y"
[../]
[./lm_up_down_y]
order = FIRST
family = LAGRANGE
block = "secondary_y"
[../]
[]
[Kernels]
# the gradient constrained concentration
[./diff]
type = Diffusion
variable = c
block = 0
[../]
[./dt]
type = TimeDerivative
variable = c
block = 0
[../]
# the un-constrained concentration
[./diff2]
type = Diffusion
variable = v
block = 0
[../]
[./dt2]
type = TimeDerivative
variable = v
block = 0
[../]
# the value periodic concentration
[./diff3]
type = Diffusion
variable = p
block = 0
[../]
[./dt3]
type = TimeDerivative
variable = p
block = 0
[../]
[]
[Constraints]
[./equaly_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_x
component = 0
secondary_variable = c
secondary_boundary = bottom
primary_boundary = top
secondary_subdomain = secondary_y
primary_subdomain = primary_y
periodic = true
[../]
[./equaly_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_y
component = 1
secondary_variable = c
secondary_boundary = bottom
primary_boundary = top
secondary_subdomain = secondary_y
primary_subdomain = primary_y
periodic = true
[../]
[./equalx_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_x
component = 0
secondary_variable = c
secondary_boundary = left
primary_boundary = right
secondary_subdomain = secondary_x
primary_subdomain = primary_x
periodic = true
[../]
[./equalx_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_y
component = 1
secondary_variable = c
secondary_boundary = left
primary_boundary = right
secondary_subdomain = secondary_x
primary_subdomain = primary_x
periodic = true
[../]
[]
[BCs]
# DiffusionFluxBC is the surface term in the weak form of the Diffusion equation
[./surface]
type = DiffusionFluxBC
boundary = 'top bottom left right'
variable = c
[../]
[./surface2]
type = DiffusionFluxBC
boundary = 'top bottom left right'
variable = v
[../]
# for the value periodic diffusion we skip the surface term and apply value PBCs
[./Periodic]
[./up_down]
variable = p
primary = 0
secondary = 2
translation = '0 1 0'
[../]
[./left_right]
variable = p
primary = 1
secondary = 3
translation = '-1 0 0'
[../]
[../]
[]
[AuxVariables]
[./diff_constraint]
block = 0
[../]
[./diff_periodic]
block = 0
[../]
[./diff_slope]
block = 0
[../]
[./slope]
block = 0
[./InitialCondition]
type = FunctionIC
function = y
[../]
[../]
[]
[AuxKernels]
# difference between the constrained and unconstrained sloped diffusions
[./diff_constraint]
type = ParsedAux
variable = diff_constraint
expression = 'c-v'
coupled_variables = 'c v'
block = 0
[../]
# difference between the periodic gradient constrained diffusion and the flat
# value period diffusien with a constant slope added. This should be the same,
# but they aren't quite because the gradient constraint affects the gradient in
# the entire elements (i.e. a larger volume is affected by the gradient constraint
# compared to the nodal value periodicity)
[./diff_periodic]
type = ParsedAux
variable = diff_periodic
expression = 'c-p-slope'
coupled_variables = 'c p slope'
block = 0
[../]
# subtract the constant slope from the gradient periodic simulation (should yield
# almost p - per the argument above)
[./diff_slope]
type = ParsedAux
variable = diff_slope
expression = 'c-slope'
coupled_variables = 'c slope'
block = 0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
# the shift is necessary to facilitate the solve. The Lagrange multipliers
# introduce zero-on diaginal blocks, which make the matrix hard to invert.
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-10
l_tol = 1e-10
dt = 0.01
num_steps = 20
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/rk-2/2d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*((x*x)+(y*y))-(4*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*((x*x)+(y*y))
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitMidpoint
[../]
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 10
dt = 0.0001
l_tol = 1e-8
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/functions/piecewise_multilinear/oneDb.i)
# PiecewiseMultilinear function tests in 1D
# See [Functions] block for a description of the tests
# The functions are compared with ParsedFunctions using postprocessors
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 10
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./linear1_var]
[../]
[./linear2_var]
[../]
[]
[AuxKernels]
[./linear1_AuxK]
type = FunctionAux
variable = linear1_var
function = linear1_fcn
[../]
[./linear2_AuxK]
type = FunctionAux
variable = linear2_var
function = linear2_fcn
[../]
[]
[Functions]
# This is just f = x
[./linear1_fcn]
type = PiecewiseMultilinear
data_file = linear1.txt
[../]
[./linear1_answer]
type = ParsedFunction
expression = x
[../]
# This is a hat function
[./linear2_fcn]
type = PiecewiseMultilinear
data_file = linear2.txt
[../]
[./linear2_answer]
type = ParsedFunction
expression = min(x,1)+min(2-x,1)-1
[../]
[]
[Postprocessors]
[./linear1_pp]
type = NodalL2Error
function = linear1_answer
variable = linear1_var
[../]
[./linear2_pp]
type = NodalL2Error
function = linear2_answer
variable = linear2_var
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = oneDb
hide = dummy
csv = true
[]
(modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/matrix_app_dirac.i)
# A fracture, which is a 1D line of elements, is embedded in a matrix, which is a 2D surface of elements.
# The meshes conform: all fracture nodes are also matrix nodes (the fracture elements are sides of matrix elements).
#
# The heat equation governs temperature in the fracture and matrix system, and heat energy is transferred between the two using a MultiApp approach
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 20
xmin = 0
xmax = 10.0
ny = 20 # anything less than this produces over/under-shoots
ymin = -2
ymax = 2
[]
[]
[Variables]
[matrix_T]
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = matrix_T
[]
[matrix_diffusion]
type = AnisotropicDiffusion
variable = matrix_T
tensor_coeff = '1E-3 0 0 0 1E-3 0 0 0 1E-3'
[]
[]
[DiracKernels]
[heat_from_fracture]
type = ReporterPointSource
variable = matrix_T
value_name = heat_transfer_rate/transferred_joules_per_s
x_coord_name = heat_transfer_rate/x
y_coord_name = heat_transfer_rate/y
z_coord_name = heat_transfer_rate/z
[]
[]
[VectorPostprocessors]
[heat_transfer_rate]
type = ConstantVectorPostprocessor
vector_names = 'transferred_joules_per_s x y z'
value = '0; 0; 0; 0'
outputs = none
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
nl_rel_tol = 1e-8
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
[]
[Outputs]
print_linear_residuals = false
exodus = false
csv=true
[]
[MultiApps]
[fracture_app]
type = TransientMultiApp
input_files = fracture_app_dirac.i
execute_on = TIMESTEP_BEGIN
[]
[]
[Transfers]
[T_to_fracture]
type = MultiAppGeometricInterpolationTransfer
to_multi_app = fracture_app
source_variable = matrix_T
variable = transferred_matrix_T
[]
[heat_from_fracture]
type = MultiAppReporterTransfer
from_multi_app = fracture_app
from_reporters = 'heat_transfer_rate/joules_per_s heat_transfer_rate/x heat_transfer_rate/y heat_transfer_rate/z'
to_reporters = 'heat_transfer_rate/transferred_joules_per_s heat_transfer_rate/x heat_transfer_rate/y heat_transfer_rate/z'
[]
[]
(test/tests/userobjects/shape_element_user_object/jacobian_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = (x-0.5)^2
[../]
[../]
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = (x-0.5)^2
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = (x-0.5)^2
[../]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./shape_w]
type = ExampleShapeElementKernel2
user_object = example_uo
v = v
u = u
variable = w
[../]
[./time_w]
type = TimeDerivative
variable = w
[../]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[UserObjects]
[./example_uo]
type = ExampleShapeElementUserObject
u = u
v = v
# as this userobject computes quantities for both the residual AND the jacobian
# it needs to have these execute_on flags set.
execute_on = 'linear nonlinear'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
#off_diag_row = 'w w'
#off_diag_column = 'v u'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options = '-snes_test_display'
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
dt = 0.1
num_steps = 2
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/combined/test/tests/chemical_reactions_richards/langmuir_jac3.i)
# testing whether when we have a centre block containing 'conc' which is a CONSTANT MONOMIAL, and two-phase Richards flow, we get the correct Jacobian
[Mesh]
type = FileMesh
file = three_eles.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1.1E-5'
gravity = '0 0 -10'
linear_shape_fcns = true
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityMethane20degC
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.2
n = 3
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E+1
[../]
[]
[Variables]
[./pwater]
[../]
[./pgas]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./water]
type = ConstantIC
variable = pwater
value = 0.0
[../]
[./gas]
type = RandomIC
variable = pgas
min = 0
max = 5E5
[../]
[./conc_ic]
type = RandomIC
variable = conc
min = 0
max = 20
block = centre_block
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./c_dot]
type = TimeDerivative
block = centre_block
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pgas
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pgas
conc_var = conc
[../]
[]
[Materials]
[./all_blocks]
type = RichardsMaterial
block = 'left_block centre_block right_block'
mat_porosity = 0.02
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[../]
[./langmuir_params]
type = LangmuirMaterial
block = centre_block
one_over_desorption_time_const = 0.813
one_over_adsorption_time_const = 0.813
langmuir_density = 20.0
langmuir_pressure = 1.5E6
pressure_var = pgas
conc_var = conc
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3 # get rid of the large c_dot contribution
[]
[Outputs]
execute_on = 'timestep_end'
file_base = langmuir_jac3
[]
(test/tests/restart/duplicate_node/duplicate_node.i)
[Mesh]
type = FileMesh
# Contains multiple nodes in the same positions
file = duplicate_nodes.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 20
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/test/tests/multiapps/dynamic_sub_app_number_error_with_transient/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
# coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/chemical_reactions/test/tests/desorption/langmuir_desorption.i)
# testing the entire desorption DEs
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = 0
xmax = 1
[]
[Variables]
[./pressure]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pressure
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
variable = conc
pressure_var = pressure
[../]
[./rho_dot]
type = TimeDerivative
variable = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
variable = pressure
conc_var = conc
[../]
[]
[Postprocessors]
[./mass_rho]
type = ElementIntegralVariablePostprocessor
block = 0
variable = pressure
execute_on = 'initial timestep_end'
[../]
[./mass_conc]
type = ElementIntegralVariablePostprocessor
block = 0
variable = conc
execute_on = 'initial timestep_end'
[../]
[./mass_tot]
type = FunctionValuePostprocessor
function = mass_fcn
execute_on = 'initial timestep_end'
[../]
[./p0]
type = PointValue
variable = pressure
point = '0 0 0'
execute_on = 'initial timestep_end'
[../]
[./c0]
type = PointValue
variable = conc
point = '0 0 0'
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./mass_fcn]
type = ParsedFunction
expression = a+b
symbol_names = 'a b'
symbol_values = 'mass_rho mass_conc'
[../]
[]
[Materials]
[./lang_stuff]
type = LangmuirMaterial
block = 0
one_over_desorption_time_const = 0.90909091
one_over_adsorption_time_const = 0.90909091
langmuir_density = 0.88
langmuir_pressure = 1.23
pressure_var = pressure
conc_var = conc
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 2
[]
[Outputs]
file_base = langmuir_desorption
time_step_interval = 10
csv = 10
[] # Outputs
(test/tests/multiapps/check_error/check_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./multi]
type = TransientMultiApp
app_type = MooseTestApp
[../]
[]
(modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/two_vars.i)
# Heat transfer between matrix and fracture, with the matrix and fracture being identical spatial domains, but a multiapp approach is not used
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 1
nx = 100
xmin = 0
xmax = 50.0
[]
[]
[Variables]
[frac_T]
[]
[matrix_T]
[]
[]
[ICs]
[frac_T]
type = FunctionIC
variable = frac_T
function = 'if(x<0.5, 2, 0)' # delta function
[]
[]
[Kernels]
[dot_frac]
type = TimeDerivative
variable = frac_T
[]
[frac_diffusion]
type = Diffusion
variable = frac_T
[]
[toMatrix]
type = PorousFlowHeatMassTransfer
variable = frac_T
v = matrix_T
transfer_coefficient = 0.004
[]
[dot_matrix]
type = TimeDerivative
variable = matrix_T
[]
[matrix_diffusion]
type = Diffusion
variable = matrix_T
[]
[toFrac]
type = PorousFlowHeatMassTransfer
variable = matrix_T
v = frac_T
transfer_coefficient = 0.004
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[VectorPostprocessors]
[final_results]
type = LineValueSampler
start_point = '0 0 0'
end_point = '50 0 0'
num_points = 11
sort_by = x
variable = 'frac_T matrix_T'
outputs = final_csv
[]
[]
[Outputs]
print_linear_residuals = false
[final_csv]
type = CSV
sync_times = 100
sync_only = true
[]
[]
(test/tests/bounds/old_value_bounds.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[v]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[bounds_dummy]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[time_u]
type = TimeDerivative
variable = u
[]
[diff_u]
type = Diffusion
variable = u
[]
[time_v]
type = TimeDerivative
variable = v
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
[BCs]
[left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[left_v]
type = DirichletBC
variable = v
boundary = 3
value = 0
[]
[right_v]
type = DirichletBC
variable = v
boundary = 1
value = 1
[]
[]
[Bounds]
[u_upper_bound]
type = ConstantBounds
variable = bounds_dummy
bounded_variable = u
bound_type = upper
bound_value = 1
[]
[u_lower_bound]
type = VariableOldValueBounds
variable = bounds_dummy
bounded_variable = u
bound_type = lower
[]
[v_upper_bound]
type = ConstantBounds
variable = bounds_dummy
bounded_variable = v
bound_type = upper
bound_value = 3
[]
[v_lower_bound]
type = VariableOldValueBounds
variable = bounds_dummy
bounded_variable = v
bound_type = lower
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-snes_type'
petsc_options_value = 'vinewtonrsls'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/kernels/kernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff0]
type = CoefDiffusion
variable = u
coef = 0.05
[../]
[./diff1]
type = CoefDiffusion
variable = u
coef = 0.5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./diff]
type = TimePeriod
enable_objects = 'Kernel::diff0'
disable_objects = '*::diff1'
start_time = '0'
end_time = '0.49'
[../]
[]
(modules/chemical_reactions/test/tests/desorption/langmuir_lumping_problem.i)
# exploring CONSTANT MONOMIAL
[Mesh]
type = FileMesh
file = three_eles.e
[]
[Variables]
[./pressure]
# try with and without the CONSTANT MONOMIAL to see that
# CONSTANT MONOMIAL yields the correct result that pressure(x=0) is unchanged
# but LINEAR LAGRANGE changes pressure(x=0) since pressure is not lumped at x=0
# (the x=0 eqn is a*dot(p0)+b*dot(p10)=0, and x=10 eqn a*dot(p10)+b*dot(p20)=desorption,
# and since dot(p10)>0, we get dot(p0)<0)
family = MONOMIAL
order = CONSTANT
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pressure
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
block = centre_block
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
block = centre_block
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pressure
[../]
[./rho_dot]
type = TimeDerivative
variable = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pressure
conc_var = conc
[../]
[]
[Materials]
[./rock]
type = GenericConstantMaterial
block = 'left_block centre_block right_block'
[../]
[./lang_stuff]
type = LangmuirMaterial
block = centre_block
mat_desorption_time_const = 0.1
mat_adsorption_time_const = 0.1
mat_langmuir_density = 1
mat_langmuir_pressure = 1
pressure_var = pressure
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1
[]
[Outputs]
file_base = langmuir_lumping_problem
[]
(tutorials/tutorial02_multiapps/step02_transfers/03_parent_uot.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
zmax = 3
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v_average]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[front]
type = DirichletBC
variable = u
boundary = front
value = 0
[]
[back]
type = DirichletBC
variable = u
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[UserObjects]
[layered_integral]
type = NearestPointLayeredIntegral
points = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
direction = z
num_layers = 4
variable = u
[]
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '03_sub_uot.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppUserObjectTransfer
to_multi_app = sub_app
variable = u_integral
user_object = layered_integral
[]
[pull_v]
type = MultiAppUserObjectTransfer
from_multi_app = sub_app
variable = v_average
user_object = layered_average
[]
[]
(modules/phase_field/test/tests/initial_conditions/polycrystalcircles_fromfile.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 56
nz = 0
xmin = 0
xmax = 200
ymin = 0
ymax = 112
zmin = 0
zmax = 0
[]
[GlobalParams]
op_num = 6
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[]
[UserObjects]
[./circle_IC]
type = PolycrystalCircles
file_name = 'circles.txt'
read_from_file = true
execute_on = 'initial'
threshold = 0.2
connecting_threshold = 0.08
int_width = 8
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = circle_IC
[../]
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_gr2]
type = TimeDerivative
variable = gr2
[../]
[./dt_gr3]
type = TimeDerivative
variable = gr3
[../]
[./dt_gr4]
type = TimeDerivative
variable = gr4
[../]
[./dt_gr5]
type = TimeDerivative
variable = gr5
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
num_steps = 0
[]
[Outputs]
exodus = true
csv = false
[]
(tutorials/tutorial02_multiapps/step03_coupling/01_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ParsedMaterial
property_name = D
coupled_variables = 'vt'
expression = 'vt'
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '01_sub.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(modules/combined/test/tests/CHSplitFlux/flux_gb.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./mobility_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./mobility_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./diffusivity_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./diffusivity_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./aniso_tensor_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./aniso_tensor_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./mobility_xx]
type = MaterialRealTensorValueAux
variable = mobility_xx
property = mobility_prop
row = 0
column = 0
[../]
[./mobility_yy]
type = MaterialRealTensorValueAux
variable = mobility_yy
property = mobility_prop
row = 1
column = 1
[../]
[./diffusivity_xx]
type = MaterialRealTensorValueAux
variable = diffusivity_xx
property = diffusivity
row = 0
column = 0
[../]
[./diffusivity_yy]
type = MaterialRealTensorValueAux
variable = diffusivity_yy
property = diffusivity
row = 1
column = 1
[../]
[./aniso_tensor_xx]
type = MaterialRealTensorValueAux
variable = aniso_tensor_xx
property = aniso_tensor
row = 0
column = 0
[../]
[./aniso_tensor_yy]
type = MaterialRealTensorValueAux
variable = aniso_tensor_yy
property = aniso_tensor
row = 1
column = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
expression = 'c*(1.0-c)'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 20
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/initial_conditions/SmoothSuperellipsoidIC_3D.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 15
ny = 15
nz = 15
xmax = 50
ymax = 50
zmax = 50
elem_type = HEX8
[]
[Variables]
[./c]
[../]
[]
[ICs]
[./c]
type = SmoothSuperellipsoidIC
variable = c
x1 = 25.0
y1 = 25.0
z1 = 25.0
a = 8
b = 12
c = 16
n = 3.5
invalue = 1.0
outvalue = 0
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./Diffusion]
type = MatDiffusion
variable = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y z'
[../]
[../]
[]
[Materials]
[./Diffusivity]
type = GenericConstantMaterial
prop_names = D
prop_values = 1.0
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/initial_conditions/BoundingBoxIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
xmax = 50
ymax = 25
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
inside = 1.0
outside = -0.8
variable = c
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 2
dt = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/time_data/time_data.i)
###############################################################
# The following tests that the CSV output object can include an
# additional .csv file that contains the time and timestep
# data from VectorPostprocessor object.
###############################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'u v'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
[./out]
type = CSV
time_data = true
time_step_interval = 2
[../]
[]
(test/tests/multiapps/picard/function_dt_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
expression = t*x
[../]
[./ffn]
type = ParsedFunction
expression = x
[../]
[./dts]
type = PiecewiseLinear
x = '0.1 10'
y = '0.1 10'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
dt = 0.1
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
start_time = 0
num_steps = 3
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/phase_field_kernels/nonuniform_barrier_coefficient.i)
# This material tests the kernels ACBarrierFunction and ACKappaFunction for a
# multiphase system.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -200
xmax = 200
ymin = -200
ymax = 200
uniform_refine = 0
[]
[Variables]
[./gr0]
[../]
[./gr1]
[../]
[]
[ICs]
[./gr0_IC]
type = BoundingBoxIC
variable = gr0
x1 = -80
y1 = -80
x2 = 80
y2 = 80
inside = 0
outside = 1
[../]
[./gr1_IC]
type = BoundingBoxIC
variable = gr1
x1 = -80
y1 = -80
x2 = 80
y2 = 80
inside = 1
outside = 0
[../]
[]
[Materials]
[./constants]
type = GenericConstantMaterial
prop_names = 'L gamma E0 E1'
prop_values = '0.1 1.5 3 1'
[../]
[./h0]
type = DerivativeParsedMaterial
property_name = h0
coupled_variables = 'gr0 gr1'
expression = 'gr0^2 / (gr0^2 + gr1^2)'
derivative_order = 2
[../]
[./h1]
type = DerivativeParsedMaterial
property_name = h1
coupled_variables = 'gr0 gr1'
expression = 'gr1^2 / (gr0^2 + gr1^2)'
derivative_order = 2
[../]
[./mu]
type = DerivativeParsedMaterial
property_name = mu
coupled_variables = 'gr0 gr1'
constant_names = 'mag'
constant_expressions = '16'
expression = 'mag * (gr0^2 * gr1^2 + 0.1)'
derivative_order = 2
[../]
[./kappa]
type = DerivativeParsedMaterial
property_name = kappa
coupled_variables = 'gr0 gr1'
material_property_names = 'h0(gr0,gr1) h1(gr0,gr1)'
constant_names = 'mag0 mag1'
constant_expressions = '200 100'
expression = 'h0*mag0 + h1*mag1'
derivative_order = 2
[../]
[]
[Kernels]
[./gr0_time]
type = TimeDerivative
variable = gr0
[../]
[./gr0_interface]
type = ACInterface
variable = gr0
coupled_variables = 'gr1'
mob_name = L
kappa_name = 'kappa'
[../]
[./gr0_switching]
type = ACSwitching
variable = gr0
coupled_variables = 'gr1'
hj_names = 'h0 h1'
Fj_names = 'E0 E1'
mob_name = L
[../]
[./gr0_multi]
type = ACGrGrMulti
variable = gr0
v = 'gr1'
mob_name = L
gamma_names = 'gamma'
[../]
[./gr0_barrier]
type = ACBarrierFunction
variable = gr0
mob_name = L
gamma = gamma
v = 'gr1'
[../]
[./gr0_kappa]
type = ACKappaFunction
variable = gr0
mob_name = L
kappa_name = kappa
v = 'gr1'
[../]
[./gr1_time]
type = TimeDerivative
variable = gr1
[../]
[./gr1_interface]
type = ACInterface
variable = gr1
coupled_variables = 'gr0'
mob_name = L
kappa_name = 'kappa'
[../]
[./gr1_switching]
type = ACSwitching
variable = gr1
coupled_variables = 'gr0'
hj_names = 'h0 h1'
Fj_names = 'E0 E1'
mob_name = L
[../]
[./gr1_multi]
type = ACGrGrMulti
variable = gr1
v = 'gr0'
mob_name = L
gamma_names = 'gamma'
[../]
[./gr1_barrier]
type = ACBarrierFunction
variable = gr1
mob_name = L
gamma = gamma
v = 'gr0'
[../]
[./gr1_kappa]
type = ACKappaFunction
variable = gr1
mob_name = L
kappa_name = kappa
v = 'gr0'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = ' asm ilu 1 31 preonly'
nl_max_its = 20
l_max_its = 30
l_tol = 1e-4
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
start_time = 0
num_steps = 3
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/ad_vector_couple/ad_vector_couple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[u]
family = LAGRANGE
order = FIRST
[]
[v]
family = LAGRANGE_VEC
order = FIRST
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = ADDiffusion
variable = u
[]
[convection]
type = ADCoupledVectorConvection
variable = u
velocity_vector = v
[]
[diff_v]
type = ADVectorDiffusion
variable = v
[]
[]
[BCs]
[left]
type = ADFunctionDirichletBC
variable = u
function = 1
boundary = 'left'
[]
[right]
type = ADFunctionDirichletBC
variable = u
function = 2
boundary = 'bottom'
[]
[left_v]
type = ADVectorFunctionDirichletBC
variable = v
function_x = 1
function_y = 2
boundary = 'left'
[]
[right_v]
type = ADVectorFunctionDirichletBC
variable = v
function_x = 4
function_y = 8
boundary = 'top'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 10
dt = 0.05
[]
[Outputs]
execute_on = TIMESTEP_END
exodus = true
[]
(modules/stochastic_tools/test/tests/samplers/mcmc/sub.i)
left_bc = 0.13508909593042528
right_bc = -1.5530467809139854
mesh1 = 1
param1 = '${fparse left_bc}'
param2 = '${fparse right_bc}'
param3 = '${fparse mesh1}'
[Mesh]
type = GeneratedMesh
dim = 2
xmax = ${param3}
xmin = 0
ymax = 1
ymin = 0
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = ${param1} # Actual = 0.15
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = ${param2} # Actual = -1.5
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
console = 'false'
[]
(test/tests/multiapps/move_and_reset/multilevel_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub.i
output_in_position = true
reset_apps = 0
reset_time = 0.05
move_time = 0.05
move_positions = '2 2 0'
move_apps = 0
[../]
[]
(modules/phase_field/test/tests/flood_counter_aux_test/flood_counter_boundary_restrictable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./bubble_map]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff forcing_1 forcing_2 forcing_3 forcing_4 dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing_1]
type = GaussContForcing
variable = u
x_center = 1.0
y_center = 1.0
x_spread = 0.5
y_spread = 0.5
amplitude = 2.0
[../]
[./forcing_2]
type = GaussContForcing
variable = u
x_center = 20.0
y_center = 39.0
x_spread = 0.5
y_spread = 0.5
amplitude = 2.0
[../]
[./forcing_3]
type = GaussContForcing
variable = u
x_center = 39.0
y_center = 20.0
x_spread = 0.5
y_spread = 0.5
amplitude = 2.0
[../]
[./forcing_4]
type = GaussContForcing
variable = u
x_center = 15.0
y_center = 15.0
x_spread = 0.5
y_spread = 0.5
amplitude = 2.0
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./mapper]
type = FeatureFloodCountAux
variable = bubble_map
execute_on = 'initial timestep_end'
flood_counter = bubbles
[../]
[]
[Postprocessors]
[./bubbles]
type = FeatureFloodCount
variable = u
threshold = 0.1
execute_on = 'initial timestep_end'
boundary = 'top right left bottom'
[../]
[]
[Executioner]
type = Transient
dt = 4.0
num_steps = 2
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except04.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
at_nodes = true # Needed to force exepected error
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
function_of = temperature
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_missing_local_object.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/misc/exception/parallel_exception_residual_transient.i)
[Mesh]
file = 2squares.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./exception]
type = ExceptionKernel
variable = u
when = residual
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.005
solve_type = 'PJFNK'
snesmf_reuse_base = false
[]
[Outputs]
exodus = true
[]
(test/tests/interfaces/random/random_uo.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./random_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./random_elemental]
type = RandomAux
variable = random_elemental
random_user_object = random_uo
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./random_uo]
type = RandomElementalUserObject
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/jacobian/line_sink01.i)
# PorousFlowPeacemanBorehole with 2-phase, 3-components, with enthalpy, internal_energy, and thermal_conductivity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph0_sp1]
[]
[massfrac_ph1_sp0]
[]
[massfrac_ph1_sp1]
[]
[temp]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp ppwater ppgas massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[dummy_outflow0]
type = PorousFlowSumQuantity
[]
[dummy_outflow1]
type = PorousFlowSumQuantity
[]
[dummy_outflow2]
type = PorousFlowSumQuantity
[]
[dummy_outflow3]
type = PorousFlowSumQuantity
[]
[dummy_outflow4]
type = PorousFlowSumQuantity
[]
[dummy_outflow5]
type = PorousFlowSumQuantity
[]
[dummy_outflow6]
type = PorousFlowSumQuantity
[]
[dummy_outflow7]
type = PorousFlowSumQuantity
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
min = 1
max = 2
[]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph0_sp1]
type = RandomIC
variable = massfrac_ph0_sp1
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp1]
type = RandomIC
variable = massfrac_ph1_sp1
min = 0
max = 1
[]
[]
[Kernels]
[dummy_temp]
type = TimeDerivative
variable = temp
[]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m01]
type = TimeDerivative
variable = massfrac_ph0_sp1
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[dummy_m11]
type = TimeDerivative
variable = massfrac_ph1_sp1
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
cv = 1.1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
cv = 1.8
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.1 0.02 0.03 0.02 0.0 0.01 0.03 0.01 0.3'
[]
[]
[DiracKernels]
[dirac0]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = ppwater
point_file = one_point.bh
line_length = 1
SumQuantityUO = dummy_outflow0
character = 1
bottom_p_or_t = -10
unit_weight = '1 2 3'
re_constant = 0.123
[]
[dirac1]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = ppgas
line_length = 1
line_direction = '-1 -1 -1'
use_relative_permeability = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow1
character = -0.5
bottom_p_or_t = 10
unit_weight = '1 2 -3'
re_constant = 0.3
[]
[dirac2]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = massfrac_ph0_sp0
line_length = 1.3
line_direction = '1 0 1'
use_mobility = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow2
character = 0.6
bottom_p_or_t = -4
unit_weight = '-1 -2 -3'
re_constant = 0.4
[]
[dirac3]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = massfrac_ph0_sp1
line_length = 1.3
line_direction = '1 1 1'
use_enthalpy = true
mass_fraction_component = 0
point_file = one_point.bh
SumQuantityUO = dummy_outflow3
character = -1
bottom_p_or_t = 3
unit_weight = '0.1 0.2 0.3'
re_constant = 0.5
[]
[dirac4]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = massfrac_ph1_sp0
function_of = temperature
line_length = 0.9
line_direction = '1 1 1'
mass_fraction_component = 1
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow4
character = 1.1
bottom_p_or_t = -7
unit_weight = '-1 2 3'
re_constant = 0.6
[]
[dirac5]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = temp
line_length = 0.9
function_of = temperature
line_direction = '1 2 3'
mass_fraction_component = 2
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow5
character = 0.9
bottom_p_or_t = -8
unit_weight = '1 2 1'
re_constant = 0.7
[]
[dirac6]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = ppwater
point_file = one_point.bh
SumQuantityUO = dummy_outflow6
character = 0
bottom_p_or_t = 10
unit_weight = '0.0 0.0 0.0'
[]
[dirac7]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = massfrac_ph0_sp0
use_mobility = true
mass_fraction_component = 1
use_relative_permeability = true
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow7
character = -1
bottom_p_or_t = 10
unit_weight = '0.1 0.2 0.3'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = line_sink01
[]
(test/tests/multiapps/secant_postprocessor/transient_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[sink]
type = BodyForce
variable = u
value = -1
[]
[]
[BCs]
[right]
type = PostprocessorDirichletBC
variable = u
boundary = right
postprocessor = 'from_main'
[]
[]
[Postprocessors]
[from_main]
type = Receiver
default = 0
[]
[to_main]
type = SideAverageValue
variable = u
boundary = left
[]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'secant'
[]
[Outputs]
[csv]
type = CSV
start_step = 6
[]
exodus = false
[]
(modules/rdg/test/tests/advection_1d/1d_aefv_square_wave.i)
############################################################
[GlobalParams]
order = CONSTANT
family = MONOMIAL
u = u
slope_limiting = lslope
implicit = false
[]
############################################################
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 100
[]
############################################################
[Functions]
[./ic_u]
type = PiecewiseConstant
axis = x
direction = right
xy_data = '0.1 0.5
0.6 1.0
1.0 0.5'
[../]
[]
############################################################
[UserObjects]
[./lslope]
type = AEFVSlopeLimitingOneD
execute_on = 'linear'
scheme = 'none' #none | minmod | mc | superbee
[../]
[./internal_side_flux]
type = AEFVUpwindInternalSideFlux
execute_on = 'linear'
[../]
[./free_outflow_bc]
type = AEFVFreeOutflowBoundaryFlux
execute_on = 'linear'
[../]
[]
############################################################
[Variables]
[./u]
[../]
[]
############################################################
[ICs]
[./u_ic]
type = FunctionIC
variable = 'u'
function = ic_u
[../]
[]
############################################################
[Kernels]
[./time_u]
implicit = true
type = TimeDerivative
variable = u
[../]
[]
############################################################
[DGKernels]
[./concentration]
type = AEFVKernel
variable = u
component = 'concentration'
flux = internal_side_flux
[../]
[]
############################################################
[BCs]
[./concentration]
type = AEFVBC
boundary = 'left right'
variable = u
component = 'concentration'
flux = free_outflow_bc
[../]
[]
############################################################
[Materials]
[./aefv]
type = AEFVMaterial
block = 0
[../]
[]
############################################################
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitMidpoint
[../]
solve_type = 'LINEAR'
l_tol = 1e-4
nl_rel_tol = 1e-20
nl_abs_tol = 1e-8
nl_max_its = 60
start_time = 0.0
num_steps = 4 # 4 | 400 for complete run
dt = 5e-4
dtmin = 1e-6
[]
[Outputs]
[./Exodus]
type = Exodus
file_base = 1d_aefv_square_wave_none_out
time_step_interval = 2
[../]
perf_graph = true
[]
(test/tests/time_integrators/dirk/dirk-2d-heat-adap.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = 0.0
num_steps = 5
dt = 0.25
[./TimeIntegrator]
type = LStableDirk2
[../]
[./Adaptivity]
refine_fraction = 0.07
coarsen_fraction = 0.
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/kernels/tag_errors/tag_doesnt_exist/bad_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/misc/dont_overghost/test_vector_type.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[test_time_type]
type = TestVectorType
system = nl
vector = TIME
vector_type = parallel
[]
[test_nontime_type]
type = TestVectorType
system = nl
vector = NONTIME
vector_type = parallel
[]
[]
(test/tests/userobjects/shape_element_user_object/jacobian.i)
[GlobalParams]
use_displaced_mesh = true
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = (x-0.5)^2
[../]
[../]
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = (x-0.5)^2
[../]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./shape_w]
type = ExampleShapeElementKernel
user_object = example_uo
v = v
variable = u
[../]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[UserObjects]
[./example_uo]
type = ExampleShapeElementUserObject
u = u
v = v
# as this userobject computes quantities for both the residual AND the jacobian
# it needs to have these execute_on flags set.
execute_on = 'linear nonlinear'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
#full = true
off_diag_row = 'u'
off_diag_column = 'v'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.1
num_steps = 2
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/outputs/dofmap/simple_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
marker = marker
initial_steps = 1
initial_marker = marker
[./Markers]
[./marker]
type = UniformMarker
mark = REFINE
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
[./dofmap]
type = DOFMap
execute_on = timestep_begin
[../]
[]
(modules/phase_field/test/tests/KKS_system/kks_xevac.i)
#
# KKS toy problem in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = -2.5
xmax = 2.5
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# gas concentration
[./cg]
order = FIRST
family = LAGRANGE
[../]
# vac concentration
[./cv]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./cv]
variable = cv
type = SmoothCircleIC
x1 = -0.5
y1 = 0.0
radius = 1.5
invalue = 0.9
outvalue = 0.1
int_width = 0.75
[../]
[./cg]
variable = cg
type = SmoothCircleIC
x1 = 0.5
y1 = 0.0
radius = 1.5
invalue = 0.7
outvalue = 0.0
int_width = 0.75
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'cg cv'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = KKSXeVacSolidMaterial
property_name = fm
cmg = cg
cmv = cv
T = 300
outputs = exodus
derivative_order = 2
[../]
[]
[Kernels]
[./diff_g]
type = Diffusion
variable = cg
[../]
[./time_g]
type = TimeDerivative
variable = cg
[../]
[./diff_v]
type = Diffusion
variable = cv
[../]
[./time_v]
type = TimeDerivative
variable = cv
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 3
dt = 0.1
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero'
[]
[Outputs]
file_base = kks_xevac
exodus = true
[]
(test/tests/restart/restart_subapp_not_parent/two_step_solve_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
active = ''
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
start_time = 2.0
end_time = 4.0
dt = 1.0
[]
[MultiApps]
[./full_solve]
type = FullSolveMultiApp
execute_on = initial
positions = '0 0 0'
# input file will come from cli-coupled_variables
[../]
[]
[Transfers]
[./transfer_u]
type = MultiAppProjectionTransfer
multi_app = full_solve
direction = FROM_MULTIAPP
variable = u
source_variable = u
[../]
[]
[Outputs]
#file_base will come from cli-coupled_variables
exodus = true
[]
(test/tests/multiapps/restart_multilevel/parent2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
ymin = 0
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[Functions]
[v_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[]
[AuxVariables]
[v]
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[ufn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = v_fn
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
app_type = MooseTestApp
type = TransientMultiApp
input_files = 'sub.i'
execute_on = timestep_end
positions = '0 -1 0'
[]
[]
[Transfers]
[from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[]
[]
[Problem]
restart_file_base = parent_out_cp/0005
[]
(modules/phase_field/test/tests/flood_counter_aux_test/flood_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./bubble_map]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing_1 forcing_2 forcing_3 forcing_4 dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing_1]
type = GaussContForcing
variable = u
x_center = 1.0
y_center = 1.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_2]
type = GaussContForcing
variable = u
x_center = 20.0
y_center = 39.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_3]
type = GaussContForcing
variable = u
x_center = 39.0
y_center = 20.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_4]
type = GaussContForcing
variable = u
x_center = 15.0
y_center = 15.0
x_spread = 0.5
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./mapper]
type = FeatureFloodCountAux
variable = bubble_map
execute_on = timestep_end
flood_counter = bubbles
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[UserObjects]
[./bubbles]
type = FeatureFloodCount
variable = u
threshold = 0.3
execute_on = timestep_end
outputs = none
flood_entity_type = NODAL
[../]
[]
[Executioner]
active = ''
type = Transient
dt = 4.0
num_steps = 5
[./Adaptivity]
refine_fraction = .40
coarsen_fraction = .02
max_h_level = 3
error_estimator = KellyErrorEstimator
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/multiapps/cliargs_from_file/cliargs_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/get_transfers_from_feproblem/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./nearest_node]
[../]
[./mesh_function]
[../]
[]
[Kernels]
[./cd]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
dt = 0.01
num_steps = 1
nl_rel_tol = 1e-10
[]
(test/tests/thewarehouse/test1.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
[]
[manyblocks]
input = gen
type = ElemUniqueSubdomainsGenerator
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[mat_props]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 2
[]
[]
[UserObjects]
[]
[Postprocessors]
[avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideDiffusiveFluxAverage
variable = u
boundary = right
diffusivity = diffusivity
[]
[u1_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[u2_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[diff]
type = DifferencePostprocessor
value1 = u1_avg
value2 = u2_avg
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/restart/restart_subapp_not_parent/two_step_solve_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
end_time = 2.0
dt = 1.0
[]
[Outputs]
[./checkpoint]
type = Checkpoint
num_files = 3
[../]
[]
(modules/porous_flow/test/tests/dirackernels/bh_except13.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = coincident_points.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/thermal_hydraulics/test/tests/controls/terminate/terminate.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[dt_pp]
type = TimestepSize
[]
[]
[Components]
[]
[ControlLogic]
[threshold]
type = UnitTripControl
condition = 'dt_pp > 3'
symbol_names = 'dt_pp'
symbol_values = 'dt_pp'
[]
[terminate]
type = TerminateControl
input = threshold:state
termination_message = 'Threshold exceeded'
[]
[]
[Functions]
[dt_fn]
type = ParsedFunction
expression = '1 + t'
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = FunctionDT
function = dt_fn
[]
num_steps = 10
abort_on_solve_fail = true
[]
(test/tests/multiapps/picard_sub_cycling/fully_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/KKS_system/kks_multiphase.i)
#
# This test is for the 3-phase KKS model
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 40
ymin = 0
ymax = 40
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[AuxVariables]
[./Energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# order parameter 1
[./eta1]
order = FIRST
family = LAGRANGE
[../]
# order parameter 2
[./eta2]
order = FIRST
family = LAGRANGE
[../]
# order parameter 3
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
# phase concentration 1
[./c1]
order = FIRST
family = LAGRANGE
initial_condition = 0.2
[../]
# phase concentration 2
[./c2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# phase concentration 3
[./c3]
order = FIRST
family = LAGRANGE
initial_condition = 0.8
[../]
# Lagrange multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta1]
variable = eta1
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.9
outvalue = 0.1
int_width = 4
[../]
[./eta2]
variable = eta2
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.1
outvalue = 0.9
int_width = 4
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.2
outvalue = 0.5
int_width = 2
[../]
[]
[Materials]
# simple toy free energies
[./f1]
type = DerivativeParsedMaterial
property_name = F1
coupled_variables = 'c1'
expression = '20*(c1-0.2)^2'
[../]
[./f2]
type = DerivativeParsedMaterial
property_name = F2
coupled_variables = 'c2'
expression = '20*(c2-0.5)^2'
[../]
[./f3]
type = DerivativeParsedMaterial
property_name = F3
coupled_variables = 'c3'
expression = '20*(c3-0.8)^2'
[../]
# Switching functions for each phase
# h1(eta1, eta2, eta3)
[./h1]
type = SwitchingFunction3PhaseMaterial
eta_i = eta1
eta_j = eta2
eta_k = eta3
property_name = h1
[../]
# h2(eta1, eta2, eta3)
[./h2]
type = SwitchingFunction3PhaseMaterial
eta_i = eta2
eta_j = eta3
eta_k = eta1
property_name = h2
[../]
# h3(eta1, eta2, eta3)
[./h3]
type = SwitchingFunction3PhaseMaterial
eta_i = eta3
eta_j = eta1
eta_k = eta2
property_name = h3
[../]
# Coefficients for diffusion equation
[./Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1'
expression = D*h1
property_name = Dh1
[../]
[./Dh2]
type = DerivativeParsedMaterial
material_property_names = 'D h2'
expression = D*h2
property_name = Dh2
[../]
[./Dh3]
type = DerivativeParsedMaterial
material_property_names = 'D h3'
expression = D*h3
property_name = Dh3
[../]
# Barrier functions for each phase
[./g1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
[../]
[./g2]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta2
function_name = g2
[../]
[./g3]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta3
function_name = g3
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'L kappa D'
prop_values = '0.7 1.0 1'
[../]
[]
[Kernels]
#Kernels for diffusion equation
[./diff_time]
type = TimeDerivative
variable = c
[../]
[./diff_c1]
type = MatDiffusion
variable = c
diffusivity = Dh1
v = c1
[../]
[./diff_c2]
type = MatDiffusion
variable = c
diffusivity = Dh2
v = c2
[../]
[./diff_c3]
type = MatDiffusion
variable = c
diffusivity = Dh3
v = c3
[../]
# Kernels for Allen-Cahn equation for eta1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g1
eta_i = eta1
wi = 1.0
coupled_variables = 'c1 c2 c3 eta2 eta3'
[../]
[./ACBulkC1]
type = KKSMultiACBulkC
variable = eta1
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta1
coupled_variables = 'eta2 eta3'
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[../]
[./multipler1]
type = MatReaction
variable = eta1
v = lambda
reaction_rate = L
[../]
# Kernels for Allen-Cahn equation for eta2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulkF2]
type = KKSMultiACBulkF
variable = eta2
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g2
eta_i = eta2
wi = 1.0
coupled_variables = 'c1 c2 c3 eta1 eta3'
[../]
[./ACBulkC2]
type = KKSMultiACBulkC
variable = eta2
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta2
coupled_variables = 'eta1 eta3'
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[../]
[./multipler2]
type = MatReaction
variable = eta2
v = lambda
reaction_rate = L
[../]
# Kernels for the Lagrange multiplier equation
[./mult_lambda]
type = MatReaction
variable = lambda
reaction_rate = 3
[../]
[./mult_ACBulkF_1]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g1
eta_i = eta1
wi = 1.0
mob_name = 1
coupled_variables = 'c1 c2 c3 eta2 eta3'
[../]
[./mult_ACBulkC_1]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta1
coupled_variables = 'eta2 eta3'
mob_name = 1
[../]
[./mult_CoupledACint_1]
type = SimpleCoupledACInterface
variable = lambda
v = eta1
kappa_name = kappa
mob_name = 1
[../]
[./mult_ACBulkF_2]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g2
eta_i = eta2
wi = 1.0
mob_name = 1
coupled_variables = 'c1 c2 c3 eta1 eta3'
[../]
[./mult_ACBulkC_2]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta2
coupled_variables = 'eta1 eta3'
mob_name = 1
[../]
[./mult_CoupledACint_2]
type = SimpleCoupledACInterface
variable = lambda
v = eta2
kappa_name = kappa
mob_name = 1
[../]
[./mult_ACBulkF_3]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g3
eta_i = eta3
wi = 1.0
mob_name = 1
coupled_variables = 'c1 c2 c3 eta1 eta2'
[../]
[./mult_ACBulkC_3]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta3
coupled_variables = 'eta1 eta2'
mob_name = 1
[../]
[./mult_CoupledACint_3]
type = SimpleCoupledACInterface
variable = lambda
v = eta3
kappa_name = kappa
mob_name = 1
[../]
# Kernels for constraint equation eta1 + eta2 + eta3 = 1
# eta3 is the nonlinear variable for the constraint equation
[./eta3reaction]
type = MatReaction
variable = eta3
reaction_rate = 1
[../]
[./eta1reaction]
type = MatReaction
variable = eta3
v = eta1
reaction_rate = 1
[../]
[./eta2reaction]
type = MatReaction
variable = eta3
v = eta2
reaction_rate = 1
[../]
[./one]
type = BodyForce
variable = eta3
value = -1.0
[../]
# Phase concentration constraints
[./chempot12]
type = KKSPhaseChemicalPotential
variable = c1
cb = c2
fa_name = F1
fb_name = F2
[../]
[./chempot23]
type = KKSPhaseChemicalPotential
variable = c2
cb = c3
fa_name = F2
fb_name = F3
[../]
[./phaseconcentration]
type = KKSMultiPhaseConcentration
variable = c3
cj = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
c = c
[../]
[]
[AuxKernels]
[./Energy_total]
type = KKSMultiFreeEnergy
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gj_names = 'g1 g2 g3'
variable = Energy
w = 1
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa kappa kappa'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
num_steps = 2
dt = 0.5
[]
[Preconditioning]
active = 'full'
[./full]
type = SMP
full = true
[../]
[./mydebug]
type = FDP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_diffusion/restart_diffusion_from_end_part2.i)
[Mesh]
file = restart_diffusion_from_end_part1_out.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_from_file_var = u
initial_from_file_timestep = LATEST
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/numerical_diffusion/framework.i)
# Using framework objects: no mass lumping or upwinding
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = TimeDerivative
variable = tracer
[]
[flux]
type = ConservativeAdvection
velocity = '0.1 0 0'
variable = tracer
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-1
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/kernels/ad_vector_couple/ad_vector_couple_default.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[u]
family = LAGRANGE
order = FIRST
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = ADDiffusion
variable = u
[]
[convection]
type = ADCoupledVectorConvection
variable = u
velocity_vector = '0 1'
[]
[]
[BCs]
[left]
type = ADFunctionDirichletBC
variable = u
function = 1
boundary = 'left'
[]
[right]
type = ADFunctionDirichletBC
variable = u
function = 2
boundary = 'bottom'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 10
dt = 0.1
[]
[Outputs]
execute_on = TIMESTEP_END
exodus = true
[]
(test/tests/transfers/transfer_interpolation/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./nearest_node]
[../]
[./mesh_function]
[../]
[./user_object]
order = CONSTANT
family = MONOMIAL
[../]
[./interpolation]
[../]
[]
[Kernels]
[./cd]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
dt = 0.01
nl_rel_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/move_and_reset/multilevel_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub_sub.i
output_in_position = true
[../]
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialAnisotropyAntitrap.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmin = -2
xmax = 2
ymin = -2
ymax = 2
[]
[GlobalParams]
radius = 1.0
int_width = 0.8
x1 = 0
y1 = 0
enable_jit = true
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
coupled_variables = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
args = ''
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etaa0dot_int]
type = AntitrappingCurrent
variable = w
v = etaa0
f_name = rhodiff
[../]
[./coupled_etab0dot_int]
type = AntitrappingCurrent
variable = w
v = etab0
f_name = rhodiff
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./int]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhodiff
material_property_names = 'rhoa rhob'
constant_names = 'int_width'
constant_expressions = '0.8'
expression = 'int_width*(rhob-rhoa)'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_tol = 1.0e-3
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
num_steps = 3
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/recover/recover_nemesis.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
parallel_type = distributed
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = recover_nemesis_out
nemesis = true
[recover]
type = Checkpoint
file_base = test_nemesis_recover_dir
[]
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/quad_sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef= 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp]
type = Receiver
default = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/variables/coupled_scalar/coupled_scalar_old.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Functions]
[./lin1_fn]
type = ParsedFunction
expression = t
[../]
[./lin2_fn]
type = ParsedFunction
expression = 't+1'
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux_scalar]
order = SECOND
family = SCALAR
[../]
[./coupled]
[../]
[./coupled_1]
[../]
[]
[ICs]
[./aux_scalar_ic]
variable = aux_scalar
values = '1.2 4.3'
type = ScalarComponentIC
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./coupled]
type = CoupledScalarAux
variable = coupled
coupled = aux_scalar
[../]
[./coupled_1]
# Coupling to the "1" component of an aux scalar
type = CoupledScalarAux
variable = coupled_1
component = 1
coupled = aux_scalar
[../]
[]
[AuxScalarKernels]
[./aux_scalar_k]
type = FunctionScalarAux
variable = aux_scalar
function = 'lin1_fn lin2_fn'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 4
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/test_harness/output_csv_and_exodus.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./x_field]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[./y_field]
type = PointValue
variable = u
point = '0.25 0.25 0'
[../]
[./z_field]
type = PointValue
variable = u
point = '0.75 0.75 0'
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/materials/output/block_via_outputs.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./block_1]
type = OutputTestMaterial
block = 1
variable = u
[../]
[./block_2]
type = OutputTestMaterial
block = 2
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
output_material_properties = true
show_material_properties = real_property
[../]
[]
(test/tests/outputs/system_info/system_info_mesh.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Adaptivity]
marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
coarsen = 0.1
indicator = indicator
refine = 0.7
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux_u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
print_mesh_changed_info = true
[]
(test/tests/time_integrators/explicit-euler/ee-2d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
implicit = true
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
l_tol = 1e-13
start_time = 0.0
num_steps = 20
dt = 0.00005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(modules/phase_field/test/tests/rigidbodymotion/grain_motion_fauxGT.i)
# test file for showing reaction forces between particles
[GlobalParams]
var_name_base = eta
op_num = 2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta0]
[../]
[./eta1]
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
coupled_variables = 'eta0 eta1'
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./eta0_dot]
type = TimeDerivative
variable = eta0
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta0
c = c
v = 'eta0 eta1'
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
op_index = 0
[../]
[./acint_eta0]
type = ACInterface
variable = eta0
mob_name = M
#coupled_variables = c
kappa_name = kappa_eta
[../]
[./acbulk_eta0]
type = AllenCahn
variable = eta0
mob_name = M
f_name = F
coupled_variables = 'c eta1'
[../]
[./eta1_dot]
type = TimeDerivative
variable = eta1
[../]
[./vadv_eta1]
type = SingleGrainRigidBodyMotion
variable = eta1
c = c
v = 'eta0 eta1'
op_index = 1
grain_force = grain_force
grain_tracker_object = grain_center
grain_volumes = grain_volumes
[../]
[./acint_eta1]
type = ACInterface
variable = eta1
mob_name = M
#coupled_variables = c
kappa_name = kappa_eta
[../]
[./acbulk_eta1]
type = AllenCahn
variable = eta1
mob_name = M
f_name = F
coupled_variables = 'c eta0'
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '1.0 0.5 0.5'
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'c eta0 eta1'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
expression = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+eta0*(1-eta0)*c+eta1*(1-eta1)*c
derivative_order = 2
[../]
[./force_density]
type = ForceDensityMaterial
c = c
etas ='eta0 eta1'
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./df00]
order = CONSTANT
family = MONOMIAL
[../]
[./df01]
order = CONSTANT
family = MONOMIAL
[../]
[./df10]
order = CONSTANT
family = MONOMIAL
[../]
[./df11]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
var_name_base = eta
op_num = 2
v = 'eta0 eta1'
[../]
[./df01]
type = MaterialStdVectorRealGradientAux
variable = df01
index = 0
component = 1
property = force_density
[../]
[./df11]
type = MaterialStdVectorRealGradientAux
variable = df11
index = 1
component = 1
property = force_density
[../]
[./df00]
type = MaterialStdVectorRealGradientAux
variable = df00
index = 0
component = 0
property = force_density
[../]
[./df10]
type = MaterialStdVectorRealGradientAux
variable = df10
index = 1
component = 0
property = force_density
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = 'initial timestep_end'
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = 'initial timestep_end'
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = 'initial timestep_end'
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[ICs]
[./ic_eta0]
int_width = 1.0
x1 = 20.0
y1 = 0.0
radius = 14.0
outvalue = 0.0
variable = eta0
invalue = 1.0
type = SmoothCircleIC
[../]
[./IC_eta1]
int_width = 1.0
x1 = 30.0
y1 = 25.0
radius = 14.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
[../]
[./ic_c]
type = SpecifiedSmoothCircleIC
invalue = 1.0
outvalue = 0.1
int_width = 1.0
x_positions = '20.0 30.0 '
z_positions = '0.0 0.0 '
y_positions = '0.0 25.0 '
radii = '14.0 14.0'
3D_spheres = false
variable = c
block = 0
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = FauxGrainTracker
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
variable = 'eta0 eta1'
[../]
[./grain_force]
type = ComputeGrainForceAndTorque
execute_on = 'linear nonlinear'
grain_data = grain_center
force_density = force_density
c = c
etas = 'eta0 eta1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/outputs/recover/recover1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = recover_out
exodus = true
[./recover]
type = Checkpoint
file_base = test_recover_dir
[../]
[]
(modules/porous_flow/test/tests/energy_conservation/heat02.i)
# checking that the heat-energy postprocessor correctly calculates the energy
# 1phase, constant porosity
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[temp]
[]
[pp]
[]
[]
[ICs]
[tinit]
type = FunctionIC
function = '100*x'
variable = temp
[]
[pinit]
type = FunctionIC
function = 'x'
variable = pp
[]
[]
[Kernels]
[dummyt]
type = TimeDerivative
variable = temp
[]
[dummyp]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
viscosity = 0.001
thermal_expansion = 0
cv = 1.3
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[]
[Postprocessors]
[total_heat]
type = PorousFlowHeatEnergy
phase = 0
[]
[rock_heat]
type = PorousFlowHeatEnergy
[]
[fluid_heat]
type = PorousFlowHeatEnergy
include_porous_skeleton = false
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1 1 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = heat02
csv = true
[]
(modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_3d.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
[]
[]
[Variables/u]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.1
[]
[]
[UserObjects/study]
type = LotsOfRaysRayStudy
ray_kernel_coverage_check = false
vertex_to_vertex = true
centroid_to_vertex = true
centroid_to_centroid = true
execute_on = timestep_end
[]
[RayBCs/kill]
type = KillRayBC
boundary = 'top right bottom left front back'
[]
[Postprocessors]
[total_distance]
type = RayTracingStudyResult
study = study
result = total_distance
execute_on = timestep_end
[]
[total_rays]
type = RayTracingStudyResult
study = study
result = total_rays_started
execute_on = timestep_end
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/phase_field/test/tests/KKS_system/nonlinear.i)
#
# This test checks if the thwo phase and lagrange multiplier solutions can be replicated
# with a two order parameter approach, where the second order parameter eta2 is a
# nonlinear variable that is set as eta2 := 1 - eta1 (using Reaction, CoupledForce, and BodyForce)
# The solution is reproduced.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 5
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Variables]
# concentration
[c]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = FunctionIC
function = x/5
[]
[]
# order parameter 1
[eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# order parameter 2
[eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# phase concentration 1
[c1]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[]
# phase concentration 2
[c2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[]
[]
[Materials]
# simple toy free energies
[f1] # = fd
type = DerivativeParsedMaterial
property_name = F1
coupled_variables = 'c1'
expression = '(0.9-c1)^2'
[]
[f2] # = fm
type = DerivativeParsedMaterial
property_name = F2
coupled_variables = 'c2'
expression = '(0.1-c2)^2'
[]
# Switching functions for each phase
[h1_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta1
function_name = h1
[]
[h2_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta2
function_name = h2
[]
# Coefficients for diffusion equation
[Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1(eta1)'
expression = D*h1
property_name = Dh1
coupled_variables = eta1
[]
[Dh2]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2
property_name = Dh2
coupled_variables = eta2
[]
# Barrier functions for each phase
[g1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
[]
[g2]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta2
function_name = g2
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'D L kappa'
prop_values = '0.7 0.7 0.2'
[]
[]
[Kernels]
#Kernels for diffusion equation
[diff_time]
type = TimeDerivative
variable = c
[]
[diff_c1]
type = MatDiffusion
variable = c
diffusivity = Dh1
v = c1
args = 'eta1'
[]
[diff_c2]
type = MatDiffusion
variable = c
diffusivity = Dh2
v = c2
args = 'eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F1 F2 '
hj_names = 'h1 h2 '
gi_name = g1
eta_i = eta1
wi = 0.2
coupled_variables = 'c1 c2 eta2'
[]
[ACBulkC1]
type = KKSMultiACBulkC
variable = eta1
Fj_names = 'F1 F2'
hj_names = 'h1 h2'
cj_names = 'c1 c2'
eta_i = eta1
coupled_variables = 'eta2'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
# Phase concentration constraints
[chempot12]
type = KKSPhaseChemicalPotential
variable = c1
cb = c2
fa_name = F1
fb_name = F2
[]
[phaseconcentration]
type = KKSMultiPhaseConcentration
variable = c2
cj = 'c1 c2'
hj_names = 'h1 h2'
etas = 'eta1 eta2'
c = c
[]
# equation for eta2 = 1 - eta1
# 0 = eta2 + eta1 -1
[constraint_eta1] # eta2
type = Reaction
variable = eta2
[]
[constraint_eta2] # + eta1
type = CoupledForce
variable = eta2
coef = -1
v = eta1
[]
[constraint_one] # - 1
type = BodyForce
variable = eta2
[]
[]
[AuxKernels]
[Fglobal_total]
type = KKSMultiFreeEnergy
Fj_names = 'F1 F2 '
hj_names = 'h1 h2 '
gj_names = 'g1 g2 '
variable = Fglobal
w = 0.2
interfacial_vars = 'eta1 eta2 '
kappa_names = 'kappa kappa'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'lu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
end_time = 350
dt = 10
[]
[VectorPostprocessors]
[c]
type = LineValueSampler
variable = c
start_point = '0 0 0'
end_point = '5 0 0'
num_points = 21
sort_by = x
[]
[]
[Outputs]
csv = true
execute_on = FINAL
[]
(test/tests/multiapps/time_offset/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
type = TransientMultiApp
input_files = 'sub.i'
global_time_offset = 0.8
[../]
[]
(test/tests/postprocessors/num_failed_timesteps/failed_timesteps_composition.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[TimeSteppers]
[constant_1]
type = ConstantDT
dt = 0.2
[]
[constant_2]
type = ConstantDT
dt = 0.2
[]
[]
[]
[Problem]
type = FailingProblem
fail_steps = '1 1 1 2 4 5'
[]
[Postprocessors]
[num_failed]
type = NumFailedTimeSteps
[]
[]
(modules/level_set/test/tests/reinitialization/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 8
ny = 8
uniform_refine = 3 #1/64
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[Variables]
[./phi]
[../]
[]
[Functions]
[./phi_exact]
type = LevelSetOlssonBubble
epsilon = 0.05
center = '0.5 0.5 0'
radius = 0.15
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '1'
expression_y = '1'
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = phi
auto_direction = 'x y'
[../]
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_exact
variable = phi
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = LevelSetAdvection
velocity = velocity
variable = phi
[../]
[]
[Postprocessors]
[./area]
type = LevelSetVolume
threshold = 0.5
variable = phi
location = outside
execute_on = 'initial timestep_end'
[../]
[./cfl]
type = LevelSetCFLCondition
velocity = velocity
execute_on = 'initial'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
end_time = 1
nl_rel_tol = 1e-12
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl
scale = 1
[../]
[]
[MultiApps]
[./reinit]
type = LevelSetReinitializationMultiApp
input_files = 'reinit.i'
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppCopyTransfer
variable = phi
source_variable = phi
to_multi_app = reinit
execute_on = 'timestep_end'
[../]
[./to_sub_init]
type = MultiAppCopyTransfer
variable = phi_0
source_variable = phi
to_multi_app = reinit
execute_on = 'timestep_end'
[../]
[./from_sub]
type = MultiAppCopyTransfer
variable = phi
source_variable = phi
from_multi_app = reinit
execute_on = timestep_end
[../]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/phase_field_kernels/CoupledAllenCahn.i)
#
# Test the coupled Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 12
ymax = 12
elem_type = QUAD4
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = CoupledAllenCahn
variable = w
v = eta
f_name = F
[../]
[./W]
type = Reaction
variable = w
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
reaction_rate = L
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'eta'
expression = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
hide = w
file_base = AllenCahn_out
exodus = true
[]
(modules/porous_flow/test/tests/jacobian/line_sink04.i)
# PorousFlowPolyLineSink with 2-phase, 3-components, with enthalpy, internal_energy, and thermal_conductivity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 2
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph0_sp1]
[]
[massfrac_ph1_sp0]
[]
[massfrac_ph1_sp1]
[]
[temp]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp ppwater ppgas massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[dummy_outflow]
type = PorousFlowSumQuantity
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
min = 1
max = 2
[]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph0_sp1]
type = RandomIC
variable = massfrac_ph0_sp1
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp1]
type = RandomIC
variable = massfrac_ph1_sp1
min = 0
max = 1
[]
[]
[Kernels]
[dummy_temp]
type = TimeDerivative
variable = temp
[]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m01]
type = TimeDerivative
variable = massfrac_ph0_sp1
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[dummy_m11]
type = TimeDerivative
variable = massfrac_ph1_sp1
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
cv = 1.1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
cv = 1.8
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.1 0.2 0.3 0.2 0 0.1 0.3 0.1 0.1'
[]
[]
[DiracKernels]
[dirac0]
type = PorousFlowPolyLineSink
fluid_phase = 0
variable = ppwater
point_file = one_point.bh
line_length = 1
SumQuantityUO = dummy_outflow
p_or_t_vals = '-0.9 1.5'
fluxes = '-1.1 2.2'
[]
[dirac1]
type = PorousFlowPolyLineSink
fluid_phase = 1
variable = ppgas
line_length = 1
use_relative_permeability = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -2.2'
[]
[dirac2]
type = PorousFlowPolyLineSink
fluid_phase = 0
variable = massfrac_ph0_sp0
line_length = 1.3
use_mobility = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -0.2'
[]
[dirac3]
type = PorousFlowPolyLineSink
fluid_phase = 0
variable = massfrac_ph0_sp1
line_length = 1.3
use_enthalpy = true
mass_fraction_component = 0
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -0.2'
[]
[dirac4]
type = PorousFlowPolyLineSink
fluid_phase = 1
variable = massfrac_ph1_sp0
function_of = temperature
line_length = 0.9
mass_fraction_component = 1
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -0.2'
[]
[dirac5]
type = PorousFlowPolyLineSink
fluid_phase = 1
variable = temp
line_length = 0.9
mass_fraction_component = 2
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '1.1 -0.2'
[]
[dirac6]
type = PorousFlowPolyLineSink
fluid_phase = 1
variable = massfrac_ph0_sp0
use_mobility = true
function_of = temperature
mass_fraction_component = 1
use_relative_permeability = true
use_internal_energy = true
point_file = ten_points.bh
SumQuantityUO = dummy_outflow
p_or_t_vals = '-1.9 1.5'
fluxes = '0 -0.2'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = line_sink04
[]
(tutorials/tutorial02_multiapps/step03_coupling/01_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[ut]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[force]
type = CoupledForce
variable = v
v = ut
coef = 100
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[average_v]
type = ElementAverageValue
variable = v
[]
[]
(test/tests/time_steppers/time_stepper_system/AB2PredictorCorrector.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 1.0
[]
#still need BC for Energy, IC's for both.
[Variables]
active = 'Time'
[./Time]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[Functions]
active = 'func'
[./func]
type = ParsedFunction
expression = 2.0*t
[../]
[]
[Kernels]
active = 't_time func_time'
[./t_time]
type = TimeDerivative
variable = Time
[../]
[./func_time]
type = BodyForce
variable = Time
function = func
[../]
[]
[BCs]
active = 'Top_Temperature'
[./Top_Temperature]
type = NeumannBC
variable = Time
boundary = 'left right'
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
start_time = 0
num_steps = 4
nl_abs_tol = 1e-15
petsc_options = '-snes_converged_reason'
abort_on_solve_fail = true
# Use the same test case as AB2PredictorCorrector test, add one more time stepper
# to test if AB2PredictorCorrector works correctly with time stepper composition
[TimeSteppers]
[AB2]
type = AB2PredictorCorrector
dt = .01
e_max = 10
e_tol = 1
[]
[IterationAdapDT]
type = IterationAdaptiveDT
dt = 100
[]
[]
[]
[Outputs]
exodus = true
file_base='aee_out'
[]
(test/tests/restart/restart_diffusion/restart_diffusion_test_transient_new_name.i)
[Mesh]
file = steady_out.e
[]
[Variables]
[./u_new]
order = FIRST
family = LAGRANGE
# Testing that we can load a solution from a different variable name
initial_from_file_var = u
initial_from_file_timestep = 2
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u_new
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u_new
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u_new
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u_new
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/3d_1d_parent.i)
# This does a dummy diffusion solve in 3D space, then computes a layered average
# in the z direction. Those values are transferred into a sub-app that has 1D mesh
# in the z-direction (the mesh was displaced so that it is aligned in such a way).
# The sub-app also does a dummy diffusion solve and then computes layered average
# in the z-direction. Those value are transferred back to the parent app.
#
# Physically the 1D sub-app is placed in the center of the 3D mesh and is oriented
# in the z-direction. The bounding box of the sub-app is expanded such that it
# contains the 4 central elements of the 3D mesh (i.e. the values are transferred
# only into a part of parent mesh)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 10
[]
[AuxVariables]
[./from_sub_app_var]
order = CONSTANT
family = MONOMIAL
[../]
[]
[UserObjects]
[main_uo]
type = LayeredAverage
direction = z
num_layers = 10
variable = u
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = front
value = -1
[]
[right]
type = DirichletBC
variable = u
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 5
solve_type = 'NEWTON'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = final
[]
[MultiApps]
[sub_app]
positions = '0.5 0.5 0.0'
type = TransientMultiApp
input_files = 3d_1d_sub.i
app_type = MooseTestApp
bounding_box_padding = '0.25 0.25 0'
bounding_box_inflation = 0
use_displaced_mesh = true
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[layered_transfer_to_sub_app]
type = MultiAppGeneralFieldUserObjectTransfer
source_user_object = main_uo
variable = sub_app_var
to_multi_app = sub_app
displaced_target_mesh = true
# Cover the whole target mesh from the 1D line
fixed_bounding_box_size = '2.1 2.1 0'
from_app_must_contain_point = false
[]
[layered_transfer_from_sub_app]
type = MultiAppGeneralFieldUserObjectTransfer
source_user_object = sub_app_uo
variable = from_sub_app_var
from_multi_app = sub_app
displaced_source_mesh = true
fixed_bounding_box_size = '0.25 0.25 0'
from_app_must_contain_point = false
[]
[]
(modules/chemical_reactions/test/tests/desorption/langmuir_jac2.i)
# testing whether when we have a centre block containing 'conc' which is a CONSTANT MONOMIAL, we get the correct Jacobian
[Mesh]
type = FileMesh
file = three_eles.e
[]
[Variables]
[./pressure]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
block = centre_block
[../]
[]
[ICs]
[./p_ic]
type = RandomIC
variable = pressure
min = -1
max = 1
[../]
[./conc_ic]
type = RandomIC
variable = conc
min = -1
max = 1
block = centre_block
[../]
[]
[Kernels]
[./p_dot] # this is just so a kernel is defined everywhere
type = TimeDerivative
variable = pressure
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
block = centre_block
variable = conc
pressure_var = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
block = centre_block
variable = pressure
conc_var = conc
[../]
[]
[Materials]
[./nothing] # when any block contains a material, all blocks need to
type = GenericConstantMaterial
block = 'left_block centre_block right_block'
prop_names = ''
prop_values = ''
[../]
[./langmuir_params]
type = MollifiedLangmuirMaterial
block = centre_block
one_over_desorption_time_const = 0.813E-10
one_over_adsorption_time_const = 0.813E-10
langmuir_density = 2.34
langmuir_pressure = 1.5
pressure_var = pressure
conc_var = conc
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = langmuir_jac2
[]
(modules/rdg/test/tests/advection_1d/rdgP0.i)
# This test demonstrates the advection of a tracer in 1D using the RDG module.
# There is no slope limiting. Changing the SlopeLimiting scheme to minmod, mc,
# or superbee means that a linear reconstruction is performed, and the slope
# limited according to the scheme chosen. Doing this produces RDG(P0P1) and
# substantially reduces numerical diffusion
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[Variables]
[./tracer]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[../]
[]
[UserObjects]
[./lslope]
type = AEFVSlopeLimitingOneD
execute_on = 'linear'
scheme = 'none' #none | minmod | mc | superbee
u = tracer
[../]
[./internal_side_flux]
type = AEFVUpwindInternalSideFlux
execute_on = 'linear'
velocity = 0.1
[../]
[./free_outflow_bc]
type = AEFVFreeOutflowBoundaryFlux
execute_on = 'linear'
velocity = 0.1
[../]
[]
[Kernels]
[./dot]
type = TimeDerivative
variable = tracer
[../]
[]
[DGKernels]
[./concentration]
type = AEFVKernel
variable = tracer
component = 'concentration'
flux = internal_side_flux
u = tracer
[../]
[]
[BCs]
[./concentration]
type = AEFVBC
boundary = 'left right'
variable = tracer
component = 'concentration'
flux = free_outflow_bc
u = tracer
[../]
[]
[Materials]
[./aefv]
type = AEFVMaterial
slope_limiting = lslope
u = tracer
[../]
[]
[VectorPostprocessors]
[./tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 100
sort_by = x
variable = tracer
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
end_time = 6
dt = 6E-1
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
#exodus = true
csv = true
execute_on = final
[]
(modules/thermal_hydraulics/test/tests/components/form_loss_from_external_app_1phase/phy.form_loss_1phase.parent.i)
# This tests a form loss transfer using the MultiApp system. A dummy heat
# conduction problem is solved, then the form loss evaluated and transferred
# to the child app side of the solve, then the child app solves and then the
# parent continues solving
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 2
nx = 10
[]
[Functions]
[left_bc_fn]
type = PiecewiseLinear
x = '0 1'
y = '300 310'
[]
[K_prime_fn]
type = ParsedFunction
expression = 't*(2-x)*x'
[]
[]
[AuxVariables]
[K_prime]
[]
[]
[AuxKernels]
[K_prime_ak]
type = FunctionAux
variable = K_prime
function = K_prime_fn
[]
[]
[Variables]
[T]
[]
[]
[ICs]
[T_ic]
type = ConstantIC
variable = T
value = 300
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = T
[]
[diff]
type = Diffusion
variable = T
[]
[]
[BCs]
[left]
type = FunctionDirichletBC
variable = T
boundary = left
function = left_bc_fn
[]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 5
nl_abs_tol = 1e-10
abort_on_solve_fail = true
[]
[MultiApps]
[child]
type = TransientMultiApp
app_type = ThermalHydraulicsApp
input_files = phy.form_loss_1phase.child.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[K_to_s]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = child
source_variable = K_prime
variable = K_prime
[]
[]
(modules/porous_flow/test/tests/poroperm/poro_tm.i)
# Test that porosity is correctly calculated.
# Porosity = 1 + (phi0 - 1) * exp(-vol_strain + thermal_exp_coeff * (temperature - ref_temperature))
# The parameters used are:
# phi0 = 0.5
# vol_strain = 0.5
# thermal_exp_coeff = 0.5
# temperature = 4
# ref_temperature = 3.5
# which yield porosity = 0.610599608464
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[porepressure]
initial_condition = 2
[]
[temperature]
initial_condition = 4
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[ICs]
[disp_x]
type = FunctionIC
function = '0.5 * x'
variable = disp_x
[]
[]
[Kernels]
[dummy_p]
type = TimeDerivative
variable = porepressure
[]
[dummy_t]
type = TimeDerivative
variable = temperature
[]
[dummy_x]
type = TimeDerivative
variable = disp_x
[]
[dummy_y]
type = TimeDerivative
variable = disp_y
[]
[dummy_z]
type = TimeDerivative
variable = disp_z
[]
[]
[AuxVariables]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[Postprocessors]
[porosity]
type = PointValue
variable = porosity
point = '0 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure temperature'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[total_strain]
type = ComputeSmallStrain
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[porosity]
type = PorousFlowPorosity
mechanical = true
thermal = true
ensure_positive = false
porosity_zero = 0.5
thermal_expansion_coeff = 0.5
reference_temperature = 3.5
[]
[]
[Executioner]
solve_type = Newton
type = Transient
num_steps = 1
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/picard/picard_abs_tol_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
fixed_point_max_its = 10
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(test/tests/multiapps/picard_failure/picard_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
[MultiApps]
active = 'sub' # will be modified by CLI overrides
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[]
[sub_no_fail]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub_no_fail.i
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(test/tests/multiapps/petsc_options/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
l_max_its = 4
nl_max_its = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
petsc_options = '-test'
l_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
[../]
[]
(test/tests/outputs/csv/csv_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[./aux_sum]
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./sum_nodal_aux]
type = SumNodalValuesAux
variable = aux_sum
sum_var = u
nodes = '1 2 3 4 5'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./mid_point]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
csv = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/SinteringDilute.i)
#input file to test the GrandPotentialSinteringMaterial using the dilute energy profile
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 10
xmin = 0
xmax = 660
ymin = 0
ymax = 380
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[./InitialCondition]
type = FunctionIC
variable = w
function = f_w
[../]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./T]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = FunctionIC
variable = T
function = f_T
[../]
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 470'
y_positions = '190 190'
z_positions = ' 0 0'
radii = '150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 470
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[./f_w]
type = ParsedFunction
expression = '1.515e-7 * x'
[../]
[]
[Materials]
# Free energy coefficients for parabolic curve
[./kv]
type = ParsedMaterial
property_name = kv
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.025 1571.6'
expression = 'a*T + b'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef Egb kB'
constant_expressions = '2.69 2.1 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2; cb:=exp(-Ef/kB/T); cgb:=exp(-(Ef-Egb)/kB/T);
cb + 4.0*(cgb-cb)*(1.0 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = DILUTE
outputs = exodus
[../]
# Concentration is only meant for output
[./c]
type = ParsedMaterial
property_name = c
material_property_names = 'hs rhos hv rhov'
constant_names = 'Va'
constant_expressions = '0.04092'
expression = 'Va*(hs*rhos + hv*rhov)'
outputs = exodus
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 2
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/functions/solution_function/solution_function_rot4.i)
# checking rotation of points by 45 deg about z axis in a SolutionUserObject for a 2D situation
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y direction
type = GeneratedMesh
dim = 2
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = square_with_u_equals_x.e
timestep = 1
system_variables = u
rotation0_vector = '0 0 1'
rotation0_angle = 45
transformation_order = rotation0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot4
exodus = true
[]
(modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_except.i)
# Exception testing for PorousFlowDarcyVelocityComponentLowerDimensional
# Checking that an error is produced if the AuxVariable is not defined only on
# lower-dimensional elements
[Mesh]
type = FileMesh
file = fractured_block.e
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '1 0.5 0.2'
[]
[Variables]
[pp]
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = pp
[]
[]
[AuxVariables]
[fracture_vel_x]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[fracture_vel_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_x
component = x
fluid_phase = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1E16
viscosity = 10
density0 = 2
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
(test/tests/multiapps/catch_up/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the parent solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard_multilevel/picard_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[coupled_force]
type = CoupledForce
variable = u
v = v
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub1]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
execute_on = 'timestep_end'
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[v]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub1
source_variable = v
variable = v
[]
[]
(test/tests/mesh/adapt/adapt_time_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 7
dt = 0.1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
start_time = 0.2
stop_time = 0.4
[../]
[]
[Outputs]
file_base = out_time
exodus = true
print_mesh_changed_info = true
[]
(test/tests/parser/cli_multiapp_all/dt_from_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[MultiApps]
[./sub_left]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_parent_sub.i'
app_type = MooseTestApp
[../]
[./sub_right]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_parent_sub.i'
app_type = MooseTestApp
[../]
[]
(modules/external_petsc_solver/test/tests/external_petsc_problem/moose_as_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./cf]
type = CoupledForce
coef = 10000
variable = u
v=v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
(test/tests/functions/linear_combination_function/except1.i)
# LinearCombinationFunction function test
# See [Functions] block for a description of the tests
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 10
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./the_linear_combo]
[../]
[]
[AuxKernels]
[./the_linear_combo]
type = FunctionAux
variable = the_linear_combo
function = the_linear_combo
[../]
[]
[Functions]
[./twoxplus1]
type = ParsedFunction
expression = 2*x+1
[../]
[./xsquared]
type = ParsedFunction
expression = x*x
[../]
[./the_linear_combo]
type = LinearCombinationFunction
functions = 'x twoxplus1 xsquared'
w = '0.5 5 0.4 0.3'
[../]
[./should_be_answer]
type = ParsedFunction
expression = 0.5*x+5*(2*x+1)*0.4*x*x+0.3*7
[../]
[]
[Postprocessors]
[./should_be_zero]
type = NodalL2Error
function = should_be_answer
variable = the_linear_combo
[../]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
hide = dummy
exodus = false
csv = true
[]
(modules/stochastic_tools/test/tests/vectorpostprocessors/stochastic_results_complete_history/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[]
(test/tests/time_integrators/aee/aee.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 1.0
[]
#still need BC for Energy, IC's for both.
[Variables]
active = 'Time'
[./Time]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[Functions]
active = 'func'
[./func]
type = ParsedFunction
expression = 2.0*t
[../]
[]
[Kernels]
active = 't_time func_time'
[./t_time]
type = TimeDerivative
variable = Time
[../]
[./func_time]
type = BodyForce
variable = Time
function = func
[../]
[]
[BCs]
active = 'Top_Temperature'
[./Top_Temperature]
type = NeumannBC
variable = Time
boundary = 'left right'
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
#scheme = 'crank-nicolson'
start_time = 0
num_steps = 4
nl_abs_tol = 1e-15
petsc_options = '-snes_converged_reason'
abort_on_solve_fail = true
[./TimeStepper]
type = AB2PredictorCorrector
dt = .01
e_max = 10
e_tol = 1
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/adapt/displaced_adapt_test.i)
# Adaptivity on displaced problem
# - testing initial_refinement and adaptivity as well
#
# variables:
# - u and v_aux are used for displacing the problem
# - v is used to get some refinements
#
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
displacements = 'u aux_v'
[]
[Functions]
[./aux_v_fn]
type = ParsedFunction
expression = x*(y-0.5)/5
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 0.1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[AuxVariables]
[./aux_v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./aux_k_1]
type = FunctionAux
variable = aux_v
function = aux_v_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
exodus = true
[./displaced]
type = Exodus
use_displaced = true
[../]
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/parent.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[multi_layered_average]
[]
[element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
positions = '0.3 0.1 0.3 0.7 0.1 0.3'
type = TransientMultiApp
input_files = sub.i
app_type = MooseTestApp
[]
[]
[Transfers]
[layered_transfer]
type = MultiAppGeneralFieldUserObjectTransfer
source_user_object = layered_average
variable = multi_layered_average
from_multi_app = sub_app
skip_coordinate_collapsing = true
from_app_must_contain_point = false
bbox_factor = 1.0000001
[]
[element_layered_transfer]
type = MultiAppGeneralFieldUserObjectTransfer
source_user_object = layered_average
variable = element_multi_layered_average
from_multi_app = sub_app
skip_coordinate_collapsing = true
from_app_must_contain_point = false
bbox_factor = 1.0000001
[]
[]
(modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_wrong_lib.i)
# This input file contains objects only available in solid_mechanics
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[c]
order = THIRD
family = HERMITE
[InitialCondition]
type = BoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
inside = 1.0
outside = -0.8
variable = c
[]
[]
[]
[Kernels]
[ie_c]
type = TimeDerivative
variable = c
[]
[CHSolid]
type = CHMath
variable = c
mob_name = M
[]
[CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[]
[]
[BCs]
[Periodic]
[all]
auto_direction = 'x y'
[]
[]
[]
[Materials]
[constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
block = 0
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 2
dt = 1.0
[]
[Outputs]
exodus = true
[]
# Here we'll load the wrong library and check for the correct error condition
[Problem]
register_objects_from = 'SolidMechanicsApp'
library_path = '../../../../../solid_mechanics/lib'
[]
(modules/phase_field/test/tests/initial_conditions/polycrystalcircles_clipped.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 56
nz = 0
xmin = 80
xmax = 200
ymin = 0
ymax = 112
zmin = 0
zmax = 0
[]
[GlobalParams]
op_num = 6
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_tracker
field_display = UNIQUE_REGION
execute_on = 'initial timestep_end'
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
[./circle_IC]
type = PolycrystalCircles
file_name = 'circles.txt'
read_from_file = true
execute_on = 'initial'
int_width = 2
[../]
[./grain_tracker]
type = GrainTracker
remap_grains = true
compute_halo_maps = false
polycrystal_ic_uo = circle_IC
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = circle_IC
[../]
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_gr2]
type = TimeDerivative
variable = gr2
[../]
[./dt_gr3]
type = TimeDerivative
variable = gr3
[../]
[./dt_gr4]
type = TimeDerivative
variable = gr4
[../]
[./dt_gr5]
type = TimeDerivative
variable = gr5
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
num_steps = 0
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/auxkernels/flux_average/flux_average.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./flux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./bc_func]
type = ParsedFunction
expression = y+1
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./flux_average]
type = FluxAverageAux
variable = flux
coupled = u
diffusivity = 0.1
boundary = right
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = bc_func
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/time_stepper_system/multiple_timesequences.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 0.8
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
# Use as many different time sequence steppers as we could to test the compositionDT
[TimeSteppers]
[ConstDT1]
type = ConstantDT
dt = 0.2
[]
[ConstDT2]
type = ConstantDT
dt = 0.1
[]
[LogConstDT]
type = LogConstantDT
log_dt = 0.2
first_dt = 0.1
[]
[Timesequence1]
type = TimeSequenceStepper
time_sequence = '0 0.25 0.3 0.5 0.8'
[]
[Timesequence2]
type = CSVTimeSequenceStepper
file_name = timesequence.csv
column_name = time
[]
[Timesequence3]
type = ExodusTimeSequenceStepper
mesh = timesequence.e
[]
[]
[]
[Postprocessors]
[timestep]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
file_base='multiple_timesequences'
[]
(modules/phase_field/test/tests/conserved_noise/normal_masked.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 10.0
ymin = 0.0
ymax = 10.0
elem_type = QUAD4
[]
[Functions]
[./mask_func]
type = ParsedFunction
expression = 'r:=sqrt((x-5)^2+(y-5)^2); if (r<3, 1.0, 0.0)'
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = c
[../]
[./conserved_langevin]
type = ConservedLangevinNoise
amplitude = 0.5
variable = c
noise = normal_masked_noise
[]
[]
[BCs]
[./Periodic]
[./all]
variable = c
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./mask_material]
type = GenericFunctionMaterial
prop_names = 'mask_prop'
prop_values = 'mask_func'
[../]
[]
[UserObjects]
[./normal_masked_noise]
type = ConservedMaskedNormalNoise
mask = mask_prop
[../]
[]
[Postprocessors]
[./total_c]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 30
l_tol = 1.0e-3
nl_max_its = 30
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
dt = 10.0
num_steps = 4
[]
[Outputs]
file_base = normal_masked
[./csv]
type = CSV
[../]
[]
(modules/level_set/test/tests/reinitialization/reinit_modified.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 8
ny = 8
uniform_refine = 3
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./phi_0]
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = phi
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./reinit]
type = LevelSetOlssonReinitialization
variable = phi
phi_0 = phi_0
epsilon = 0.05
use_modified_reinitilization_formulation = true
[../]
[]
[Problem]
type = LevelSetReinitializationProblem
[]
[UserObjects]
[./arnold]
type = LevelSetOlssonTerminator
tol = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
num_steps = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 5
growth_factor = 5
[../]
[]
(test/tests/misc/exception/parallel_exception_jacobian_transient.i)
[Mesh]
file = 2squares.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./exception]
type = ExceptionKernel
variable = u
when = jacobian
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.005
solve_type = 'PJFNK'
snesmf_reuse_base = false
[]
[Outputs]
exodus = true
print_nonlinear_converged_reason = false
print_linear_converged_reason = false
[]
(modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/matrix_app_heat.i)
# Heat energy from this fracture app is transferred to the matrix app
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 1
nx = 100
xmin = 0
xmax = 50.0
[]
[]
[Variables]
[matrix_T]
[]
[]
[AuxVariables]
[heat_from_frac]
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = matrix_T
[]
[matrix_diffusion]
type = Diffusion
variable = matrix_T
[]
[fromFrac]
type = CoupledForce
variable = matrix_T
v = heat_from_frac
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[Outputs]
print_linear_residuals = false
[]
(tutorials/tutorial02_multiapps/step01_multiapps/07_parent_multilevel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 1
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
perf_graph = true
[]
[MultiApps]
[uno]
type = TransientMultiApp
positions = '0 0 0 1 0 0'
input_files = '07_sub_multilevel.i'
[]
[]
(test/tests/controls/time_periods/aux_kernels/control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
[../]
[./aux1]
[../]
[]
[Functions]
[./func]
type = ParsedFunction
expression = t*x*y
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./aux0]
type = FunctionAux
variable = aux0
function = func
[../]
[./aux1]
type = FunctionAux
variable = aux1
function = func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = 'AuxKernels::aux0 AuxKernels::aux1'
start_time = '0.25 0.55'
end_time = '0.65 0.75'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/phase_field/test/tests/flood_counter_periodic_test/nodal_flood_periodic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing_1 forcing_2 forcing_3 forcing_4 dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing_1]
type = GaussContForcing
variable = u
x_center = 1.0
y_center = 1.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_2]
type = GaussContForcing
variable = u
x_center = 20.0
y_center = 39.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_3]
type = GaussContForcing
variable = u
x_center = 39.0
y_center = 20.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_4]
type = GaussContForcing
variable = u
x_center = 15.0
y_center = 15.0
x_spread = 0.5
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Postprocessors]
active = 'bubbles'
[./bubbles]
type = FeatureFloodCount
variable = u
threshold = 0.3
execute_on = timestep_end
flood_entity_type = NODAL
[../]
[]
[Executioner]
type = Transient
dt = 4.0
num_steps = 5
[./Adaptivity]
refine_fraction = .40
coarsen_fraction = .02
max_h_level = 3
error_estimator = KellyErrorEstimator
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/multiapps/cliargs_from_file/cliargs_sub_1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/optimization/examples/simpleTransient/adjoint.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'left right top bottom'
value = 0
[]
[]
[Reporters]
[measured_data]
type = OptimizationData
measurement_file = mms_data.csv
file_xcoord = x
file_ycoord = y
file_zcoord = z
file_time = t
file_value = u
[]
[]
[DiracKernels]
[misfit]
type = ReporterTimePointSource
variable = u
value_name = measured_data/misfit_values
x_coord_name = measured_data/measurement_xcoord
y_coord_name = measured_data/measurement_ycoord
z_coord_name = measured_data/measurement_zcoord
time_name = measured_data/measurement_time
reverse_time_end = 1
[]
[]
[VectorPostprocessors]
[src_values]
type = CSVReader
csv_file = source_params.csv
header = true
[]
[]
[Functions]
[source]
type = NearestReporterCoordinatesFunction
x_coord_name = src_values/coordx
y_coord_name = src_values/coordy
time_name = src_values/time
value_name = src_values/values
[]
[]
[VectorPostprocessors]
[adjoint]
type = ElementOptimizationSourceFunctionInnerProduct
variable = u
function = source
reverse_time_end = 1
[]
[]
[Executioner]
type = Transient
num_steps = 100
end_time = 1
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
reuse_preconditioner=true
reuse_preconditioner_max_linear_its=50
[]
[Outputs]
console = false
[]
(modules/functional_expansion_tools/test/tests/standard_use/volume_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = volume_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/transfers/multiapp_projection_transfer/fixed_meshes_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[./elemental_from_sub]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
solve_type = NEWTON
[]
[Outputs]
exodus = true
#
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.0 0.0 0'
input_files = fixed_meshes_sub.i
[../]
[]
[Transfers]
[./from_sub]
type = MultiAppProjectionTransfer
from_multi_app = sub
source_variable = u
variable = from_sub
fixed_meshes = true
[../]
[./elemental_from_sub]
type = MultiAppProjectionTransfer
from_multi_app = sub
source_variable = u
variable = elemental_from_sub
fixed_meshes = true
[../]
[./to_sub]
type = MultiAppProjectionTransfer
to_multi_app = sub
source_variable = u
variable = from_parent
fixed_meshes = true
[../]
[./elemental_to_sub]
type = MultiAppProjectionTransfer
to_multi_app = sub
source_variable = u
variable = elemental_from_parent
fixed_meshes = true
[../]
[]
(test/tests/time_integrators/explicit-euler/ee-2d-linear-adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = (x+y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
lumping = true
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
implicit = true
[../]
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
[./Markers]
[./box]
bottom_left = '-0.4 -0.4 0'
inside = refine
top_right = '0.4 0.4 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
start_time = 0.0
num_steps = 4
dt = 0.005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_shrink_init_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[dt]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 10
[]
[right]
type = NeumannBC
variable = u
boundary = right
value = -1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
dtmin = 1.0
end_time = 10.0
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 1
linear_iteration_ratio = 1
dt = 5.0
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(test/tests/multiapps/multilevel/time_dt_from_parent_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 100
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./console]
type = Console
output_file = true
[../]
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = time_dt_from_parent_subsub.i
[../]
[]
(tutorials/tutorial02_multiapps/step01_multiapps/04_sub2_multiple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 2
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/time_integration/time_integration.i)
# This test covers the usage of the VariableTimeIntegrationAux
# kernel. Here we test three different schemes for integrating a field
# variable in time. Midpoint, Trapezoidal, and Simpson's rule are
# used. For this test, we use a manufactured solution and we compare
# the Trapezoidal and Simpson's rule, which must be exact for this
# exact solution, which is a linear function of time.
#
# The set up problem is
#
# du/dt - Laplacian(u) = Q
#
# with exact solution: u = t*(x*x+y*y).
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD9
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Functions]
[./dts]
type = PiecewiseLinear
x = '0.01 0.1'
y = '0.005 0.05'
[../]
[]
[Variables]
[./u]
initial_condition = 0.0
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./timederivative]
type = TimeDerivative
variable = u
[../]
[./sourceterm]
type = BodyForce
variable = u
function = Source
[../]
[]
[AuxVariables]
[./v_midpoint]
[../]
[./v_trapazoid]
[../]
[./v_simpson]
[../]
[]
[AuxKernels]
[./MidpointTimeIntegrator]
type = VariableTimeIntegrationAux
variable_to_integrate = u
variable = v_midpoint
order = 1
[../]
[./TrapazoidalTimeIntegrator]
type = VariableTimeIntegrationAux
variable_to_integrate = u
variable = v_trapazoid
order = 2
[../]
[./SimpsonsTimeIntegrator]
type = VariableTimeIntegrationAux
variable_to_integrate = u
variable = v_simpson
order = 3
[../]
[]
[BCs]
[./RightBC]
type = FunctionDirichletBC
variable = u
function = RightBC
boundary = 'right'
[../]
[./LeftBC]
type = FunctionDirichletBC
variable = u
function = LeftBC
boundary = 'left'
[../]
[./TopBC]
type = FunctionDirichletBC
variable = u
function = TopBC
boundary = 'top'
[../]
[./BottomBC]
type = FunctionDirichletBC
variable = u
function = BottomBC
boundary = 'bottom'
[../]
[]
[Functions]
[./Soln]
type = ParsedFunction
expression = 't*(x*x+y*y)'
[../]
[./Source]
type = ParsedFunction
expression = '(x*x + y*y) - 4*t'
[../]
[./TopBC]
type = ParsedFunction
expression = 't*(x*x+1)'
[../]
[./BottomBC]
type = ParsedFunction
expression = 't*x*x'
[../]
[./RightBC]
type = ParsedFunction
expression = 't*(y*y+1)'
[../]
[./LeftBC]
type = ParsedFunction
expression = 't*y*y'
[../]
[]
[Postprocessors]
[./l2_error]
type = NodalL2Error
variable = u
function = Soln
[../]
[]
[Executioner]
type = Transient
end_time = 0.1
# dt = 0.1
# num_steps = 10
[./TimeStepper]
type = FunctionDT
function = dts
[../]
nl_abs_tol = 1.e-15
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/time_integrators/convergence/implicit_convergence.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
preset = false
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = 0.0
end_time = 1.0
dt = 0.0625
[./TimeIntegrator]
type = ImplicitMidpoint
[../]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
[]
(modules/thermal_hydraulics/test/tests/misc/count_iterations/count_iterations.i)
# This tests the "Debug/count_iterations" parameter, which creates
# post-processors for numbers of linear and nonlinear iterations. A dummy
# diffusion solve is performed, and the numbers of iterations are stored in a
# CSV file.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
coord_type = RZ
rz_coord_axis = X
[]
[Variables]
[u]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
scheme = implicit-euler
[TimeStepper]
type = ConstantDT
dt = 0.01
[]
start_time = 0.0
num_steps = 2
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
csv = true
[]
[Debug]
count_iterations = true
[]
(test/tests/time_integrators/actually_explicit_euler/diverged.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./nan]
type = NanKernel
variable = u
timestep_to_nan = 4
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.001
l_tol = 1e-12
dtmin = 1e-8
[./TimeIntegrator]
type = ActuallyExplicitEuler
solve_type = lump_preconditioned
[../]
[]
[Outputs]
exodus = false
[]
(test/tests/time_integrators/explicit-euler/ee-1d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 20
elem_type = EDGE3
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x*x-2*t
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
# lumping = true
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1'
function = exact_fn
implicit = true
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
l_tol = 1e-12
start_time = 0.0
num_steps = 20
dt = 0.00005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(tutorials/tutorial02_multiapps/step01_multiapps/06_parent_twoapps.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 1
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
perf_graph = true
[]
[MultiApps]
[app1]
type = TransientMultiApp
positions = '0 0 0 1 0 0 2 0 0'
input_files = '06_sub_twoapps.i'
[]
[app2]
type = TransientMultiApp
positions = '0 0 0 1 0 0'
input_files = '06_sub_twoapps.i'
[]
[]
(modules/level_set/examples/circle/circle_16.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 16
ny = 16
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_exact
variable = phi
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Functions]
[./phi_exact]
type = LevelSetOlssonBubble
epsilon = 0.05
center = '0.5 0.5 0'
radius = 0.15
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '3'
expression_y = '3'
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = phi
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = LevelSetAdvection
velocity = velocity
variable = phi
[../]
[]
[Postprocessors]
[./cfl]
type = LevelSetCFLCondition
velocity = velocity
execute_on = 'initial'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
end_time = 1
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl
scale = 0.8
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/misc/signal_handler/simple_transient_diffusion_scaled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 50
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/variables/output_vars_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./elemental_restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal]
order = FIRST
family = LAGRANGE
[../]
[./nodal_restricted]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[./elemental_restricted]
type = ConstantAux
variable = elemental_restricted
value = 1
[../]
[./nodal]
type = ConstantAux
variable = elemental
value = 2
[../]
[./nodal_restricted]
type = ConstantAux
variable = elemental_restricted
value = 2
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 5
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
num_steps = 1
[]
[Outputs]
show = 'x u nodal elemental'
[./out]
type = Exodus
elemental_as_nodal = true
scalar_as_nodal = true
[../]
[]
(modules/level_set/examples/vortex/vortex_supg.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
nx = 16
ny = 16
uniform_refine = 2
elem_type = QUAD9
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[AuxKernels]
[./vec]
type = VectorFunctionAux
variable = velocity
function = velocity_func
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
[./phi]
family = LAGRANGE
order = FIRST
[../]
[]
[Functions]
[./phi_exact]
type = LevelSetOlssonBubble
epsilon = 0.01184
center = '0.5 0.75 0'
radius = 0.15
[../]
[./velocity_func]
type = LevelSetOlssonVortex
reverse_time = 2
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_exact
variable = phi
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = LevelSetAdvection
velocity = velocity
variable = phi
[../]
[./advection_supg]
type = LevelSetAdvectionSUPG
velocity = velocity
variable = phi
[../]
[./time_supg]
type = LevelSetTimeDerivativeSUPG
velocity = velocity
variable = phi
[../]
[]
[Postprocessors]
[./area]
type = LevelSetVolume
threshold = 0.5
variable = phi
location = outside
execute_on = 'initial timestep_end'
[../]
[./cfl]
type = LevelSetCFLCondition
velocity = velocity
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
end_time = 2
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl
scale = 0.8
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/misc/test/tests/dynamic_loading/dynamic_obj_registration/dynamic_objects2.i)
# This input file contains some objects only available through heat_transfer
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 2
xmax = 50
ymax = 25
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[c]
order = THIRD
family = HERMITE
[]
[]
[ICs]
[c_IC]
type = BoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
inside = 1.0
outside = -0.8
variable = c
[]
[]
[Kernels]
[ie_c]
type = TimeDerivative
variable = c
[]
[d]
type = Diffusion
variable = c
[]
[s]
type = HeatSource
variable = c
[]
[]
[BCs]
[Periodic]
[all]
auto_direction = 'x y'
[]
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 2
dt = 1.0
[]
[Problem]
register_objects_from = 'HeatTransferApp'
library_path = '../../../../../heat_transfer/lib'
[]
(modules/phase_field/test/tests/Nucleation/parallel.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 20
[]
[GlobalParams]
derivative_order = 2
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./c]
type = Diffusion
variable = c
[../]
[./dt]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./nucleation]
type = DiscreteNucleation
op_names = c
op_values = 1
map = map
[../]
[]
[UserObjects]
[./inserter]
type = DiscreteNucleationInserter
hold_time = 1
probability = 0.01
radius = 4
[../]
[./map]
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Postprocessors]
[./sum]
type = ElementIntegralMaterialProperty
mat_prop = F
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 10
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = CSV
[../]
[]
(test/tests/controls/time_periods/aux_scalar_kernels/control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
family = SCALAR
[../]
[./aux1]
family = SCALAR
[../]
[]
[Functions]
[./func]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./scalar_aux0]
type = FunctionScalarAux
variable = aux0
function = func
[../]
[./scalar_aux1]
type = FunctionScalarAux
variable = aux1
function = func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = '*/scalar_aux0 */scalar_aux1'
start_time = 0.25
end_time = 0.75
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/auxkernels/execute_on_cyclic/execute_on_cyclic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./aux0]
[../]
[./aux1]
[../]
[]
[AuxKernels]
[./aux0]
type = CoupledAux
variable = aux0
coupled = aux1
execute_on = linear
[../]
[./aux1]
type = CoupledAux
variable = aux1
coupled = aux0
execute_on = timestep_end
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/phase_field/test/tests/phase_field_kernels/MatGradSquareCoupled.i)
#
# Test the MatGradSquareCoupled kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = 0.0
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = CoupledAllenCahn
variable = w
v = eta
f_name = F
mob_name = 1
[../]
[./W]
type = MatReaction
variable = w
reaction_rate = -1
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
reaction_rate = L
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
mob_name = L
coupled_variables = w
[../]
# MatGradSquareCoupled kernel
[./nabla_eta]
type = MatGradSquareCoupled
variable = w
elec_potential = eta
prefactor = 0.5
[../]
[]
[Materials]
[./mobility]
type = DerivativeParsedMaterial
property_name = L
coupled_variables = 'eta w'
expression = '(1.5-eta)^2+(1.5-w)^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'eta'
expression = 'eta^2 * (1-eta)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Outputs]
hide = w
exodus = true
console = true
[]
(test/tests/misc/rename-parameters/rename-coupled-scalar-var.i)
# This input file is used to test the Jacobian of an arbitrary ADScalarKernel.
# A test ADScalarKernel is used that uses values from other scalar variables,
# as well as a quantity computed in an elemental user object using a field
# variable.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Kernels]
[time_w]
type = TimeDerivative
variable = w
[]
[diff_w]
type = Diffusion
variable = w
[]
[]
[ScalarKernels]
[time_u]
type = ADScalarTimeDerivative
variable = u
[]
[test_u]
type = RenameCoupledScalarVarScalarKernel
variable = u
coupled_scalar_variable = v
test_uo = test_uo
[]
[time_v]
type = ADScalarTimeDerivative
variable = v
[]
[]
[UserObjects]
[test_uo]
type = TestADScalarKernelUserObject
variable = w
execute_on = 'LINEAR NONLINEAR'
[]
[]
[BCs]
[left]
type = DirichletBC
value = 0
variable = w
boundary = 'left'
[]
[right]
type = DirichletBC
value = 1
variable = w
boundary = 'right'
[]
[]
[Variables]
[u]
family = SCALAR
order = FIRST
initial_condition = 1.0
[]
[v]
family = SCALAR
order = FIRST
initial_condition = 3.0
[]
[w]
family = LAGRANGE
order = FIRST
initial_condition = 3.0
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 1
solve_type = NEWTON
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/jacobian/phe01.i)
# Capped weak-plane plasticity, Kernel = PlasticHeatEnergy
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./silly_phe]
type = PlasticHeatEnergy
coeff = 0.5
variable = disp_x
[../]
[./dummy_disp_y]
type = TimeDerivative
variable = disp_y
[../]
[./dummy_disp_z]
type = TimeDerivative
variable = disp_z
[../]
[]
[UserObjects]
[./coh]
type = SolidMechanicsHardeningExponential
value_0 = 1
value_residual = 2
rate = 1
[../]
[./tanphi]
type = SolidMechanicsHardeningExponential
value_0 = 1.0
value_residual = 0.5
rate = 2
[../]
[./tanpsi]
type = SolidMechanicsHardeningExponential
value_0 = 0.1
value_residual = 0.05
rate = 3
[../]
[./t_strength]
type = SolidMechanicsHardeningExponential
value_0 = 100
value_residual = 100
rate = 1
[../]
[./c_strength]
type = SolidMechanicsHardeningCubic
value_0 = 1
value_residual = 0
internal_0 = -2
internal_limit = 0
[../]
[]
[Materials]
[./phe]
type = ComputePlasticHeatEnergy
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
lambda = 1.0
shear_modulus = 2.0
[../]
[./strain]
type = ComputeIncrementalStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 0 1 0 1 -1.5'
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = mc
tangent_operator = nonlinear
[../]
[./mc]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-10
perfect_guess = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/phase_field/test/tests/KKS_system/kks_example_offset.i)
#
# KKS toy problem in the split form
# This has an offset in the minima of the free energies so there will be a shift
# in equilibrium composition
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = -2.5
xmax = 2.5
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# hydrogen phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
# hydrogen phase concentration (delta phase)
[./cd]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[ICs]
[./eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.2
outvalue = 0.1
int_width = 0.75
[../]
[./c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.6
outvalue = 0.4
int_width = 0.75
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'eta w c cm cd'
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# Free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
property_name = fm
coupled_variables = 'cm'
expression = '(0.1-cm)^2'
[../]
# Free energy of the delta phase
[./fd]
type = DerivativeParsedMaterial
property_name = fd
coupled_variables = 'cd'
expression = '(0.9-cd)^2+0.5'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.4 '
[../]
[]
[Kernels]
# full transient
active = 'PhaseConc ChemPotVacancies CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cm + h(eta)*cd
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cd
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cd
fa_name = fm
fb_name = fd
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fd
coupled_variables = 'cm cd'
w = 0.4
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cd
fa_name = fm
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fd
w = 0.4
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 3
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = kks_example_offset
exodus = true
[]
(modules/functional_expansion_tools/test/tests/standard_use/interface_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 0.4
nx = 6
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./m]
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./source_m]
type = BodyForce
variable = m
value = 100
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
value = 2
variable = m
[../]
[]
[BCs]
[./interface_value]
type = FXValueBC
variable = m
boundary = right
function = FX_Basis_Value_Main
[../]
[./interface_flux]
type = FXFluxBC
boundary = right
variable = m
function = FX_Basis_Flux_Main
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Main]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Flux_UserObject_Main]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Main
variable = m
boundary = right
diffusivity = 0.1
[../]
[]
[Postprocessors]
[./average_interface_value]
type = SideAverageValue
variable = m
boundary = right
[../]
[./total_flux]
type = SideDiffusiveFluxIntegral
variable = m
boundary = right
diffusivity = 0.1
[../]
[./picard_iterations]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = interface_sub.i
sub_cycling = true
[../]
[]
[Transfers]
[./FluxToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Flux_UserObject_Main
multi_app_object_name = FX_Basis_Flux_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[./FluxToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Flux_Main
multi_app_object_name = FX_Flux_UserObject_Sub
[../]
[]
(modules/phase_field/test/tests/KKS_system/kks_example_nested.i)
#
# Two-phase nested KKS toy problem
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmin = -2.5
xmax = 2.5
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Variables]
# order parameter
[eta]
order = FIRST
family = LAGRANGE
[]
# hydrogen concentration
[c]
order = FIRST
family = LAGRANGE
[]
# chemical potential
[w]
order = FIRST
family = LAGRANGE
[]
[]
[ICs]
[eta]
variable = eta
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.2
outvalue = 0.1
int_width = 0.75
[]
[c]
variable = c
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 1.5
invalue = 0.6
outvalue = 0.4
int_width = 0.75
[]
[]
[BCs]
[Periodic]
[all]
variable = 'eta w c'
auto_direction = 'x y'
[]
[]
[]
[Materials]
# Free energy of the matrix
[fm]
type = DerivativeParsedMaterial
property_name = fm
expression = '(0.1-cm)^2'
material_property_names = 'cm'
additional_derivative_symbols = 'cm'
compute = false
[]
# Free energy of the delta phase
[fd]
type = DerivativeParsedMaterial
property_name = fd
expression = '(0.9-cd)^2'
material_property_names = 'cd'
additional_derivative_symbols = 'cd'
compute = false
[]
# Compute phase concentrations
[PhaseConcentrationMaterial]
type = KKSPhaseConcentrationMaterial
global_cs = 'c'
ci_names = 'cm cd'
ci_IC = '0 0'
fa_name = fm
fb_name = fd
h_name = h
min_iterations = 1
max_iterations = 100
absolute_tolerance = 1e-9
relative_tolerance = 1e-9
nested_iterations = iter
outputs = exodus
[]
# Compute chain rule terms
[PhaseConcentrationDerivatives]
type = KKSPhaseConcentrationDerivatives
global_cs = 'c'
eta = eta
ci_names = 'cm cd'
fa_name = fm
fb_name = fd
h_name = h
[]
# h(eta)
[h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[]
# g(eta)
[g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.4 '
[]
[]
[Kernels]
# full transient
active = 'CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
#
# Cahn-Hilliard Equation
#
[CHBulk]
type = NestedKKSSplitCHCRes
variable = c
global_cs = 'c'
w = w
all_etas = eta
ca_names = 'cm cd'
fa_name = fm
coupled_variables = 'eta w'
[]
[dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[]
[ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[]
#
# Allen-Cahn Equation
#
[ACBulkF]
type = NestedKKSACBulkF
variable = eta
global_cs = 'c'
ci_names = 'cm cd'
fa_name = fm
fb_name = fd
g_name = g
h_name = h
mob_name = L
w = 0.4
coupled_variables = 'c'
[]
[ACBulkC]
type = NestedKKSACBulkC
variable = eta
global_cs = 'c'
ci_names = 'cm cd'
fa_name = fm
h_name = h
mob_name = L
coupled_variables = 'c'
[]
[ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[]
[detadt]
type = TimeDerivative
variable = eta
[]
[]
[AuxKernels]
[GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fd
w = 0.4
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type -pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 3
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[full]
type = SMP
full = true
[]
[]
[Outputs]
file_base = kks_example_nested
exodus = true
[]
(test/tests/adaptivity/scalar/scalar_adaptivity.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[Variables]
[scalar]
order = THIRD
family = SCALAR
[]
[u]
[InitialCondition]
type = FunctionIC
function = 'x*x+y*y'
[]
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[c_res]
type = Diffusion
variable = u
[]
[]
[ScalarKernels]
[d1]
type = ODETimeDerivative
variable = scalar
[]
[]
[BCs]
[Periodic]
[all]
auto_direction = 'x y'
variable = 'u'
[]
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu '
num_steps = 2
[]
[Adaptivity]
initial_steps = 2
max_h_level = 2
marker = EFM
[Markers]
[EFM]
type = ErrorFractionMarker
coarsen = 0.2
refine = 0.8
indicator = GJI
[]
[]
[Indicators]
[GJI]
type = GradientJumpIndicator
variable = u
[]
[]
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/newmark-beta/newmark_beta_prescribed_parameters.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeIntegrator system.
#
# Testing that the first and second time derivatives
# are calculated correctly using the Newmark-Beta method
#
# @Requirement F1.30
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 1
ny = 1
[]
[Variables]
[u]
[]
[]
[Functions]
[forcing_fn]
type = PiecewiseLinear
x = '0.0 0.1 0.2 0.3 0.4 0.5 0.6'
y = '0.0 0.0 0.0025 0.01 0.0175 0.02 0.02'
[]
[]
[Kernels]
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = FunctionDirichletBC
variable = u
boundary = 'left'
function = forcing_fn
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = forcing_fn
[]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 6
dt = 0.1
[TimeIntegrator]
type = NewmarkBeta
beta = 0.4225
gamma = 0.8
[]
[]
[Postprocessors]
[udot]
type = ElementAverageTimeDerivative
variable = u
[]
[udotdot]
type = ElementAverageSecondTimeDerivative
variable = u
[]
[u]
type = ElementAverageValue
variable = u
[]
[]
[Outputs]
csv = true
[]
(test/tests/test_harness/csvdiff_comparison.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./x_field]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[./y_field]
type = PointValue
variable = u
point = '0.25 0.25 0'
[../]
[./z_field]
type = PointValue
variable = u
point = '0.75 0.75 0'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/output_in_position/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.001
l_tol = 1e-12
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/nodalkernels/nodal.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./nodal_ode]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = nodal_ode
[../]
[./constant_rate]
type = ConstantRate
variable = nodal_ode
rate = 1.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
[]
[Controls]
[./time_period]
type = TimePeriod
enable_objects = '*::constant_rate'
start_time = 0.5
end_time = 1
[../]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/kim-kim-suzuki/kks_example_noflux.i)
#
# KKS simple example in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 150
ny = 15
nz = 0
xmin = -25
xmax = 25
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute concentration
[./cl]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Solid phase solute concentration
[./cs]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
expression = '0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_c]
type = ParsedFunction
expression = '0.9*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
property_name = fl
coupled_variables = 'cl'
expression = '(0.1-cl)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
property_name = fs
coupled_variables = 'cs'
expression = '(0.9-cs)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
active = 'PhaseConc ChemPotSolute CHBulk ACBulkF ACBulkC ACInterface dcdt detadt ckernel'
# enforce c = (1-h(eta))*cl + h(eta)*cs
[./PhaseConc]
type = KKSPhaseConcentration
ca = cl
variable = cs
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute]
type = KKSPhaseChemicalPotential
variable = cl
cb = cs
fa_name = fl
fb_name = fs
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cl
fa_name = fl
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
coupled_variables = 'cl cs'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cl
cb = cs
fa_name = fl
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 50
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./c]
type = LineValueSampler
start_point = '-25 0 0'
end_point = '25 0 0'
variable = c
num_points = 151
sort_by = id
execute_on = timestep_end
[../]
[./eta]
type = LineValueSampler
start_point = '-25 0 0'
end_point = '25 0 0'
variable = eta
num_points = 151
sort_by = id
execute_on = timestep_end
[../]
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = final
[../]
[]
(test/tests/mesh/named_entities/periodic_bc_names_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in PeriodicBCs.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
primary = 'left'
secondary = 'right'
translation = '40 0 0'
[../]
[./y]
variable = u
primary = 'bottom'
secondary = 'top'
translation = '0 40 0'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 20
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/phase_field/test/tests/MultiPhase/mixedswitchingfunctionmaterial.i)
# This is a test of the MixedSwitchingfunctionmaterial
# Several mixed type of switching function with ajustable weight parameter
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0
xmax = 20
ymin = 0
ymax = 20
elem_type = QUAD4
[]
[Variables]
[./eta]
[../]
[]
[ICs]
[./IC_eta]
type = SmoothCircleIC
variable = eta
x1 = 10
y1 = 10
radius = 5
invalue = 1
outvalue = 0
int_width = 1
[../]
[]
[Kernels]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1.0 1.0'
[../]
[./switching]
type = MixedSwitchingFunctionMaterial
function_name = h
eta = eta
h_order = MIX234
weight = 1.0
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
g_order = SIMPLE
[../]
# Total free energy: F = Fa*(1-h) + Fb*h
[./free_energy]
type = DerivativeTwoPhaseMaterial
property_name = F
fa_name = '0'
fb_name = '-1'
eta = eta
W = 3.1
derivative_order = 2
outputs = exodus
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-12
start_time = 0.0
num_steps = 2
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/auxkernels/forcing_function_aux/forcing_function_aux.i)
# This is a test of the ForcingFunctionAux AuxKernel.
# The diffusion equation for u is solved with boundary conditions to force a gradient
# du/dx = 2, which is constant in time.
# du/dx is integrated over the unit square domain using a postprocessor, resulting in 2.
# The value of this postprocessor is supplied to the forcing function f used by
# the ForcingFunctionAux AuxKernel, which increments the AuxVariable T.
# Since the time step is 1, the value of T increases by 2 for each time step.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./grad_u_x]
order = CONSTANT
family = MONOMIAL
initial_condition = 2
[../]
[./T]
order = CONSTANT
family = MONOMIAL
initial_condition = 100
[../]
[]
[Functions]
[./u_ic_func]
type = ParsedFunction
expression = '2*x'
[../]
[./f]
type = ParsedFunction
symbol_names = f
symbol_values = grad_int
expression = f
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = u
function = u_ic_func
[../]
[]
[Kernels]
[./dudt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./grad_u_x_aux]
type = VariableGradientComponent
variable = grad_u_x
component = x
gradient_variable = u
[../]
[./T_increment]
type = ForcingFunctionAux
variable = T
function = f
[../]
[]
[Postprocessors]
[./grad_int]
type = ElementIntegralVariablePostprocessor
variable = grad_u_x
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/nodal_aux_var/nodal_aux_ts_test.i)
#
# Testing nodal aux variables that are computed only at the end of the time step
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
active = 'aux1 aux2'
[./aux1]
order = FIRST
family = LAGRANGE
[../]
[./aux2]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'ie diff force'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
#Coupling of nonlinear to Aux
[./force]
type = CoupledForce
variable = u
v = aux2
[../]
[]
[AuxKernels]
active = 'constant field'
#Simple Aux Kernel
[./constant]
variable = aux1
type = ConstantAux
value = 1
[../]
#Shows coupling of Aux to nonlinear
[./field]
variable = aux2
type = CoupledAux
value = 2
coupled = u
execute_on = timestep_end
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.1
num_steps = 2
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_ts
exodus = true
[]
(test/tests/kernels/ode/ode_sys_impl_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[Functions]
[./f_fn]
type = ParsedFunction
expression = -4
[../]
[./bc_all_fn]
type = ParsedFunction
expression = x*x+y*y
[../]
# ODEs
[./exact_x_fn]
type = ParsedFunction
expression = (-1/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[]
# NL
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./uff]
type = BodyForce
variable = u
function = f_fn
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = bc_all_fn
[../]
[]
[Postprocessors]
active = 'exact_x l2err_x'
[./exact_x]
type = FunctionValuePostprocessor
function = exact_x_fn
execute_on = 'initial timestep_end'
point = '0 0 0'
[../]
[./l2err_x]
type = ScalarL2Error
variable = x
function = exact_x_fn
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.01
num_steps = 100
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/nl_divergence_tolerance/nl_divergence_tolerance.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
[]
[Variables]
[./u]
scaling = 1e-5
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1000
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 100000
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
line_search = 'none'
solve_type = PJFNK
l_max_its = 20
nl_max_its = 20
nl_div_tol = 10
dt = 1
num_steps = 3
petsc_options = '-snes_converged_reason -ksp_converged_reason '
petsc_options_iname = '-pc_type -pc_hypre_type '
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/phase_field_kernels/CahnHilliard.i)
#
# Test the non-split parsed function free enery Cahn-Hilliard Bulk kernel
# The free energy used here has the same functional form as the CHPoly kernel
# If everything works, the output of this test should replicate the output
# of marmot/tests/chpoly_test/CHPoly_test.i (exodiff match)
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./cv]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./InitialCondition]
type = CrossIC
x1 = 5.0
y1 = 5.0
x2 = 45.0
y2 = 45.0
variable = cv
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = cv
[../]
[./CHSolid]
type = CahnHilliard
variable = cv
f_name = F
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = cv
mob_name = M
kappa_name = kappa_c
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'cv'
expression = '(1-cv)^2 * (1+cv)^2'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.7
[]
[Outputs]
[./out]
type = Exodus
refinements = 1
[../]
[]
(test/tests/functions/generic_function_material/generic_function_material_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./diff_func]
type = ParsedFunction
expression = 1/t
[../]
[]
[Kernels]
[./diff]
type = GenericDiffusion
variable = u
property = diffusion
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./conv]
type = Convection
variable = u
velocity = '1 0 0'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./gfm]
type = GenericFunctionMaterial
block = 0
prop_names = diffusion
prop_values = diff_func
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/pps_interval/pps_bad_interval3.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ignore_bad
time_step_interval = 2
exodus = true
[]
(test/tests/multiapps/output_in_position/multilevel_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = parent.i
output_in_position = true
[../]
[]
(test/tests/time_integrators/explicit-euler/ee-1d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 200
elem_type = EDGE2
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
lumping = true
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1'
function = exact_fn
implicit = true
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'explicit-euler'
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 20
dt = 0.00005
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/userobjects/setup_interface_count/internal_side.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = InternalSideSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./timestep] # once per timestep
type = InternalSideSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./subdomain] # 1 on initial and 2 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./execute] # 4 for initial and 8 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./threadjoin] # 1 for initial and 2 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/reset/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/stochastic_tools/test/tests/transfers/sampler_transfer/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[left_bc]
type = PointValue
point = '0 0 0'
variable = u
[]
[right_bc]
type = PointValue
point = '1 0 0'
variable = u
[]
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/change_over_time/change_over_time.i)
# This test tests the ChangeOverTimePostprocessor, which computes the change
# in a postprocessor value with respect to the previous value or with respect to
# the initial value. This test creates a time-dependent function postprocessor
# and then computes its change over a timestep. The FE problem used here is a
# dummy problem and has no effect on the test.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time_derivative]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
dt = 1.0
num_steps = 2
[]
[Functions]
[./my_function]
type = ParsedFunction
expression = '1 + t * t'
[../]
[]
[Postprocessors]
[./my_postprocessor]
type = FunctionValuePostprocessor
function = my_function
execute_on = 'initial timestep_end'
[../]
[./change_over_time]
type = ChangeOverTimePostprocessor
postprocessor = my_postprocessor
change_with_respect_to_initial = false
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = 'change_over_time_previous'
csv = true
[]
(modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
expression = 'c*(1.0-c)'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./gb_relax_prefactor]
type = DerivativeParsedMaterial
block = 0
expression = '0.01*(c-0.15)*gb'
coupled_variables = 'c gb'
property_name = gb_relax_prefactor
derivative_order = 1
[../]
[./gb_relax]
type = GBRelaxationStrainIncrement
property_name = gb_relax
prefactor_name = gb_relax_prefactor
gb_normal_name = gb_normal
[../]
[./creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = 'diffuse gb_relax'
[../]
[./strain]
type = ComputeIncrementalStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/materials/derivative_material_interface/ad_parsed_material.i)
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[]
[Kernels]
[./diff]
type = ADMatDiffusion
variable = eta
diffusivity = F
[../]
[./dt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = ADParsedMaterial
coupled_variables = 'eta'
expression ='(eta-0.5)^2'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./point_value]
type = PointValue
variable = u
point = '1 1 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/power_law_creep/restart1.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[]
[]
[Problem]
allow_initial_conditions_with_restart = true
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[]
[]
[Functions]
[top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[]
[u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[]
[radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'power_law_creep'
[]
[power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 6
dt = 0.1
[]
[Outputs]
exodus = true
[out]
type = Checkpoint
num_files = 1
[]
[]
(test/tests/postprocessors/pps_interval/pps_interval_mismatch.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
time_step_interval = 4
exodus = true
[./console]
type = Console
time_step_interval = 3
[../]
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/3d_1d_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
elem_type = EDGE2
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[disp_x_fn]
type = ParsedFunction
expression = '-x'
[]
[disp_z_fn]
type = ParsedFunction
expression = 'x'
[]
[]
[AuxVariables]
[sub_app_var]
family = MONOMIAL
order = CONSTANT
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxKernels]
[disp_x_ak]
type = FunctionAux
variable = disp_x
function = 'disp_x_fn'
[]
[disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[]
[disp_z_ak]
type = FunctionAux
variable = disp_z
function = 'disp_z_fn'
[]
[]
[UserObjects]
[sub_app_uo]
type = LayeredAverage
direction = z
variable = u
num_layers = 10
execute_on = TIMESTEP_END
use_displaced_mesh = true
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 2
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/materials/stateful_prop/stateful_prop_test.i)
[Mesh]
dim = 3
file = cube.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
prop_state = 'old' # Use the "Old" value to compute conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[./prop1_output_init]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
execute_on = initial
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./stateful]
type = StatefulTest
prop_names = thermal_conductivity
prop_values = 1.0
[../]
[]
[Postprocessors]
[./integral]
type = ElementAverageValue
variable = prop1
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 10
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
(test/tests/misc/dont_overghost/test_properly_ghosted.i)
[Mesh]
type = FileMesh
file = constraints.e
# NearestNodeLocator, which is needed by TiedValueConstraint,
# only works with ReplicatedMesh currently
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[]
[]
[Constraints]
[complete]
type = TiedValueConstraint
variable = u
secondary = 2
primary = 3
primary_variable = u
[]
[lower]
type = TiedValueConstraint
variable = u
secondary = inside_right_lower
primary = inside_left_lower
primary_variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[test_time_type]
type = TestVectorType
system = nl
vector = TIME
vector_type = ghosted
[]
[test_nontime_type]
type = TestVectorType
system = nl
vector = NONTIME
vector_type = ghosted
[]
[]
(modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower.i)
# checking that the PorousFlowDarcyVelocityComponentLowerDimensional AuxKernel works as expected
# for the fully-saturated case (relative-permeability = 1)
# The fractured_block.e has size = 10x10x10, and a fracture running through its
# centre, with normal = (0, -sin(20deg), cos(20deg))
# Porepressure is initialised to grad(P) = (0, 0, 1)
# Fluid_density = 2
# viscosity = 10
# relative_permeability = 1
# permeability = (5, 5, 5) (in the bulk)
# permeability = (10, 10, 10) (in the fracture)
# aperture = 1
# gravity = (1, 0.5, 0.2)
# So Darcy velocity in the bulk = (1, 0.5, -0.3)
# in the fracture grad(P) = (0, 0.3213938, 0.11697778)
# In the fracture the projected gravity vector is
# tangential_gravity = (1, 0.5057899, 0.18409245)
# So the Darcy velocity in the fracture = (2, 0.690186, 0.251207)
[Mesh]
type = FileMesh
file = fractured_block.e
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '1 0.5 0.2'
[]
[Variables]
[pp]
[]
[]
[ICs]
[pinit]
type = FunctionIC
function = z
variable = pp
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = pp
[]
[]
[AuxVariables]
[bulk_vel_x]
order = CONSTANT
family = MONOMIAL
[]
[bulk_vel_y]
order = CONSTANT
family = MONOMIAL
[]
[bulk_vel_z]
order = CONSTANT
family = MONOMIAL
[]
[fracture_vel_x]
order = CONSTANT
family = MONOMIAL
block = 3
[]
[fracture_vel_y]
order = CONSTANT
family = MONOMIAL
block = 3
[]
[fracture_vel_z]
order = CONSTANT
family = MONOMIAL
block = 3
[]
[]
[AuxKernels]
[bulk_vel_x]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_x
component = x
fluid_phase = 0
[]
[bulk_vel_y]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_y
component = y
fluid_phase = 0
[]
[bulk_vel_z]
type = PorousFlowDarcyVelocityComponent
variable = bulk_vel_z
component = z
fluid_phase = 0
[]
[fracture_vel_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_x
component = x
fluid_phase = 0
[]
[fracture_vel_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_y
component = y
fluid_phase = 0
[]
[fracture_vel_z]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = fracture_vel_z
component = z
fluid_phase = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1E16
viscosity = 10
density0 = 2
thermal_expansion = 0
[]
[]
[Postprocessors]
[bulk_vel_x]
type = ElementAverageValue
block = 1
variable = bulk_vel_x
[]
[bulk_vel_y]
type = ElementAverageValue
block = 1
variable = bulk_vel_y
[]
[bulk_vel_z]
type = ElementAverageValue
block = 1
variable = bulk_vel_z
[]
[fracture_vel_x]
type = ElementAverageValue
block = 3
variable = fracture_vel_x
[]
[fracture_vel_y]
type = ElementAverageValue
block = 3
variable = fracture_vel_y
[]
[fracture_vel_z]
type = ElementAverageValue
block = 3
variable = fracture_vel_z
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
block = '1 2'
[]
[permeability_fracture]
type = PorousFlowPermeabilityConst
permeability = '10 0 0 0 10 0 0 0 10'
block = 3
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
csv = true
[]
(modules/level_set/examples/vortex/vortex_reinit.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
nx = 16
ny = 16
uniform_refine = 2
elem_type = QUAD9
second_order = true
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[AuxKernels]
[./vec]
type = VectorFunctionAux
variable = velocity
function = velocity_func
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
[phi]
family = LAGRANGE
[]
[]
[Functions]
[phi_exact]
type = LevelSetOlssonBubble
epsilon = 0.03
center = '0.5 0.75 0'
radius = 0.15
[]
[./velocity_func]
type = LevelSetOlssonVortex
reverse_time = 2
[../]
[]
[ICs]
[phi_ic]
type = FunctionIC
function = phi_exact
variable = phi
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = phi
[]
[advection]
type = LevelSetAdvection
velocity = velocity
variable = phi
[]
[advection_supg]
type = LevelSetAdvectionSUPG
velocity = velocity
variable = phi
[]
[time_supg]
type = LevelSetTimeDerivativeSUPG
velocity = velocity
variable = phi
[]
[]
[Postprocessors]
[area]
type = LevelSetVolume
threshold = 0.5
variable = phi
location = outside
execute_on = 'initial timestep_end'
[]
[cfl]
type = LevelSetCFLCondition
velocity = velocity
execute_on = 'initial timestep_end'
[]
[]
[Problem]
type = LevelSetProblem
[]
[Preconditioning/smp]
type = SMP
full = true
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0
end_time = 2
scheme = crank-nicolson
[TimeStepper]
type = PostprocessorDT
postprocessor = cfl
scale = 0.8
[]
[]
[MultiApps]
[reinit]
type = LevelSetReinitializationMultiApp
input_files = 'vortex_reinit_sub.i'
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[to_sub]
type = MultiAppCopyTransfer
source_variable = phi
variable = phi
to_multi_app = reinit
execute_on = 'timestep_end'
[]
[to_sub_init]
type = MultiAppCopyTransfer
source_variable = phi
variable = phi_0
to_multi_app = reinit
execute_on = 'timestep_end'
[]
[from_sub]
type = MultiAppCopyTransfer
source_variable = phi
variable = phi
from_multi_app = reinit
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/nodalkernels/constraint_enforcement/vi-bounding.i)
l=10
nx=100
num_steps=10
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds][]
[]
[Bounds]
[./u_upper_bounds]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[../]
[./u_lower_bounds]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[../]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
(modules/phase_field/examples/anisotropic_interfaces/snow.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 14
xmax = 9
ymax = 9
uniform_refine = 3
[]
[Variables]
[./w]
[../]
[./T]
[../]
[]
[ICs]
[./wIC]
type = SmoothCircleIC
variable = w
int_width = 0.1
x1 = 4.5
y1 = 4.5
radius = 0.07
outvalue = 0
invalue = 1
[../]
[]
[Kernels]
[./w_dot]
type = TimeDerivative
variable = w
[../]
[./anisoACinterface1]
type = ACInterfaceKobayashi1
variable = w
mob_name = M
[../]
[./anisoACinterface2]
type = ACInterfaceKobayashi2
variable = w
mob_name = M
[../]
[./AllenCahn]
type = AllenCahn
variable = w
mob_name = M
f_name = fbulk
coupled_variables = T
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./w_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = w
coef = -1.8
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
property_name = fbulk
coupled_variables = 'w T'
constant_names = pi
constant_expressions = 4*atan(1)
expression = 'm:=0.9 * atan(10 * (1 - T)) / pi; 1/4*w^4 - (1/2 - m/3) * w^3 + (1/4 - m/2) * w^2'
derivative_order = 2
outputs = exodus
[../]
[./material]
type = InterfaceOrientationMaterial
op = w
[../]
[./consts]
type = GenericConstantMaterial
prop_names = 'M'
prop_values = '3333.333'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-08
l_max_its = 30
end_time = 1
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
iteration_window = 2
dt = 0.0005
growth_factor = 1.1
cutback_factor = 0.75
[../]
[./Adaptivity]
initial_adaptivity = 3 # Number of times mesh is adapted to initial condition
refine_fraction = 0.7 # Fraction of high error that will be refined
coarsen_fraction = 0.1 # Fraction of low error that will coarsened
max_h_level = 5 # Max number of refinements used, starting from initial mesh (before uniform refinement)
weight_names = 'w T'
weight_values = '1 0.5'
[../]
[]
[Outputs]
time_step_interval = 5
exodus = true
[]
(modules/phase_field/test/tests/MultiPhase/acmultiinterface_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
nz = 0
xmin = -10
xmax = 10
ymin = -5
ymax = 5
elem_type = QUAD4
[]
[AuxVariables]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = -3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[]
[Variables]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '-4.0 4.0'
y_positions = ' 0.0 0.0'
z_positions = ' 0.0 0.0'
radii = '4.0 4.0'
invalue = 0.1
outvalue = 0.9
int_width = 2.0
[../]
[../]
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
coupled_variables = 'eta1 eta3'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
coupled_variables = 'eta1 eta2'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 0
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'Fx L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0 1 1 1 1 1 1 1 1 1 1 1 1 '
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
property_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'Fx Fx Fx'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
# the free energy is given by the MultiBarrierFunctionMaterial only
W = 1
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
#petsc_options = '-snes_ksp -snes_ksp_ew'
#petsc_options = '-ksp_monitor_snes_lg-snes_ksp_ew'
#petsc_options_iname = '-ksp_gmres_restart'
#petsc_options_value = '1000 '
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 0.2
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/auxkernels/mesh_integer/mesh_integer.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 5
ny = 5
extra_element_integers = 'material_id'
[]
[set_material_id0]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0 0 0'
top_right = '0.8 0.6 0'
block_id = 0
location = INSIDE
integer_name = material_id
[]
[set_material_id1]
type = SubdomainBoundingBoxGenerator
input = set_material_id0
bottom_left = '0 0 0'
top_right = '0.8 0.6 0'
block_id = 1
location = OUTSIDE
integer_name = material_id
[]
[]
[Variables]
[u][]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
diffusivity = dc
[]
[timederivative]
type = TimeDerivative
variable = u
[]
[sourceterm]
type = BodyForce
variable = u
function = 1
[]
[]
[AuxVariables]
[id]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[id]
type = ElementIntegerAux
variable = id
integer_names = material_id
[]
[]
[BCs]
[vacuum]
type = VacuumBC
variable = u
boundary = 'right left top bottom'
[]
[]
[Materials]
[dc]
type = ConstantIDMaterial
prop_name = dc
prop_values = '1 2'
id_name = material_id
[]
[]
[Postprocessors]
[unorm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
end_time = 0.1
dt = 0.01
nl_abs_tol = 1.e-15
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/outputs/iterative/output_start_step.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
start_step = 12
[../]
[]
(modules/stochastic_tools/examples/surrogates/combined/trans_diff_2d/trans_diff_sub.i)
[Functions]
[src_func]
type = ParsedFunction
expression = "1000*sin(f*t)"
symbol_names = 'f'
symbol_values = '20'
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 100
xmin = -0.5
xmax = 0.5
ny = 100
ymin = -0.5
ymax = 0.5
[]
[source_domain]
type = ParsedSubdomainMeshGenerator
input = msh
combinatorial_geometry = '(x<0.1 & x>-0.1) & (y<0.1 & y>-0.1)'
block_id=1
[]
[]
[Variables]
[T]
initial_condition = 300
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = diff_coeff
[]
[source]
type = BodyForce
variable = T
function = src_func
block = 1
[]
[time_deriv]
type = TimeDerivative
variable = T
[]
[]
[Materials]
[diff_coeff]
type = ParsedMaterial
property_name = diff_coeff
coupled_variables = 'T'
constant_names = 'C'
constant_expressions = 0.02
expression = 'C * pow(300/T, 2)'
[]
[]
[BCs]
[neumann_all]
type = NeumannBC
variable = T
boundary = 'left right top bottom'
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 100
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-6
l_abs_tol = 1e-6
timestep_tolerance = 1e-6
[]
[Postprocessors]
[max]
type = NodalExtremeValue
variable = T
[]
[min]
type = NodalExtremeValue
variable = T
value_type = min
[]
[time_max]
type = TimeExtremeValue
postprocessor = max
[]
[time_min]
type = TimeExtremeValue
postprocessor = min
value_type = min
[]
[]
(test/tests/materials/stateful_prop/stateful_prop_on_bnd_only.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0.0
[../]
[./right]
type = MTBC
variable = u
boundary = right
grad = 1.0
prop_name = thermal_conductivity
[../]
[]
[Materials]
[./volatile]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = 10
block = 0
[../]
[./stateful_on_boundary]
type = StatefulSpatialTest
boundary = right
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out_bnd_only
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test12.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[mark]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0.9 0.9 0'
top_right = '3.1 3.1 0'
[]
[delete]
type = BlockDeletionGenerator
block = 1
input = mark
new_boundary = cut_surface
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[outer]
type = DirichletBC
variable = u
boundary = 'top bottom left right'
value = 1
[]
[inner]
type = DirichletBC
variable = u
boundary = cut_surface
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/scalar_kernels/ad_scalar_kernel/ad_scalar_kernel.i)
# This input file is used to test the Jacobian of an arbitrary ADScalarKernel.
# A test ADScalarKernel is used that uses values from other scalar variables,
# as well as a quantity computed in an elemental user object using a field
# variable.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Kernels]
[time_w]
type = TimeDerivative
variable = w
[]
[diff_w]
type = Diffusion
variable = w
[]
[]
[ScalarKernels]
[time_u]
type = ADScalarTimeDerivative
variable = u
[]
[test_u]
type = TestADScalarKernel
variable = u
v = v
test_uo = test_uo
[]
[time_v]
type = ADScalarTimeDerivative
variable = v
[]
[]
[UserObjects]
[test_uo]
type = TestADScalarKernelUserObject
variable = w
execute_on = 'LINEAR NONLINEAR'
[]
[]
[BCs]
[left]
type = DirichletBC
value = 0
variable = w
boundary = 'left'
[]
[right]
type = DirichletBC
value = 1
variable = w
boundary = 'right'
[]
[]
[Variables]
[u]
family = SCALAR
order = FIRST
initial_condition = 1.0
[]
[v]
family = SCALAR
order = FIRST
initial_condition = 3.0
[]
[w]
family = LAGRANGE
order = FIRST
initial_condition = 3.0
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 1
solve_type = NEWTON
[]
(modules/phase_field/test/tests/anisotropic_mobility/diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmax = 15.0
ymax = 15.0
[]
[Variables]
[./c]
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[]
[Kernels]
[./cres]
type = MatAnisoDiffusion
diffusivity = D
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./D]
type = ConstantAnisotropicMobility
tensor = '0.1 0 0
0 1 0
0 0 0'
M_name = D
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 10.0
num_steps = 2
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(modules/stochastic_tools/test/tests/multiapps/sampler_full_solve_multiapp/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
# coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/csv/csv_no_time.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[./aux_sum]
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./sum_nodal_aux]
type = SumNodalValuesAux
variable = aux_sum
sum_var = u
nodes = '1 2 3 4 5'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./mid_point]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
[./out]
type = CSV
time_column = false
[../]
[]
(test/tests/time_integrators/tvdrk2/1d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 20
elem_type = EDGE2
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = u
function = ic
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitTVDRK2
[../]
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 10
dt = 0.001
l_tol = 1e-15
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/controls/time_periods/bcs/bcs_integrated.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = 1
[../]
[./right2]
type = FunctionNeumannBC
variable = u
boundary = right
function = (y*(t-1))+1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./period0]
type = TimePeriod
disable_objects = 'BCs::right2'
start_time = '0'
end_time = '0.95'
execute_on = 'initial timestep_begin'
[../]
[./period2]
type = TimePeriod
disable_objects = 'BCs::right'
start_time = '1'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/kernels/2d_diffusion/matdiffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 1.0
ymax = 1.0
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./cres]
type = MatDiffusion
variable = u
diffusivity = Du
[../]
[./ctime]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[./Dc]
type = DerivativeParsedMaterial
property_name = Du
expression = '0.01+u^2'
coupled_variables = 'u'
derivative_order = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
scheme = 'BDF2'
dt = 1
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/shape_element_user_object/shape_element_user_object.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = (x-0.5)^2
[../]
[../]
[./v]
order = THIRD
family = HERMITE
[./InitialCondition]
type = FunctionIC
function = (y-0.5)^2
[../]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[UserObjects]
[./test]
type = TestShapeElementUserObject
u = u
# first order lagrange variables have 4 DOFs per element
u_dofs = 4
v = v
# third order hermite variables have 16 DOFs per element
v_dofs = 16
# as this userobject computes quantities for both the residual AND the jacobian
# it needs to have these execute_on flags set.
execute_on = 'linear nonlinear'
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
[]
(modules/phase_field/test/tests/PolynomialFreeEnergy/direct_order4_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmax = 125
[]
[GlobalParams]
polynomial_order = 4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 60.0
variable = c
[../]
[]
[Kernels]
[./local_energy]
type = CahnHilliard
variable = c
f_name = F
[../]
[./gradient_energy]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa
[../]
[./cdot]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./Copper]
type = PFParamsPolyFreeEnergy
c = c
T = 1000 # K
int_width = 30.0
length_scale = 1.0e-9
time_scale = 1.0e-9
D0 = 3.1e-5 # m^2/s, from Brown1980
Em = 0.71 # in eV, from Balluffi1978 Table 2
Ef = 1.28 # in eV, from Balluffi1978 Table 2
surface_energy = 0.7 # Total guess
[../]
[./free_energy]
type = PolynomialFreeEnergy
c = c
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = -pc_type
petsc_options_value = lu
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 100
dt = 4
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/cliargs_from_file/cliargs_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions_file = positions.txt
cli_args_files = cliargs.txt
type = TransientMultiApp
input_files = 'cliargs_sub.i'
app_type = MooseTestApp
[../]
[]
(test/tests/mesh/adapt/adapt_test_cycles.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '20 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.3
max_h_level = 7
cycles_per_step = 2
[../]
[]
[Outputs]
file_base = out_cycles
exodus = true
[]
(test/tests/userobjects/force_aux_ordering/force_preaux.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 2
ymin = 0
ymax = 1
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Postprocessors]
[./total_u]
type = ElementIntegralVariablePostprocessor
variable = u
[../]
# scale1 and scale2 depend on the ElementUO total_u. total_u is executed on
# timestep_end in POST_AUX _before_ the GeneralPostprocessors. scale1 is executed
# at its default location, timestep_end/POST_AUX/after total_u and hence gets
# the most up to date information. scale2 is pushed into PRE_AUX and hence picks
# up the value of total_u from the last timestep.
[./scale1]
type = ScalePostprocessor
value = total_u
scaling_factor = 1
[../]
[./scale2]
type = ScalePostprocessor
value = total_u
scaling_factor = 1
force_preaux = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1.0
end_time = 2.0
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/power_profile.i)
# This input file generates an Exodus output file with a surrogate power profile
# that is used in the RELAP-7 run. There is dummy diffusion solve to step through
# the simulation. The power profile (given as power density) is generated via
# aux variable
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.020652
xmax = 0.024748
ymin = 0
ymax = 3.865
nx = 5
ny = 20
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Functions]
[power_density_fn]
type = ParsedFunction
expression = 'sin(y/3.865*pi)*sin((x-0.020652)/4.096e-3*pi/2.)*10e7*t'
[]
[]
[AuxVariables]
[power_density]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pd_aux]
type = FunctionAux
variable = power_density
function = power_density_fn
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.1
dt = 0.01
abort_on_solve_fail = true
[]
[Outputs]
[expdus]
type = Exodus
file_base = power_profile
[]
[]
(test/tests/executioners/executioner/sln-time-adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_sta
exodus = true
[]
(modules/external_petsc_solver/test/tests/partition/moose_as_parent.i)
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 20
ny = 21
partition = square
[]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./cf]
type = CoupledForce
coef = 10000
variable = u
v=v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
fixed_point_max_its = 10
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
nl_rel_tol = 1e-6
nl_abs_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[MultiApps]
[./sub_app]
type = TransientMultiApp
input_files = 'petsc_transient_as_sub.i'
app_type = ExternalPetscSolverApp
library_path = '../../../../external_petsc_solver/lib'
[../]
[]
[Transfers]
[./fromsub]
type = MultiAppShapeEvaluationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[../]
[]
(test/tests/transfers/transfer_with_reset/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./t]
[../]
[./u_from_master]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./t]
type = FunctionAux
variable = t
function = t
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/initial_conditions/polycrystalcircles_fromvector.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 56
nz = 0
xmin = 0
xmax = 200
ymin = 0
ymax = 112
zmin = 0
zmax = 0
[]
[GlobalParams]
op_num = 6
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[UserObjects]
[./circle_IC]
type = PolycrystalCircles
radii = '22 22 30 22 22 22 22 22 '
x_positions = '34 78 122 166 34 78 122 166'
y_positions = '34 34 34 34 78 78 78 78 '
z_positions = '0 0 0 0 0 0 0 0 '
execute_on = 'initial'
threshold = 0.2
connecting_threshold = 0.08
int_width = 8
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = circle_IC
[../]
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_gr2]
type = TimeDerivative
variable = gr2
[../]
[./dt_gr3]
type = TimeDerivative
variable = gr3
[../]
[./dt_gr4]
type = TimeDerivative
variable = gr4
[../]
[./dt_gr5]
type = TimeDerivative
variable = gr5
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
num_steps = 0
[]
[Outputs]
exodus = true
csv = false
[]
(modules/level_set/test/tests/verification/1d_level_set_mms/level_set_mms.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 32
nx = 64
uniform_refine = 0
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[ICs]
[./phi_ic]
function = phi_exact
variable = phi
type = FunctionIC
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Functions]
[./phi_exact]
type = ParsedFunction
expression = 'a*exp(1/(10*t))*sin(2*pi*x/b) + 1'
symbol_names = 'a b'
symbol_values = '1 8'
[../]
[./phi_mms]
type = ParsedFunction
expression = '-a*exp(1/(10*t))*sin(2*pi*x/b)/(10*t^2) + 2*pi*a*exp(1/(10*t))*cos(2*pi*x/b)/b'
symbol_names = 'a b'
symbol_values = '1 8'
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '1'
expression_y = '1'
[../]
[]
[Kernels]
[./phi_advection]
type = LevelSetAdvection
variable = phi
velocity = velocity
[../]
[./phi_time]
type = TimeDerivative
variable = phi
[../]
[./phi_forcing]
type = BodyForce
variable = phi
function = phi_mms
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = phi_exact
variable = phi
[../]
[./h]
type = AverageElementSize
[../]
[./point]
type = PointValue
point = '0.1 0 0'
variable = phi
[../]
[]
[Executioner]
type = Transient
start_time = 1
dt = 0.01
end_time = 1.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
scheme = bdf2
nl_rel_tol = 1e-12
[]
[Outputs]
time_step_interval = 10
execute_on = 'timestep_end'
csv = true
[]
(modules/phase_field/test/tests/initial_conditions/SmoothCircleIC_3D.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 15
ny = 15
nz = 15
xmax = 50
ymax = 50
zmax = 50
elem_type = HEX8
[]
[Variables]
[./c]
[../]
[]
[ICs]
[./c]
type = SmoothCircleIC
variable = c
x1 = 25.0
y1 = 25.0
radius = 12
invalue = 1.0
outvalue = 0
int_width = 12
3D_spheres = false
z1 = 25
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./Diffusion]
type = MatDiffusion
variable = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y z'
[../]
[../]
[]
[Materials]
[./Diffusivity]
type = GenericConstantMaterial
prop_names = D
prop_values = 1.0
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = true
[]
(examples/ex04_bcs/periodic_bc.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = ExampleGaussContForcing
variable = u
x_center = 2
y_center = 4
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
#Note: Enable either "auto" or both "manual" conditions for this example
active = 'manual_x manual_y'
# Can use auto_direction with Generated Meshes
[./auto]
variable = u
auto_direction = 'x y'
[../]
# Use Translation vectors for everything else
[./manual_x]
variable = u
primary = 'left'
secondary = 'right'
translation = '40 0 0'
[../]
[./manual_y]
variable = u
primary = 'bottom'
secondary = 'top'
translation = '0 40 0'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 20
nl_rel_tol = 1e-12
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/materials/material/exception_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./mat]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./time_derivative]
type = TimeDerivative
variable = u
[../]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = matp
[../]
[./f]
type = BodyForce
variable = u
function = '20'
[../]
[]
[AuxKernels]
[./mat]
# Sequence of events:
# 1.) MaterialRealAux is re-evaluated every linear iteration
# 2.) MaterialRealAux calls ExceptionMaterial::computeQpProperties()
# 3.) ExceptionMaterial throws a MooseException.
# 4.) The MooseException is caught and handled by MOOSE.
# 5.) The next solve is automatically failed.
# 6.) Time timestep is cut and we try again.
#
# The idea is to test that MOOSE can recover when exceptions are
# thrown during AuxKernel evaluation, and not just nonlinear
# residual/jacobian evaluation.
type = MaterialRealAux
variable = mat
property = matp
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = u
boundary = 'left top bottom right'
value = 0
[../]
[]
[Materials]
[./mat]
type = ExceptionMaterial
block = 0
rank = 0
coupled_var = u
[../]
[]
[Executioner]
type = Transient
dt = 0.1
end_time = .5
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/kim-kim-suzuki/kks_example_ternary.i)
#
# KKS ternary (3 chemical component) system example in the split form
# We track c1 and c2 only, since c1 + c2 + c3 = 1
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 150
ny = 15
nz = 0
xmin = -25
xmax = 25
ymin = -2.5
ymax = 2.5
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute 1 concentration
[./c1]
order = FIRST
family = LAGRANGE
[../]
# solute 2 concentration
[./c2]
order = FIRST
family = LAGRANGE
[../]
# chemical potential solute 1
[./w1]
order = FIRST
family = LAGRANGE
[../]
# chemical potential solute 2
[./w2]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute 1 concentration
[./c1l]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Liquid phase solute 2 concentration
[./c2l]
order = FIRST
family = LAGRANGE
initial_condition = 0.05
[../]
# Solid phase solute 1 concentration
[./c1s]
order = FIRST
family = LAGRANGE
initial_condition = 0.8
[../]
# Solid phase solute 2 concentration
[./c2s]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
expression = '0.5*(1.0-tanh((x)/sqrt(2.0)))'
[../]
[./ic_func_c1]
type = ParsedFunction
expression = '0.8*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[./ic_func_c2]
type = ParsedFunction
expression = '0.1*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.05*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c1]
variable = c1
type = FunctionIC
function = ic_func_c1
[../]
[./c2]
variable = c2
type = FunctionIC
function = ic_func_c2
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
property_name = fl
coupled_variables = 'c1l c2l'
expression = '(0.1-c1l)^2+(0.05-c2l)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
property_name = fs
coupled_variables = 'c1s c2s'
expression = '(0.8-c1s)^2+(0.1-c2s)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
# enforce c1 = (1-h(eta))*c1l + h(eta)*c1s
[./PhaseConc1]
type = KKSPhaseConcentration
ca = c1l
variable = c1s
c = c1
eta = eta
[../]
# enforce c2 = (1-h(eta))*c2l + h(eta)*c2s
[./PhaseConc2]
type = KKSPhaseConcentration
ca = c2l
variable = c2s
c = c2
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute1]
type = KKSPhaseChemicalPotential
variable = c1l
cb = c1s
fa_name = fl
fb_name = fs
args_a = 'c2l'
args_b = 'c2s'
[../]
[./ChemPotSolute2]
type = KKSPhaseChemicalPotential
variable = c2l
cb = c2s
fa_name = fl
fb_name = fs
args_a = 'c1l'
args_b = 'c1s'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk1]
type = KKSSplitCHCRes
variable = c1
ca = c1l
fa_name = fl
w = w1
args_a = 'c2l'
[../]
[./CHBulk2]
type = KKSSplitCHCRes
variable = c2
ca = c2l
fa_name = fl
w = w2
args_a = 'c1l'
[../]
[./dc1dt]
type = CoupledTimeDerivative
variable = w1
v = c1
[../]
[./dc2dt]
type = CoupledTimeDerivative
variable = w2
v = c2
[../]
[./w1kernel]
type = SplitCHWRes
mob_name = M
variable = w1
[../]
[./w2kernel]
type = SplitCHWRes
mob_name = M
variable = w2
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
coupled_variables = 'c1l c1s c2l c2s'
[../]
[./ACBulkC1]
type = KKSACBulkC
variable = eta
ca = c1l
cb = c1s
fa_name = fl
coupled_variables = 'c2l'
[../]
[./ACBulkC2]
type = KKSACBulkC
variable = eta
ca = c2l
cb = c2s
fa_name = fl
coupled_variables = 'c1l'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
num_steps = 50
dt = 0.1
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(modules/level_set/test/tests/kernels/olsson_reinitialization/olsson_1d.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 8
ny = 8
uniform_refine = 2
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./phi_0]
family = MONOMIAL
order = FIRST
[../]
[./phi_exact]
[../]
[]
[AuxKernels]
[./phi_exact]
type = FunctionAux
function = phi_exact
variable = phi_exact
[../]
[]
[Functions]
[./phi_initial]
type = ParsedFunction
expression = '1-x'
[../]
[./phi_exact]
type = ParsedFunction
symbol_names = epsilon
symbol_values = 0.05
expression = '1 / (1+exp((x-0.5)/epsilon))'
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_initial
variable = phi
[../]
[./phi_0_ic]
type = FunctionIC
function = phi_initial
variable = phi_0
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./reinit]
type = LevelSetOlssonReinitialization
variable = phi
phi_0 = phi_0
epsilon = 0.05
[../]
[]
[UserObjects]
[./arnold]
type = LevelSetOlssonTerminator
tol = 0.1
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = phi
function = phi_exact
execute_on = 'initial timestep_end'
[../]
[./ndofs]
type = NumDOFs
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
start_point = '0 0.5 0'
end_point = '1 0.5 0'
variable = phi
num_points = 100
sort_by = x
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
l_max_its = 100
nl_max_its = 100
solve_type = PJFNK
num_steps = 10
start_time = 0
nl_abs_tol = 1e-13
scheme = implicit-euler
dt = 0.05
petsc_options_iname = '-pc_type -pc_sub_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
[]
[Outputs]
exodus = true
[./out]
type = CSV
time_data = true
file_base = output/olsson_1d_out
[../]
[]
(modules/phase_field/test/tests/rigidbodymotion/grain_motion.i)
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
coupled_variables = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
coupled_variables = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
coupled_variables = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
expression = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '0.0 0.0 10.0 '
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
nl_max_its = 30
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.2
num_steps = 1
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
(test/tests/postprocessors/print_perf_data/use_log_data_no_print.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./elapsed]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/restart/restart_diffusion/exodus_refined_restart_2_test.i)
[Mesh]
file = exodus_refined_restart_1.e
# Restart relies on the ExodusII_IO::copy_nodal_solution()
# functionality, which only works with ReplicatedMesh.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
initial_from_file_var = u
initial_from_file_timestep = 2
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
file_base = exodus_refined_restart_2
exodus = true
[]
(test/tests/materials/stateful_prop/stateful_prop_spatial_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./prop1]
order = SECOND
family = MONOMIAL
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0.0
[../]
[./right]
type = MTBC
variable = u
boundary = 1
grad = 1.0
prop_name = thermal_conductivity
[../]
[]
[Materials]
[./stateful]
type = StatefulSpatialTest
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out_spatial
[./out]
type = Exodus
elemental_as_nodal = true
execute_elemental_on = none
[../]
[]
(test/tests/postprocessors/pps_interval/pps_out_interval.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
file_base = pps_out_interval
time_step_interval = 2
exodus = true
[./console]
type = Console
time_step_interval = 1
[../]
[]
(modules/porous_flow/test/tests/jacobian/esbc01.i)
# Tests the Jacobian of PorousFlowEnthalpySink when pore pressure is specified
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
at_nodes = true
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0.1
[]
[]
[Variables]
[pp]
initial_condition = 1
[]
[temp]
initial_condition = 2
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[heat_conduction]
type = TimeDerivative
variable = temp
[]
[]
[FluidProperties]
[simple_fluid]
type = IdealGasFluidProperties
[]
[]
[Materials]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[]
[BCs]
[left]
type = PorousFlowEnthalpySink
variable = temp
boundary = left
fluid_phase = 0
T_in = 300
fp = simple_fluid
flux_function = -23
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.1
num_steps = 1
nl_rel_tol = 1E-12
nl_abs_tol = 1E-12
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-2'
[]
(test/tests/userobjects/pointwise_renormalize_vector/test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[v_x]
[]
[v_y]
[]
[]
[ICs]
[v_x]
type = FunctionIC
variable = v_x
function = sin(2*y*pi)
[]
[v_y]
type = FunctionIC
variable = v_y
function = cos(2*x*pi)
[]
[]
[Kernels]
[diff_x]
type = Diffusion
variable = v_x
[]
[dt_x]
type = TimeDerivative
variable = v_x
[]
[diff_y]
type = Diffusion
variable = v_y
[]
[dt_y]
type = TimeDerivative
variable = v_y
[]
[]
[UserObjects]
[renormalize]
type = PointwiseRenormalizeVector
v = 'v_x v_y'
execute_on = TIMESTEP_END
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
dt = 0.01
num_steps = 10
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/secant_postprocessor/transient_main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[source]
type = BodyForce
variable = u
value = 1
[]
[]
[BCs]
[left]
type = PostprocessorDirichletBC
variable = u
boundary = left
postprocessor = 'from_sub'
[]
[]
[Postprocessors]
[coupling_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[from_sub]
type = Receiver
default = 0
[]
[to_sub]
type = SideAverageValue
variable = u
boundary = right
[]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
# App coupling parameters
fixed_point_algorithm = 'secant'
fixed_point_max_its = 30
transformed_postprocessors = 'from_sub'
[]
[Outputs]
csv = true
exodus = false
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'transient_sub.i'
clone_parent_mesh = true
execute_on = 'timestep_begin'
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[left_from_sub]
type = MultiAppPostprocessorTransfer
from_multi_app = sub
from_postprocessor = 'to_main'
to_postprocessor = 'from_sub'
reduction_type = 'average'
[]
[right_to_sub]
type = MultiAppPostprocessorTransfer
to_multi_app = sub
from_postprocessor = 'to_sub'
to_postprocessor = 'from_main'
[]
[]
(test/tests/multiapps/picard_sub_cycling/picard_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
sub_cycling = true
interpolate_transfers = true
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(modules/porous_flow/test/tests/jacobian/line_sink03.i)
# PorousFlowPeacemanBorehole with 2-phase, 3-components, with enthalpy, internal_energy, and thermal_conductivity
# NOTE: this test has suffered from repeated failures since its inception. The problem always appears to be caused by having too many Dirac points in an element: see #10471. As of Nov2020, the dirac7 DiracKernel uses only one Dirac point, not ten_points.bh. One day it would be good to be able to use point_file = ten_points.bh
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph0_sp1]
[]
[massfrac_ph1_sp0]
[]
[massfrac_ph1_sp1]
[]
[temp]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp ppwater ppgas massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[dummy_outflow0]
type = PorousFlowSumQuantity
[]
[dummy_outflow1]
type = PorousFlowSumQuantity
[]
[dummy_outflow2]
type = PorousFlowSumQuantity
[]
[dummy_outflow3]
type = PorousFlowSumQuantity
[]
[dummy_outflow4]
type = PorousFlowSumQuantity
[]
[dummy_outflow5]
type = PorousFlowSumQuantity
[]
[dummy_outflow6]
type = PorousFlowSumQuantity
[]
[dummy_outflow7]
type = PorousFlowSumQuantity
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
min = 1
max = 2
[]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph0_sp1]
type = RandomIC
variable = massfrac_ph0_sp1
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp1]
type = RandomIC
variable = massfrac_ph1_sp1
min = 0
max = 1
[]
[]
[Kernels]
[dummy_temp]
type = TimeDerivative
variable = temp
[]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m01]
type = TimeDerivative
variable = massfrac_ph0_sp1
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[dummy_m11]
type = TimeDerivative
variable = massfrac_ph1_sp1
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
cv = 1.1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
cv = 1.8
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.1 0.02 0.03 0.02 0.0 0.01 0.03 0.01 0.3'
[]
[]
[DiracKernels]
#active = 'dirac6 dirac2' # incorrect jacobian for ny=2
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5' # correct jacobian for ny=2
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5 dirac6' # incorrect jacobian for ny=2
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5 dirac7' # correct jacobian in dbg, but not in opt, for ny=2
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5 dirac6' # incorrect jacobian in dbg, but correct for opt, for ny=1
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5' # correct jacobian, for ny=1
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5 dirac6' # incorrect jacobian in dbg, but correct for opt, for ny=1. row24, col 21 and 22 are wrong. row24=node3, 21=ppwater, 22=ppgas, 24=massfrac_ph0_sp1 (all at node3)
[dirac0]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = ppwater
point_file = one_point.bh
line_length = 1
SumQuantityUO = dummy_outflow0
character = 1
bottom_p_or_t = -10
unit_weight = '1 2 3'
re_constant = 0.123
[]
[dirac1]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = ppgas
line_length = 1
line_direction = '-1 -1 -1'
use_relative_permeability = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow1
character = -0.5
bottom_p_or_t = 10
unit_weight = '1 2 -3'
re_constant = 0.3
[]
[dirac2]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = massfrac_ph0_sp0
line_length = 1.3
line_direction = '1 0 1'
use_mobility = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow2
character = 0.6
bottom_p_or_t = -4
unit_weight = '-1 -2 -3'
re_constant = 0.4
[]
[dirac3]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = massfrac_ph0_sp1
line_length = 1.3
line_direction = '1 1 1'
use_enthalpy = true
mass_fraction_component = 0
point_file = one_point.bh
SumQuantityUO = dummy_outflow3
character = -1
bottom_p_or_t = 3
unit_weight = '0.1 0.2 0.3'
re_constant = 0.5
[]
[dirac4]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = massfrac_ph1_sp0
function_of = temperature
line_length = 0.9
line_direction = '1 1 1'
mass_fraction_component = 1
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow4
character = 1.1
bottom_p_or_t = -7
unit_weight = '-1 2 3'
re_constant = 0.6
[]
[dirac5]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = temp
line_length = 0.9
function_of = temperature
line_direction = '1 2 3'
mass_fraction_component = 2
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow5
character = 0.9
bottom_p_or_t = -8
unit_weight = '1 2 1'
re_constant = 0.7
[]
[dirac6]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = ppwater
point_file = nine_points.bh
SumQuantityUO = dummy_outflow6
character = 0
bottom_p_or_t = 10
unit_weight = '0.0 0.0 0.0'
[]
[dirac7]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = massfrac_ph0_sp0
use_mobility = true
mass_fraction_component = 1
use_relative_permeability = true
use_internal_energy = true
point_file = one_point.bh
#NOTE this commented-out line: point_file = ten_points.bh
SumQuantityUO = dummy_outflow7
character = -1
bottom_p_or_t = 10
unit_weight = '0.1 0.2 0.3'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = line_sink03
[]
(modules/porous_flow/test/tests/hysteresis/vary_sat_1.i)
# The saturation is varied with time and the capillary pressure is computed
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
number_fluid_phases = 1
number_fluid_components = 1
porous_flow_vars = ''
[]
[]
[Variables]
[dummy]
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = dummy
[]
[]
[AuxVariables]
[sat]
initial_condition = 1
[]
[hys_order]
family = MONOMIAL
order = CONSTANT
[]
[pc]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sat_aux]
type = FunctionAux
variable = sat
function = '1 - t'
[]
[hys_order]
type = PorousFlowPropertyAux
variable = hys_order
property = hysteresis_order
[]
[pc]
type = PorousFlowPropertyAux
variable = pc
property = hysteretic_info
[]
[]
[Materials]
[hys_order]
type = PorousFlowHysteresisOrder
[]
[pc_calculator]
type = PorousFlowHystereticInfo
alpha_d = 10.0
alpha_w = 7.0
n_d = 1.5
n_w = 1.9
S_l_min = 0.1
S_lr = 0.2
S_gr_max = 0.3
Pc_max = 12.0
high_ratio = 0.9
low_extension_type = quadratic
high_extension_type = power
sat_var = sat
[]
[]
[Postprocessors]
[hys_order]
type = PointValue
point = '0 0 0'
variable = hys_order
[]
[sat]
type = PointValue
point = '0 0 0'
variable = sat
[]
[pc]
type = PointValue
point = '0 0 0'
variable = pc
[]
[]
[Executioner]
type = Transient
solve_type = Linear
dt = 0.1
end_time = 1
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/average_variable_change/transient.i)
!include base.i
[Kernels]
[time_derivative]
type = TimeDerivative
variable = sol
[]
[]
[Postprocessors]
[sol_nlit]
type = AverageVariableChange
variable = sol
change_over = nonlinear_iteration
norm = l1
execute_on = ${pp_execute_on}
[]
[sol_ts]
type = AverageVariableChange
variable = sol
change_over = time_step
norm = l1
execute_on = ${pp_execute_on}
[]
[aux_nlit]
type = AverageVariableChange
variable = aux
change_over = nonlinear_iteration
norm = l1
execute_on = ${pp_execute_on}
[]
[aux_ts]
type = AverageVariableChange
variable = aux
change_over = time_step
norm = l1
execute_on = ${pp_execute_on}
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
[]
(test/tests/multiapps/sub_cycling/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
[../]
[]
(test/tests/materials/output/ad_output.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 10
ymax = 10
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 10
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[test_material]
type = ADOutputTestMaterial
block = 0
variable = u
outputs = all
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(python/peacock/tests/input_tab/InputTree/gold/lcf1.i)
# LinearCombinationFunction function test
# See [Functions] block for a description of the tests
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 10
[]
[Variables]
[dummy]
[]
[]
[Kernels]
[dummy_u]
type = TimeDerivative
variable = dummy
[]
[]
[AuxVariables]
[the_linear_combo]
[]
[]
[AuxKernels]
[the_linear_combo]
type = FunctionAux
variable = the_linear_combo
function = the_linear_combo
[]
[]
[Functions]
[xtimes]
type = ParsedFunction
expression = '1.1*x'
[]
[twoxplus1]
type = ParsedFunction
expression = '2*x+1'
[]
[xsquared]
type = ParsedFunction
expression = '(x-2)*x'
[]
[tover2]
type = ParsedFunction
expression = '0.5*t'
[]
[the_linear_combo]
type = LinearCombinationFunction
functions = 'xtimes twoxplus1 xsquared tover2'
w = '3 -1.2 0.4 3'
[]
[should_be_answer]
type = ParsedFunction
expression = '3*1.1*x-1.2*(2*x+1)+0.4*(x-2)*x+3*0.5*t'
[]
[]
[Postprocessors]
[should_be_zero]
type = NodalL2Error
function = should_be_answer
variable = 'the_linear_combo'
[]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = lcf1
hide = 'dummy'
exodus = false
csv = true
[]
(modules/phase_field/test/tests/PolynomialFreeEnergy/direct_order8_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmax = 125
[]
[GlobalParams]
polynomial_order = 8
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 60.0
variable = c
[../]
[]
[Kernels]
[./local_energy]
type = CahnHilliard
variable = c
f_name = F
[../]
[./gradient_energy]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa
[../]
[./cdot]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./Copper]
type = PFParamsPolyFreeEnergy
c = c
T = 1000 # K
int_width = 30.0
length_scale = 1.0e-9
time_scale = 1.0e-9
D0 = 3.1e-5 # m^2/s, from Brown1980
Em = 0.71 # in eV, from Balluffi1978 Table 2
Ef = 1.28 # in eV, from Balluffi1978 Table 2
surface_energy = 0.7 # Total guess
[../]
[./free_energy]
type = PolynomialFreeEnergy
c = c
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = -pc_type
petsc_options_value = lu
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 100
dt = 4
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/misc/interface_grad.i)
#
# Test a gradient continuity interfacekernel
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./box1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.51 1 0'
input = gen
[../]
[./box2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.49 0 0'
top_right = '1 1 0'
input = box1
[../]
[./iface_u]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 10
input = box2
[../]
[./iface_v]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 1
new_boundary = 11
input = iface_u
[../]
[]
[Variables]
[./u]
block = 1
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt((x-0.4)^2+(y-0.5)^2);if(r<0.05,5,1)'
[../]
[../]
[./v]
block = 2
initial_condition = 0.8
[../]
[]
[Kernels]
[./u_diff]
type = Diffusion
variable = u
block = 1
[../]
[./u_dt]
type = TimeDerivative
variable = u
block = 1
[../]
[./v_diff]
type = Diffusion
variable = v
block = 2
[../]
[./v_dt]
type = TimeDerivative
variable = v
block = 2
[../]
[]
[InterfaceKernels]
[./iface]
type = InterfaceDiffusionFluxMatch
variable = u
boundary = 10
neighbor_var = v
[../]
[]
[BCs]
[./u_boundary_term]
type = DiffusionFluxBC
variable = u
boundary = 10
[../]
[./v_boundary_term]
type = DiffusionFluxBC
variable = v
boundary = 11
[../]
[]
[Executioner]
type = Transient
dt = 0.002
num_steps = 10
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv_action.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
xmax = 10
ymax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y'
displacement_gradients = 'gxx gxy gyx gyy'
[]
[Modules]
[./PhaseField]
[./DisplacementGradients]
[../]
[../]
[]
[AuxVariables]
[./disp_x]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(2*x/10*3.14159265359)'
[../]
[../]
[./disp_y]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(1*y/10*3.14159265359)'
[../]
[../]
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
initial_condition = 0
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = c
[../]
[./bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./int]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa_c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./elasticity_tensor]
type = ComputeConcentrationDependentElasticityTensor
c = c
C0_ijkl = '1.0 1.0'
C1_ijkl = '3.0 3.0'
fill_method0 = symmetric_isotropic
fill_method1 = symmetric_isotropic
[../]
[./smallstrain]
type = ComputeSmallStrain
[../]
[./linearelastic_a]
type = ComputeLinearElasticStress
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = F
args = 'c'
derivative_order = 3
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = NEWTON
l_max_its = 30
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 1
[]
[Outputs]
perf_graph = true
file_base = nonsplit_gradderiv_out
exodus = true
[]
(test/tests/outputs/recover/recover2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = recover_out
exodus = true
[]
(modules/functional_expansion_tools/examples/2D_interface_no_material/sub.i)
# Derived from the example '2D_interface' with the following differences:
#
# 1) No materials are used
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = Diffusion
variable = s
[../]
[./time_diff_s]
type = TimeDerivative
variable = s
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = 1.0
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/time_steppers/timesequence_stepper/timesequence_restart_failure.i)
[Mesh]
file = timesequence_restart_failure1_cp/0002-mesh.cpa.gz
[]
[Problem]
restart_file_base = timesequence_restart_failure1_cp/0002
# There is an initial conditions overwriting the restart on the nonlinear variable u
# As you can see in the gold file, this makes the initial step output be from the
# initial condition
allow_initial_conditions_with_restart = true
[]
[Functions]
[exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[]
[forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[]
[]
[Variables]
[u]
family = LAGRANGE
order = SECOND
[]
[]
[ICs]
[u_var]
type = FunctionIC
variable = u
function = exact_fn
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[]
[]
[Executioner]
type = Transient
end_time = 4.0
[TimeStepper]
type = TimeSequenceStepper
time_sequence = '0 0.85 1.2 1.3 2 4'
[]
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/controls/thm_solve_postprocessor_control/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Functions]
[active_fn]
type = PiecewiseConstant
direction = right
xy_data = '
0.2 0
0.4 1
0.6 0'
[]
[]
[Postprocessors]
[active]
type = FunctionValuePostprocessor
function = active_fn
[]
[]
[Components]
[]
[ControlLogic]
[solve_on_off]
type = THMSolvePostprocessorControl
postprocessor = active
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 6
abort_on_solve_fail = true
[]
[Outputs]
csv = true
[]
(test/tests/userobjects/nodal_patch_recovery/nodal_patch_recovery.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[UserObjects]
[u_patch]
type = NodalPatchRecoveryMaterialProperty
patch_polynomial_order = FIRST
property = 'u'
execute_on = 'TIMESTEP_END'
[]
[]
[Variables]
[v]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = v
[]
[diff]
type = Diffusion
variable = v
[]
[]
[AuxVariables]
[u_recovered]
[]
[u_nodal]
[]
[u_diff]
[]
[]
[AuxKernels]
[u_recovered]
type = NodalPatchRecoveryAux
variable = u_recovered
nodal_patch_recovery_uo = u_patch
execute_on = 'TIMESTEP_END'
[]
[u_nodal]
type = ParsedAux
variable = u_nodal
expression = v^2
coupled_variables = v
[]
[u_diff]
type = ParsedAux
variable = u_diff
expression = u_nodal-u_recovered
coupled_variables = 'u_nodal u_recovered'
[]
[]
[BCs]
[fix_left]
type = FunctionDirichletBC
variable = v
boundary = 'left'
function = y+1
[]
[fix_right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[]
[]
[Materials]
[u]
type = ParsedMaterial
expression = v^2
property_name = u
coupled_variables = v
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
dt = 0.4
num_steps = 5
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/phase_field/test/tests/initial_conditions/RndBoundingBoxIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 8
xmax = 50
ymax = 25
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./InitialCondition]
type = RndBoundingBoxIC
x1 = 15.0
x2 = 35.0
y1 = 0.0
y2 = 25.0
mx_invalue = 1.0
mn_invalue = 0.9
mx_outvalue = -0.7
mn_outvalue = -0.8
variable = c
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
nl_max_its = 10
start_time = 0.0
num_steps = 4
dt = 5.0
[]
[Outputs]
exodus = true
[]
(modules/scalar_transport/test/tests/multiple-species/single-specie.i)
Krtt=0.
Kdt2=1
Pt2_left=1
Pt2_right=0
d_t=1
l=1
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = ${l}
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = ref
[]
[Variables]
[t][]
[]
[Kernels]
[time_t]
type = TimeDerivative
variable = t
extra_vector_tags = ref
[]
[diff_t]
type = MatDiffusion
variable = t
diffusivity = ${d_t}
extra_vector_tags = ref
[]
[]
[BCs]
[tt_recombination]
type = BinaryRecombinationBC
variable = t
v = t
Kr = Krtt
boundary = 'left right'
[]
[t_from_t2_left]
type = DissociationFluxBC
variable = t
v = ${Pt2_left} # Partial pressure of T2
Kd = Kdt2
boundary = left
[]
[t_from_t2_right]
type = DissociationFluxBC
variable = t
v = ${Pt2_right} # Partial pressure of T2
Kd = Kdt2
boundary = right
[]
[]
[Materials]
[Krtt]
type = ADConstantMaterial
property_name = 'Krtt'
value = ${Krtt}
[]
[Kdt2]
type = ADConstantMaterial
property_name = 'Kdt2'
value = '${Kdt2}'
[]
[]
[Postprocessors]
[downstream_t_flux]
type = SideFluxAverage
variable = t
boundary = right
diffusivity = ${d_t}
[]
[downstream_t_conc]
type = SideAverageValue
variable = t
boundary = right
outputs = 'none'
[]
[upstream_t_conc]
type = SideAverageValue
variable = t
boundary = left
outputs = 'none'
[]
[difference]
type = DifferencePostprocessor
value1 = upstream_t_conc
value2 = downstream_t_conc
outputs = 'none'
[]
[domain_averaged_flux]
type = ScalePostprocessor
scaling_factor = ${fparse d_t / l}
value = difference
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
num_steps = 40
steady_state_detection = true
dt = .1
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_projection_transfer/fixed_meshes_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_parent]
[../]
[./elemental_from_parent]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
solve_type = NEWTON
[]
[Outputs]
exodus = true
#
[]
(test/tests/postprocessors/nodal_var_value/screen_output_test.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./console]
type = Console
max_rows = 2
[../]
[]
(modules/porous_flow/test/tests/jacobian/heat_advection01.i)
# 1phase, unsaturated, heat advection
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
xmin = 0
xmax = 1
ny = 1
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[temp]
[]
[pp]
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
max = 1.0
min = 0.0
[]
[pp]
type = RandomIC
variable = pp
max = 0.0
min = -1.0
[]
[]
[Kernels]
[pp]
type = TimeDerivative
variable = pp
[]
[heat_advection]
type = PorousFlowHeatAdvection
variable = temp
gravity = '1 2 3'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.6
alpha = 1.3
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1.1
thermal_expansion = 0
viscosity = 1
cv = 1.1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[PS]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[]
[Preconditioning]
active = check
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven_split.i)
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 40
ny = 40
elem_type = QUAD4
[]
[./corner_node]
type = ExtraNodesetGenerator
boundary = 99
nodes = '0'
input = gen
[../]
[]
[Variables]
# x-velocity
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-velocity
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# x-acceleration
[./a1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-acceleration
[./a2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# Pressure
[./p]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
# split-momentum, x
[./x_split_momentum]
type = INSSplitMomentum
variable = a1
u = u
v = v
a1 = a1
a2 = a2
component = 0
[../]
# split-momentum, y
[./y_split_momentum]
type = INSSplitMomentum
variable = a2
u = u
v = v
a1 = a1
a2 = a2
component = 1
[../]
# projection-x, space
[./x_proj_space]
type = INSProjection
variable = u
a1 = a1
a2 = a2
pressure = p
component = 0
[../]
# projection-y, space
[./y_proj_space]
type = INSProjection
variable = v
a1 = a1
a2 = a2
pressure = p
component = 1
[../]
# projection-x, time
[./x_proj_time]
type = TimeDerivative
variable = u
[../]
# projection-y, time
[./y_proj_time]
type = TimeDerivative
variable = v
[../]
# Pressure
[./pressure_poisson]
type = INSPressurePoisson
variable = p
a1 = a1
a2 = a2
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = u
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = DirichletBC
variable = u
boundary = 'top'
value = 100.0
[../]
[./y_no_slip]
type = DirichletBC
variable = v
boundary = 'bottom right top left'
value = 0.0
[../]
# Acceleration boundary conditions. What should these
# be on the lid? What should they be in general? I tried pinning
# values of acceleration at one node but that didn't seem to work.
# I also tried setting non-zero acceleration values on the lid but
# that didn't converge.
[./x_no_accel]
type = DirichletBC
variable = a1
boundary = 'bottom right top left'
value = 0.0
[../]
[./y_no_accel]
type = DirichletBC
variable = a2
boundary = 'bottom right top left'
value = 0.0
[../]
# With solid walls everywhere, we specify dp/dn=0, i.e the
# "natural BC" for pressure. Technically the problem still
# solves without pinning the pressure somewhere, but the pressure
# bounces around a lot during the solve, possibly because of
# the addition of arbitrary constants.
[./pressure_pin]
type = DirichletBC
variable = p
boundary = '99'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
# rho = 1000 # kg/m^3
# mu = 0.798e-3 # Pa-s at 30C
# cp = 4.179e3 # J/kg-K at 30C
# k = 0.58 # W/m-K at ?C
# Dummy parameters
prop_names = 'rho mu cp k'
prop_values = '1 1 1 1'
[../]
[]
[Preconditioning]
# [./FDP_Newton]
# type = FDP
# full = true
# petsc_options = '-snes'
# #petsc_options_iname = '-mat_fd_coloring_err'
# #petsc_options_value = '1.e-10'
# [../]
[./SMP_PJFNK]
type = SMP
full = true
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[../]
[]
[Executioner]
type = Transient
dt = 1.e-4
dtmin = 1.e-6
petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '300 '
line_search = 'none'
nl_rel_tol = 1e-5
nl_max_its = 6
l_tol = 1e-6
l_max_its = 100
start_time = 0.0
num_steps = 1000
[]
[Outputs]
file_base = lid_driven_split_out
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/parent.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0.3 0.1 0.3 0.7 0.1 0.3'
type = TransientMultiApp
input_files = sub.i
app_type = MooseTestApp
[../]
[]
[Transfers]
[./layered_transfer]
user_object = layered_average
variable = multi_layered_average
type = MultiAppUserObjectTransfer
from_multi_app = sub_app
skip_coordinate_collapsing = true
[../]
[./element_layered_transfer]
user_object = layered_average
variable = element_multi_layered_average
type = MultiAppUserObjectTransfer
from_multi_app = sub_app
skip_coordinate_collapsing = true
[../]
[]
(modules/porous_flow/test/tests/jacobian/heat_advection01_fullsat_upwind.i)
# 1phase, using fully-saturated, fully-upwinded version, heat advection
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
xmin = 0
xmax = 1
ny = 1
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[temp]
[]
[pp]
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
max = 1.0
min = 0.0
[]
[pp]
type = RandomIC
variable = pp
max = 0.0
min = -1.0
[]
[]
[Kernels]
[pp]
type = TimeDerivative
variable = pp
[]
[heat_advection]
type = PorousFlowFullySaturatedUpwindHeatAdvection
variable = temp
gravity = '1 2 3'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1.1
thermal_expansion = 1
viscosity = 1
cv = 1.1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[PS]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[]
[Preconditioning]
active = check
[check]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
(modules/functional_expansion_tools/examples/2D_interface_no_material/main.i)
# Derived from the example '2D_interface' with the following differences:
#
# 1) No materials are used
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 0.4
nx = 6
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./m]
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./source_m]
type = BodyForce
variable = m
value = 100
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
value = 2
variable = m
[../]
[]
[BCs]
[./interface_value]
type = FXValueBC
variable = m
boundary = right
function = FX_Basis_Value_Main
[../]
[./interface_flux]
type = FXFluxBC
boundary = right
variable = m
function = FX_Basis_Flux_Main
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Main]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Flux_UserObject_Main]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Main
variable = m
boundary = right
diffusivity = 0.1
[../]
[]
[Postprocessors]
[./average_interface_value]
type = SideAverageValue
variable = m
boundary = right
[../]
[./total_flux]
type = SideDiffusiveFluxIntegral
variable = m
boundary = right
diffusivity = 0.1
[../]
[./picard_iterations]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
sub_cycling = true
[../]
[]
[Transfers]
[./FluxToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Flux_UserObject_Main
multi_app_object_name = FX_Basis_Flux_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[./FluxToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Flux_Main
multi_app_object_name = FX_Flux_UserObject_Sub
[../]
[]
(modules/functional_expansion_tools/test/tests/standard_use/volume_coupling_custom_norm.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
generation_type = 'sqrt_mu'
expansion_type = 'sqrt_mu'
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
file_base = 'volume_coupled_out'
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = volume_coupling_custom_norm_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(modules/porous_flow/test/tests/heat_mass_transfer/variable_transfer_0D.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[u]
initial_condition = 1
[]
[]
[AuxVariables]
[v]
initial_condition = 10
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[value_transfer]
type = PorousFlowHeatMassTransfer
variable = u
v = v
transfer_coefficient = 1e-1
[]
[]
[Postprocessors]
[point_value]
type = PointValue
variable = u
point = '0.5 0.5 0.'
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
num_steps = 11
dt = 1
[]
[Outputs]
csv = true
[]
(test/tests/meshgenerators/file_mesh_generator/2d_diffusion_iga.i)
[Mesh]
[cyl2d_iga]
type = FileMeshGenerator
file = PressurizedCyl_Patch6_4Elem.e
[]
allow_renumbering = false # VTK diffs via XMLDiff are
parallel_type = replicated # really fragile
[]
[Variables]
[u]
order = SECOND # Must match mesh order
family = RATIONAL_BERNSTEIN
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
block = 0 # Avoid direct calculations on spline nodes
[]
[diff]
type = Diffusion
variable = u
block = 0 # Avoid direct calculations on spline nodes
[]
[null]
type = NullKernel
variable = u
block = 1 # Keep kernel coverage check happy
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'sin(x)'
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = NEWTON
dtmin = 1
[]
[Outputs]
vtk = true
[]
(tutorials/tutorial02_multiapps/step02_transfers/01_sub_meshfunction.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 9
ny = 9
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[tu]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test7.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '1 1 1'
[]
[SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox2
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_coupled_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 30
ymax = 30
elem_type = QUAD4
[]
[Variables]
[./c]
family = HERMITE
order = THIRD
[../]
[./d]
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 12
variable = c
int_width = 3
invalue = 1
outvalue = 0
[../]
[./d_IC]
type = BoundingBoxIC
x1 = 0
x2 = 15
y1 = 0
y2 = 30
inside = 1.0
outside = 0.0
variable = d
[../]
[]
[Kernels]
[./c_bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
coupled_variables = d
[../]
[./c_int]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
coupled_variables = d
[../]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[./d_dot]
type = TimeDerivative
variable = d
[../]
[./d_diff]
type = MatDiffusion
variable = d
diffusivity = diffusivity
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = kappa_c
prop_values = 2.0
[../]
[./mob]
type = DerivativeParsedMaterial
property_name = M
coupled_variables = 'c d'
expression = if(d>0.001,d,0.001)*if(c<0,0.5,if(c>1,0.5,1-0.5*c^2))
derivative_order = 2
[../]
[./free_energy]
type = MathEBFreeEnergy
property_name = F
c = c
[../]
[./d_diff]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 1.0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = BDF2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 0.25
num_steps = 2
[]
[Outputs]
execute_on = 'timestep_end'
[./oversample]
refinements = 2
type = Exodus
[../]
[]
(test/tests/time_steppers/time_stepper_system/multiple_timesteppers.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[Functions]
[dts]
type = PiecewiseLinear
x = '0 0.85 2'
y = '0.2 0.15 0.2'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 0.8
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
# Use as many different time steppers as we could to test the compositionDT,
# SolutionTimeAdaptiveDT give slightly different dt per run, set rel_err = 1e-2
# to ensure the test won't fail due to the small difference in the high-digit.
[TimeSteppers]
[ConstDT1]
type = ConstantDT
dt = 0.2
[]
[FunctionDT]
type = FunctionDT
function = dts
[]
[LogConstDT]
type = LogConstantDT
log_dt = 0.2
first_dt = 0.1
[]
[IterationAdapDT]
type = IterationAdaptiveDT
dt = 0.5
[]
[Timesequence]
type = TimeSequenceStepper
time_sequence = '0 0.25 0.3 0.5 0.8'
[]
[PPDT]
type = PostprocessorDT
postprocessor = PostDT
dt = 0.1
[]
[]
[]
[Postprocessors]
[timestep]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[PostDT]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
file_base='multiple_timesteppers'
[]
(test/tests/actions/add_auxkernel_action/flux_average.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[flux]
order = CONSTANT
family = MONOMIAL
[AuxKernel]
type = FluxAverageAux
coupled = u
diffusivity = 0.1
boundary = right
[]
[]
[]
[Functions]
[bc_func]
type = ParsedFunction
expression = y+1
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[flux_average]
type = FluxAverageAux
variable = flux
coupled = u
diffusivity = 0.1
boundary = right
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = right
function = bc_func
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/restricted_node_parent.i)
num_layers = 2
[Mesh]
[box]
type = GeneratedMeshGenerator
dim = 3
nx = ${num_layers}
ny = 3
nz = 3
xmin = 0.25
xmax = 1.25
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[a]
[]
[s]
[]
[]
[AuxKernels]
[s_ak]
type = ParsedAux
variable = s
use_xyzt = true
expression = 'x+(z*z)'
[]
[]
[Functions]
[]
[Postprocessors]
[a_avg]
type = ElementAverageValue
variable = a
[]
[]
[UserObjects]
[S_avg_front]
type = LayeredSideAverage
boundary = front
variable = s
num_layers = ${num_layers}
direction = x
[]
[S_avg_back]
type = LayeredSideAverage
boundary = back
variable = s
num_layers = ${num_layers}
direction = x
[]
[]
[MultiApps]
[ch0]
type = TransientMultiApp
input_files = 'restricted_node_sub.i'
bounding_box_padding = '0 0.5 1'
positions = '0 0.5 -0.1'
output_in_position = true
cli_args = 'yy=0'
[]
[ch1]
type = TransientMultiApp
input_files = 'restricted_node_sub.i'
bounding_box_padding = '0 0.5 1'
positions = '0 0.5 1.1'
output_in_position = true
cli_args = 'yy=1'
[]
[]
[Transfers]
[from_ch0]
type = MultiAppGeneralFieldUserObjectTransfer
to_boundaries = back
from_multi_app = ch0
variable = a
source_user_object = A_avg
fixed_bounding_box_size = '0 1 1.5'
from_app_must_contain_point = false
[]
[from_ch1]
type = MultiAppGeneralFieldUserObjectTransfer
to_boundaries = front
from_multi_app = ch1
variable = a
source_user_object = A_avg
fixed_bounding_box_size = '0 1 1.5'
from_app_must_contain_point = false
[]
[to_ch0]
type = MultiAppGeneralFieldUserObjectTransfer
to_blocks = 20
to_multi_app = ch0
variable = S
source_user_object = S_avg_back
fixed_bounding_box_size = '1.5 1 1.5'
from_app_must_contain_point = false
[]
[to_ch1]
type = MultiAppGeneralFieldUserObjectTransfer
to_blocks = 20
to_multi_app = ch1
variable = S
source_user_object = S_avg_front
fixed_bounding_box_size = '1.5 1 1.5'
from_app_must_contain_point = false
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
nl_abs_tol = 1e-7
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/aux-ss-detection/simple_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[u_copy]
[]
[large_constant]
initial_condition = 1000
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[copy_u_to_v]
type = CopyValueAux
variable = u_copy
source = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
dt = 0.1
steady_state_detection = true
check_aux = true
steady_state_tolerance = 1e-2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test2.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/iterative/iterative_inline.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
nonlinear_residual_dt_divisor = 100
linear_residual_dt_divisor = 100
nonlinear_residual_start_time = 1.8
linear_residual_start_time = 1.8
nonlinear_residual_end_time = 1.85
linear_residual_end_time = 1.85
[../]
[]
(test/tests/transfers/multiapp_userobject_transfer/two_pipe_parent.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 5
nx = 5
ymin = 0
ymax = 5
ny = 5
zmin = 0
zmax = 5
nz = 5
[]
[./blocks]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '1 1 0'
top_right = '4 4 5'
[../]
[]
[AuxVariables]
[./from_sub_app_var]
order = CONSTANT
family = MONOMIAL
block = 1
initial_condition = 0
[../]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = front
value = -1
[]
[right]
type = DirichletBC
variable = u
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 5
solve_type = 'NEWTON'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = final
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = two_pipe_sub.i
app_type = MooseTestApp
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[layered_transfer_from_sub_app]
type = MultiAppUserObjectTransfer
user_object = sub_app_uo
variable = from_sub_app_var
from_multi_app = sub_app
displaced_source_mesh = true
skip_bounding_box_check = true
[]
[]
(test/tests/outputs/vtk/vtk_diff_serial_mesh_parallel.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
# We found that the Metis partitioner sometimes partitioned this 2x2
# mesh differently on Mac vs. Linux?
partitioner = centroid
centroid_partitioner_direction = x
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
vtk = true
[]
(test/tests/time_steppers/zero_dt/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
dt = 0
[]
(test/tests/vectorpostprocessors/element_variables_difference_max/element_variables_difference_max.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./forcing_v]
type = ParsedFunction
expression = 'x * y * z'
[../]
[]
[Kernels]
[./diffusion_u]
type = Diffusion
variable = u
[../]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diffusion_v]
type = Diffusion
variable = v
[../]
[./forcing_v]
type = BodyForce
variable = v
function = forcing_v
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = 'u'
boundary = 'bottom'
value = 1
[../]
[./top]
type = DirichletBC
variable = 'u'
boundary = 'top'
value = 0
[../]
[]
[VectorPostprocessors]
[./difference]
type = ElementVariablesDifferenceMax
compare_a = u
compare_b = v
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = PJFNK
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
(modules/porous_flow/test/tests/jacobian/esbc02.i)
# Tests the Jacobian of PorousFlowEnthalpySink when pressure
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
at_nodes = true
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0.1
[]
[]
[Variables]
[pp]
initial_condition = 1
[]
[temp]
initial_condition = 2
[]
[]
[AuxVariables]
[pressure]
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[heat_conduction]
type = TimeDerivative
variable = temp
[]
[]
[FluidProperties]
[simple_fluid]
type = IdealGasFluidProperties
[]
[]
[Materials]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[]
[BCs]
[left]
type = PorousFlowEnthalpySink
variable = temp
boundary = left
porepressure_var = pressure
T_in = 300
fp = simple_fluid
flux_function = -23
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.1
num_steps = 1
nl_rel_tol = 1E-12
nl_abs_tol = 1E-12
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-1'
[]
(modules/porous_flow/examples/multiapp_fracture_flow/diffusion_multiapp/fracture_app_heat.i)
# Heat energy from this fracture app is transferred to the matrix app
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 1
nx = 100
xmin = 0
xmax = 50.0
[]
[]
[Variables]
[frac_T]
[]
[]
[ICs]
[frac_T]
type = FunctionIC
variable = frac_T
function = 'if(x<1E-6, 2, 0)' # delta function
[]
[]
[AuxVariables]
[transferred_matrix_T]
[]
[heat_to_matrix]
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = frac_T
[]
[fracture_diffusion]
type = Diffusion
variable = frac_T
[]
[toMatrix]
type = PorousFlowHeatMassTransfer
variable = frac_T
v = transferred_matrix_T
transfer_coefficient = 0.004
[]
[]
[AuxKernels]
[heat_to_matrix]
type = ParsedAux
variable = heat_to_matrix
coupled_variables = 'frac_T transferred_matrix_T'
expression = '0.004 * (frac_T - transferred_matrix_T)'
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[VectorPostprocessors]
[final_results]
type = LineValueSampler
start_point = '0 0 0'
end_point = '50 0 0'
num_points = 11
sort_by = x
variable = frac_T
outputs = final_csv
[]
[]
[Outputs]
print_linear_residuals = false
[final_csv]
type = CSV
sync_times = 100
sync_only = true
[]
[]
[MultiApps]
[matrix_app]
type = TransientMultiApp
input_files = matrix_app_heat.i
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[heat_to_matrix]
type = MultiAppCopyTransfer
to_multi_app = matrix_app
source_variable = heat_to_matrix
variable = heat_from_frac
[]
[T_from_matrix]
type = MultiAppCopyTransfer
from_multi_app = matrix_app
source_variable = matrix_T
variable = transferred_matrix_T
[]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
(test/tests/multiapps/transient_multiapp/dt_from_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'dt_from_parent_sub.i'
positions = '0 0 0
0.5 0.5 0
0.6 0.6 0
0.7 0.7 0'
[]
[]
(test/tests/postprocessors/element_time_derivative/el_time_deriv_1d_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -5
xmax = 5
ymin = -1
nx = 5
elem_type = EDGE
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = t*x+1
[../]
[]
[Kernels]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./diffusion]
type = Diffusion
variable = u
[../]
[./timeDer]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = u
boundary = '0 1'
value = 0
[../]
[]
[Postprocessors]
[./elementAvgTimeDerivative]
type = ElementAverageTimeDerivative
variable = u
[../]
[./elementAvgValue]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
scheme = implicit-euler
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_el_time_deriv_1d
csv = true
[]
(test/tests/nodalkernels/constraint_enforcement/lower-bound.i)
l=10
nx=100
num_steps=10
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[lm]
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = '${l} - x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = '-1'
[]
[]
[NodalKernels]
[positive_constraint]
type = LowerBoundNodalKernel
variable = lm
v = u
exclude_boundaries = 'left right'
[]
[forces]
type = CoupledForceNodalKernel
variable = u
v = lm
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = ${l}
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type'
petsc_options_value = '0 30 asm 16 basic'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[active_lm]
type = GreaterThanLessThanPostprocessor
variable = lm
execute_on = 'nonlinear timestep_end'
value = 1e-8
[]
[violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[]
(modules/phase_field/test/tests/free_energy_material/CoupledValueFunctionFreeEnergy.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 500
ymin = 0
ymax = 500
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
op_num = 4
var_name_base = gr
[]
[Variables]
[PolycrystalVariables]
[]
[]
[Functions]
[grain_growth_energy]
type = PiecewiseMultilinear
data_file = grain_growth_energy.data
[]
[grain_growth_mu0]
type = PiecewiseMultilinear
data_file = grain_growth_mu0.data
[]
[grain_growth_mu1]
type = PiecewiseMultilinear
data_file = grain_growth_mu1.data
[]
[grain_growth_mu2]
type = PiecewiseMultilinear
data_file = grain_growth_mu2.data
[]
[grain_growth_mu3]
type = PiecewiseMultilinear
data_file = grain_growth_mu3.data
[]
[matrix]
type = ParsedFunction
expression = '1-x-y-z'
[]
[]
[ICs]
[gr1]
type = SmoothCircleIC
variable = gr1
x1 = 0
y1 = 0
radius = 150
int_width = 90
invalue = 1
outvalue = 0
[]
[gr2]
type = SmoothCircleIC
variable = gr2
x1 = 500
y1 = 0
radius = 120
int_width = 90
invalue = 1
outvalue = 0
[]
[gr3]
type = SmoothCircleIC
variable = gr3
x1 = 250
y1 = 500
radius = 300
int_width = 90
invalue = 1
outvalue = 0
[]
[gr0]
type = CoupledValueFunctionIC
variable = gr0
v = 'gr1 gr2 gr3'
function = matrix
[]
[]
[AuxVariables]
[bnds]
order = FIRST
family = LAGRANGE
[]
[local_energy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[gr0dot]
type = TimeDerivative
variable = gr0
[]
[gr0bulk]
type = AllenCahn
variable = gr0
f_name = F
coupled_variables = 'gr1 gr2 gr3'
[]
[gr0int]
type = ACInterface
variable = gr0
kappa_name = kappa_op
[]
[gr1dot]
type = TimeDerivative
variable = gr1
[]
[gr1bulk]
type = AllenCahn
variable = gr1
f_name = F
coupled_variables = 'gr0 gr2 gr3'
[]
[gr1int]
type = ACInterface
variable = gr1
kappa_name = kappa_op
[]
[gr2dot]
type = TimeDerivative
variable = gr2
[]
[gr2bulk]
type = AllenCahn
variable = gr2
f_name = F
coupled_variables = 'gr0 gr1 gr3'
[]
[gr2int]
type = ACInterface
variable = gr2
kappa_name = kappa_op
[]
[gr3dot]
type = TimeDerivative
variable = gr3
[]
[gr3bulk]
type = AllenCahn
variable = gr3
f_name = F
coupled_variables = 'gr0 gr1 gr2'
[]
[gr3int]
type = ACInterface
variable = gr3
kappa_name = kappa_op
[]
[]
[AuxKernels]
[BndsCalc]
type = BndsCalcAux
variable = bnds
[]
[local_free_energy]
type = TotalFreeEnergy
variable = local_energy
kappa_names = 'kappa_op kappa_op kappa_op kappa_op'
interfacial_vars = 'gr0 gr1 gr2 gr3'
[]
[]
[Materials]
[Copper]
type = GBEvolution
T = 500 # K
wGB = 60 # nm
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
[]
[Tabulated]
type = CoupledValueFunctionFreeEnergy
free_energy_function = grain_growth_energy
chemical_potential_functions = 'grain_growth_mu0 grain_growth_mu1 grain_growth_mu2 '
'grain_growth_mu3'
v = 'gr0 gr1 gr2 gr3'
[]
[]
[Postprocessors]
[total_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[]
[]
[Preconditioning]
[SMP]
type = SMP
coupled_groups = 'gr0,gr1 gr0,gr2 gr0,gr3'
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 30
nl_rel_tol = 1.0e-9
start_time = 0.0
num_steps = 3
dt = 100.0
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(modules/richards/test/tests/darcy/pp.i)
# investigating pressure pulse in 1D
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
variable = pressure
fluid_weight = '0 0 0'
fluid_viscosity = 1E-3
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 2E6
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
[../]
[]
[Kernels]
[./time_deriv]
type = TimeDerivative
[../]
[./darcy]
type = DarcyFlux
[../]
[]
[AuxVariables]
[./f_0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_0]
type = DarcyFluxComponent
component = x
variable = f_0
porepressure = pressure
[../]
[]
[Materials]
[./solid]
type = DarcyMaterial
block = 0
mat_permeability = '2E-5 0 0 0 2E-5 0 0 0 2E-5' # this is the permeability (1E-15) multiplied by the bulk modulus (2E9) divided by the porosity (0.1)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'bcgs bjacobi'
dt = 1E3
end_time = 1E4
[]
[Outputs]
file_base = pp
execute_on = 'timestep_end final'
time_step_interval = 10000
exodus = true
[]
(test/tests/multiapps/restart_subapp_ic/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[u_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[fn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/force_aux_ordering/force_postaux.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 5
ymin = 0
ymax = 1
ny = 5
allow_renumbering = false
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
initial_condition = 1
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
# spatial_uo_1/2 are executed preaux by default because spatial_uo_aux1/2 depend on them
# We force 1 to be executed postaux, so the auxkernel will use the old value, and the
# corresponding post processor, value2, will get an old value as well
[UserObjects]
[spatial_uo_1]
type = LayeredSideAverage
variable = u
direction = y
num_layers = 3
boundary = 'left'
force_postaux = true
[]
[spatial_uo_2]
type = LayeredSideAverage
variable = u
direction = y
num_layers = 3
boundary = 'left'
[]
[]
[AuxVariables]
[v1]
[]
[v2]
[]
[]
[AuxKernels]
[spatial_uo_aux_1]
type = SpatialUserObjectAux
variable = v1
user_object = 'spatial_uo_1'
[]
[spatial_uo_aux_2]
type = SpatialUserObjectAux
variable = v2
user_object = 'spatial_uo_2'
[]
[]
[Postprocessors]
[value1]
type = NodalVariableValue
variable = v1
nodeid = 3
force_preaux = true
[]
[value2]
type = NodalVariableValue
variable = v2
nodeid = 3
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[]
[Executioner]
type = Transient
dt = 1.0
end_time = 2.0
[]
[Outputs]
csv = true
[]
(test/tests/parser/cli_multiapp_group/dt_from_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[MultiApps]
[./sub_left]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_parent_sub.i'
app_type = MooseTestApp
[../]
[./sub_right]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_parent_sub.i'
app_type = MooseTestApp
[../]
[]
(test/tests/variables/block_aux_kernel/block_aux_kernel_test.i)
###########################################################
# This is a simple test of the AuxVariable System.
# A single discretized explicit variable is added to the
# system which is independent of the nonlinear variables
# being solved for by the solver.
#
# @Requirement F5.10
###########################################################
[Mesh]
file = gap_test.e
# This test uses the geometric search system, which does not currently work
# in parallel with DistributedMesh enabled. For more information, see #2121.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./distance]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff u_time'
[./diff]
type = Diffusion
variable = u
[../]
[./u_time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./x]
type = FunctionAux
variable = disp_x
function = 0
block = 1
[../]
[./y]
type = FunctionAux
variable = disp_y
function = 0
block = 1
[../]
[./z]
type = FunctionAux
variable = disp_z
function = t
block = 1
[../]
[./gap_distance]
type = NearestNodeDistanceAux
variable = distance
boundary = 2
paired_boundary = 3
[../]
[./gap_distance2]
type = NearestNodeDistanceAux
variable = distance
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
active = 'block1_left block1_right block2_left block2_right'
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 1.0
num_steps = 8
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/multiapps/positions_from_file/dt_from_multi_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(python/peacock/tests/input_tab/InputTree/gold/transient.i)
# ##########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
# ##########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Functions]
[forcing_fn]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
expression = '3*t*t*((x*x)+(y*y))-(4*t*t*t)'
[]
[exact_fn]
type = ParsedFunction
expression = 't*t*t*((x*x)+(y*y))'
[]
[]
[Kernels]
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
inactive = 'left right'
[all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[]
[left]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = '1'
value = 1
[]
[]
[Postprocessors]
[l2_err]
type = ElementL2Error
variable = 'u'
function = exact_fn
[]
[dt]
type = TimestepSize
[]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Transient
scheme = implicit-euler
solve_type = PJFNK
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
(test/tests/multiapps/reset/multilevel_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub_sub.i
output_in_position = true
[../]
[]
(test/tests/bcs/periodic/parallel_pbc_using_trans.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmax = 10
ymax = 10
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Functions]
[./tr_x]
type = ParsedFunction
expression = x
[../]
[./tr_y]
type = ParsedFunction
expression = y+10
[../]
[./itr_x]
type = ParsedFunction
expression = x
[../]
[./itr_y]
type = ParsedFunction
expression = y-10
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
y_center = 1
x_spread = 0.25
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./x]
primary = bottom
secondary = top
transform_func = 'tr_x tr_y'
inv_transform_func = 'itr_x itr_y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 10
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/restart/restart_transient_from_transient/restart_trans_with_2subs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = 'replicated'
[]
[Problem]
restart_file_base = pseudo_trans_with_2subs_out_cp/LATEST
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
expression = '1e3*x*(1-x)+5e2' # increase this function to drive transient
[]
[]
[Kernels]
[timedt]
type = TimeDerivative
variable = power_density
[]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 50
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3
dt = 1.0
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
line_search = none
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0
0.5 0 0'
input_files = restart_trans_with_2subs_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[p_to_sub]
type = MultiAppProjectionTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppGeometricInterpolationTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/combined/examples/publications/rapid_dev/fig8.i)
#
# Fig. 8 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Two growing particles with differnet anisotropic Eigenstrains
#
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 2
nx = 80
ny = 40
xmin = -20
xmax = 20
ymin = 0
ymax = 20
elem_type = QUAD4
[../]
[./cnode]
type = ExtraNodesetGenerator
input = gen
coord = '0.0 0.0'
new_boundary = 100
tolerance = 0.1
[../]
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
int_width = 1
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
# particle x positions and radius
P1X=8
P2X=-4
PR=2
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '${P1X} ${P2X}'
y_positions = '0 0'
z_positions = '0 0'
radii = '${PR} ${PR}'
outvalue = 0.5
invalue = 0.9
[../]
[../]
[./w]
[../]
# Order parameter for the Matrix
[./eta1]
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '${P1X} ${P2X}'
y_positions = '0 0'
z_positions = '0 0'
radii = '${PR} ${PR}'
outvalue = 1.0
invalue = 0.0
[../]
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
[./InitialCondition]
type = SmoothCircleIC
x1 = ${P2X}
y1 = 0
radius = ${PR}
invalue = 1.0
outvalue = 0.0
[../]
[../]
[./eta3]
[./InitialCondition]
type = SmoothCircleIC
x1 = ${P1X}
y1 = 0
radius = ${PR}
invalue = 1.0
outvalue = 0.0
[../]
[../]
# Lagrange-multiplier
[./lambda]
initial_condition = 1.0
[../]
[]
[Physics/SolidMechanics/QuasiStatic/all]
add_variables = true
strain = SMALL
eigenstrain_names = eigenstrain
[]
[Kernels]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta1 eta2 eta3'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0.5 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
property_name = etasum
coupled_variables = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
expression = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
property_name = phase
coupled_variables = 'eta2 eta3'
expression = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# global mechanical properties
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '400 400'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# eigenstrain
[./eigenstrain_2]
type = GenericConstantRankTwoTensor
tensor_name = s2
tensor_values = '0 -0.05 0 0 0 0'
[../]
[./eigenstrain_3]
type = GenericConstantRankTwoTensor
tensor_name = s3
tensor_values = '-0.05 0 0 0 0 0'
[../]
[./eigenstrain]
type = CompositeEigenstrain
weights = 'h2 h3'
tensors = 's2 s3'
args = 'eta2 eta3'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = '4*c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(c-0.9)^2-0.4'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
property_name = Fc3
expression = '(c-0.9)^2-0.5'
coupled_variables = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./chemical_free_energy]
type = DerivativeMultiPhaseMaterial
f_name = Fc
fi_names = 'Fc1 Fc2 Fc3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
coupled_variables = 'c'
W = 3
[../]
# global elastic free energy
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta2 eta3'
outputs = exodus
output_properties = Fe
derivative_order = 2
[../]
# Penalize phase 2 and 3 coexistence
[./multi_phase_penalty]
type = DerivativeParsedMaterial
property_name = Fp
expression = '50*(eta2*eta3)^2'
coupled_variables = 'eta2 eta3'
derivative_order = 2
outputs = exodus
output_properties = Fp
[../]
# free energy
[./free_energy]
type = DerivativeSumMaterial
property_name = F
sum_materials = 'Fc Fe Fp'
coupled_variables = 'c eta1 eta2 eta3'
derivative_order = 2
[../]
[]
[BCs]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 12.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
iteration_window = 1
dt = 0.01
[../]
[]
[Outputs]
print_linear_residuals = false
execute_on = 'INITIAL TIMESTEP_END'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
(test/tests/multiapps/initial_failure/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
execute_on = initial
input_files = sub.i
[../]
[]
(modules/phase_field/examples/anisotropic_interfaces/GrandPotentialSolidification.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 28
ny = 28
xmin = -7
xmax = 7
ymin = -7
ymax = 7
uniform_refine = 2
[]
[GlobalParams]
radius = 0.2
int_width = 0.1
x1 = 0.0
y1 = 0.0
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[./T]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w T'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w T'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./etaa0_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = etaa0
coef = -5.0
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w T'
property_name = omegab
material_property_names = 'Vm kb cbeq S Tm'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq-S*(T-Tm)'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
anisotropy_strength = 0.05
kappa_bar = 0.05
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
anisotropy_strength = 0.05
kappa_bar = 0.05
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu S Tm'
prop_values = '33.33 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0 1.0 5.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-10
end_time = 2.0
dtmax = 0.05
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 5
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
time_step_interval = 5
exodus = true
[]
(modules/phase_field/test/tests/MultiPhase/switchingfunctionmultiphasematerial.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmin = 0
xmax = 30
ymin = 0
ymax = 30
[]
[Variables]
[./c]
[../]
[./w]
[../]
[./eta1]
[../]
[./eta2]
[../]
[./eta3]
[../]
[./eta0]
[../]
[]
[ICs]
[./IC_eta2]
x1 = 0
y1 = 15
x2 = 30
y2 = 30
inside = 1.0
outside = 0.0
type = BoundingBoxIC
variable = eta2
int_width = 0
[../]
[./IC_eta3]
x1 = 15
y1 = 0
x2 = 30
y2 = 15
inside = 1.0
outside = 0.0
type = BoundingBoxIC
variable = eta3
int_width = 0
[../]
[./IC_eta4]
x1 = 0
y1 = 0
x2 = 15
y2 = 15
inside = 1.0
outside = 0.0
type = BoundingBoxIC
variable = eta0
int_width = 0
[../]
[./IC_c]
x1 = 15
y1 = 15
radius = 8.0
outvalue = 0.05
variable = c
invalue = 1.0
type = SmoothCircleIC
int_width = 3.0
[../]
[./IC_eta1]
x1 = 15
y1 = 15
radius = 8.0
outvalue = 0.0
variable = eta1
invalue = 1.0
type = SmoothCircleIC
int_width = 3.0
[../]
[]
# Not evalulating time evolution to improve test performance, since we are only testing
# the material property. However, the kernel and free energy are left in place to allow
# this test to be easily turned in to a working example
#[Kernels]
# [./c_dot]
# type = CoupledTimeDerivative
# variable = w
# v = c
# [../]
# [./c_res]
# type = SplitCHParsed
# variable = c
# f_name = F
# kappa_name = kappa_c
# w = w
# coupled_variables = 'eta1 eta2 eta3 eta0'
# [../]
# [./w_res]
# # coupled_variables = 'c'
# type = SplitCHWRes
# variable = w
# mob_name = M
# [../]
# [./AC1_bulk]
# type = AllenCahn
# variable = eta1
# f_name = F
# coupled_variables = 'c eta2 eta3 eta0'
# [../]
# [./AC1_int]
# type = ACInterface
# variable = eta1
# kappa_name = kappa_s
# [../]
# [./e1_dot]
# type = TimeDerivative
# variable = eta1
# [../]
# [./AC2_bulk]
# type = AllenCahn
# variable = eta2
# f_name = F
# coupled_variables = 'c eta1 eta3 eta0'
# [../]
# [./AC2_int]
# type = ACInterface
# variable = eta2
# [../]
# [./e2_dot]
# type = TimeDerivative
# variable = eta2
# [../]
# [./AC3_bulk]
# type = AllenCahn
# variable = eta3
# f_name = F
# coupled_variables = 'c eta2 eta1 eta0'
# [../]
# [./AC3_int]
# type = ACInterface
# variable = eta3
# [../]
# [./e3_dot]
# type = TimeDerivative
# variable = eta3
# [../]
# [./AC4_bulk]
# type = AllenCahn
# variable = eta0
# f_name = F
# coupled_variables = 'c eta2 eta3 eta1'
# [../]
# [./AC4_int]
# type = ACInterface
# variable = eta0
# [../]
# [./e4_dot]
# type = TimeDerivative
# variable = eta0
# [../]
#[]
[Materials]
[./ha_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'eta0 eta1 eta2 eta3'
phase_etas = 'eta1'
outputs = exodus
[../]
[./hb_test]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'eta0 eta1 eta2 eta3'
phase_etas = 'eta0 eta2 eta3'
outputs = exodus
[../]
#[./ha]
# type = DerivativeParsedMaterial
# coupled_variables = 'eta1 eta2 eta3 eta0'
# property_name = ha_parsed
# expression = 'eta1^2/(eta1^2+eta2^2+eta3^2+eta0^2)'
# derivative_order = 2
# outputs = exodus
#[../]
#[./hb]
# type = DerivativeParsedMaterial
# coupled_variables = 'eta1 eta2 eta3 eta0'
# property_name = hb_parsed
# expression = '(eta2^2+eta3^2+eta0^2)/(eta1^2+eta2^2+eta3^2+eta0^2)'
# derivative_order = 2
# outputs = exodus
#[../]
#[./FreeEng]
# type = DerivativeParsedMaterial
# coupled_variables = 'c eta1 eta2 eta3 eta0'
# property_name = F
# constant_names = 'c1 c2 s g d e h z'
# constant_expressions = '1.0 0.0 1.5 1.5 1.0 1.0 1 1.0'
# material_property_names = 'ha(eta1,eta2,eta3,eta0) hb(eta1,eta2,eta3,eta0)'
# expression = 'a:=eta1^2/(eta1^2+eta2^2+eta3^2+eta0^2);f1:=ha*(c-c1)^2;b:=(eta2^2+eta3^2+eta0^2)/(eta1^2+eta2^2+eta3^2+eta0^2);f2:=hb*(c-c2)^2
# ;f3:=1/4*eta1^4-1/2*eta1^2+1/4*eta2^4-1/2*eta2^2+1/4*eta3^4-1/2*eta3^2+1/4*eta0^4-1/2*eta0^2
# ;f4:=z*s*(eta1^2*eta2^2+eta1^2*eta3^2+eta1^2*eta0^2)+g*(eta2^2*eta3^2+eta2^2*eta0^2+eta3^2*eta0^2);f:=1/4+e*f1+d*f2+h*(f3+f4);f'
# derivative_order = 2
#[../]
[./const]
type = GenericConstantMaterial
prop_names = 'kappa_c kappa_s kappa_op L M'
prop_values = '0 3 3 1.0 1.0'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Problem]
solve = false
kernel_coverage_check = false
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_subapp_not_parent/complete_solve_no_subapp.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
end_time = 4.0
dt = 1.0
[]
[Outputs]
file_base = complete_solve_no_subapp
exodus = true
[]
(test/tests/postprocessors/nodal_var_value/nodal_aux_var_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'v'
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
active = 'v1'
[./v1]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'left_bc'
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = 'time_v diff_v'
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
active = 'ak1'
[./ak1]
type = CoupledAux
variable = v1
coupled = v
value = 1
operator = '+'
[../]
[]
[BCs]
active = 'left_v right_v'
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 1
[../]
[]
[Postprocessors]
active = 'node4v node4v1'
[./node4v]
type = NodalVariableValue
variable = v
nodeid = 3
[../]
[./node4v1]
type = NodalVariableValue
variable = v1
nodeid = 3
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_nodal_aux_var_value
exodus = true
[]
(test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/picard_sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./w]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-5 # loose enough to force multiple Picard iterations on this example
l_tol = 1e-5 # loose enough to force multiple Picard iterations on this example
num_steps = 2
[]
[Postprocessors]
[parent_time]
type = Receiver
execute_on = 'timestep_end'
[]
[parent_dt]
type = Receiver
execute_on = 'timestep_end'
[]
[sub_time]
type = Receiver
execute_on = 'timestep_end'
[]
[sub_dt]
type = Receiver
execute_on = 'timestep_end'
[]
[time]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[dt]
type = TimestepSize
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/picard_catch_up/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = 'v'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'sub.i'
max_catch_up_steps = 100
max_failures = 100
catch_up = true
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(test/tests/multiapps/transient_multiapp/dt_from_multi_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/DiffuseCreep/strain.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
expression = 'c*(1.0-c)'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 20
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/tag/tag_nodal_kernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./nodal_ode]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./time]
type = TimeDerivative
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = nodal_ode
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./constant_rate]
type = ConstantRate
variable = nodal_ode
rate = 1.0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 10
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'time nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = LAGRANGE
[../]
[./tag_variable2]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = nodal_ode
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = TagMatrixAux
variable = tag_variable2
v = u
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
num_steps = 10
nl_rel_tol = 1e-08
dt = 0.01
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/grid-sequencing/vi-coarse.i)
l = 10
nx = 40
num_steps = 2
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds]
[]
[]
[Bounds]
[u_upper_bound]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[]
[u_lower_bound]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options = '-snes_vi_monitor'
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = 'upper_violations lower_violations'
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = '${fparse 10+1e-8}'
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
[MultiApps]
[coarser]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = vi-coarser.i
[]
[]
[Transfers]
[mesh_function_begin]
type = MultiAppGeneralFieldShapeEvaluationTransfer
from_multi_app = coarser
source_variable = u
variable = u
execute_on = timestep_begin
[]
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/parent_quad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./parent_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./func]
type = ParsedFunction
expression = x*y*t
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./func_aux]
type = FunctionAux
variable = parent_aux
function = func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./quad]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.05 0.05 0 0.95 0.05 0 0.05 0.95 0 0.95 0.95 0'
input_files = quad_sub.i
[../]
[]
[Transfers]
[./parent_to_sub]
type = MultiAppVariableValueSamplePostprocessorTransfer
to_multi_app = quad
source_variable = parent_aux
postprocessor = pp
[../]
[]
(modules/optimization/examples/simpleTransient/forward_and_adjoint.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[]
[Variables]
[u]
[]
[]
[VectorPostprocessors]
[src_values]
type = CSVReader
csv_file = source_params.csv
header = true
outputs = none
[]
[]
[ICs]
[initial]
type = FunctionIC
variable = u
function = exact
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[src]
type = BodyForce
variable = u
function = source
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'left right top bottom'
value = 0
[]
[]
[Functions]
[exact]
type = ParsedFunction
value = '2*exp(-2.0*(x - sin(2*pi*t))^2)*exp(-2.0*(y - cos(2*pi*t))^2)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/pi'
[]
[source]
type = NearestReporterCoordinatesFunction
x_coord_name = src_values/coordx
y_coord_name = src_values/coordy
time_name = src_values/time
value_name = src_values/values
[]
[]
[Executioner]
type = TransientAndAdjoint
forward_system = nl0
adjoint_system = adjoint
num_steps = 100
end_time = 1
nl_rel_tol = 1e-12
l_tol = 1e-12
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Reporters]
[measured_data]
type = OptimizationData
measurement_file = mms_data.csv
file_xcoord = x
file_ycoord = y
file_zcoord = z
file_time = t
file_value = u
variable = u
execute_on = timestep_end
objective_name = objective_value
outputs = none
[]
[]
[Postprocessors]
[topRight_pp]
type = PointValue
point = '0.5 0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[bottomRight_pp]
type = PointValue
point = '-0.5 0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[bottomLeft_pp]
type = PointValue
point = '-0.5 -0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[topLeft_pp]
type = PointValue
point = '0.5 -0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[]
[Outputs]
csv = true
console = false
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
kernel_coverage_check = false
[]
[Variables]
[u_adjoint]
solver_sys = adjoint
outputs = none
[]
[]
[DiracKernels]
[misfit]
type = ReporterTimePointSource
variable = u_adjoint
value_name = measured_data/misfit_values
x_coord_name = measured_data/measurement_xcoord
y_coord_name = measured_data/measurement_ycoord
z_coord_name = measured_data/measurement_zcoord
time_name = measured_data/measurement_time
[]
[]
[VectorPostprocessors]
[adjoint]
type = ElementOptimizationSourceFunctionInnerProduct
variable = u_adjoint
function = source
execute_on = ADJOINT_TIMESTEP_END
outputs = none
[]
[]
(test/tests/time_steppers/timesequence_stepper/timesequence.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
end_time = 4.0
[./TimeStepper]
type = TimeSequenceStepper
time_sequence = '0 0.85 1.3 2 4'
[../]
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/moving_interface/cut_mesh_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[XFEM]
geometric_cut_userobjects = 'cut_mesh'
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 11
ny = 11
nz = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
elem_type = HEX8
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0.1'
input = gen
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0.1'
input = block1
[]
[]
[UserObjects]
[cut_mesh]
type = InterfaceMeshCut3DUserObject
mesh_file = cylinder_surface.e
interface_velocity_function = vel_func
heal_always = true
block = 2
[]
[]
[Functions]
[vel_func]
type = ConstantFunction
value = 0.011
[]
[]
[Physics/SolidMechanics/QuasiStatic]
displacements = 'disp_x disp_y disp_z'
[all]
strain = SMALL
add_variables = true
incremental = false
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
displacements = 'disp_x disp_y disp_z'
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[ls]
[]
[]
[AuxKernels]
[ls]
type = MeshCutLevelSetAux
mesh_cut_user_object = cut_mesh
variable = ls
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
diffusivity = 1
[]
[time_deriv]
type = TimeDerivative
variable = u
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[BCs]
[front_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[back_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[box1_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = left
[]
[box1_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = left
[]
[box1_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = left
[]
[box2_x]
type = FunctionDirichletBC
variable = disp_x
function = '0.01*t'
boundary = right
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 20
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 2
end_time = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/publications/rapid_dev/fig7a.i)
#
# Fig. 7 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Solid gray curve (1)
# Eigenstrain and elastic energies ar computed per phase and then interpolated.
# Supply the RADIUS parameter (10-35) on the command line to generate data
# for all curves in the plot.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 32
xmin = 0
xmax = 100
second_order = true
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Functions]
[./diff]
type = ParsedFunction
expression = '${RADIUS}-pos_c'
symbol_names = pos_c
symbol_values = pos_c
[../]
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./w]
[../]
# Phase order parameter
[./eta]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
# Mesh displacement
[./disp_r]
order = SECOND
[../]
[./Fe_fit]
order = SECOND
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk1]
type = AllenCahn
variable = eta
args = 'c'
mob_name = L
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
mob_name = L
kappa_name = kappa_eta
[../]
[./Fe]
type = MaterialPropertyValue
prop_name = Fe
variable = Fe_fit
[../]
[./autoadjust]
type = MaskedBodyForce
variable = w
function = diff
mask = mask
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '1.0 1.0 0.5 1'
[../]
# forcing function mask
[./mask]
type = ParsedMaterial
property_name = mask
expression = grad/dt
material_property_names = 'grad dt'
[../]
[./grad]
type = VariableGradientMaterial
variable = c
prop = grad
[../]
[./time]
type = TimeStepMaterial
[../]
# global mechanical properties
[./elasticity_tensor_1]
type = ComputeElasticityTensor
C_ijkl = '1 1'
base_name = phase1
fill_method = symmetric_isotropic
[../]
[./elasticity_tensor_2]
type = ComputeElasticityTensor
C_ijkl = '1 1'
base_name = phase2
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeRSphericalSmallStrain
base_name = phase1
[../]
[./strain_2]
type = ComputeRSphericalSmallStrain
base_name = phase2
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
# eigenstrain per phase
[./eigenstrain2]
type = ComputeEigenstrain
eigen_base = '0.05 0.05 0.05 0 0 0'
base_name = phase2
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching]
type = SwitchingFunctionMaterial
function_name = h
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = 'c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(1-c)^2'
coupled_variables = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
f_name = Fe1
args = ''
base_name = phase1
derivative_order = 2
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
f_name = Fe2
args = ''
base_name = phase2
derivative_order = 2
[../]
# per phase free energies
[./free_energy_1]
type = DerivativeSumMaterial
property_name = F1
sum_materials = 'Fc1 Fe1'
coupled_variables = 'c'
derivative_order = 2
[../]
[./free_energy_2]
type = DerivativeSumMaterial
property_name = F2
sum_materials = 'Fc2 Fe2'
coupled_variables = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./global_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = F
fa_name = F1
fb_name = F2
eta = eta
args = 'c'
W = 4
[../]
# global stress
[./global_stress]
type = TwoPhaseStressMaterial
base_A = phase1
base_B = phase2
[../]
[./elastic_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = Fe
fa_name = Fe1
fb_name = Fe2
eta = eta
args = 'c'
W = 0
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_r
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_c]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = c
target = 0.582
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_eta]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = eta
target = 0.5
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./c_min]
type = ElementExtremeValue
value_type = min
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
variable = 'Fe_fit c w'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 5000
sort_by = x
outputs = vpp
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 2.0e-9
start_time = 0.0
end_time = 100000.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
iteration_window = 1
dt = 1
[../]
[./Adaptivity]
initial_adaptivity = 5
interval = 10
max_h_level = 5
refine_fraction = 0.9
coarsen_fraction = 0.1
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
[./table]
type = CSV
delimiter = ' '
file_base = radius_${RADIUS}/energy_pp
[../]
[./vpp]
type = CSV
delimiter = ' '
sync_times = '10 50 100 500 1000 5000 10000 50000 100000'
sync_only = true
time_data = true
file_base = radius_${RADIUS}/energy_vpp
[../]
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_dtfunc.i)
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[]
[Executioner]
type = Transient
end_time = 20.0
verbose = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 1.0
optimal_iterations = 10
time_t = '0.0 5.0'
time_dt = '1.0 5.0'
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[]
[Outputs]
csv = true
[ckp]
type = Checkpoint
num_files = 3
[]
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/parent2_wrong_order.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub_app]
order = FOURTH
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0
0.7 0.7 0
0.8 0.8 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub2.i
[../]
[]
[Transfers]
[./pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub
from_postprocessor = point_value
to_aux_scalar = from_sub_app
[../]
[]
(test/tests/multiapps/relaxation/picard_relaxed_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/phase_field_kernels/ACInterfaceStress_jacobian.i)
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 8
ny = 8
nz = 8
xmax = 20
ymax = 20
zmax = 20
[]
[Variables]
[./eta]
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 12.0
invalue = 1.0
outvalue = 0.0
int_width = 16.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACInterfaceStress]
type = ACInterfaceStress
variable = eta
mob_name = 1
stress = 2.7
[../]
[]
[Materials]
[./strain]
type = GenericConstantRankTwoTensor
tensor_name = elastic_strain
tensor_values = '0.11 0.12 0.13 0.21 0.22 0.23 0.31 0.32 0.33'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 1000
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/bcs/adbcs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = ADDirichletBC
variable = u
boundary = right
value = 1
[]
[right2]
type = ADFunctionDirichletBC
variable = u
boundary = right
function = (y*(t-1))+1
[]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[period0]
type = TimePeriod
disable_objects = 'BoundaryCondition::right2'
start_time = '0'
end_time = '0.95'
execute_on = 'initial timestep_begin'
[]
[period2]
type = TimePeriod
disable_objects = 'BCs/right'
start_time = '1'
execute_on = 'initial timestep_begin'
[]
[]
(python/peacock/tests/common/transient_big.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
file_base = out_transient
exodus = true
[]
(test/tests/multiapps/sub_cycling_failure/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_steps = '15'
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/test_harness/bad_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = BogusKernel
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4 # Gold file only has 4 steps
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(test/tests/test_harness/exception_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Problem]
regard_general_exceptions_as_errors = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./exception]
type = ExceptionKernel
variable = u
when = residual
# This exception won't be caught and will crash the simulation
throw_std_exception = true
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 2
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.005
solve_type = 'PJFNK'
[]
(test/tests/outputs/csv/csv_restart_part2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./mid]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./csv]
type = CSV
file_base = csv_restart_part2_out
[../]
[]
[Problem]
restart_file_base = csv_restart_part1_out_cp/0010
[]
(test/tests/auxkernels/time_derivative_second_aux/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 2
[]
[Variables]
[u]
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[reaction]
type = Reaction
variable = u
[]
[diffusion]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = NeumannBC
variable = u
value = 5
boundary = 'left'
[]
[]
[AuxVariables]
[variable_derivative]
family = MONOMIAL
order = CONSTANT
[]
inactive = 'variable_derivative_fv'
[variable_derivative_fv]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[AuxKernels]
# Time derivative of a nonlinear variable
[var_derivative]
type = SecondTimeDerivativeAux
variable = variable_derivative
v = u
factor = 10
execute_on = 'TIMESTEP_END'
[]
# this places the derivative of a FE variable in a FV one
# let's output a warning
inactive = 'var_derivative_to_fv'
[var_derivative_to_fv]
type = SecondTimeDerivativeAux
variable = variable_derivative_fv
v = u
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
l_tol = 1e-10
[TimeIntegrator]
type = CentralDifference
[]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/output_on/postprocessors.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./sum]
type = PerfGraphData
section_name = "Root"
data_type = total
execute_on = 'initial nonlinear timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = false
[./console]
type = Console
execute_postprocessors_on = 'initial nonlinear timestep_end'
[../]
[]
(modules/phase_field/test/tests/SimpleACInterface/SimpleCoupledACInterface.i)
#
# Test the coupled Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./w]
[../]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = 0.0
int_width = 5.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./CoupledBulk]
type = MatReaction
variable = eta
v = w
reaction_rate = L
[../]
[./W]
type = Reaction
variable = w
[../]
[./CoupledACInterface]
type = SimpleCoupledACInterface
variable = w
v = eta
kappa_name = 1
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'eta'
expression = 'eta^2 * (1-eta)^2'
derivative_order = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 2
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
hide = w
exodus = true
[]
(test/tests/outputs/vtk/vtk_parallel.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
vtk = true
[]
(test/tests/dgkernels/ad_dg_convection/ad_dg_convection.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 20
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[]
[DGKernels]
[convection]
type = ADDGAdvection
variable = u
velocity = velocity
[]
[]
[BCs]
[left]
type = PenaltyDirichletBC
value = 1
penalty = 1e6
boundary = 'left'
variable = u
[]
[]
[Materials]
[vel]
type = ADGenericConstantVectorMaterial
prop_names = 'velocity'
prop_values = '1 0 0'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
num_steps = 10
dt = 1
dtmin = 1
[]
(test/tests/transfers/multiapp_postprocessor_transfer/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./from_parent]
type = Receiver
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/functions/linear_combination_function/lcf_grad.i)
# LinearCombinationFunction function test
# See [Functions] block for a description of the tests
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 3
ny = 3
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./the_linear_combo_x]
order = CONSTANT
family = MONOMIAL
[../]
[./the_linear_combo_y]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./the_linear_combo_x]
type = FunctionDerivativeAux
component = x
variable = the_linear_combo_x
function = the_linear_combo
[../]
[./the_linear_combo_y]
type = FunctionDerivativeAux
component = y
variable = the_linear_combo_y
function = the_linear_combo
[../]
[]
[Functions]
[./xtimes]
type = ParsedGradFunction
value = '1.1*x+y'
grad_x = '1.1'
grad_y = '1'
[../]
[./twoxplus1]
type = ParsedGradFunction
value = '2*x+1'
grad_x = '2'
[../]
[./tover2]
type = ParsedGradFunction
value = '0.5*t-y*7'
grad_y = '-7'
[../]
[./the_linear_combo]
type = LinearCombinationFunction
functions = 'xtimes twoxplus1 tover2'
w = '3 -1.2 3'
[../]
[./should_be_answer_x]
type = ParsedFunction
expression = '3*1.1-1.2*2'
[../]
[./should_be_answer_y]
type = ParsedFunction
expression = '3*1+3*(-7)'
[../]
[]
[Postprocessors]
[./should_be_zero_x]
type = ElementL2Error
function = should_be_answer_x
variable = the_linear_combo_x
[../]
[./should_be_zero_y]
type = ElementL2Error
function = should_be_answer_y
variable = the_linear_combo_y
[../]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = lcf_grad
hide = dummy
exodus = false
csv = true
[]
(test/tests/multiapps/relaxation/bad_relax_factor_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
initial_condition = 1
[]
[inverse_v]
initial_condition = 1
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = inverse_v
[]
[]
[AuxKernels]
[invert_v]
type = QuotientAux
variable = inverse_v
denominator = v
numerator = 20.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[Neumann_right]
type = NeumannBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
relaxation_factor = 2.0
transformed_variables = u
[]
[Outputs]
exodus = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = picard_relaxed_sub.i
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(test/tests/test_harness/good.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(test/tests/userobjects/setup_interface_count/general.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.5 0 0'
block_id = 1
top_right = '1 1 0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = GeneralSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./timestep] # 10, once per timestep
type = GeneralSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./subdomain] # 0, method not implemented for GeneralUserObjects
type = GeneralSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = GeneralSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = GeneralSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./execute] # 1 for initial and 2 for each timestep
type = GeneralSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./threadjoin] # 0, not implemented
type = GeneralSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/meshgenerators/file_mesh_generator/2d_diffusion_iga_nosplines.i)
[Mesh]
[cyl2d_iga]
type = FileMeshGenerator
file = PressurizedCyl_Patch6_4Elem.e
clear_spline_nodes = true
[]
allow_renumbering = false # VTK diffs via XMLDiff are
parallel_type = replicated # really fragile
[]
[Variables]
[u]
order = SECOND # Must match mesh order
family = RATIONAL_BERNSTEIN
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'sin(x)'
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = NEWTON
dtmin = 1
[]
[Outputs]
vtk = true
[]
(test/tests/controls/real_function_control/real_function_control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
dtmin = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Functions]
[./func_coef]
type = ParsedFunction
expression = '2*t + 0.1'
[../]
[]
[Postprocessors]
[./coef]
type = RealControlParameterReporter
parameter = 'Kernels/diff/coef'
[../]
[]
[Controls]
[./func_control]
type = RealFunctionControl
parameter = '*/*/coef'
function = 'func_coef'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/combined/examples/phase_field-mechanics/Pattern1.i)
#
# Pattern example 1
#
# Phase changes driven by a combination mechanical (elastic) and chemical
# driving forces. In this three phase system a matrix phase, an oversized and
# an undersized precipitate phase compete. The chemical free energy favors a
# phase separation into either precipitate phase. A mix of both precipitate
# emerges to balance lattice expansion and contraction.
#
# This example demonstrates the use of
# * ACMultiInterface
# * SwitchingFunctionConstraintEta and SwitchingFunctionConstraintLagrange
# * DerivativeParsedMaterial
# * ElasticEnergyMaterial
# * DerivativeMultiPhaseMaterial
# * MultiPhaseStressMaterial
# which are the components to se up a phase field model with an arbitrary number
# of phases
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 80
nz = 0
xmin = -20
xmax = 20
ymin = -20
ymax = 20
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0
max = 0.8
seed = 1235
[../]
[../]
# Order parameter for the Matrix
[./eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Mesh displacement
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
# Lagrange-multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
property_name = etasum
coupled_variables = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
expression = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
property_name = phase
coupled_variables = 'eta2 eta3'
expression = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# matrix phase
[./elasticity_tensor_1]
type = ComputeElasticityTensor
base_name = phase1
C_ijkl = '3 3'
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeSmallStrain
base_name = phase1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
# oversized phase
[./elasticity_tensor_2]
type = ComputeElasticityTensor
base_name = phase2
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_2]
type = ComputeSmallStrain
base_name = phase2
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
[./eigenstrain_2]
type = ComputeEigenstrain
base_name = phase2
eigen_base = '0.02'
eigenstrain_name = eigenstrain
[../]
# undersized phase
[./elasticity_tensor_3]
type = ComputeElasticityTensor
base_name = phase3
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_3]
type = ComputeSmallStrain
base_name = phase3
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_3]
type = ComputeLinearElasticStress
base_name = phase3
[../]
[./eigenstrain_3]
type = ComputeEigenstrain
base_name = phase3
eigen_base = '-0.05'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = '4*c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(c-0.9)^2-0.4'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
property_name = Fc3
expression = '(c-0.9)^2-0.5'
coupled_variables = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
base_name = phase1
f_name = Fe1
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
base_name = phase2
f_name = Fe2
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_3]
type = ElasticEnergyMaterial
base_name = phase3
f_name = Fe3
derivative_order = 2
args = 'c' # should be empty
[../]
# phase free energies (chemical + elastic)
[./phase_free_energy_1]
type = DerivativeSumMaterial
property_name = F1
sum_materials = 'Fc1 Fe1'
coupled_variables = 'c'
derivative_order = 2
[../]
[./phase_free_energy_2]
type = DerivativeSumMaterial
property_name = F2
sum_materials = 'Fc2 Fe2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./phase_free_energy_3]
type = DerivativeSumMaterial
property_name = F3
sum_materials = 'Fc3 Fe3'
coupled_variables = 'c'
derivative_order = 2
[../]
# global free energy
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
coupled_variables = 'c'
W = 3
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = MultiPhaseStressMaterial
phase_base = 'phase1 phase2 phase3'
h = 'h1 h2 h3'
[../]
[]
[BCs]
# the boundary conditions on the displacement enforce periodicity
# at zero total shear and constant volume
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 'right'
value = 0
[../]
[./Periodic]
[./disp_x]
auto_direction = 'y'
[../]
[./disp_y]
auto_direction = 'x'
[../]
# all other phase field variables are fully periodic
[./c]
auto_direction = 'x y'
[../]
[./eta1]
auto_direction = 'x y'
[../]
[./eta2]
auto_direction = 'x y'
[../]
[./eta3]
auto_direction = 'x y'
[../]
[./lambda]
auto_direction = 'x y'
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
(modules/phase_field/test/tests/KKS_system/auxkernel.i)
#
# This test checks if the two phase and lagrange multiplier solutions can be replicated
# with a two order parameter approach, where the second order parameter eta2 is an
# auxiliary variable that is set as eta2 := 1 - eta1
# The solution is reproduced, but convergence is suboptimal, as important Jacobian
# terms for eta1 (that should come indirectly from eta2) are missing.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 5
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
# order parameter 2
[eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
[]
#
# With this approach the derivative w.r.t. eta1 is lost in all terms depending on
# eta2 a potential fix would be to make eta2 a material property with derivatives.
# This would require a major rewrite of the phase field kernels, though.
#
[AuxKernels]
[eta2]
type = ParsedAux
variable = eta2
expression = '1-eta1'
coupled_variables = eta1
[]
[]
[Variables]
# concentration
[c]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = FunctionIC
function = x/5
[]
[]
# order parameter 1
[eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# phase concentration 1
[c1]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[]
# phase concentration 2
[c2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[]
[]
[Materials]
# simple toy free energies
[f1] # = fd
type = DerivativeParsedMaterial
property_name = F1
coupled_variables = 'c1'
expression = '(0.9-c1)^2'
[]
[f2] # = fm
type = DerivativeParsedMaterial
property_name = F2
coupled_variables = 'c2'
expression = '(0.1-c2)^2'
[]
# Switching functions for each phase
[h1_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta1
function_name = h1
[]
[h2_eta]
type = DerivativeParsedMaterial
material_property_names = 'h1(eta1)'
expression = '1-h1'
property_name = h2
coupled_variables = eta1
[]
# Coefficients for diffusion equation
[Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1(eta1)'
expression = D*h1
property_name = Dh1
coupled_variables = eta1
[]
[Dh2]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta1)'
expression = 'D*h2'
property_name = Dh2
coupled_variables = eta1
[]
# Barrier functions for each phase
[g1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
[]
[g2]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta2
function_name = g2
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'D L kappa'
prop_values = '0.7 0.7 0.2'
[]
[]
[Kernels]
#Kernels for diffusion equation
[diff_time]
type = TimeDerivative
variable = c
[]
[diff_c1]
type = MatDiffusion
variable = c
diffusivity = Dh1
v = c1
args = eta1
[]
[diff_c2]
type = MatDiffusion
variable = c
diffusivity = Dh2
v = c2
args = eta1
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F1 F2'
hj_names = 'h1 h2'
gi_name = g1
eta_i = eta1
wi = 0.2
coupled_variables = 'c1 c2 eta2'
[]
[ACBulkC1]
type = KKSMultiACBulkC
variable = eta1
Fj_names = 'F1 F2'
hj_names = 'h1 h2'
cj_names = 'c1 c2'
eta_i = eta1
coupled_variables = 'eta2'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
# Phase concentration constraints
[chempot12]
type = KKSPhaseChemicalPotential
variable = c1
cb = c2
fa_name = F1
fb_name = F2
[]
[phaseconcentration]
type = KKSMultiPhaseConcentration
variable = c2
cj = 'c1 c2'
hj_names = 'h1 h2'
etas = 'eta1 eta2'
c = c
[]
[]
[AuxKernels]
[Fglobal_total]
type = KKSMultiFreeEnergy
Fj_names = 'F1 F2 '
hj_names = 'h1 h2 '
gj_names = 'g1 g2 '
variable = Fglobal
w = 0.2
interfacial_vars = 'eta1 eta2 '
kappa_names = 'kappa kappa'
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu '
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
end_time = 350
dt = 10
[]
[Preconditioning]
[full]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[c]
type = LineValueSampler
variable = c
start_point = '0 0 0'
end_point = '5 0 0'
num_points = 21
sort_by = x
[]
[]
[Outputs]
csv = true
execute_on = FINAL
[]
(modules/phase_field/test/tests/Nucleation/soft.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -3
xmax = 10
ymin = -3
ymax = 10
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[]
[Kernels]
[./c]
type = Diffusion
variable = c
[../]
[./dt]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./nucleation]
type = DiscreteNucleation
op_names = c
op_values = 1
penalty = 10
map = map
outputs = exodus
[../]
[]
[UserObjects]
[./inserter]
type = DiscreteNucleationFromFile
hold_time = 1
file = single.csv
radius = 7
[../]
[./map]
type = DiscreteNucleationMap
int_width = 6
inserter = inserter
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 2
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
time_step_interval = 2
exodus = true
hide = c
[]
(test/tests/test_harness/500_num_steps.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 500
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/outputs/console/additional_execute_on.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./console]
type = Console
additional_execute_on = initial
[../]
[]
(test/tests/materials/output/output_multiple_files.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./block_1]
type = OutputTestMaterial
block = 1
output_properties = 'real_property'
outputs = exodus1
variable = u
[../]
[./block_2]
type = OutputTestMaterial
block = 2
output_properties = 'vector_property'
outputs = exodus2
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./exodus1]
type = Exodus
hide = u
[../]
[./exodus2]
type = Exodus
hide = u
[../]
[]
(modules/porous_flow/test/tests/poroperm/except1.i)
# Exception test: thermal=true but no thermal_expansion_coeff provided
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
biot_coefficient = 0.7
[]
[Variables]
[porepressure]
initial_condition = 2
[]
[temperature]
initial_condition = 4
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[ICs]
[disp_x]
type = FunctionIC
function = '0.5 * x'
variable = disp_x
[]
[]
[Kernels]
[dummy_p]
type = TimeDerivative
variable = porepressure
[]
[dummy_t]
type = TimeDerivative
variable = temperature
[]
[dummy_x]
type = TimeDerivative
variable = disp_x
[]
[dummy_y]
type = TimeDerivative
variable = disp_y
[]
[dummy_z]
type = TimeDerivative
variable = disp_z
[]
[]
[AuxVariables]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[Postprocessors]
[porosity]
type = PointValue
variable = porosity
point = '0 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure temperature'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[porosity]
type = PorousFlowPorosity
mechanical = true
fluid = true
thermal = true
ensure_positive = false
porosity_zero = 0.5
solid_bulk = 0.3
reference_porepressure = 3
reference_temperature = 3.5
[]
[]
[Executioner]
solve_type = Newton
type = Transient
num_steps = 1
[]
[Outputs]
csv = true
[]
(modules/phase_field/test/tests/KKS_system/kks_example_multiphase_nested_damped.i)
#
# This test is for the damped nested solve of 3-phase KKS model, and uses log-based free energies.
# The split-form of the Cahn-Hilliard equation instead of the Fick's diffusion equation is solved
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 40
ymin = 0
ymax = 40
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[BCs]
[Periodic]
[all]
auto_direction = 'x y'
[]
[]
[]
[AuxVariables]
[Energy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Variables]
# concentration
[c]
order = FIRST
family = LAGRANGE
[]
# order parameter 1
[eta1]
order = FIRST
family = LAGRANGE
[]
# order parameter 2
[eta2]
order = FIRST
family = LAGRANGE
[]
# order parameter 3
[eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
# chemical potential
[mu]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
# Lagrange multiplier
[lambda]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
[]
[ICs]
[eta1]
variable = eta1
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.9
outvalue = 0.1
int_width = 4
[]
[eta2]
variable = eta2
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.1
outvalue = 0.9
int_width = 4
[]
[c]
variable = c
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.2
outvalue = 0.5
int_width = 2
[]
[]
[Materials]
# simple toy free energies
[F1]
type = DerivativeParsedMaterial
property_name = F1
expression = 'c1*log(c1/1e-4) + (1-c1)*log((1-c1)/(1-1e-4))'
material_property_names = 'c1'
additional_derivative_symbols = 'c1'
compute = false
[]
[F2]
type = DerivativeParsedMaterial
property_name = F2
expression = 'c2*log(c2/0.5) + (1-c2)*log((1-c2)/(1-0.5))'
material_property_names = 'c2'
additional_derivative_symbols = 'c2'
compute = false
[]
[F3]
type = DerivativeParsedMaterial
property_name = F3
expression = 'c3*log(c3/0.9999) + (1-c3)*log((1-c3)/(1-0.9999))'
material_property_names = 'c3'
additional_derivative_symbols = 'c3'
compute = false
[]
[C]
type = DerivativeParsedMaterial
property_name = 'C'
material_property_names = 'c1 c2 c3'
expression = '(c1>0)&(c1<1)&(c2>0)&(c2<1)&(c3>0)&(c3<1)'
compute = false
[]
[KKSPhaseConcentrationMultiPhaseMaterial]
type = KKSPhaseConcentrationMultiPhaseMaterial
global_cs = 'c'
all_etas = 'eta1 eta2 eta3'
hj_names = 'h1 h2 h3'
ci_names = 'c1 c2 c3'
ci_IC = '0.2 0.5 0.8'
Fj_names = 'F1 F2 F3'
min_iterations = 1
max_iterations = 1000
absolute_tolerance = 1e-15
relative_tolerance = 1e-8
step_size_tolerance = 1e-05
damped_Newton = true
conditions = C
damping_factor = 0.8
[]
[KKSPhaseConcentrationMultiPhaseDerivatives]
type = KKSPhaseConcentrationMultiPhaseDerivatives
global_cs = 'c'
all_etas = 'eta1 eta2 eta3'
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
ci_names = 'c1 c2 c3'
[]
# Switching functions for each phase
# h1(eta1, eta2, eta3)
[h1]
type = SwitchingFunction3PhaseMaterial
eta_i = eta1
eta_j = eta2
eta_k = eta3
property_name = h1
[]
# h2(eta1, eta2, eta3)
[h2]
type = SwitchingFunction3PhaseMaterial
eta_i = eta2
eta_j = eta3
eta_k = eta1
property_name = h2
[]
# h3(eta1, eta2, eta3)
[h3]
type = SwitchingFunction3PhaseMaterial
eta_i = eta3
eta_j = eta1
eta_k = eta2
property_name = h3
[]
# Barrier functions for each phase
[g1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
[]
[g2]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta2
function_name = g2
[]
[g3]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta3
function_name = g3
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'L kappa M'
prop_values = '0.7 1.0 0.025'
[]
[]
[Kernels]
[lambda_lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-04
[]
[eta1_lagrange]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
coupled_variables = 'eta2 eta3'
[]
[eta2_lagrange]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
coupled_variables = 'eta1 eta3'
[]
[eta3_lagrange]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
coupled_variables = 'eta1 eta2'
[]
#Kernels for Cahn-Hilliard equation
[diff_time]
type = CoupledTimeDerivative
variable = mu
v = c
[]
[CHBulk]
type = NestedKKSMultiSplitCHCRes
variable = c
all_etas = 'eta1 eta2 eta3'
global_cs = 'c'
w = mu
c1_names = 'c1'
F1_name = F1
coupled_variables = 'eta1 eta2 eta3 mu'
[]
[ckernel]
type = SplitCHWRes
variable = mu
mob_name = M
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = NestedKKSMultiACBulkF
variable = eta1
global_cs = 'c'
eta_i = eta1
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
gi_name = g1
mob_name = L
wi = 1.0
coupled_variables = 'c eta2 eta3'
[]
[ACBulkC1]
type = NestedKKSMultiACBulkC
variable = eta1
global_cs = 'c'
eta_i = eta1
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
coupled_variables = 'c eta2 eta3'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
# Kernels for Allen-Cahn equation for eta2
[deta2dt]
type = TimeDerivative
variable = eta2
[]
[ACBulkF2]
type = NestedKKSMultiACBulkF
variable = eta2
global_cs = 'c'
eta_i = eta2
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
gi_name = g2
mob_name = L
wi = 1.0
coupled_variables = 'c eta1 eta3'
[]
[ACBulkC2]
type = NestedKKSMultiACBulkC
variable = eta2
global_cs = 'c'
eta_i = eta2
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
coupled_variables = 'c eta1 eta3'
[]
[ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[]
# Kernels for Allen-Cahn equation for eta3
[deta3dt]
type = TimeDerivative
variable = eta3
[]
[ACBulkF3]
type = NestedKKSMultiACBulkF
variable = eta3
global_cs = 'c'
eta_i = eta3
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
gi_name = g3
mob_name = L
wi = 1.0
coupled_variables = 'c eta1 eta2'
[]
[ACBulkC3]
type = NestedKKSMultiACBulkC
variable = eta3
global_cs = 'c'
eta_i = eta3
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
coupled_variables = 'c eta1 eta2'
[]
[ACInterface3]
type = ACInterface
variable = eta3
kappa_name = kappa
[]
[]
[AuxKernels]
[Energy_total]
type = KKSMultiFreeEnergy
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gj_names = 'g1 g2 g3'
variable = Energy
w = 1
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa kappa kappa'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
num_steps = 2
dt = 0.01
[]
[Preconditioning]
active = 'full'
[full]
type = SMP
full = true
[]
[mydebug]
type = FDP
full = true
[]
[]
[Outputs]
file_base = kks_example_multiphase_nested_damped
exodus = true
[]
(test/tests/nodalkernels/constraint_enforcement/upper-and-lower-bound.i)
l=10
nx=100
num_steps=10
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[lm_upper]
[]
[lm_lower]
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[NodalKernels]
[upper_bound]
type = UpperBoundNodalKernel
variable = lm_upper
v = u
exclude_boundaries = 'left right'
upper_bound = 10
[]
[forces_from_upper]
type = CoupledForceNodalKernel
variable = u
v = lm_upper
coef = -1
[]
[lower_bound]
type = LowerBoundNodalKernel
variable = lm_lower
v = u
exclude_boundaries = 'left right'
lower_bound = 0
[]
[forces_from_lower]
type = CoupledForceNodalKernel
variable = u
v = lm_lower
coef = 1
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type'
petsc_options_value = '0 30 asm 16 basic'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[active_upper_lm]
type = GreaterThanLessThanPostprocessor
variable = lm_upper
execute_on = 'nonlinear timestep_end'
value = 1e-8
comparator = 'greater'
[]
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[active_lower_lm]
type = GreaterThanLessThanPostprocessor
variable = lm_lower
execute_on = 'nonlinear timestep_end'
value = 1e-8
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
(test/tests/multiapps/detect_steady_state/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 100
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/adaptivity/recompute_markers_during_cycles/recompute_markers_during_cycles.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
cycles_per_step = 4
marker = circle_marker
max_h_level = 2
recompute_markers_during_cycles = true
[./Markers]
[./circle_marker]
type = CircleMarker
point = '0.5 0.5 0'
radius = 0.1
inside = refine
outside = do_nothing
[../]
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
print_mesh_changed_info = true
[../]
[]
(test/tests/transfers/multiapp_userobject_transfer/restricted_elem_parent.i)
num_layers = 2
[Mesh]
[box]
type = GeneratedMeshGenerator
dim = 3
nx = ${num_layers}
ny = 3
nz = 3
[]
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[a]
family = MONOMIAL
order = CONSTANT
[]
[s]
[]
[]
[AuxKernels]
[s_ak]
type = ParsedAux
variable = s
use_xyzt = true
expression = 'x+(z*z)'
[]
[]
[Functions]
[]
[Postprocessors]
[a_avg]
type = ElementAverageValue
variable = a
[]
[]
[UserObjects]
[S_avg_front]
type = LayeredSideAverage
boundary = front
variable = s
num_layers = ${num_layers}
direction = x
[]
[S_avg_back]
type = LayeredSideAverage
boundary = back
variable = s
num_layers = ${num_layers}
direction = x
[]
[]
[MultiApps]
[ch0]
type = TransientMultiApp
input_files = 'restricted_elem_sub.i'
bounding_box_padding = '0 0.5 1'
positions = '0 0.5 -0.1'
output_in_position = true
cli_args = 'yy=0'
[]
[ch1]
type = TransientMultiApp
input_files = 'restricted_elem_sub.i'
bounding_box_padding = '0 0.5 1'
positions = '0 0.5 1.1'
output_in_position = true
cli_args = 'yy=1'
[]
[]
[Transfers]
[from_ch0]
type = MultiAppUserObjectTransfer
boundary = back
from_multi_app = ch0
variable = a
user_object = A_avg
[]
[from_ch1]
type = MultiAppUserObjectTransfer
boundary = front
from_multi_app = ch1
variable = a
user_object = A_avg
[]
[to_ch0]
type = MultiAppUserObjectTransfer
block = 20
to_multi_app = ch0
variable = S
user_object = S_avg_back
[]
[to_ch1]
type = MultiAppUserObjectTransfer
block = 20
to_multi_app = ch1
variable = S
user_object = S_avg_front
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
nl_abs_tol = 1e-7
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/sub_cycling/parent_iteration_adaptive.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0 0 0 0'
input_files = sub.i
sub_cycling = true
[../]
[]
(modules/phase_field/test/tests/MaskedBodyForce/MaskedBodyForce_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
elem_type = QUAD
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./c]
[../]
[]
[ICs]
[./initial]
value = 1.0
variable = u
type = ConstantIC
[../]
[./c_IC]
int_width = 0.1
x1 = 0.5
y1 = 0.5
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./source]
type = MaskedBodyForce
variable = u
value = 1
mask = mask
[../]
[]
[Materials]
[./mask]
type = ParsedMaterial
expression = if(c>0.5,0,1)
property_name = mask
coupled_variables = c
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/functions/function_setup/function_setup_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./ts_func]
type = TimestepSetupFunction
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./u_td]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./ts_aux]
type = FunctionAux
variable = u_aux
function = ts_func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
num_steps = 5
dt = 1
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/misc/check_error/scalar_old_integrity_check.i)
# Test that coupling a time derivative of a scalar variable (ScalarDotCouplingAux) and
# using a Steady executioner errors out
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Functions]
[./a_fn]
type = ParsedFunction
expression = t
[../]
[]
[AuxVariables]
[./v]
[../]
[./a]
family = SCALAR
order = FIRST
[../]
[]
[AuxScalarKernels]
[./a_sak]
type = FunctionScalarAux
variable = a
function = a_fn
[../]
[]
[AuxKernels]
[./ak_v]
type = CoupledScalarAux
variable = v
coupled = a
lag = OLD
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Steady
[]
(test/tests/outputs/oversample/over_sampling_test_gen.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 3
ny = 3
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = -4+(x*x+y*y)
[../]
[]
[Variables]
active = 'u'
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
active = 'ie diff ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.2
start_time = 0
num_steps = 5
[]
[Outputs]
file_base = out_gen
exodus = true
[./oversampling]
file_base = out_gen_oversample
type = Exodus
refinements = 3
[../]
[]
(test/tests/multiapps/reset/multilevel_sub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/check_error/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/combined/examples/publications/rapid_dev/fig6.i)
#
# Fig. 6 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Three phase interface simulation demonstrating the interfacial stability
# w.r.t. formation of a tspurious third phase
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 120
ny = 120
nz = 0
xmin = 0
xmax = 40
ymin = 0
ymax = 40
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
# concentration
[./c]
[../]
# order parameter 1
[./eta1]
[../]
# order parameter 2
[./eta2]
[../]
# order parameter 3
[./eta3]
[../]
# phase concentration 1
[./c1]
initial_condition = 0.4
[../]
# phase concentration 2
[./c2]
initial_condition = 0.5
[../]
# phase concentration 3
[./c3]
initial_condition = 0.8
[../]
# Lagrange multiplier
[./lambda]
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./T]
[./InitialCondition]
type = FunctionIC
function = 'x-10'
[../]
[../]
[]
[Functions]
[./ic_func_eta1]
type = ParsedFunction
expression = '0.5*(1.0+tanh((x-10)/sqrt(2.0))) * 0.5*(1.0+tanh((y-10)/sqrt(2.0)))'
[../]
[./ic_func_eta2]
type = ParsedFunction
expression = '0.5*(1.0-tanh((x-10)/sqrt(2.0)))'
[../]
[./ic_func_eta3]
type = ParsedFunction
expression = '1 - 0.5*(1.0-tanh((x-10)/sqrt(2.0)))
- 0.5*(1.0+tanh((x-10)/sqrt(2.0))) * 0.5*(1.0+tanh((y-10)/sqrt(2.0)))'
[../]
[./ic_func_c]
type = ParsedFunction
expression = '0.5 * 0.5*(1.0-tanh((x-10)/sqrt(2.0)))
+ 0.4 * 0.5*(1.0+tanh((x-10)/sqrt(2.0))) * 0.5*(1.0+tanh((y-10)/sqrt(2.0)))
+ 0.8 * (1 - 0.5*(1.0-tanh((x-10)/sqrt(2.0)))
- 0.5*(1.0+tanh((x-10)/sqrt(2.0))) * 0.5*(1.0+tanh((y-10)/sqrt(2.0))))'
[../]
[]
[ICs]
[./eta1]
variable = eta1
type = FunctionIC
function = ic_func_eta1
[../]
[./eta2]
variable = eta2
type = FunctionIC
function = ic_func_eta2
[../]
[./eta3]
variable = eta3
type = FunctionIC
function = ic_func_eta3
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Materials]
# simple toy free energies
[./f1]
type = DerivativeParsedMaterial
property_name = F1
coupled_variables = 'c1'
expression = '20*(c1-0.4)^2'
[../]
[./f2]
type = DerivativeParsedMaterial
property_name = F2
coupled_variables = 'c2 T'
expression = '20*(c2-0.5)^2 + 0.01*T'
[../]
[./f3]
type = DerivativeParsedMaterial
property_name = F3
coupled_variables = 'c3'
expression = '20*(c3-0.8)^2'
[../]
# Switching functions for each phase
# h1(eta1, eta2, eta3)
[./h1]
type = SwitchingFunction3PhaseMaterial
eta_i = eta1
eta_j = eta2
eta_k = eta3
f_name = h1
[../]
# h2(eta1, eta2, eta3)
[./h2]
type = SwitchingFunction3PhaseMaterial
eta_i = eta2
eta_j = eta3
eta_k = eta1
f_name = h2
[../]
# h3(eta1, eta2, eta3)
[./h3]
type = SwitchingFunction3PhaseMaterial
eta_i = eta3
eta_j = eta1
eta_k = eta2
f_name = h3
[../]
# Coefficients for diffusion equation
[./Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1'
expression = D*h1
property_name = Dh1
[../]
[./Dh2]
type = DerivativeParsedMaterial
material_property_names = 'D h2'
expression = D*h2
property_name = Dh2
[../]
[./Dh3]
type = DerivativeParsedMaterial
material_property_names = 'D h3'
expression = D*h3
property_name = Dh3
[../]
# Barrier functions for each phase
[./g1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
[../]
[./g2]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta2
function_name = g2
[../]
[./g3]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta3
function_name = g3
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'L kappa D'
prop_values = '1.0 1.0 1'
[../]
[]
[Kernels]
#Kernels for diffusion equation
[./diff_time]
type = TimeDerivative
variable = c
[../]
[./diff_c1]
type = MatDiffusion
variable = c
diffusivity = Dh1
v = c1
[../]
[./diff_c2]
type = MatDiffusion
variable = c
diffusivity = Dh2
v = c2
[../]
[./diff_c3]
type = MatDiffusion
variable = c
diffusivity = Dh3
v = c3
[../]
# Kernels for Allen-Cahn equation for eta1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g1
eta_i = eta1
wi = 1.0
args = 'c1 c2 c3 eta2 eta3'
[../]
[./ACBulkC1]
type = KKSMultiACBulkC
variable = eta1
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta1
args = 'eta2 eta3'
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[../]
[./multipler1]
type = MatReaction
variable = eta1
v = lambda
reaction_rate = L
[../]
# Kernels for Allen-Cahn equation for eta2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulkF2]
type = KKSMultiACBulkF
variable = eta2
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g2
eta_i = eta2
wi = 1.0
args = 'c1 c2 c3 eta1 eta3'
[../]
[./ACBulkC2]
type = KKSMultiACBulkC
variable = eta2
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta2
args = 'eta1 eta3'
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[../]
[./multipler2]
type = MatReaction
variable = eta2
v = lambda
reaction_rate = L
[../]
# Kernels for the Lagrange multiplier equation
[./mult_lambda]
type = MatReaction
variable = lambda
reaction_rate = 3
[../]
[./mult_ACBulkF_1]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g1
eta_i = eta1
wi = 1.0
mob_name = 1
args = 'c1 c2 c3 eta2 eta3'
[../]
[./mult_ACBulkC_1]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta1
args = 'eta2 eta3'
mob_name = 1
[../]
[./mult_CoupledACint_1]
type = SimpleCoupledACInterface
variable = lambda
v = eta1
kappa_name = kappa
mob_name = 1
[../]
[./mult_ACBulkF_2]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g2
eta_i = eta2
wi = 1.0
mob_name = 1
args = 'c1 c2 c3 eta1 eta3'
[../]
[./mult_ACBulkC_2]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta2
args = 'eta1 eta3'
mob_name = 1
[../]
[./mult_CoupledACint_2]
type = SimpleCoupledACInterface
variable = lambda
v = eta2
kappa_name = kappa
mob_name = 1
[../]
[./mult_ACBulkF_3]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gi_name = g3
eta_i = eta3
wi = 1.0
mob_name = 1
args = 'c1 c2 c3 eta1 eta2'
[../]
[./mult_ACBulkC_3]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
cj_names = 'c1 c2 c3'
eta_i = eta3
args = 'eta1 eta2'
mob_name = 1
[../]
[./mult_CoupledACint_3]
type = SimpleCoupledACInterface
variable = lambda
v = eta3
kappa_name = kappa
mob_name = 1
[../]
# Kernels for constraint equation eta1 + eta2 + eta3 = 1
# eta3 is the nonlinear variable for the constraint equation
[./eta3reaction]
type = MatReaction
variable = eta3
reaction_rate = 1
[../]
[./eta1reaction]
type = MatReaction
variable = eta3
v = eta1
reaction_rate = 1
[../]
[./eta2reaction]
type = MatReaction
variable = eta3
v = eta2
reaction_rate = 1
[../]
[./one]
type = BodyForce
variable = eta3
value = -1.0
[../]
# Phase concentration constraints
[./chempot12]
type = KKSPhaseChemicalPotential
variable = c1
cb = c2
fa_name = F1
fb_name = F2
[../]
[./chempot23]
type = KKSPhaseChemicalPotential
variable = c2
cb = c3
fa_name = F2
fb_name = F3
[../]
[./phaseconcentration]
type = KKSMultiPhaseConcentration
variable = c3
cj = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
c = c
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
num_steps = 1000
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.2
optimal_iterations = 10
iteration_window = 2
[../]
[]
[Preconditioning]
active = 'full'
[./full]
type = SMP
full = true
[../]
[./mydebug]
type = FDP
full = true
[../]
[]
[Outputs]
exodus = true
checkpoint = true
print_linear_residuals = false
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
#[VectorPostprocessors]
# [./c]
# type = LineValueSampler
# start_point = '-25 0 0'
# end_point = '25 0 0'
# variable = c
# num_points = 151
# sort_by = id
# execute_on = timestep_end
# [../]
# [./eta1]
# type = LineValueSampler
# start_point = '-25 0 0'
# end_point = '25 0 0'
# variable = eta1
# num_points = 151
# sort_by = id
# execute_on = timestep_end
# [../]
# [./eta2]
# type = LineValueSampler
# start_point = '-25 0 0'
# end_point = '25 0 0'
# variable = eta2
# num_points = 151
# sort_by = id
# execute_on = timestep_end
# [../]
# [./eta3]
# type = LineValueSampler
# start_point = '-25 0 0'
# end_point = '25 0 0'
# variable = eta3
# num_points = 151
# sort_by = id
# execute_on = timestep_end
# [../]
#[]
(test/tests/multiapps/picard_sub_cycling/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_elem_3eqn.parent.i)
# This tests a temperature transfer using the MultiApp system. Simple heat
# conduction problem is solved, then the layered average is computed and
# transferred into the child side of the solve
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 1
nx = 10
parallel_type = replicated
[]
[Functions]
[left_bc_fn]
type = PiecewiseLinear
x = '0 1'
y = '300 310'
[]
[]
[Variables]
[T]
[]
[]
[ICs]
[T_ic]
type = ConstantIC
variable = T
value = 300
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = T
[]
[diff]
type = Diffusion
variable = T
[]
[]
[BCs]
[left]
type = FunctionDirichletBC
variable = T
boundary = left
function = left_bc_fn
[]
[]
[UserObjects]
[T_avg_uo]
type = LayeredAverage
variable = T
direction = x
num_layers = 5
[]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 5
nl_abs_tol = 1e-10
abort_on_solve_fail = true
[]
[MultiApps]
[thm]
type = TransientMultiApp
app_type = ThermalHydraulicsApp
input_files = phy.T_wall_transfer_elem_3eqn.child.i
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[T_to_child]
type = MultiAppGeneralFieldUserObjectTransfer
to_multi_app = thm
source_user_object = T_avg_uo
variable = T_wall
greedy_search = true
use_bounding_boxes = false
error_on_miss = true
[]
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/rk-2/1d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 20
elem_type = EDGE2
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
implicit = true
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitMidpoint
[../]
solve_type = 'LINEAR'
start_time = 0.0
num_steps = 10
dt = 0.001
l_tol = 1e-15
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/phase_field/examples/anisotropic_interfaces/GrandPotentialTwophaseAnisotropy.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -4
xmax = 4
ymin = -4
ymax = 4
uniform_refine = 2
[]
[GlobalParams]
radius = 0.5
int_width = 0.3
x1 = 0
y1 = 0
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -4.0
invalue = 0.0
[../]
[./etaa0]
type = SmoothCircleIC
variable = etaa0
#Solid phase
outvalue = 0.0
invalue = 1.0
[../]
[./etab0]
type = SmoothCircleIC
variable = etab0
#Liquid phase
outvalue = 1.0
invalue = 0.0
[../]
[]
[BCs]
[./Periodic]
[./w]
variable = w
auto_direction = 'x y'
[../]
[./etaa0]
variable = etaa0
auto_direction = 'x y'
[../]
[./etab0]
variable = etab0
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegab
material_property_names = 'Vm kb cbeq'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
end_time = 10.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 5
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
time_step_interval = 10
exodus = true
[]
(test/tests/meshgenerators/distributed_rectilinear/dmg_displaced_mesh/adaptivity.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 20
ny = 20
[]
[]
[Variables]
[./u]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = -0.01
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.01
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = -0.01
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = right
value = 0.01
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 2
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[../]
[../]
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step02_transfers/02_sub_nearestnode.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmax = 0.1
ymax = 0.1
zmax = 3
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[tu]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[front]
type = DirichletBC
variable = v
boundary = front
value = 0
[]
[back]
type = DirichletBC
variable = v
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/multiphase_mechanics/nonsplit_gradderiv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
xmax = 10
ymax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y'
displacement_gradients = 'gxx gxy gyx gyy'
[]
[AuxVariables]
[./disp_x]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(2*x/10*3.14159265359)'
[../]
[../]
[./disp_y]
[./InitialCondition]
type = FunctionIC
function = '0.1*sin(1*y/10*3.14159265359)'
[../]
[../]
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
initial_condition = 0
[../]
[./gxx]
[../]
[./gxy]
[../]
[./gyx]
[../]
[./gyy]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = c
[../]
[./bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./int]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa_c
[../]
[./gxx]
type = GradientComponent
variable = gxx
v = disp_x
component = 0
[../]
[./gxy]
type = GradientComponent
variable = gxy
v = disp_x
component = 1
[../]
[./gyx]
type = GradientComponent
variable = gyx
v = disp_y
component = 0
[../]
[./gyy]
type = GradientComponent
variable = gyy
v = disp_y
component = 1
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 0.1'
[../]
[./straingradderiv]
type = StrainGradDispDerivatives
[../]
[./elasticity_tensor]
type = ComputeConcentrationDependentElasticityTensor
c = c
C0_ijkl = '1.0 1.0'
C1_ijkl = '3.0 3.0'
fill_method0 = symmetric_isotropic
fill_method1 = symmetric_isotropic
[../]
[./smallstrain]
type = ComputeSmallStrain
[../]
[./linearelastic_a]
type = ComputeLinearElasticStress
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = F
args = 'c'
derivative_order = 3
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = NEWTON
l_max_its = 30
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 1
[]
[Outputs]
perf_graph = true
exodus = true
[]
(test/tests/functions/solution_function/solution_function_rot1.i)
# checking rotation of points by 45 deg about z axis in a SolutionUserObject
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y or z direction
type = GeneratedMesh
dim = 3
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
zmin = -0.70710678
zmax = 0.70710678
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = LATEST
system_variables = u
rotation0_vector = '0 0 1'
rotation0_angle = 45
transformation_order = rotation0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot1
exodus = true
[]
(test/tests/interfaces/random/random_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1e-5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[./random]
type = RandomMaterial
block = 0
outputs = exodus
output_properties = rand_real
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/mobility_derivative/coupledmatdiffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
xmax = 15.0
ymax = 15.0
elem_type = QUAD4
[]
[Variables]
[./c]
[./InitialCondition]
type = CrossIC
x1 = 0.0
x2 = 30.0
y1 = 0.0
y2 = 30.0
[../]
[../]
[./d]
[./InitialCondition]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 8
int_width = 3
invalue = 2
outvalue = 0
[../]
[../]
[./u]
[../]
[./w]
[../]
[]
[Kernels]
[./ctime]
type = TimeDerivative
variable = c
[../]
[./umat]
type = MatReaction
variable = c
v = u
reaction_rate = 1
[../]
[./urxn]
type = Reaction
variable = u
[../]
[./cres]
type = MatDiffusion
variable = u
diffusivity = Dc
args = d
v = c
[../]
[./dtime]
type = TimeDerivative
variable = d
[../]
[./wmat]
type = MatReaction
variable = d
v = w
reaction_rate = 1
[../]
[./wrxn]
type = Reaction
variable = w
[../]
[./dres]
type = MatDiffusion
variable = w
diffusivity = Dd
args = c
v = d
[../]
[]
[Materials]
[./Dc]
type = DerivativeParsedMaterial
property_name = Dc
expression = '0.01+c^2+d'
coupled_variables = 'c d'
derivative_order = 1
[../]
[./Dd]
type = DerivativeParsedMaterial
property_name = Dd
expression = 'd^2+c+1.5'
coupled_variables = 'c d'
derivative_order = 1
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'BDF2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 lu 1'
dt = 1
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/nl_forced_its/many_nl_forced_its.i)
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
line_search = none
nl_forced_its = 10
num_steps = 1
[]
(modules/phase_field/test/tests/MultiSmoothCircleIC/latticesmoothcircleIC_normal_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 22
ny = 22
nz = 22
xmin = 0
xmax = 100
ymin = 0
ymax = 100
zmin = 0
zmax = 100
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./c]
type = LatticeSmoothCircleIC
variable = c
invalue = 1.0
outvalue = 0.0001
circles_per_side = '3 3 3'
pos_variation = 10.0
radius = 10.0
int_width = 12.0
radius_variation = 2
radius_variation_type = normal
[../]
[]
[Kernels]
active = 'ie_c diff'
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./diff]
type = MatDiffusion
variable = c
diffusivity = D_v
[../]
[]
[BCs]
[]
[Materials]
active = 'Dv'
[./Dv]
type = GenericConstantMaterial
prop_names = D_v
prop_values = 0.074802
[../]
[]
[Postprocessors]
active = 'bubbles'
[./bubbles]
type = FeatureFloodCount
variable = c
execute_on = 'initial timestep_end'
flood_entity_type = NODAL
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -mat_mffd_type'
petsc_options_value = 'hypre boomeramg 101 ds'
l_max_its = 20
l_tol = 1e-4
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = 0.0
num_steps =1
dt = 100.0
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/mat_neumann_bc/mat_neumann.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 10
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./phi]
[../]
[]
[ICs]
[./phi_IC]
type = FunctionIC
variable = phi
function = ic_func_phi
[../]
[]
[Functions]
[./ic_func_phi]
type = ParsedFunction
expression = '0.5 * (1 - tanh((x - 5) / 0.8))'
[../]
[]
[BCs]
[./top]
type = MatNeumannBC
variable = u
boundary = top
value = 2
boundary_material = hm
[../]
[]
[Kernels]
[./dudt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Materials]
[./hm]
type = ParsedMaterial
property_name = hm
coupled_variables = 'phi'
expression = '3*phi^2 - 2*phi^3'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 10
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/convective_heat_flux/t_inf.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
[]
[Variables]
[./temp]
initial_condition = 200.0
[../]
[]
[Kernels]
[./heat_dt]
type = TimeDerivative
variable = temp
[../]
[./heat_conduction]
type = HeatConduction
variable = temp
diffusion_coefficient = 1
[../]
[./heat]
type = BodyForce
variable = temp
value = 0
[../]
[]
[BCs]
[./right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = 'right'
T_infinity = 100.0
heat_transfer_coefficient = 1
heat_transfer_coefficient_dT = 0
[../]
[]
[Postprocessors]
[./left_temp]
type = SideAverageValue
variable = temp
boundary = left
execute_on = 'TIMESTEP_END initial'
[../]
[./right_temp]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1e1
nl_abs_tol = 1e-12
[]
[Outputs]
# csv = true
[]
(test/tests/time_steppers/postprocessor_dt/postprocessor_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
# Just use some postprocessor that gives values good enough for time stepping ;-)
[./dt]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
scheme = 'crank-nicolson'
start_time = 1.0
num_steps = 2
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/dynamic_point_sampler/dynamic_point_sampler.i)
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[u]
[]
[]
[Functions]
[forcing_func]
type = ParsedFunction
expression = alpha*alpha*pi*pi*sin(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[]
[u_func]
type = ParsedGradFunction
value = sin(alpha*pi*x)
grad_x = alpha*pi*sin(alpha*pi*x)
symbol_names = 'alpha'
symbol_values = '4'
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[forcing]
type = BodyForce
variable = u
function = forcing_func
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = 'u'
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = 'u'
boundary = 'right'
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 7
dt = 0.1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[l2_error]
type = ElementL2Error
variable = u
function = u_func
[]
[dofs]
type = NumDOFs
[]
[]
[Adaptivity]
max_h_level = 3
marker = error
[Indicators]
[jump]
type = GradientJumpIndicator
variable = u
[]
[]
[Markers]
[error]
type = ErrorFractionMarker
indicator = jump
coarsen = 0.1
refine = 0.3
[]
[]
[]
[VectorPostprocessors]
[dynamic_line_sampler]
type = DynamicPointValueSampler
variable = u
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 6
sort_by = x
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 20
elem_type = EDGE3
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x*x-2*t
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x*x
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
l_tol = 1e-12
start_time = 0.0
num_steps = 20
dt = 0.00005
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/outputs/postprocessor_final/execute_pps_on_final.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp1]
type = ElementAverageValue
variable = u
[../]
[./pp2]
type = ElementExtremeValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = CSV
execute_postprocessors_on = final
show = 'pp1'
[../]
[]
(modules/phase_field/test/tests/MultiPhase/barrierfunctionmaterial.i)
# This is a test of the BarrierFunctionMaterial option = HIGH
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0
xmax = 20
ymin = 0
ymax = 20
elem_type = QUAD4
[]
[Variables]
[./eta]
[../]
[]
[ICs]
[./IC_eta]
type = SmoothCircleIC
variable = eta
x1 = 10
y1 = 10
radius = 5
invalue = 1
outvalue = 0
int_width = 1
[../]
[]
[Kernels]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = 0
mob_name = 1
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = 1
mob_name = 1
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
g_order = HIGH
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 2
[]
[Problem]
solve = false
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/stochastic_tools/test/tests/actions/parameter_study_action/sub_pseudo_transient.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = AverageNodalVariableValue
variable = u
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
steady_state_detection = true
dt = 1
line_search = none
nl_abs_tol = 1e-12
[]
(test/tests/outputs/csv/csv_align.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[./norm]
type = ElementL2Norm
variable = u
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 4
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = CSV
align = true
delimiter = ', '
sync_times = '0.123456789123412 0.15 0.2'
precision = 8
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(test/tests/time_steppers/timesequence_stepper/exodustimesequence.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
end_time = 4.0
[./TimeStepper]
type = ExodusTimeSequenceStepper
mesh = timesequence_no_start_time.e
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/max_procs_per_app/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/nl_divergence_tolerance/nl_abs_divergence_tolerance.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
[]
[Variables]
[./u]
scaling = 1e-5
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1000
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 100000
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
line_search = 'none'
solve_type = PJFNK
l_max_its = 20
nl_max_its = 20
nl_abs_div_tol = 1e+7
nl_div_tol = 1e+50
dt = 1
num_steps = 2
petsc_options = '-snes_converged_reason -ksp_converged_reason '
petsc_options_iname = '-pc_type -pc_hypre_type '
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/file_mesh_generator/2d_discontinuous_iga_l2.i)
[Mesh]
[cyl2d_iga]
type = FileMeshGenerator
file = PressurizedCyl_Patch6_4Elem.e
discontinuous_spline_extraction = true
[]
[]
[Variables]
[u]
order = SECOND # Must match mesh order
family = RATIONAL_BERNSTEIN
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
block = 0 # Avoid direct calculations on spline nodes
[]
[rxn]
type = Reaction
variable = u
rate = -0.1
block = 0 # Avoid direct calculations on spline nodes
[]
[null]
type = NullKernel
variable = u
block = 1 # Keep kernel coverage check happy
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = '1.0'
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = NEWTON
dtmin = 1
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/feature_volume_vpp_test/centroid.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[c]
[]
[w]
[]
[eta]
[]
[]
[ICs]
[rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[]
[rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[]
[]
[Kernels]
[c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = eta
[]
[w_res]
type = SplitCHWRes
variable = w
mob_name = M
[]
[time]
type = CoupledTimeDerivative
variable = w
v = c
[]
[eta_dot]
type = TimeDerivative
variable = eta
[]
[acint_eta]
type = ACInterface
variable = eta
mob_name = M
coupled_variables = c
kappa_name = kappa_eta
[]
[acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
coupled_variables = c
[]
[]
[Materials]
[pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[]
[free_energy]
type = DerivativeParsedMaterial
coupled_variables = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
expression = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[]
[]
[Postprocessors]
[grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'timestep_begin'
[]
[]
[VectorPostprocessors]
[grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'timestep_begin'
output_centroids = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.2
num_steps = 4
[]
[Outputs]
csv = true
[]
(test/tests/time_integrators/central-difference/central_difference.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeIntegrator system.
#
# Testing that the first and second time derivatives
# are calculated correctly using the Central Difference
# method
#
# @Requirement F1.30
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 1
ny = 1
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./forcing_fn]
type = PiecewiseLinear
x = '0.0 0.1 0.2 0.3 0.4 0.5 0.6'
y = '0.0 0.0 0.0025 0.01 0.0175 0.02 0.02'
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = 'left'
function = forcing_fn
preset = false
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = forcing_fn
preset = false
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = CentralDifference
[]
start_time = 0.0
num_steps = 6
dt = 0.1
[]
[Postprocessors]
[./udot]
type = ElementAverageTimeDerivative
variable = u
[../]
[./udotdot]
type = ElementAverageSecondTimeDerivative
variable = u
[../]
[./u]
type = ElementAverageValue
variable = u
[../]
[]
[Outputs]
csv = true
[]
(test/tests/auxkernels/element_var/element_var_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Functions]
[./ffn]
type = ParsedFunction
expression = -4
[../]
[./exactfn]
type = ParsedFunction
expression = x*x+y*y
[../]
[./aux_exact_fn]
type = ParsedFunction
expression = t*(x*x+y*y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
#Coupling of nonlinear to Aux
[./force]
type = BodyForce
variable = u
function = ffn
[../]
[]
[AuxVariables]
[./aux_u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./a]
type = FunctionAux
variable = aux_u
function = aux_exact_fn
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exactfn
[../]
[]
[Postprocessors]
[./elem_56]
type = ElementalVariableValue
variable = u
elementid = 56
[../]
[./aux_elem_99]
type = ElementalVariableValue
variable = aux_u
elementid = 99
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
start_time = 0
num_steps = 10
[]
[Outputs]
exodus = true
file_base = out
[]
(test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler_lumped.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.001
[./TimeIntegrator]
type = ActuallyExplicitEuler
solve_type = lumped
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/variables/output_vars_hidden_shown_check.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./elemental_restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal]
order = FIRST
family = LAGRANGE
[../]
[./nodal_restricted]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[./elemental_restricted]
type = ConstantAux
variable = elemental_restricted
value = 1
[../]
[./nodal]
type = ConstantAux
variable = elemental
value = 2
[../]
[./nodal_restricted]
type = ConstantAux
variable = elemental_restricted
value = 2
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 5
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
num_steps = 10
[]
[Outputs]
file_base = out_hidden
exodus = true
hide = 'u elemental nodal x'
show = u
[]
(modules/phase_field/test/tests/GrandPotentialPFM/GrandPotentialPFM.i)
# this input file test the implementation of the grand-potential phase-field model based on M.Plapp PRE 84,031601(2011)
# in this simple example, the liquid and solid free energies are parabola with the same curvature and the material properties are constant
# Note that this example also test The SusceptibilityTimeDerivative kernels
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmax = 32
ymax = 32
[]
[GlobalParams]
radius = 20.0
int_width = 4.0
x1 = 0
y1 = 0
[]
[Variables]
[./w]
[../]
[./eta]
[../]
[]
[ICs]
[./w]
type = SmoothCircleIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outvalue = -0.2
invalue = 0.2
[../]
[./eta]
type = SmoothCircleIC
variable = eta
outvalue = 0.0
invalue = 1.0
[../]
[]
[Kernels]
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
coupled_variables = '' # in this case chi (the susceptibility) is simply a constant
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = D
args = ''
[../]
[./coupled_etadot]
type = CoupledSusceptibilityTimeDerivative
variable = w
v = eta
f_name = ft
coupled_variables = 'eta'
[../]
[./AC_bulk]
type = AllenCahn
variable = eta
f_name = F
coupled_variables = 'w'
[../]
[./AC_int]
type = ACInterface
variable = eta
[../]
[./e_dot]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./constants]
type = GenericConstantMaterial
prop_names = 'kappa_op D L chi cseq cleq A'
prop_values = '4.0 1.0 1.0 1.0 0.0 1.0 1.0'
[../]
[./liquid_GrandPotential]
type = DerivativeParsedMaterial
expression = '-0.5 * w^2/A - cleq * w'
coupled_variables = 'w'
property_name = f1
material_property_names = 'cleq A'
[../]
[./solid_GrandPotential]
type = DerivativeParsedMaterial
expression = '-0.5 * w^2/A - cseq * w'
coupled_variables = 'w'
property_name = f2
material_property_names = 'cseq A'
[../]
[./switching_function]
type = SwitchingFunctionMaterial
eta = eta
h_order = HIGH
[../]
[./barrier_function]
type = BarrierFunctionMaterial
eta = eta
[../]
[./cs]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = cs
material_property_names = 'A cseq'
expression = 'w/A + cseq' # since w = A*(c-cseq)
derivative_order = 2
[../]
[./cl]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = cl
material_property_names = 'A cleq'
expression = 'w/A + cleq' # since w = A*(c-cleq)
derivative_order = 2
[../]
[./total_GrandPotential]
type = DerivativeTwoPhaseMaterial
coupled_variables = 'w'
eta = eta
fa_name = f1
fb_name = f2
derivative_order = 2
W = 1.0
[../]
[./coupled_eta_function]
type = DerivativeParsedMaterial
expression = '(cs - cl) * dh'
coupled_variables = 'eta w'
property_name = ft
material_property_names = 'cs cl dh:=D[h,eta]'
derivative_order = 1
outputs = exodus
[../]
[./concentration]
type = ParsedMaterial
property_name = c
material_property_names = 'dF:=D[F,w]'
expression = '-dF'
outputs = exodus
[../]
[]
[Postprocessors]
[./C]
type = ElementIntegralMaterialProperty
mat_prop = c
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
l_max_its = 15
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
num_steps = 5
dt = 10.0
[]
[Outputs]
exodus = true
csv = true
execute_on = 'TIMESTEP_END'
[]
(modules/level_set/examples/vortex/vortex.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
nx = 16
ny = 16
uniform_refine = 2
elem_type = QUAD9
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[AuxKernels]
[./vec]
type = VectorFunctionAux
variable = velocity
function = velocity_func
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
[./phi]
family = LAGRANGE
order = FIRST
[../]
[]
[Functions]
[./phi_exact]
type = LevelSetOlssonBubble
epsilon = 0.01184
center = '0.5 0.75 0'
radius = 0.15
[../]
[./velocity_func]
type = LevelSetOlssonVortex
reverse_time = 2
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_exact
variable = phi
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = LevelSetAdvection
velocity = velocity
variable = phi
[../]
[]
[Postprocessors]
[./area]
type = LevelSetVolume
threshold = 0.5
variable = phi
location = outside
execute_on = 'initial timestep_end'
[../]
[./cfl]
type = LevelSetCFLCondition
velocity = velocity
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
end_time = 2
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl
scale = 0.8
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/functions/piecewise_multilinear/except4.i)
# PiecewiseMultilinear function exception test
# AXIS X encountered more than once
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 1
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./f]
[../]
[]
[AuxKernels]
[./f_auxK]
type = FunctionAux
variable = f
function = except4_fcn
[../]
[]
[Functions]
[./except4_fcn]
type = PiecewiseMultilinear
data_file = except4.txt
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
hide = dummy
[]
(modules/optimization/test/tests/executioners/transient_and_adjoint/nonlinear_diffusivity.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
[]
[Variables]
[u]
[]
[u_adjoint]
solver_sys = adjoint
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = ADMatDiffusion
variable = u
diffusivity = D
[]
[src]
type = ADBodyForce
variable = u
value = 1
[]
[src_adjoint]
type = ADBodyForce
variable = u_adjoint
value = 1
[]
[]
[BCs]
[dirichlet]
type = ADDirichletBC
variable = u
boundary = 'top right'
value = 0
[]
[]
[Materials]
[diffc]
type = ADParsedMaterial
property_name = D
expression = '0.1 + 5 * u'
coupled_variables = 'u'
[]
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[u_adjoint_avg]
type = ElementAverageValue
variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[inner_product]
type = VariableInnerProduct
variable = u
second_variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[]
[Executioner]
type = TransientAndAdjoint
forward_system = nl0
adjoint_system = adjoint
dt = 0.2
num_steps = 5
nl_rel_tol = 1e-12
l_tol = 1e-12
[]
[Outputs]
[forward]
type = CSV
[]
[adjoint]
type = CSV
execute_on = 'INITIAL ADJOINT_TIMESTEP_END'
[]
[console]
type = Console
execute_postprocessors_on = 'INITIAL TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[]
(test/tests/misc/check_error/bad_stateful_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Materials]
[./stateful_mat]
type = BadStatefulMaterial
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 4
[]
[Debug]
show_material_props = true
[]
(modules/porous_flow/test/tests/jacobian/heat_vol_exp01.i)
# Tests the PorousFlowHeatVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, THM porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[temperature]
[]
[]
[ICs]
[disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[]
[disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[]
[disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[]
[p]
type = RandomIC
min = -1
max = 0
variable = porepressure
[]
[t]
type = RandomIC
min = 1
max = 2
variable = temperature
[]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[]
[disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[]
[dummy]
type = TimeDerivative
variable = porepressure
[]
[temp]
type = PorousFlowHeatVolumetricExpansion
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure temperature disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
cv = 1.3
[]
[]
[Materials]
[p_eff]
type = PorousFlowEffectiveFluidPressure
[]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss_nodal]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
thermal_expansion_coeff = 0.1
reference_temperature = 0.1
reference_porepressure = 0.2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.1
density = 0.5
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
(modules/optimization/examples/materialTransient/forward_and_adjoint.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[]
[Variables/u]
initial_condition = 0
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = MatDiffusion
variable = u
diffusivity = D
[]
[src]
type = BodyForce
variable = u
value = 1
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'right top'
value = 0
[]
[]
[Materials]
[diffc]
type = GenericFunctionMaterial
prop_names = 'D'
prop_values = 'diffc_fun'
output_properties = 'D'
outputs = 'exodus'
[]
[]
[Functions]
[diffc_fun]
type = NearestReporterCoordinatesFunction
value_name = 'diffc_rep/D_vals'
x_coord_name = 'diffc_rep/D_x_coord'
y_coord_name = 'diffc_rep/D_y_coord'
[]
[]
[Reporters]
[diffc_rep]
type = ConstantReporter
real_vector_names = 'D_x_coord D_y_coord D_vals'
real_vector_values = '0.25 0.75 0.25 0.75;
0.25 0.25 0.75 0.75;
1 0.2 0.2 0.05' # Reference solution
outputs = none
[]
[data]
type = OptimizationData
objective_name = objective_value
variable = u
outputs = none
[]
[]
[Postprocessors]
[D1]
type = PointValue
variable = D
point = '0.25 0.25 0'
[]
[D2]
type = PointValue
variable = D
point = '0.75 0.25 0'
[]
[D3]
type = PointValue
variable = D
point = '0.25 0.75 0'
[]
[D4]
type = PointValue
variable = D
point = '0.75 0.75 0'
[]
[]
[Executioner]
type = TransientAndAdjoint
forward_system = nl0
adjoint_system = adjoint
nl_rel_tol = 1e-8
nl_abs_tol = 1e-12
l_tol = 1e-12
dt = 0.1
num_steps = 10
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
kernel_coverage_check = false
[]
[Variables]
[u_adjoint]
initial_condition = 0
solver_sys = adjoint
outputs = none
[]
[]
[DiracKernels]
[misfit]
type = ReporterTimePointSource
variable = u_adjoint
value_name = data/misfit_values
x_coord_name = data/measurement_xcoord
y_coord_name = data/measurement_ycoord
z_coord_name = data/measurement_zcoord
time_name = data/measurement_time
[]
[]
[VectorPostprocessors]
[adjoint]
type = ElementOptimizationDiffusionCoefFunctionInnerProduct
variable = u_adjoint
forward_variable = u
function = diffc_fun
execute_on = ADJOINT_TIMESTEP_END
outputs = none
[]
[]
[Outputs]
# The default exodus object executes only during the forward system solve,
# so the adjoint variable in the resulting file will show only 0.
# Unfortunately, there is no way to output the adjoint variable with Exodus.
exodus = true
console = false
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test14.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '4 2 3'
dy = '1 2'
ix = '10 10 10'
iy = '8 8'
subdomain_id = '1 2 3
2 2 2'
[]
[ed0]
type = BlockDeletionGenerator
input = cmg
block = '1 3'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/sub_cycling_failure/sub_gold.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Functions]
[./dts]
# These mimic the behavior of the failing solve
type = PiecewiseConstant
x = '0 0.1 0.105'
y = '0.01 0.005 0.01'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
[./TimeStepper]
type = FunctionDT
function = dts
[../]
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/periodic/periodic_level_1_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmax = 20
ymax = 16
zmax = 0
elem_type = QUAD4
uniform_refine = 3
parallel_type = replicated # This is because of floating point roundoff being different with DistributedMesh
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1e-5
[../]
[./conv]
type = Convection
variable = u
velocity = '-0.4 0 0'
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = 6.0
y_center = 8.0
x_spread = 1.0
y_spread = 2.0
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
primary = 3
secondary = 1
translation = '20 0 0'
[../]
[./y]
variable = u
primary = 0
secondary = 2
translation = '0 16 0'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 2
num_steps = 7
[./Adaptivity]
refine_fraction = .80
coarsen_fraction = .2
max_h_level = 4
error_estimator = KellyErrorEstimator
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/implicit-euler/ie.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeIntegrator system.
#
# Testing a solution that is second order in space
# and first order in time
#
# @Requirement F1.30
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
# Test of the TimeIntegrator System
scheme = 'implicit-euler'
start_time = 0.0
num_steps = 5
dt = 0.25
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/kernels/adkernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff0]
type = ADMatDiffusionTest
variable = u
ad_mat_prop = 0.05
regular_mat_prop = 0.05
[]
[diff1]
type = ADMatDiffusionTest
variable = u
ad_mat_prop = 0.5
regular_mat_prop = 0.5
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[diff]
type = TimePeriod
enable_objects = 'Kernel::diff0'
disable_objects = '*::diff1'
start_time = '0'
end_time = '0.49'
[]
[]
(modules/phase_field/test/tests/TotalFreeEnergy/TotalFreeEnergy_2var_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 1000
ymin = 0
ymax = 1000
zmin = 0
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 2
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[]
[ICs]
[./PolycrystalICs]
[./BicrystalCircleGrainIC]
radius = 333.333
x = 500
y = 500
int_width = 60
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./gr0dot]
type = TimeDerivative
variable = gr0
[../]
[./gr0bulk]
type = AllenCahn
variable = gr0
f_name = F
coupled_variables = gr1
[../]
[./gr0int]
type = ACInterface
variable = gr0
kappa_name = kappa_op
[../]
[./gr1dot]
type = TimeDerivative
variable = gr1
[../]
[./gr1bulk]
type = AllenCahn
variable = gr1
f_name = F
coupled_variables = gr0
[../]
[./gr1int]
type = ACInterface
variable = gr1
kappa_name = kappa_op
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
[../]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
kappa_names = 'kappa_op kappa_op'
interfacial_vars = 'gr0 gr1'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
T = 500 # K
wGB = 60 # nm
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
[../]
[./free_energy]
type = DerivativeParsedMaterial
coupled_variables = 'gr0 gr1'
material_property_names = 'mu gamma_asymm'
expression = 'mu*( gr0^4/4.0 - gr0^2/2.0 + gr1^4/4.0 - gr1^2/2.0 + gamma_asymm*gr0^2*gr1^2) + 1.0/4.0'
derivative_order = 2
enable_jit = true
[../]
[]
[Postprocessors]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 30
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 7
dt = 80.0
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.8
coarsen_fraction = 0.05
max_h_level = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/picard_multilevel/picard_sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(examples/ex18_scalar_kernel/ex18_parsed.i)
#
# Example 18 modified to use parsed ODE kernels.
#
# The ParsedODEKernel takes expression expressions in the input file and computes
# Jacobian entries via automatic differentiation. It allows for rapid development
# of new models without the need for code recompilation.
#
# This input file should produce the exact same result as ex18.i
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
# ODEs
[./exact_x_fn]
type = ParsedFunction
expression = (-1/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[./exact_y_fn]
type = ParsedFunction
expression = (2/3)*exp(-t)+(4/3)*exp(5*t)
[../]
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
#
# This parsed expression ODE Kernel behaves exactly as the ImplicitODEx kernel
# in the main example. Checkout ImplicitODEx::computeQpResidual() in the
# source code file ImplicitODEx.C to see the matching residual function.
#
# The ParsedODEKernel automaticaly generates the On- and Off-Diagonal Jacobian
# entries.
#
[./ode1]
type = ParsedODEKernel
expression = '-3*x - 2*y'
variable = x
coupled_variables = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
#
# This parsed expression ODE Kernel behaves exactly as the ImplicitODEy Kernel
# in the main example.
#
[./ode2]
type = ParsedODEKernel
expression = '-4*x - y'
variable = y
coupled_variables = x
[../]
[]
[BCs]
[./right]
type = ScalarDirichletBC
variable = diffused
boundary = 1
scalar_var = x
[../]
[./left]
type = ScalarDirichletBC
variable = diffused
boundary = 3
scalar_var = y
[../]
[]
[Postprocessors]
# to print the values of x, y into a file so we can plot it
[./x_pp]
type = ScalarVariable
variable = x
execute_on = timestep_end
[../]
[./y_pp]
type = ScalarVariable
variable = y
execute_on = timestep_end
[../]
[./exact_x]
type = FunctionValuePostprocessor
function = exact_x_fn
execute_on = timestep_end
[../]
[./exact_y]
type = FunctionValuePostprocessor
function = exact_y_fn
execute_on = timestep_end
point = '0 0 0'
[../]
# Measure the error in ODE solution for 'x'.
[./l2err_x]
type = ScalarL2Error
variable = x
function = exact_x_fn
[../]
# Measure the error in ODE solution for 'y'.
[./l2err_y]
type = ScalarL2Error
variable = y
function = exact_y_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.01
num_steps = 10
solve_type = 'PJFNK'
[]
[Outputs]
file_base = 'ex18_out'
exodus = true
[]
(test/tests/meshgenerators/lower_d_block_generator/names.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./lower_d_block]
type = LowerDBlockFromSidesetGenerator
input = gmg
new_block_id = 10
sidesets = 'bottom bottom right top left'
[]
[]
[Variables]
[./u]
block = 0
[../]
[./v]
block = 10
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
block = 0
[../]
[./srcv]
type = BodyForce
block = 10
variable = v
function = 1
[../]
[./time_v]
type = TimeDerivative
block = 10
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/reset/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
reset_apps = 0
reset_time = 0.05
[../]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/errors/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[]
(test/tests/restart/restart_transient_from_steady/restart_from_steady.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Problem]
restart_file_base = steady_out_cp/LATEST
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
# Reset the start_time here
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/elastic_patch/ad_elastic_patch_rz.i)
#
# This problem is taken from the Abaqus verification manual:
# "1.5.4 Patch test for axisymmetric elements"
# The stress solution is given as:
# xx = yy = zz = 2000
# xy = 400
#
# Since the strain is 1e-3 in all three directions, the new density should be
# new_density = original_density * V_0 / V
# new_density = 0.283 / (1 + 1e-3 + 1e-3 + 1e-3) = 0.282153
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
[]
[Mesh]
file = elastic_patch_rz.e
coord_type = RZ
[]
[Variables]
[temp]
initial_condition = 117.56
[]
[]
[Physics/SolidMechanics/QuasiStatic/All]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[body]
type = BodyForce
variable = disp_y
value = 1
function = '-400/x'
[]
[heat]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[ur]
type = FunctionDirichletBC
variable = disp_x
boundary = 10
function = '1e-3*x'
[]
[uz]
type = FunctionDirichletBC
variable = disp_y
boundary = 10
function = '1e-3*(x+y)'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
[]
[stress]
type = ComputeStrainIncrementBasedStress
[]
[]
[Materials]
[density]
type = ADDensity
density = 0.283
outputs = all
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1.0
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(modules/porous_flow/test/tests/energy_conservation/except03.i)
# Checking that the heat energy postprocessor correctly throws a paramError when an incorrect
# strain base_name is given
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[temp]
[]
[]
[ICs]
[tinit]
type = FunctionIC
function = '100*x'
variable = temp
[]
[pinit]
type = FunctionIC
function = x
variable = pp
[]
[]
[Kernels]
[dummyt]
type = TimeDerivative
variable = temp
[]
[dummyp]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
viscosity = 0.001
thermal_expansion = 0
cv = 1.3
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[]
[Postprocessors]
[heat]
type = PorousFlowHeatEnergy
base_name = incorrect_base_name
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
[]
(test/tests/multiapps/sub_cycling/parent_short.i)
# The parent app will do 4 timesteps, while sub app only 2. This tests that the sub app will not
# do anything during the inactive period.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
end_time = 0.4
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub_short.i
sub_cycling = true
[../]
[]
(test/tests/executioners/executioner/transient.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
(modules/stochastic_tools/test/tests/vectorpostprocessors/multiple_stochastic_results/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[max]
type = NodalExtremeValue
value_type = MAX
variable = u
[]
[]
(modules/combined/test/tests/elastic_patch/elastic_patch_rspherical.i)
#
# Patch test for 1D spherical elements
#
# The 1D mesh is pinned at x=0. The displacement at the outer node is set to
# 3e-3*X where X is the x-coordinate of that node. That gives a strain of
# 3e-3 for the x, y, and z directions.
#
# Young's modulus is 1e6, and Poisson's ratio is 0.25. This gives:
#
# Stress xx, yy, zz = E/(1+nu)/(1-2nu)*strain*((1-nu) + nu + nu) = 6000
#
[GlobalParams]
displacements = 'disp_x'
temperature = temp
[]
[Mesh]
file = elastic_patch_rspherical.e
coord_type = RSPHERICAL
[]
[Variables]
[temp]
initial_condition = 117.56
[]
[]
[Physics/SolidMechanics/QuasiStatic/All]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz'
[]
[Kernels]
[heat]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[ur]
type = FunctionDirichletBC
variable = disp_x
boundary = '1 2'
function = '3e-3*x'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
[]
[stress]
type = ComputeStrainIncrementBasedStress
[]
[density]
type = Density
density = 0.283
outputs = all
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/periodic/auto_periodic_bc_non_generated.i)
[Mesh]
file = square2.e
uniform_refine = 3
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./periodic_dist]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = 0.1
y_center = 0.3
x_spread = 0.1
y_spread = 0.1
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./periodic_dist]
type = PeriodicDistanceAux
variable = periodic_dist
point = '0.2 0.3 0.0'
[../]
[]
# This test verifies that autodirection works with an arbitrary
# regular orthogonal mesh
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 20
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_auto_non_generated
exodus = true
[]
(test/tests/vectorpostprocessors/spherical_average/spherical_average.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
xmin = -5
xmax = 5
ymin = -5
ymax = 5
zmin = -5
zmax = 5
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = sin(x*7.4+z*4.1)+cos(y*3.8+x*8.7)+sin(z*9.1+y*2.6)
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[VectorPostprocessors]
[./average]
type = SphericalAverage
variable = c
radius = 5
bin_number = 10
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = PJFNK
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
(test/tests/meshgenerators/file_mesh_generator/1d_discontinuous_iga.i)
[Mesh]
[cyl2d_iga]
type = FileMeshGenerator
file = test_2edge.e
discontinuous_spline_extraction = true
[]
[]
[Variables]
[u]
order = SECOND # Must match mesh order
family = RATIONAL_BERNSTEIN
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
block = 0 # Avoid direct calculations on spline nodes
[]
[diff]
type = Diffusion
variable = u
block = 0 # Avoid direct calculations on spline nodes
[]
[null]
type = NullKernel
variable = u
block = 1 # Keep kernel coverage check happy
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'sin(x)'
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = NEWTON
dtmin = 1
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/elastic_patch/ad_elastic_patch_rz_nonlinear.i)
#
# This problem is taken from the Abaqus verification manual:
# "1.5.4 Patch test for axisymmetric elements"
# The stress solution is given as:
# xx = yy = zz = 19900
# xy = 0
#
# If strain = log(1+1e-2) = 0.00995033...
# then
# stress = E/(1+PR)/(1-2*PR)*(1-PR +PR +PR)*strain = 19900.6617
# with E = 1e6 and PR = 0.25.
#
# The code computes stress = 19900.6617 when
# increment_calculation = eigen. There is a small error when the
# rashidapprox option is used.
#
# Since the strain is 1e-3 in all three directions, the new density should be
# new_density = original_density * V_0 / V
# new_density = 0.283 / (1 + 9.95e-3 + 9.95e-3 + 9,95e-3) = 0.2747973
#
# The code computes a new density of .2746770
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = elastic_patch_rz.e
[]
[Variables]
[temp]
initial_condition = 117.56
[]
[]
[Physics/SolidMechanics/QuasiStatic/All]
strain = FINITE
decomposition_method = EigenSolution
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[heat]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[ur]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 10
function = '1e-2*x'
[]
[uz]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 10
function = '1e-2*y'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Materials]
[density]
type = ADDensity
density = 0.283
outputs = all
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/checkpoint/checkpoint_block.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 11
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./out]
type = Checkpoint
[../]
[]
(test/tests/variables/previous_newton_iteration/test.i)
[Problem]
previous_nl_solution_required = true
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
initial_condition = 1
[]
[v]
order = FIRST
family = LAGRANGE
initial_condition = 1
[]
[]
[Kernels]
[td_u]
type = TimeDerivative
variable = u
[]
[source_u]
type = Reaction
variable = u
rate = 0.1
[]
[td_v]
type = TimeDerivative
variable = v
[]
[source_v]
type = CoupledForceLagged
variable = v
v = u
coefficient = -0.1
[]
[]
[Postprocessors]
[u]
type = ElementAverageValue
variable = u
execute_on = 'INITIAL TIMESTEP_END'
[]
[v]
type = ElementAverageValue
variable = v
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 1
solve_type = 'NEWTON'
[]
[Outputs]
csv = true
[]
(tutorials/tutorial02_multiapps/step02_transfers/04_parent_multiscale.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '04_sub_multiscale.i'
cli_args = 'BCs/right/value=1 BCs/right/value=2 BCs/right/value=3'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(test/tests/restart/new_dt/new_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
checkpoint = true
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_shrink_init_dt_restart.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dtmin = 1.0
end_time = 25.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 1
linear_iteration_ratio = 1
dt = 2.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Problem]
restart_file_base = adapt_tstep_shrink_init_dt_out_cp/LATEST
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/parent2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub_app]
order = THIRD
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[./point_value_0]
type = ScalarVariable
variable = from_sub_app
component = 0
[../]
[./point_value_1]
type = ScalarVariable
variable = from_sub_app
component = 1
[../]
[./point_value_2]
type = ScalarVariable
variable = from_sub_app
component = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
hide = from_sub_app
[]
[MultiApps]
[./pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0
0.7 0.7 0
0.8 0.8 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub2.i
[../]
[]
[Transfers]
[./pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub
from_postprocessor = point_value
to_aux_scalar = from_sub_app
[../]
[]
(test/tests/materials/output/output_block_displaced.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 1
displacements = 'disp disp'
[]
[Functions]
[./disp_fn]
type = ParsedFunction
expression = x
[../]
[]
[AuxVariables]
[./disp]
[../]
[]
[AuxKernels]
[./disp_ak]
type = FunctionAux
variable = disp
function = disp_fn
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[Materials]
[./block_1]
type = OutputTestMaterial
block = 1
output_properties = 'real_property tensor_property'
outputs = exodus
variable = u
[../]
[./block_2]
type = OutputTestMaterial
block = 2
output_properties = 'vector_property tensor_property'
outputs = exodus
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./exodus]
type = Exodus
use_displaced = true
sequence = false
[../]
[]
(test/tests/time_integrators/abort/abort.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 1.0
[]
#still need BC for Energy, IC's for both.
[Variables]
active = 'Time'
[./Time]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[Functions]
active = 'func'
[./func]
type = ParsedFunction
expression = 2.0*t
[../]
[]
[Kernels]
active = 't_time func_time'
[./t_time]
type = TimeDerivative
variable = Time
[../]
[./func_time]
type = BodyForce
variable = Time
function = func
[../]
[]
[BCs]
active = 'Top_Temperature'
[./Top_Temperature]
type = NeumannBC
variable = Time
boundary = 'left right'
[../]
[]
[Executioner]
type = Transient
#scheme = 'BDF2'
#scheme = 'crank-nicolson'
start_time = 0
num_steps = 4
dt = 1000000000
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
steady_state_tolerance = .00000000000000001
steady_state_detection = true
nl_abs_tol = 1e-15
petsc_options = '-snes_converged_reason'
abort_on_solve_fail = true
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/heat_transfer/test/tests/directional_flux_bc/3d.i)
[Mesh]
[planet]
type = SphereMeshGenerator
radius = 1
nr = 2 # increase for a better visualization
[]
[moon]
type = SphereMeshGenerator
radius = 0.3
nr = 1 # increase for a better visualization
[]
[combine]
type = CombinerGenerator
inputs = 'planet moon'
positions = '0 0 0 -1.2 -1 -1'
[]
[]
[GlobalParams]
illumination_flux = '1 1 1'
[]
[Variables]
[u]
[]
[v]
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[dt_u]
type = TimeDerivative
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[dt_v]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[flux_u]
type = DirectionalFluxBC
variable = u
boundary = 0
[]
[flux_v]
type = DirectionalFluxBC
variable = v
boundary = 0
self_shadow_uo = shadow
[]
[]
[Postprocessors]
[ave_v_all]
type = SideAverageValue
variable = v
boundary = 0
[]
[ave_v_exposed]
type = ExposedSideAverageValue
variable = v
boundary = 0
self_shadow_uo = shadow
[]
[]
[UserObjects]
[shadow]
type = SelfShadowSideUserObject
boundary = 0
execute_on = INITIAL
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 1
[]
[Outputs]
[out]
type = Exodus
execute_on = FINAL
[]
[]
(python/chigger/tests/input/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
use_problem_dimension = false
[../]
[]
(test/tests/mesh/adapt/adapt_test.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/controls/time_periods/aux_scalar_kernels/control_different.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
family = SCALAR
[../]
[./aux1]
family = SCALAR
[../]
[]
[Functions]
[./func]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./scalar_aux0]
type = FunctionScalarAux
variable = aux0
function = func
[../]
[./scalar_aux1]
type = FunctionScalarAux
variable = aux1
function = func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = 'AuxScalarKernels/scalar_aux0 */scalar_aux1'
start_time = '0.25 0.45'
end_time = '0.55 0.75'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/combined/test/tests/GBDependentTensors/gb_property.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./mobility_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./mobility_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./diffusivity_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./diffusivity_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./aniso_tensor_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./aniso_tensor_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./mobility_xx]
type = MaterialRealTensorValueAux
variable = mobility_xx
property = mobility_prop
row = 0
column = 0
[../]
[./mobility_yy]
type = MaterialRealTensorValueAux
variable = mobility_yy
property = mobility_prop
row = 1
column = 1
[../]
[./diffusivity_xx]
type = MaterialRealTensorValueAux
variable = diffusivity_xx
property = diffusivity
row = 0
column = 0
[../]
[./diffusivity_yy]
type = MaterialRealTensorValueAux
variable = diffusivity_yy
property = diffusivity
row = 1
column = 1
[../]
[./aniso_tensor_xx]
type = MaterialRealTensorValueAux
variable = aniso_tensor_xx
property = aniso_tensor
row = 0
column = 0
[../]
[./aniso_tensor_yy]
type = MaterialRealTensorValueAux
variable = aniso_tensor_yy
property = aniso_tensor
row = 1
column = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
expression = 'c*(1.0-c)'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 20
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_tol = 1e-3
l_max_its = 20
nl_max_its = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/mobility_derivative/mobility_derivative_direct_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 12
ny = 12
xmax = 30
ymax = 30
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 15
y1 = 15
radius = 10
variable = c
int_width = 3
invalue = 1
outvalue = -1
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./kappa]
type = GenericConstantMaterial
prop_names = 'kappa_c'
prop_values = '2.0'
[../]
[./mob]
type = DerivativeParsedMaterial
property_name = M
coupled_variables = c
expression = 'if(c<-1,0.1,if(c>1,0.1,1-.9*c^2))'
outputs = exodus
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 2
dt = 0.9
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/application_block_multiapps/application_block_sub.i)
[Application]
type = MooseTestApp
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_transient/pseudo_trans_with_2subs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = 'replicated'
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
expression = '1e3*x*(1-x)+5e2'
[]
[]
[Kernels]
[timedt]
type = TimeDerivative
variable = power_density
[]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 50
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
execute_on = 'initial timestep_end'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
execute_on = 'initial timestep_end'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
end_time = 20
dt = 2.0
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0
0.5 0 0'
input_files = pseudo_trans_with_2subs_sub.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[p_to_sub]
type = MultiAppProjectionTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppGeometricInterpolationTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
perf_graph = true
checkpoint = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
[]
(test/tests/nodalkernels/constraint_enforcement/upper-bound.i)
l=10
nx=100
num_steps=10
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[lm]
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = '${l} - x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = '1'
[]
[]
[NodalKernels]
[positive_constraint]
type = UpperBoundNodalKernel
variable = lm
v = u
exclude_boundaries = 'left right'
upper_bound = 10
[]
[forces]
type = CoupledForceNodalKernel
variable = u
v = lm
coef = -1
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = ${l}
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type'
petsc_options_value = '0 30 asm 16 basic'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[active_lm]
type = GreaterThanLessThanPostprocessor
variable = lm
execute_on = 'nonlinear timestep_end'
value = 1e-8
[]
[violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[]
(test/tests/multiapps/sub_cycling/parent_sub_output.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
output_sub_cycles = true
[../]
[]
(modules/phase_field/test/tests/SplitCH/forward_split_math_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 25.0
ymax = 25.0
elem_type = QUAD
[]
[Variables]
[./c]
[../]
[./w]
[../]
[]
[ICs]
[./c_IC]
type = CrossIC
variable = c
x1 = 0
x2 = 25
y1 = 0
y2 = 25
[../]
[]
[Kernels]
[./cdot]
type = TimeDerivative
variable = c
[../]
[./grad_w]
type = MatDiffusion
variable = c
v = w
diffusivity = 1.0
[../]
[./grad_c]
type = MatDiffusion
variable = w
v = c
diffusivity = 2.0
[../]
[./w2]
type = CoupledMaterialDerivative
variable = w
v = c
f_name = F
[../]
[./w3]
type = CoefReaction
variable = w
coefficient = -1.0
[../]
[]
[AuxVariables]
[./local_energy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./local_energy]
type = TotalFreeEnergy
variable = local_energy
f_name = F
kappa_names = kappa_c
interfacial_vars = c
[../]
[]
[Materials]
[./kappa_c]
type = GenericConstantMaterial
prop_names = kappa_c
prop_values = 2.0
[../]
[./free_energy]
type = DerivativeParsedMaterial
coupled_variables = c
expression = '(1 - c)^2 * (1 + c)^2'
property_name = F
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_c]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'initial TIMESTEP_END'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 5
dt = 0.7
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/DiffuseCreep/strain_gb_relax.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = strain
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = strain
index_i = 1
index_j = 1
[../]
[./strain_xy]
type = RankTwoAux
variable = strain_xy
rank_two_tensor = strain
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
expression = 'c*(1.0-c)'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./gb_relax_prefactor]
type = DerivativeParsedMaterial
block = 0
expression = '0.01*(c-0.15)*gb'
coupled_variables = 'c gb'
property_name = gb_relax_prefactor
derivative_order = 1
[../]
[./gb_relax]
type = GBRelaxationStrainIncrement
property_name = gb_relax
prefactor_name = gb_relax_prefactor
gb_normal_name = gb_normal
[../]
[./strain]
type = SumTensorIncrements
tensor_name = strain
coupled_tensor_increment_names = gb_relax
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 20
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/old_older_values/old_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./grow]
type = TestPostprocessor
execute_on = 'initial timestep_end'
test_type = 'grow'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/MultiPhase/acmultiinterface.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
nz = 0
xmin = -10
xmax = 10
ymin = -5
ymax = 5
elem_type = QUAD4
[]
[Variables]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = -3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 3.5
y1 = 0.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '-4.0 4.0'
y_positions = ' 0.0 0.0'
z_positions = ' 0.0 0.0'
radii = '4.0 4.0'
invalue = 0.1
outvalue = 0.9
int_width = 2.0
[../]
[../]
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
coupled_variables = 'eta2 eta3'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
coupled_variables = 'eta1 eta3'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
coupled_variables = 'eta1 eta2'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 0
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'Fx L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0 1 1 1 1 1 1 1 1 1 1 1 1 '
[../]
[./etasummat]
type = ParsedMaterial
property_name = etasum
coupled_variables = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
expression = 'h1+h2+h3'
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
property_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'Fx Fx Fx'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
# the free energy is given by the MultiBarrierFunctionMaterial only
W = 1
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
#petsc_options = '-snes_ksp -snes_ksp_ew'
#petsc_options = '-ksp_monitor_snes_lg-snes_ksp_ew'
#petsc_options_iname = '-ksp_gmres_restart'
#petsc_options_value = '1000 '
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 0.2
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/postprocessors/coupled_solution_dofs/coupled_solution_dofs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./L2_norm]
type = ElementL2Norm
variable = u
[../]
[./integral]
type = ElementIntegralVariablePostprocessor
variable = u
[../]
[./direct_sum]
type = ElementMomentSum
variable = u
[../]
[./direct_sum_old]
type = ElementMomentSum
variable = u
implicit = false
[../]
[./direct_sum_older]
type = ElementMomentSum
variable = u
use_old = true
implicit = false
[../]
[]
[Executioner]
type = Transient
num_steps = 3
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/elastic_patch/elastic_patch_rz.i)
#
# This problem is taken from the Abaqus verification manual:
# "1.5.4 Patch test for axisymmetric elements"
# The stress solution is given as:
# xx = yy = zz = 2000
# xy = 400
#
# Since the strain is 1e-3 in all three directions, the new density should be
# new_density = original_density * V_0 / V
# new_density = 0.283 / (1 + 1e-3 + 1e-3 + 1e-3) = 0.282153
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
[]
[Mesh]
file = elastic_patch_rz.e
coord_type = RZ
[]
[Variables]
[temp]
initial_condition = 117.56
[]
[]
[Physics/SolidMechanics/QuasiStatic/All]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[body]
type = BodyForce
variable = disp_y
value = 1
function = '-400/x'
[]
[heat]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[ur]
type = FunctionDirichletBC
variable = disp_x
boundary = 10
function = '1e-3*x'
[]
[uz]
type = FunctionDirichletBC
variable = disp_y
boundary = 10
function = '1e-3*(x+y)'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
[]
[stress]
type = ComputeStrainIncrementBasedStress
[]
[density]
type = Density
density = 0.283
outputs = all
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1.0
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(test/tests/outputs/vtk/vtk_serial.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
vtk = true
[]
(test/tests/functions/solution_function/solution_function_scale_mult.i)
# checking scale_multiplier
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
nx = 3
ymin = -1
ymax = 1
ny = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = square_with_u_equals_x.e
timestep = 1
system_variables = u
scale_multiplier = '2 2 0'
transformation_order = scale_multiplier
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_scale_mult
exodus = true
[]
(test/tests/functions/linear_combination_function/lcf1.i)
# LinearCombinationFunction function test
# See [Functions] block for a description of the tests
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 2
nx = 10
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_u]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./the_linear_combo]
[../]
[]
[AuxKernels]
[./the_linear_combo]
type = FunctionAux
variable = the_linear_combo
function = the_linear_combo
[../]
[]
[Functions]
[./xtimes]
type = ParsedFunction
expression = 1.1*x
[../]
[./twoxplus1]
type = ParsedFunction
expression = 2*x+1
[../]
[./xsquared]
type = ParsedFunction
expression = (x-2)*x
[../]
[./tover2]
type = ParsedFunction
expression = 0.5*t
[../]
[./the_linear_combo]
type = LinearCombinationFunction
functions = 'xtimes twoxplus1 xsquared tover2'
w = '3 -1.2 0.4 3'
[../]
[./should_be_answer]
type = ParsedFunction
expression = 3*1.1*x-1.2*(2*x+1)+0.4*(x-2)*x+3*0.5*t
[../]
[]
[Postprocessors]
[./should_be_zero]
type = NodalL2Error
function = should_be_answer
variable = the_linear_combo
[../]
[]
[Executioner]
type = Transient
dt = 0.5
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = lcf1
hide = dummy
exodus = false
csv = true
[]
(test/tests/multiapps/sub_cycling_failure/parent_gold.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Functions]
# These mimic the behavior of the failing solve
[./dts]
type = PiecewiseLinear
x = '0 0.1 0.15'
y = '0.1 0.05 0.1'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
[./TimeStepper]
type = FunctionDT
function = dts
[../]
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub_gold.i
sub_cycling = true
[../]
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test9.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 4 1'
[]
[ed0]
type = BlockDeletionGenerator
block = 1
input = 'SubdomainBoundingBox1'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/logconstant_dt/logconstant_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 11
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
# Pluggable TimeStepper System
[./TimeStepper]
type = LogConstantDT
log_dt = 0.2
first_dt = 0.1
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_steady/steady_with_sub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./power_density]
[../]
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat_ie]
type = TimeDerivative
variable = temp
[../]
[./heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[../]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '0 1 2 3'
value = 450
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
start_time = 0
end_time = 10
dt = 1.0
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[./temp_fuel_avg]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[./pwr_density]
type = ElementIntegralVariablePostprocessor
variable = power_density
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
[]
(test/tests/userobjects/postprocessor_spatial_user_object/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -0.01
xmax = 0.01
[]
[Functions]
[./fn]
type = ParsedFunction
expression = 'if(a < 0.8625, 1, 0)'
symbol_names = 'a'
symbol_values = 'a_avg'
[../]
[]
[Variables]
[./u]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxVariables]
[./a]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./rhs]
type = BodyForce
variable = u
function = 1
[../]
[]
[Postprocessors]
[./fn_pps]
type = FunctionValuePostprocessor
function = fn
execute_on = 'initial timestep_end'
[../]
[./a_avg]
type = ElementAverageValue
variable = a
[../]
[]
[UserObjects]
[./fn_uo]
type = PostprocessorSpatialUserObject
postprocessor = fn_pps
[../]
[]
[Executioner]
type = Transient
dt = 0.1
[]
(test/tests/outputs/iterative/output_end_step.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
end_step = 5
[../]
[]
(tutorials/tutorial02_multiapps/step02_transfers/02_parent_nearestnode.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[tv]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0.1 0.1 0 0.4 0.4 0 0.7 0.7 0'
input_files = '02_sub_nearestnode.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppNearestNodeTransfer
# Transfer to the sub-app from this app
to_multi_app = sub_app
# The name of the variable in this app
source_variable = u
# The name of the auxiliary variable in the sub-app
variable = tu
[]
[]
(test/tests/postprocessors/find_value_on_line/findvalueonline.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 10
[]
[Variables]
[./phi]
[./InitialCondition]
type = FunctionIC
function = if(x<1,1-x,0)
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = phi
[../]
[./dt]
type = TimeDerivative
variable = phi
[../]
[]
[BCs]
[./influx]
type = NeumannBC
boundary = left
variable = phi
value = 1
[../]
[./fix]
type = DirichletBC
boundary = right
variable = phi
value = 0
[../]
[]
[Postprocessors]
[./pos]
type = FindValueOnLine
target = 0.5
v = phi
start_point = '0 0 0'
end_point = '10 0 0'
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 2.5
[]
[Outputs]
csv = true
[]
(modules/external_petsc_solver/test/tests/external_petsc_problem/moose_as_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./cf]
type = CoupledForce
coef = 10000
variable = u
v=v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
fixed_point_max_its = 10
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
nl_rel_tol = 1e-6
nl_abs_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[MultiApps]
[./sub_app]
type = TransientMultiApp
input_files = 'petsc_transient_as_sub.i'
app_type = ExternalPetscSolverApp
library_path = '../../../../external_petsc_solver/lib'
[../]
[]
[Transfers]
[./fromsub]
type = MultiAppShapeEvaluationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[../]
[]
(modules/phase_field/test/tests/KKS_system/lagrange_multiplier.i)
#
# This test ensures that the equilibrium solution using two order parameters with a
# Lagrange multiplier constraint is identical to the dedicated two phase formulation
# in two_phase.i
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 5
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Variables]
# concentration
[c]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = FunctionIC
function = x/5
[]
[]
# order parameter 1
[eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# order parameter 2
[eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# phase concentration 1
[c1]
order = FIRST
family = LAGRANGE
initial_condition = 0.2
[]
# phase concentration 2
[c2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# Lagrange multiplier
[lambda]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
[]
[Materials]
# simple toy free energies
[f1] # = fd
type = DerivativeParsedMaterial
property_name = F1
coupled_variables = 'c1'
expression = '(0.9-c1)^2'
[]
[f2] # = fm
type = DerivativeParsedMaterial
property_name = F2
coupled_variables = 'c2'
expression = '(0.1-c2)^2'
[]
# Switching functions for each phase
[h1_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta1
function_name = h1
[]
[h2_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta2
function_name = h2
[]
# Coefficients for diffusion equation
[Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1'
expression = D*h1
property_name = Dh1
[]
[Dh2]
type = DerivativeParsedMaterial
material_property_names = 'D h2'
expression = D*h2
property_name = Dh2
[]
# Barrier functions for each phase
[g1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
[]
[g2]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta2
function_name = g2
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'D L kappa'
prop_values = '0.7 0.7 0.2'
[]
[]
[Kernels]
#Kernels for diffusion equation
[diff_time]
type = TimeDerivative
variable = c
[]
[diff_c1]
type = MatDiffusion
variable = c
diffusivity = Dh1
v = c1
[]
[diff_c2]
type = MatDiffusion
variable = c
diffusivity = Dh2
v = c2
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F1 F2 '
hj_names = 'h1 h2 '
gi_name = g1
eta_i = eta1
wi = 0.2
coupled_variables = 'c1 c2 eta2'
[]
[ACBulkC1]
type = KKSMultiACBulkC
variable = eta1
Fj_names = 'F1 F2'
hj_names = 'h1 h2'
cj_names = 'c1 c2'
eta_i = eta1
coupled_variables = 'eta2'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
[multipler1]
type = MatReaction
variable = eta1
v = lambda
reaction_rate = L
[]
# Kernels for the Lagrange multiplier equation
[mult_lambda]
type = MatReaction
variable = lambda
reaction_rate = 2
[]
[mult_ACBulkF_1]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 '
hj_names = 'h1 h2 '
gi_name = g1
eta_i = eta1
wi = 0.2
mob_name = 1
coupled_variables = 'c1 c2 eta2 '
[]
[mult_ACBulkC_1]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2'
hj_names = 'h1 h2'
cj_names = 'c1 c2'
eta_i = eta1
coupled_variables = 'eta2 '
mob_name = 1
[]
[mult_CoupledACint_1]
type = SimpleCoupledACInterface
variable = lambda
v = eta1
kappa_name = kappa
mob_name = 1
[]
[mult_ACBulkF_2]
type = KKSMultiACBulkF
variable = lambda
Fj_names = 'F1 F2 '
hj_names = 'h1 h2 '
gi_name = g2
eta_i = eta2
wi = 0.2
mob_name = 1
coupled_variables = 'c1 c2 eta1 '
[]
[mult_ACBulkC_2]
type = KKSMultiACBulkC
variable = lambda
Fj_names = 'F1 F2'
hj_names = 'h1 h2'
cj_names = 'c1 c2'
eta_i = eta2
coupled_variables = 'eta1 '
mob_name = 1
[]
[mult_CoupledACint_2]
type = SimpleCoupledACInterface
variable = lambda
v = eta2
kappa_name = kappa
mob_name = 1
[]
# Kernels for constraint equation eta1 + eta2 = 1
# eta2 is the nonlinear variable for the constraint equation
[eta2reaction]
type = MatReaction
variable = eta2
reaction_rate = 1
[]
[eta1reaction]
type = MatReaction
variable = eta2
v = eta1
reaction_rate = 1
[]
[one]
type = BodyForce
variable = eta2
value = -1.0
[]
# Phase concentration constraints
[chempot12]
type = KKSPhaseChemicalPotential
variable = c1
cb = c2
fa_name = F1
fb_name = F2
[]
[phaseconcentration]
type = KKSMultiPhaseConcentration
variable = c2
cj = 'c1 c2'
hj_names = 'h1 h2'
etas = 'eta1 eta2'
c = c
[]
[]
[AuxKernels]
[Fglobal_total]
type = KKSMultiFreeEnergy
Fj_names = 'F1 F2 '
hj_names = 'h1 h2 '
gj_names = 'g1 g2 '
variable = Fglobal
w = 0.2
interfacial_vars = 'eta1 eta2 '
kappa_names = 'kappa kappa'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'lu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
num_steps = 35
dt = 10
[]
[VectorPostprocessors]
[c]
type = LineValueSampler
variable = c
start_point = '0 0 0'
end_point = '5 0 0'
num_points = 21
sort_by = x
[]
[]
[Outputs]
csv = true
execute_on = FINAL
[]
(test/tests/vectorpostprocessors/variable_value_volume_histogram/volume_histogram.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmin = -5
xmax = 5
[]
[Variables]
[c]
[InitialCondition]
type = FunctionIC
function = 'x<2&x>-2'
[]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = c
[]
[time]
type = TimeDerivative
variable = c
[]
[]
[BCs]
[all]
type = DirichletBC
variable = c
boundary = 'left right'
value = 0
[]
[]
[VectorPostprocessors]
[histo]
type = VariableValueVolumeHistogram
variable = c
min_value = 0
max_value = 1.1
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = PJFNK
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
(test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value.i)
[Mesh]
file = square-2x2-nodeids.e
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = AverageNodalVariableValue
variable = u
boundary = 10
[../]
[./node4]
type = AverageNodalVariableValue
variable = v
boundary = 13
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_avg_nodal_var_value
exodus = true
[]
(test/tests/auxkernels/function_scalar_aux/function_scalar_aux.i)
#
# Testing a solution that is second order in space and first order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[AuxVariables]
[./x]
family = SCALAR
order = FIRST
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[./x_fn]
type = ParsedFunction
expression = t
[../]
[]
[AuxScalarKernels]
[./x_saux]
type = FunctionScalarAux
variable = x
function = x_fn
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/variables/output_vars_nonexistent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./elemental_restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal]
order = FIRST
family = LAGRANGE
[../]
[./nodal_restricted]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[./elemental_restricted]
type = ConstantAux
variable = elemental_restricted
value = 1
[../]
[./nodal]
type = ConstantAux
variable = elemental
value = 2
[../]
[./nodal_restricted]
type = ConstantAux
variable = elemental_restricted
value = 2
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 5
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
num_steps = 10
[]
[Outputs]
file_base = out_nonexistent
exodus = true
show = 'u elemental nodal x foo1 foo2'
[]
(test/tests/parser/cli_multiapp_group/dt_from_parent_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the parent solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/heat_transfer/test/tests/convective_heat_flux/coupled.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
[]
[Variables]
[./temp]
initial_condition = 200.0
[../]
[]
[Kernels]
[./heat_dt]
type = TimeDerivative
variable = temp
[../]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat]
type = BodyForce
variable = temp
value = 0
[../]
[]
[BCs]
[./right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = 'right'
T_infinity = T_inf
heat_transfer_coefficient = htc
heat_transfer_coefficient_dT = dhtc_dT
[../]
[]
[Materials]
[./T_inf]
type = ParsedMaterial
property_name = T_inf
coupled_variables = temp
expression = 'temp + 1'
[../]
[./htc]
type = ParsedMaterial
property_name = htc
coupled_variables = temp
expression = 'temp / 100 + 1'
[../]
[./dhtc_dT]
type = ParsedMaterial
property_name = dhtc_dT
coupled_variables = temp
expression = '1 / 100'
[../]
[]
[Postprocessors]
[./left_temp]
type = SideAverageValue
variable = temp
boundary = left
execute_on = 'TIMESTEP_END initial'
[../]
[./right_temp]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1
nl_abs_tol = 1e-12
[]
[Outputs]
[./out]
type = CSV
time_step_interval = 10
[../]
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/parent2_quad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./pp_aux]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./quad]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.1 0.1 0 0.9 0.1 0 0.1 0.9 0 0.9 0.9 0'
input_files = 'quad_sub1.i'
[../]
[]
[Transfers]
[./sub_to_parent_pp]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = quad
variable = pp_aux
postprocessor = pp
[../]
[]
(modules/stochastic_tools/test/tests/likelihoods/gaussian_derived/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = -0.193289
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1.60831
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
(test/tests/multiapps/sub_cycling/main_negative.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = -1.0
end_time = 0
dt = 0.5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
[../]
[]
(test/tests/materials/stateful_prop/stateful_prop_test_older.i)
[Mesh]
dim = 3
file = cube.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
prop_state = 'older' # Use the "Older" value to compute conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./prop1_output_init]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
execute_on = initial
[../]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./stateful]
type = StatefulTest
prop_names = thermal_conductivity
prop_values = 1.0
[../]
[]
[Postprocessors]
[./integral]
type = ElementAverageValue
variable = prop1
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 10
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out_older
exodus = true
csv = true
[]
(test/tests/restart/kernel_restartable/kernel_restartable_custom_name.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = RestartDiffusion
variable = u
coef = 1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1e-2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./restart]
type = Checkpoint
num_files = 100
[../]
[]
[Problem]
name = "SomeCrazyName" # Testing this
[]
(test/tests/controls/real_function_control/multi_real_function_control.i)
###########################################################
# This is a test of the Control Logic System. This test
# uses the RealFunctionControl to change a multiple Kernel
# coefficients based on an analytical function at the end
# of each timestep.
#
# @Requirement F8.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff_u]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 0.2
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Functions]
[./func_coef]
type = ParsedFunction
expression = '2*t + 0.1'
[../]
[]
[Postprocessors]
[./u_coef]
type = RealControlParameterReporter
parameter = 'Kernels/diff_u/coef'
[../]
[./v_coef]
type = RealControlParameterReporter
parameter = 'Kernels/diff_v/coef'
[../]
[]
[Controls]
[./func_control]
type = RealFunctionControl
parameter = '*/*/coef'
function = 'func_coef'
execute_on = 'timestep_begin'
[../]
[]
(test/tests/dgkernels/1d_advection_dg/1d_advection_dg.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[Functions]
[ic_u]
type = PiecewiseConstant
axis = x
direction = right
xy_data = '0.1 0.0
0.6 1.0
1.0 0.0'
[]
[]
[Variables]
[u]
order = FIRST
family = MONOMIAL
[]
[]
[Kernels]
[time_u]
type = TimeDerivative
variable = u
[]
[adv_u]
implicit = false
type = ConservativeAdvection
variable = u
velocity = '1 0 0'
[]
[]
[DGKernels]
[dg_advection_u]
implicit = false
type = DGConvection
variable = u
velocity = '1 0 0'
[]
[]
[ICs]
[u_ic]
type = FunctionIC
variable = u
function = ic_u
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitMidpoint
[]
solve_type = 'LINEAR'
num_steps = 4
dt = 2e-4
[]
[Outputs]
exodus = true
[]
(test/tests/tag/tag_dirac_kernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./ddt_u]
type = TimeDerivative
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./diff_u]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./ddt_v]
type = TimeDerivative
variable = v
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./diff_v]
type = Diffusion
variable = v
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[DiracKernels]
[./nonlinear_source]
type = NonlinearSource
variable = u
coupled_var = v
scale_factor = 1000
point = '0.2 0.3 0'
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[Preconditioning]
[./precond]
type = SMP
full = true
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'time nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = LAGRANGE
[../]
[./tag_variable2]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = u
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = TagMatrixAux
variable = tag_variable2
v = u
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON' # NEWTON provides a more stringent test of off-diagonal Jacobians
num_steps = 5
dt = 1
dtmin = 1
l_max_its = 100
nl_max_its = 6
nl_abs_tol = 1.e-13
[]
[Postprocessors]
[./point_value]
type = PointValue
variable = u
point = '0.2 0.3 0'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/displacement/displaced_eq_transient_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD4
displacements = 'u v'
[]
[Functions]
[./right_u]
type = ParsedFunction
expression = 0.1*t
[../]
[./fn_v]
type = ParsedFunction
expression = (x+1)*y*0.1*t
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td_u]
type = TimeDerivative
variable = u
use_displaced_mesh = true
[../]
[./diff_u]
type = Diffusion
variable = u
use_displaced_mesh = true
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 1
function = right_u
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '0 2'
function = fn_v
[../]
[]
[Executioner]
type = Transient
dt = 0.1
start_time = 0
num_steps = 10
solve_type = 'PJFNK'
[]
[Outputs]
[./out_displaced]
type = Exodus
use_displaced = true
[../]
[]
(modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_2d.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[]
[Variables/u]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.1
[]
[]
[UserObjects/study]
type = LotsOfRaysRayStudy
ray_kernel_coverage_check = false
vertex_to_vertex = true
centroid_to_vertex = true
centroid_to_centroid = true
execute_on = timestep_end
[]
[RayBCs/kill]
type = KillRayBC
boundary = 'top right bottom left'
[]
[Postprocessors]
[total_distance]
type = RayTracingStudyResult
study = study
result = total_distance
execute_on = timestep_end
[]
[total_rays]
type = RayTracingStudyResult
study = study
result = total_rays_started
execute_on = timestep_end
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/multiapps/secant/transient_main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[unorm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'secant'
fixed_point_max_its = 30
transformed_variables = 'u'
[]
[Outputs]
csv = true
exodus = false
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'transient_sub.i'
clone_parent_mesh = true
execute_on = 'timestep_begin'
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
execute_on = 'timestep_begin'
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
execute_on = 'timestep_begin'
[]
[]
(test/tests/multiapps/slow_sub/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = SlowProblem
seconds_to_sleep = 5
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(tutorials/tutorial02_multiapps/step03_coupling/03_sub_subcycling_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[ut]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[force]
type = CoupledForce
variable = v
v = ut
coef = 100
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.05
nl_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[average_v]
type = ElementAverageValue
variable = v
[]
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test10.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[left]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[]
[right]
type = SubdomainBoundingBoxGenerator
input = left
block_id = 2
bottom_left = '3 2 0'
top_right = '4 3 1'
[]
[interior_sideset]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = right
new_boundary = interior_ss
[]
[new_block_number]
type = SubdomainBoundingBoxGenerator
block_id = 3
bottom_left = '0 0 0'
top_right = '4 4 1'
input = 'interior_sideset'
[]
[ed0]
type = BlockDeletionGenerator
block = 3
input = 'new_block_number'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/csv/csv_transient_vpp.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[Materials]
[D]
# we need to make sure not to supply derivatives to have a
# wrong Jacobian to force more iterations to test the output on
type = ParsedMaterial
property_name = D
expression = 'u^2+0.1'
coupled_variables = u
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
diffusivity = D
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[VectorPostprocessors]
[nodes]
type = NodalValueSampler
boundary = top
sort_by = x
variable = u
execute_on = 'INITIAL NONLINEAR LINEAR TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
[out]
type = CSV
execute_on = 'LINEAR'
[]
[]
(test/tests/meshgenerators/file_mesh_generator/2d_discontinuous_iga.i)
[Mesh]
[cyl2d_iga]
type = FileMeshGenerator
file = PressurizedCyl_Patch6_4Elem.e
discontinuous_spline_extraction = true
[]
[]
[Variables]
[u]
order = SECOND # Must match mesh order
family = RATIONAL_BERNSTEIN
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
block = 0 # Avoid direct calculations on spline nodes
[]
[diff]
type = Diffusion
variable = u
block = 0 # Avoid direct calculations on spline nodes
[]
[null]
type = NullKernel
variable = u
block = 1 # Keep kernel coverage check happy
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'sin(x)'
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = NEWTON
dtmin = 1
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/anisotropic_interfaces/GrandPotentialPlanarGrowth.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -2
xmax = 2
ymin = -2
ymax = 2
uniform_refine = 2
[]
[GlobalParams]
x1 = -2
y1 = -2
x2 = 2
y2 = -1.5
derivative_order = 2
[]
[Variables]
[./w]
[../]
[./etaa0]
[../]
[./etab0]
[../]
[]
[AuxVariables]
[./bnds]
[../]
#Temperature
[./T]
[../]
[]
[AuxKernels]
[./bnds]
type = BndsCalcAux
variable = bnds
v = 'etaa0 etab0'
[../]
[./T]
type = FunctionAux
function = 95.0+2.0*(y-1.0*t)
variable = T
execute_on = 'initial timestep_begin'
[../]
[]
[ICs]
[./w]
type = BoundingBoxIC
variable = w
# note w = A*(c-cleq), A = 1.0, cleq = 0.0 ,i.e., w = c (in the matrix/liquid phase)
outside = -4.0
inside = 0.0
[../]
[./etaa0]
type = BoundingBoxIC
variable = etaa0
#Solid phase
outside = 0.0
inside = 1.0
[../]
[./etab0]
type = BoundingBoxIC
variable = etab0
#Liquid phase
outside = 1.0
inside = 0.0
[../]
[]
[Kernels]
# Order parameter eta_alpha0
[./ACa0_bulk]
type = ACGrGrMulti
variable = etaa0
v = 'etab0'
gamma_names = 'gab'
[../]
[./ACa0_sw]
type = ACSwitching
variable = etaa0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etab0 w'
[../]
[./ACa0_int1]
type = ACInterface2DMultiPhase1
variable = etaa0
etas = 'etab0'
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
[../]
[./ACa0_int2]
type = ACInterface2DMultiPhase2
variable = etaa0
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
[../]
[./ea0_dot]
type = TimeDerivative
variable = etaa0
[../]
# Order parameter eta_beta0
[./ACb0_bulk]
type = ACGrGrMulti
variable = etab0
v = 'etaa0'
gamma_names = 'gab'
[../]
[./ACb0_sw]
type = ACSwitching
variable = etab0
Fj_names = 'omegaa omegab'
hj_names = 'ha hb'
coupled_variables = 'etaa0 w'
[../]
[./ACb0_int1]
type = ACInterface2DMultiPhase1
variable = etab0
etas = 'etaa0'
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
[../]
[./ACb0_int2]
type = ACInterface2DMultiPhase2
variable = etab0
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
[../]
[./eb0_dot]
type = TimeDerivative
variable = etab0
[../]
#Chemical potential
[./w_dot]
type = SusceptibilityTimeDerivative
variable = w
f_name = chi
[../]
[./Diffusion]
type = MatDiffusion
variable = w
diffusivity = Dchi
[../]
[./coupled_etaa0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etaa0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[./coupled_etab0dot]
type = CoupledSwitchingTimeDerivative
variable = w
v = etab0
Fj_names = 'rhoa rhob'
hj_names = 'ha hb'
coupled_variables = 'etaa0 etab0'
[../]
[]
[Materials]
[./ha]
type = SwitchingFunctionMultiPhaseMaterial
h_name = ha
all_etas = 'etaa0 etab0'
phase_etas = 'etaa0'
[../]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'etaa0 etab0'
phase_etas = 'etab0'
[../]
[./omegaa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = omegaa
material_property_names = 'Vm ka caeq'
expression = '-0.5*w^2/Vm^2/ka-w/Vm*caeq'
[../]
[./omegab]
type = DerivativeParsedMaterial
coupled_variables = 'w T'
property_name = omegab
material_property_names = 'Vm kb cbeq S Tm'
expression = '-0.5*w^2/Vm^2/kb-w/Vm*cbeq-S*(T-Tm)'
[../]
[./rhoa]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhoa
material_property_names = 'Vm ka caeq'
expression = 'w/Vm^2/ka + caeq/Vm'
[../]
[./rhob]
type = DerivativeParsedMaterial
coupled_variables = 'w'
property_name = rhob
material_property_names = 'Vm kb cbeq'
expression = 'w/Vm^2/kb + cbeq/Vm'
[../]
[./kappaa]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappaa
dkappadgrad_etaa_name = dkappadgrad_etaa
d2kappadgrad_etaa_name = d2kappadgrad_etaa
etaa = etaa0
etab = etab0
outputs = exodus
output_properties = 'kappaa'
[../]
[./kappab]
type = InterfaceOrientationMultiphaseMaterial
kappa_name = kappab
dkappadgrad_etaa_name = dkappadgrad_etab
d2kappadgrad_etaa_name = d2kappadgrad_etab
etaa = etab0
etab = etaa0
outputs = exodus
output_properties = 'kappab'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'L D chi Vm ka caeq kb cbeq gab mu S Tm'
prop_values = '1.0 1.0 0.1 1.0 10.0 0.1 10.0 0.9 4.5 10.0 1.0 100.0'
[../]
[./Mobility]
type = ParsedMaterial
property_name = Dchi
material_property_names = 'D chi'
expression = 'D*chi'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_tol = 1.0e-3
l_max_its = 30
nl_max_its = 15
nl_rel_tol = 1.0e-8
nl_abs_tol = 1e-8
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.0005
cutback_factor = 0.7
growth_factor = 1.2
[../]
[]
[Adaptivity]
initial_steps = 3
max_h_level = 3
initial_marker = err_eta
marker = err_bnds
[./Markers]
[./err_eta]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_eta
[../]
[./err_bnds]
type = ErrorFractionMarker
coarsen = 0.3
refine = 0.95
indicator = ind_bnds
[../]
[../]
[./Indicators]
[./ind_eta]
type = GradientJumpIndicator
variable = etaa0
[../]
[./ind_bnds]
type = GradientJumpIndicator
variable = bnds
[../]
[../]
[]
[Outputs]
time_step_interval = 10
exodus = true
[]
(test/tests/misc/initial_solution_copy/solutions_equal.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./initial_func]
type = ParsedFunction
expression = sin(pi*x)*sin(pi*y)
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./source]
type = BodyForce
variable = u
value = 1
[../]
[]
[BCs]
active = 'func_bc'
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./func_bc]
type = FunctionDirichletBC
variable = u
boundary = 'bottom right top left'
function = initial_func
[../]
[]
[Postprocessors]
[./test_pp]
type = TestCopyInitialSolution
execute_on = timestep_begin
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[ICs]
[./initial]
function = initial_func
variable = u
type = FunctionIC
[../]
[]
(test/tests/userobjects/toggle_mesh_adaptivity/toggle_mesh_adaptivity_gaussian_ic_stop_time.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./gaussian_ic]
type = FunctionIC
variable = u
function = gaussian_2d
[../]
[]
[Functions]
[./gaussian_2d]
type = ParsedFunction
expression = exp(-((x-x0)*(x-x0)+(y-y0)*(y-y0))/2.0/sigma/sigma)
symbol_names = 'sigma x0 y0'
symbol_values = '0.05 0.35 0.25'
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.02
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 1
initial_marker = marker
cycles_per_step = 1
marker = marker
max_h_level = 2
stop_time = 0.0
[./Markers]
[./marker]
type = CircleMarker
point = '0.35 0.25 0'
radius = 0.2
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
print_mesh_changed_info = true
[../]
[]
(test/tests/parser/cli_multiapp_single/dt_from_parent_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the parent solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/tosub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./axial_force]
type = ParsedFunction
expression = 1000*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = axial_force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
coord_type = rz
type = FEProblem
[]
(modules/phase_field/examples/multiphase/DerivativeMultiPhaseMaterial.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = -12
xmax = 12
ymin = -12
ymax = 12
elem_type = QUAD4
[]
[GlobalParams]
# let's output all material properties for demonstration purposes
outputs = exodus
# prefactor on the penalty function kernels. The higher this value is, the
# more rigorously the constraint is enforced
penalty = 1e3
[]
#
# These AuxVariables hold the directly calculated free energy density in the
# simulation cell. They are provided for visualization purposes.
#
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
#
# Helper kernel to cpompute the gradient contribution from interfaces of order
# parameters evolved using the ACMultiInterface kernel
#
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
#
# The interface coefficient matrix. This should be symmetrical!
#
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
#
# We set up a smooth cradial concentrtaion gradient
# The concentration will quickly change to adapt to the preset order
# parameters eta1, eta2, and eta3
#
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 5.0
invalue = 1.0
outvalue = 0.01
int_width = 10.0
[../]
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
#
# Note: this initial conditions sets up a _sharp_ interface. Ideally
# we should start with a smooth interface with a width consistent
# with the kappa parameter supplied for the given interface.
#
function = 'r:=sqrt(x^2+y^2);if(r<=4,1,0)'
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>4&r<=7,1,0)'
[../]
[../]
[./eta3]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt(x^2+y^2);if(r>7,1,0)'
[../]
[../]
[]
[Kernels]
#
# Cahn-Hilliard kernel for the concentration variable.
# Note that we are not using an interfcae kernel on this variable, but rather
# rely on the interface width enforced on the order parameters. This allows us
# to use a direct solve using the CahnHilliard kernel _despite_ only using first
# order elements.
#
[./c_res]
type = CahnHilliard
variable = c
f_name = F
coupled_variables = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
#
# Order parameter eta1
# Each order parameter is acted on by 4 kernels:
# 1. The stock time derivative deta_i/dt kernel
# 2. The Allen-Cahn kernel that takes a Dervative Material for the free energy
# 3. A gradient interface kernel that includes cross terms
# see http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/ACMultiInterface/
# 4. A penalty contribution that forces the interface contributions h(eta)
# to sum up to unity
#
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
coupled_variables = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./penalty1]
type = SwitchingFunctionPenalty
variable = eta1
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta2
#
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
coupled_variables = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./penalty2]
type = SwitchingFunctionPenalty
variable = eta2
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
#
# Order parameter eta3
#
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
coupled_variables = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./penalty3]
type = SwitchingFunctionPenalty
variable = eta3
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
# here we declare some of the model parameters: the mobilities and interface
# gradient prefactors. For this example we use arbitrary numbers. In an actual simulation
# physical mobilities would be used, and the interface gradient prefactors would
# be readjusted to the free energy magnitudes.
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0.75 1 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 '
[../]
# This material sums up the individual phase contributions. It is written to the output file
# (see GlobalParams section above) and can be used to check the constraint enforcement.
[./etasummat]
type = ParsedMaterial
property_name = etasum
material_property_names = 'h1 h2 h3'
expression = 'h1+h2+h3'
[../]
# The phase contribution factors for each material point are computed using the
# SwitchingFunctionMaterials. Each phase with an order parameter eta contributes h(eta)
# to the global free energy density. h is a function that switches smoothly from 0 to 1
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
# The barrier function adds a phase transformation energy barrier. It also
# Drives order parameters toward the [0:1] interval to avoid negative or larger than 1
# order parameters (these are set to 0 and 1 contribution by the switching functions
# above)
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# We use DerivativeParsedMaterials to specify three (very) simple free energy
# expressions for the three phases. All necessary derivatives are built automatically.
# In a real problem these expressions can be arbitrarily complex (or even provided
# by custom kernels).
[./phase_free_energy_1]
type = DerivativeParsedMaterial
property_name = F1
expression = '(c-1)^2'
coupled_variables = 'c'
[../]
[./phase_free_energy_2]
type = DerivativeParsedMaterial
property_name = F2
expression = '(c-0.5)^2'
coupled_variables = 'c'
[../]
[./phase_free_energy_3]
type = DerivativeParsedMaterial
property_name = F3
expression = 'c^2'
coupled_variables = 'c'
[../]
# The DerivativeMultiPhaseMaterial ties the phase free energies together into a global free energy.
# http://mooseframework.org/wiki/PhysicsModules/PhaseField/DevelopingModels/MultiPhaseModels/
[./free_energy]
type = DerivativeMultiPhaseMaterial
property_name = F
# we use a constant free energy (GeneriConstantmaterial property Fx)
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
coupled_variables = 'c'
W = 1
[../]
[]
[Postprocessors]
# The total free energy of the simulation cell to observe the energy reduction.
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
# for testing we also monitor the total solute amount, which should be conserved.
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Preconditioning]
# This preconditioner makes sure the Jacobian Matrix is fully populated. Our
# kernels compute all Jacobian matrix entries.
# This allows us to use the Newton solver below.
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
# Automatic differentiation provedes a _full_ Jacobian in this example
# so we can safely use NEWTON for a fast solve
solve_type = 'NEWTON'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-6
start_time = 0.0
end_time = 150.0
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
(modules/heat_transfer/test/tests/thermal_materials/2d.i)
power = 2.0
rho0 = 0.0
rho1 = 1.0
TC0 = 1.0e-16
TC1 = 1.0
[Mesh]
[planet]
type = ConcentricCircleMeshGenerator
has_outer_square = false
radii = 1
num_sectors = 10
rings = 2
preserve_volumes = false
[]
[moon]
type = ConcentricCircleMeshGenerator
has_outer_square = false
radii = 0.5
num_sectors = 8
rings = 2
preserve_volumes = false
[]
[combine]
type = CombinerGenerator
inputs = 'planet moon'
positions = '0 0 0 -1.5 -0.5 0'
[]
[]
[GlobalParams]
illumination_flux = '1 1 0'
[]
[AuxVariables]
[mat_den]
family = MONOMIAL
order = CONSTANT
initial_condition = 0.1
[]
[]
[Variables]
[u]
[]
[v]
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[dt_u]
type = TimeDerivative
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[dt_v]
type = TimeDerivative
variable = v
[]
[]
[Materials]
[thermal_compliance]
type = ThermalCompliance
temperature = u
thermal_conductivity = thermal_cond
outputs = 'exodus'
[]
[thermal_cond]
type = DerivativeParsedMaterial
expression = "A1:=(${TC0}-${TC1})/(${rho0}^${power}-${rho1}^${power}); "
"B1:=${TC0}-A1*${rho0}^${power}; TC1:=A1*mat_den^${power}+B1; TC1"
coupled_variables = 'mat_den'
property_name = thermal_cond
outputs = 'exodus'
[]
[thermal_compliance_sensitivity]
type = ThermalSensitivity
design_density = mat_den
thermal_conductivity = thermal_cond
temperature = u
outputs = 'exodus'
[]
[]
[BCs]
[flux_u]
type = DirectionalFluxBC
variable = u
boundary = outer
[]
[flux_v]
type = DirectionalFluxBC
variable = v
boundary = outer
self_shadow_uo = shadow
[]
[]
[Postprocessors]
[ave_v_all]
type = SideAverageValue
variable = v
boundary = outer
[]
[ave_v_exposed]
type = ExposedSideAverageValue
variable = v
boundary = outer
self_shadow_uo = shadow
[]
[]
[UserObjects]
[shadow]
type = SelfShadowSideUserObject
boundary = outer
execute_on = INITIAL
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/steffensen_postprocessor/transient_main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[source]
type = BodyForce
variable = u
value = 1
[]
[]
[BCs]
[left]
type = PostprocessorDirichletBC
variable = u
boundary = left
postprocessor = 'from_sub'
[]
[]
[Postprocessors]
[coupling_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[from_sub]
type = Receiver
default = 0
[]
[to_sub]
type = SideAverageValue
variable = u
boundary = right
[]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
# App coupling parameters
fixed_point_algorithm = 'steffensen'
fixed_point_max_its = 30
transformed_postprocessors = 'from_sub'
[]
[Outputs]
csv = true
exodus = false
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'transient_sub.i'
clone_parent_mesh = true
execute_on = 'timestep_begin'
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[left_from_sub]
type = MultiAppPostprocessorTransfer
from_multi_app = sub
from_postprocessor = 'to_main'
to_postprocessor = 'from_sub'
reduction_type = 'average'
[]
[right_to_sub]
type = MultiAppPostprocessorTransfer
to_multi_app = sub
from_postprocessor = 'to_sub'
to_postprocessor = 'from_main'
[]
[]
(modules/phase_field/test/tests/initial_conditions/RndSmoothCircleIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
variable = c
type = RndSmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
variation_invalue = 0.0
outvalue = -0.8
variation_outvalue = 0.2
int_width = 5
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 10
l_tol = 1.0e-4
nl_max_its = 10
start_time = 0.0
num_steps = 1
dt = 20.0
[]
[Outputs]
exodus = true
[]
(modules/level_set/test/tests/transfers/markers/multi_level/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Adaptivity]
marker = marker
max_h_level = 2
cycles_per_step = 2
[./Indicators]
[./error]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
coarsen = 0.4
refine = 0.5
indicator = error
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = LevelSetProblem
[]
[Executioner]
type = Transient
dt = 0.02
num_steps = 4
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = TransientMultiApp
input_files = 'sub.i'
execute_on = TIMESTEP_END
[../]
[]
[Transfers]
[./marker_to_sub]
type = LevelSetMeshRefinementTransfer
to_multi_app = sub
source_variable = marker
variable = marker
check_multiapp_execute_on = false
[../]
[]
[Outputs]
hide = u
exodus = true
[]
(test/tests/outputs/console/console_final.i)
###########################################################
# This test exercises console Output control. The console
# output is only output every third step. Additionally it
# is forced to be output after the final timestep as well.
#
# @Requirement U1.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Functions]
[./ffn]
type = ParsedFunction
expression = -4
[../]
[./exactfn]
type = ParsedFunction
expression = x*x+y*y
[../]
[./aux_exact_fn]
type = ParsedFunction
expression = t*(x*x+y*y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = ffn
[../]
[]
[AuxVariables]
[./aux_u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./a]
type = FunctionAux
variable = aux_u
function = aux_exact_fn
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exactfn
[../]
[]
[Postprocessors]
[./elem_56]
type = ElementalVariableValue
variable = u
elementid = 56
[../]
[./aux_elem_99]
type = ElementalVariableValue
variable = aux_u
elementid = 99
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
start_time = 0
num_steps = 10
[]
[Outputs]
time_step_interval = 3
execute_on = 'initial timestep_end final'
[]
(modules/phase_field/test/tests/phase_field_kernels/AllenCahnVariableL.i)
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 12
ymax = 12
elem_type = QUAD4
[]
[AuxVariables]
[./chi]
[./InitialCondition]
type = FunctionIC
function = 'x/24+0.5'
[../]
[../]
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
variable_L = true
coupled_variables = chi
[../]
[]
[Materials]
[./L]
type = DerivativeParsedMaterial
property_name = L
coupled_variables = 'eta chi'
expression = '0.1 * eta^2 + chi^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'eta'
expression = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/move/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/console/multiapp/picard_parent_both.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v_begin]
[]
[v_end]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u_begin]
type = CoupledForce
variable = u
v = v_begin
[]
[force_u_end]
type = CoupledForce
variable = u
v = v_end
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[MultiApps]
[sub_begin]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[]
[sub_end]
type = TransientMultiApp
app_type = MooseTestApp
positions = '1 1 1'
input_files = picard_sub.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[v_from_sub_begin]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_begin
source_variable = v
variable = v_begin
[]
[u_to_sub_begin]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub_begin
source_variable = u
variable = u
[]
[v_from_sub_end]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_end
source_variable = v
variable = v_end
[]
[u_to_sub_end]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub_end
source_variable = u
variable = u
[]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/sub.i)
# This is changed by main.i for testing purposes
real_val = 0.0
vector_val0 = ${fparse real_val * 10}
vector_val1= ${fparse vector_val0 * 10}
vector_val2= ${fparse vector_val0 * 100}
vector_val3= ${fparse vector_val0 * 1000}
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = ${real_val}
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
error_on_dtmin = false
[]
[Postprocessors]
[pp]
type = PointValue
point = '0 0 0'
variable = u
[]
[]
[VectorPostprocessors]
[vpp]
type = ConstantVectorPostprocessor
vector_names = 'vec'
value = '${vector_val0} ${vector_val1} ${vector_val2} ${vector_val3}'
[]
[]
[Reporters]
[constant]
type = ConstantReporter
integer_names = 'int'
integer_values = 0
string_names = 'str'
string_values = 'this_value'
[]
[mesh]
type = MeshInfo
items = sidesets
[]
[]
# This is used in main_batch.i
[Controls]
[stm]
type = SamplerReceiver
[]
[]
(test/tests/executioners/nl_forced_its/nl_forced_its.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
[]
[Variables]
[./u]
scaling = 1e-5
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1000
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 100000
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
line_search = 'none'
solve_type = PJFNK
l_max_its = 20
nl_max_its = 20
nl_forced_its = 2
nl_abs_div_tol = 1e+3
dt = 1
num_steps = 2
petsc_options = '-snes_converged_reason -ksp_converged_reason '
petsc_options_iname = '-pc_type -pc_hypre_type '
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/outputs/iterative/iterative.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
nonlinear_residual_dt_divisor = 100
linear_residual_dt_divisor = 100
start_time = 1.8
end_time = 1.85
execute_on = 'nonlinear linear timestep_end'
[../]
[]
(test/tests/time_steppers/iteration_adaptive/hit_function_knot.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./knot]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0 0'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 2.0
timestep_tolerance = 0.3
verbose = true
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.9
optimal_iterations = 10
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/intervals/no_output.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
execute_on = none
[../]
[]
(modules/phase_field/examples/anisotropic_transport/diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmin = -15.0
ymin = -15.0
xmax = 15.0
ymax = 15.0
[]
[Variables]
[./c]
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 3
int_width = 1
invalue = 1
outvalue = 0
[../]
[../]
[]
[Kernels]
[./cres]
type = MatAnisoDiffusion
diffusivity = D
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./D]
type = ConstantAnisotropicMobility
tensor = '.505 .495 .0
.495 .505 .0
.0 .0 .0'
M_name = D
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
scheme = bdf2
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 50
nl_rel_tol = 1.0e-10
dt = 1.0
num_steps = 20
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 5
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[pp_sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
input_files = sub.i
[]
[]
[Transfers]
[pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
to_multi_app = pp_sub
from_postprocessor = average
to_aux_scalar = from_parent_app
[]
[]
(modules/scalar_transport/test/tests/multiple-species/multiple-species.i)
Krht = 1
Krtt = 1
Krhh = 1
Kdh2 = 1
Kdt2 = 1
Kdht = 1
Ph2_left = 1
Pt2_left = 2
Pht_left = 3
Ph2_right = 0
Pt2_right = 0
Pht_right = 0
d_h = 1
d_t = 1
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = ref
[]
[Variables]
[h]
[]
[t]
[]
[]
[Kernels]
[time_h]
type = TimeDerivative
variable = h
extra_vector_tags = ref
[]
[diff_h]
type = MatDiffusion
variable = h
diffusivity = ${d_h}
extra_vector_tags = ref
[]
[time_t]
type = TimeDerivative
variable = t
extra_vector_tags = ref
[]
[diff_t]
type = MatDiffusion
variable = t
diffusivity = ${d_t}
extra_vector_tags = ref
[]
[]
[BCs]
[ht_h_left]
type = BinaryRecombinationBC
variable = h
v = t
Kr = Krht
boundary = left
[]
[ht_t_left]
type = BinaryRecombinationBC
variable = t
v = h
Kr = Krht
boundary = left
[]
[hh_left]
type = BinaryRecombinationBC
variable = h
v = h
Kr = Krhh
boundary = left
[]
[tt_left]
type = BinaryRecombinationBC
variable = t
v = t
Kr = Krtt
boundary = left
[]
[h_from_h2_left]
type = DissociationFluxBC
variable = h
v = ${Ph2_left} # Partial pressure of H2
Kd = Kdh2
boundary = left
[]
[t_from_t2_left]
type = DissociationFluxBC
variable = t
v = ${Pt2_left} # Partial pressure of T2
Kd = Kdt2
boundary = left
[]
[h_from_ht_left]
type = DissociationFluxBC
variable = h
v = ${Pht_left} # Partial pressure of HT
Kd = Kdht
boundary = left
[]
[t_from_ht_left]
type = DissociationFluxBC
variable = t
v = ${Pht_left} # Partial pressure of HT
Kd = Kdht
boundary = left
[]
[ht_h_right]
type = BinaryRecombinationBC
variable = h
v = t
Kr = Krht
boundary = right
[]
[ht_t_right]
type = BinaryRecombinationBC
variable = t
v = h
Kr = Krht
boundary = right
[]
[hh_right]
type = BinaryRecombinationBC
variable = h
v = h
Kr = Krhh
boundary = right
[]
[tt_right]
type = BinaryRecombinationBC
variable = t
v = t
Kr = Krtt
boundary = right
[]
[h_from_h2_right]
type = DissociationFluxBC
variable = h
v = ${Ph2_right} # Partial pressure of H2
Kd = Kdh2
boundary = right
[]
[t_from_t2_right]
type = DissociationFluxBC
variable = t
v = ${Pt2_right} # Partial pressure of T2
Kd = Kdt2
boundary = right
[]
[h_from_ht_right]
type = DissociationFluxBC
variable = h
v = ${Pht_right} # Partial pressure of HT
Kd = Kdht
boundary = right
[]
[t_from_ht_right]
type = DissociationFluxBC
variable = t
v = ${Pht_right} # Partial pressure of HT
Kd = Kdht
boundary = right
[]
[]
[Materials]
[Krht]
type = ADConstantMaterial
property_name = 'Krht'
value = '${Krht}'
[]
[Krhh]
type = ADConstantMaterial
property_name = 'Krhh'
value = '${Krhh}'
[]
[Krtt]
type = ADConstantMaterial
property_name = 'Krtt'
value = '${Krtt}'
[]
[Kdh2]
type = ADConstantMaterial
property_name = 'Kdh2'
value = '${Kdh2}'
[]
[Kdt2]
type = ADConstantMaterial
property_name = 'Kdt2'
value = '${Kdt2}'
[]
[Kdht]
type = ADConstantMaterial
property_name = 'Kdht'
value = '${Kdht}'
[]
[]
[Postprocessors]
[downstream_h_flux]
type = SideFluxAverage
variable = h
boundary = right
diffusivity = ${d_h}
[]
[downstream_t_flux]
type = SideFluxAverage
variable = t
boundary = right
diffusivity = ${d_t}
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
num_steps = 1000
steady_state_detection = true
steady_state_tolerance = 3e-08
dt = .1
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-quadratic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = ((x*x)+(y*y))-(4*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*((x*x)+(y*y))
[../]
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
l_tol = 1e-13
start_time = 0.0
num_steps = 20
dt = 0.00005
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/time_steppers/function_dt/function_dt_min.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[./dts]
type = PiecewiseLinear
x = '0 0.85 2'
y = '0.2 0.2 0.2'
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0
num_steps = 10
[./TimeStepper]
type = FunctionDT
function = dts
min_dt = 0.1
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/vtk/vtk_diff.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
vtk = true
[]
(test/tests/scaling/ignore-variables/ignore.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
[]
[Variables]
[u][]
[v][]
[x]
family = SCALAR
type = MooseVariableBase
[]
[y]
family = SCALAR
[]
[]
[Kernels]
[dt_u]
type = TimeDerivative
variable = u
[]
[diff_u]
type = Diffusion
variable = u
[]
[dt_v]
type = TimeDerivative
variable = v
[]
[diff_v]
type = MatDiffusion
variable = v
diffusivity = 1e-3
[]
[]
[ScalarKernels]
[dt_x]
type = ODETimeDerivative
variable = x
[]
[ode_x]
type = ParsedODEKernel
variable = x
coupled_variables = y
expression = '-3*x - 2*y'
[]
[dt_y]
type = ODETimeDerivative
variable = y
[]
[ode_y ]
type = ParsedODEKernel
variable = y
expression = '10*y'
[]
[]
[Executioner]
type = Transient
num_steps = 2
automatic_scaling = true
compute_scaling_once = false
ignore_variables_for_autoscaling = 'v y'
solve_type = NEWTON
verbose = true
[]
(test/tests/postprocessors/mms_polynomial/mms_polynomial_test.i)
#MMS.i
#This is for u = a*x^3*y*t+b*y^2*z+e*x*y*z^4
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
elem_type = HEX8
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables] #We added nodal AuxVariables
active = 'nodal_aux'
[./nodal_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff implicit conv forcing reaction'
[./diff]
type = PolyDiffusion
variable = u
[../]
[./implicit] #We got from MOOSE kernels
type = TimeDerivative
variable = u
[../]
[./conv] #We created our own convection kernel
type = PolyConvection
variable = u
x = -1
y = 2
z = -3
[../]
[./forcing] #We created our own forcing kernel
type = PolyForcing
variable = u
[../]
[./reaction] #We got from MOOSE kernels
type = PolyReaction
variable = u
[../]
[]
[AuxKernels] #We created our own AuxKernel
active = 'ConstantAux'
[./ConstantAux]
type = PolyConstantAux
variable = nodal_aux
[../]
[]
[BCs]
active = 'all_u'
[./all_u]
type = PolyCoupledDirichletBC
variable = u
boundary = '0 1 2 3 4 5'
[../]
[]
[Executioner]
type = Transient
dt = .1
num_steps = 20
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub_missing_control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/combined/test/tests/feature_volume_fraction/feature_volume_fraction.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 20
y1 = 20
radius = 10
int_width = 1
invalue = 1
outvalue = 0
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[VectorPostprocessors]
[./feature_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = feature_counter
execute_on = 'initial timestep_end'
outputs = none
[../]
[]
[Postprocessors]
[./feature_counter]
type = FeatureFloodCount
variable = u
compute_var_to_feature_map = true
execute_on = 'initial timestep_end'
[../]
[./Volume]
type = VolumePostprocessor
execute_on = 'initial'
[../]
[./volume_fraction]
type = FeatureVolumeFraction
mesh_volume = Volume
feature_volumes = feature_volumes
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
[]
[Outputs]
csv = true
[]
(test/tests/userobjects/pre_aux_based_on_exec_flag/pre_post_aux_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 2
ymin = 0
ymax = 1
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[AuxVariables]
[w1]
order = FIRST
family = LAGRANGE
initial_condition = 2
[]
[w2]
order = FIRST
family = LAGRANGE
[]
[w3]
order = FIRST
family = LAGRANGE
[]
[w4]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# The purpose of this auxkernel is to provide the variable w1
# and the scalepostprocessors included below will either get
# an updated w1 or the previous w1 value depending on whether
# they are forced in preaux or postaux
[NormalizationAuxW1]
type = NormalizationAux
variable = w1
source_variable = u
shift = -100.0
normalization = 1.0
execute_on = 'INITIAL FINAL'
[]
# This establishes a dependency for scale_initial on exec INITIAL
[NormalizationAuxINITIAL]
type = NormalizationAux
variable = w2
source_variable = u
normalization = scale_initial
execute_on = 'INITIAL'
[]
# This establishes a dependency for scale_initial on exec TIMESTEP_END
[NormalizationAuxTIMESTEP_END]
type = NormalizationAux
variable = w3
source_variable = u
normalization = scale_td_end
execute_on = 'TIMESTEP_END'
[]
# This establishes a dependency for scale_initial on exec FINAL
[NormalizationAuxFINAL]
type = NormalizationAux
variable = w4
source_variable = u
normalization = scale_final
execute_on = 'FINAL'
[]
[]
[Postprocessors]
#
# scalePostAux always gets run post_aux
#
[./total_u1]
type = ElementIntegralVariablePostprocessor
variable = w1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[./scalePostAux]
type = ScalePostprocessor
value = total_u1
scaling_factor = 1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
#
# shoule only run pre_aux on initial
#
[./total_u2]
type = ElementIntegralVariablePostprocessor
variable = w1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[./scale_initial]
type = ScalePostprocessor
value = total_u2
scaling_factor = 1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
#
# shoule be forced into preaux on timestep_end
#
[./total_u3]
type = ElementIntegralVariablePostprocessor
variable = w1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[./scale_td_end]
type = ScalePostprocessor
value = total_u3
scaling_factor = 1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
#
# shoule be forced into preaux on final
#
[./total_u4]
type = ElementIntegralVariablePostprocessor
variable = w1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[./scale_final]
type = ScalePostprocessor
value = total_u4
scaling_factor = 1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1.0
end_time = 2.0
[]
[Outputs]
[console]
type = Console
execute_on = 'INITIAL FINAL'
[]
[out]
type = CSV
execute_on = 'INITIAL FINAL'
[]
[]
(test/tests/controls/error/non_controllable_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[./test_control]
type = TestControl
test_type = 'real'
parameter = 'Kernels/diff/non_controllable'
execute_on = 'initial'
[../]
[]
(test/tests/transfers/multiapp_userobject_transfer/restricted_node_parent.i)
num_layers = 2
[Mesh]
[box]
type = GeneratedMeshGenerator
dim = 3
nx = ${num_layers}
ny = 3
nz = 3
xmin = 0.25
xmax = 1.25
[]
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[a]
[]
[s]
[]
[]
[AuxKernels]
[s_ak]
type = ParsedAux
variable = s
use_xyzt = true
expression = 'x+(z*z)'
[]
[]
[Functions]
[]
[Postprocessors]
[a_avg]
type = ElementAverageValue
variable = a
[]
[]
[UserObjects]
[S_avg_front]
type = LayeredSideAverage
boundary = front
variable = s
num_layers = ${num_layers}
direction = x
[]
[S_avg_back]
type = LayeredSideAverage
boundary = back
variable = s
num_layers = ${num_layers}
direction = x
[]
[]
[MultiApps]
[ch0]
type = TransientMultiApp
input_files = 'restricted_node_sub.i'
bounding_box_padding = '0 0.5 1'
positions = '0 0.5 -0.1'
output_in_position = true
cli_args = 'yy=0'
[]
[ch1]
type = TransientMultiApp
input_files = 'restricted_node_sub.i'
bounding_box_padding = '0 0.5 1'
positions = '0 0.5 1.1'
output_in_position = true
cli_args = 'yy=1'
[]
[]
[Transfers]
[from_ch0]
type = MultiAppUserObjectTransfer
boundary = back
from_multi_app = ch0
variable = a
user_object = A_avg
[]
[from_ch1]
type = MultiAppUserObjectTransfer
boundary = front
from_multi_app = ch1
variable = a
user_object = A_avg
[]
[to_ch0]
type = MultiAppUserObjectTransfer
block = 20
to_multi_app = ch0
variable = S
user_object = S_avg_back
[]
[to_ch1]
type = MultiAppUserObjectTransfer
block = 20
to_multi_app = ch1
variable = S
user_object = S_avg_front
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
nl_abs_tol = 1e-7
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/variables/show_single_vars.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Functions]
[./ffn]
type = ParsedFunction
expression = -4
[../]
[./exactfn]
type = ParsedFunction
expression = x*x+y*y
[../]
[./aux_exact_fn]
type = ParsedFunction
expression = t*(x*x+y*y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = ffn
[../]
[]
[AuxVariables]
[./aux_u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./a]
type = FunctionAux
variable = aux_u
function = aux_exact_fn
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exactfn
[../]
[]
[Postprocessors]
[./elem_56]
type = ElementalVariableValue
variable = u
elementid = 56
[../]
[./aux_elem_99]
type = ElementalVariableValue
variable = aux_u
elementid = 99
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
start_time = 0
num_steps = 1
[]
[Outputs]
exodus = true
show = 'aux_u'
[]
(test/tests/functions/parsed/mms_transient_coupled.i)
###########################################################
# This is a simple test of the Function System. This
# test uses forcing terms produced from analytical
# functions of space and time to verify a solution
# using MMS.
#
# @Requirement F6.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 1.0
nx = 10
ymin = 0.0
ymax = 1.0
ny = 10
uniform_refine = 2
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Functions]
[./v_left_bc]
# Left-side boundary condition for v equation, v(0,y,t) = u(0.5,y,t). This is accomplished using a PointValue postprocessor, which is what this input file was designed to test.
type = ParsedFunction
expression = a
symbol_values = u_midpoint
symbol_names = a
[../]
[./u_mms_func]
# MMS Forcing function for the u equation.
type = ParsedFunction
expression = ' 20*exp(20*t)*x*x*x-6*exp(20*t)*x-(2-0.125*exp(20*t))*sin(5/2*x*pi)-0.125*exp(20*t)-1
'
[../]
[./v_mms_func]
# MMS forcing function for the v equation.
type = ParsedFunction
expression = -2.5*exp(20*t)*sin(5/2*x*pi)+2.5*exp(20*t)+25/4*(2-0.125*exp(20*t))*sin(5/2*x*pi)*pi*pi
[../]
[./u_right_bc]
type = ParsedFunction
expression = 3*exp(20*t) # \nabla{u}|_{x=1} = 3\exp(20*t)
[../]
[./u_exact]
# Exact solution for the MMS function for the u variable.
type = ParsedFunction
expression = exp(20*t)*pow(x,3)+1
[../]
[./v_exact]
# Exact MMS solution for v.
type = ParsedFunction
expression = (2-0.125*exp(20*t))*sin(5/2*pi*x)+0.125*exp(20*t)+1
[../]
[]
[Kernels]
# Strong Form:
# \frac{\partial u}{\partial t} - \nabla \cdot 0.5 \nabla u - v = 0
# \frac{\partial u}{\partial t} - \nabla \cdot \nabla v = 0
#
# BCs:
# u(0,y,t) = 1
# \nabla u |_{x=1} = 3\exp(20*t)
# v(0,y,t) = u(0.5,y,t)
# v(1,y,t) = 3
# \nabla u |_{y=0,1} = 0
# \nabla v |_{y=0,1} = 0
#
[./u_time]
type = TimeDerivative
variable = u
[../]
[./u_diff]
type = Diffusion
variable = u
[../]
[./u_source]
type = CoupledForce
variable = u
v = v
[../]
[./v_diff]
type = Diffusion
variable = v
[../]
[./u_mms]
type = BodyForce
variable = u
function = u_mms_func
[../]
[./v_mms]
type = BodyForce
variable = v
function = v_mms_func
[../]
[./v_time]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./u_left]
type = DirichletBC
variable = u
boundary = left # x=0
value = 1 # u(0,y,t)=1
[../]
[./u_right]
type = FunctionNeumannBC
variable = u
boundary = right # x=1
function = u_right_bc # \nabla{u}|_{x=1}=3\exp(20t)
[../]
[./v_left]
type = FunctionDirichletBC
variable = v
boundary = left # x=0
function = v_left_bc # v(0,y,t) = u(0.5,y,t)
[../]
[./v_right]
type = DirichletBC
variable = v
boundary = right # x=1
value = 3 # v(1,y,t) = 3
[../]
[]
[Postprocessors]
[./u_midpoint]
type = PointValue
variable = u
point = '0.5 0.5 0'
execute_on = 'initial timestep_end'
[../]
[./u_midpoint_exact]
type = FunctionValuePostprocessor
function = u_exact
point = '0.5 0.5 0.0'
execute_on = 'initial timestep_end'
[../]
[./u_error]
type = ElementL2Error
variable = u
function = u_exact
execute_on = 'initial timestep_end'
[../]
[./v_error]
type = ElementL2Error
variable = v
function = v_exact
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = NEWTON
end_time = 0.1
scheme = crank-nicolson
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_initial]
# Use the MMS exact solution to compute the initial conditions.
function = u_exact
variable = u
type = FunctionIC
[../]
[./v_exact]
# Use the MMS exact solution to compute the initial condition.
function = v_exact
variable = v
type = FunctionIC
[../]
[]
(test/tests/geomsearch/patch_update_strategy/never.i)
[Mesh]
type = FileMesh
file = long_range.e
dim = 2
patch_update_strategy = never
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
block = right
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = timestep_end
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = righttop
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = rightbottom
value = 0
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 30
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/slkks/CrFe.i)
#
# SLKKS two phase example for the BCC and SIGMA phases. The sigma phase contains
# multiple sublattices. Free energy from
# Jacob, Aurelie, Erwin Povoden-Karadeniz, and Ernst Kozeschnik. "Revised thermodynamic
# description of the Fe-Cr system based on an improved sublattice model of the sigma phase."
# Calphad 60 (2018): 16-28.
#
# In this simulation we consider diffusion (Cahn-Hilliard) and phase transformation.
#
# This example requires CrFe_sigma_out_var_0001.csv file, which generated by first
# running the CrFe_sigma.i input file.
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 160
ny = 1
nz = 0
xmin = -25
xmax = 25
ymin = -2.5
ymax = 2.5
elem_type = QUAD4
[]
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[sigma_cr0]
type = PiecewiseLinear
data_file = CrFe_sigma_out_var_0001.csv
format = columns
x_index_in_file = 5
y_index_in_file = 2
xy_in_file_only = false
[]
[sigma_cr1]
type = PiecewiseLinear
data_file = CrFe_sigma_out_var_0001.csv
format = columns
x_index_in_file = 5
y_index_in_file = 3
xy_in_file_only = false
[]
[sigma_cr2]
type = PiecewiseLinear
data_file = CrFe_sigma_out_var_0001.csv
format = columns
x_index_in_file = 5
y_index_in_file = 4
xy_in_file_only = false
[]
[]
[Variables]
# order parameters
[eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
[eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# solute concentration
[cCr]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.5+0.1'
[]
[]
# sublattice concentrations
[BCC_CR]
initial_condition = 0.45
[]
[SIGMA_0CR]
[InitialCondition]
type = CoupledValueFunctionIC
function = sigma_cr0
v = cCr
variable = SIGMA_0CR
[]
[]
[SIGMA_1CR]
[InitialCondition]
type = CoupledValueFunctionIC
function = sigma_cr1
v = cCr
variable = SIGMA_1CR
[]
[]
[SIGMA_2CR]
[InitialCondition]
type = CoupledValueFunctionIC
function = sigma_cr2
v = cCr
variable = SIGMA_2CR
[]
[]
# Lagrange multiplier
[lambda]
[]
[]
[Materials]
# CALPHAD free energies
[F_BCC_A2]
type = DerivativeParsedMaterial
property_name = F_BCC_A2
outputs = exodus
output_properties = F_BCC_A2
expression = 'BCC_FE:=1-BCC_CR; G := 8.3145*T*(1.0*if(BCC_CR > 1.0e-15,BCC_CR*log(BCC_CR),0) + '
'1.0*if(BCC_FE > 1.0e-15,BCC_FE*plog(BCC_FE,eps),0) + 3.0*if(BCC_VA > '
'1.0e-15,BCC_VA*log(BCC_VA),0))/(BCC_CR + BCC_FE) + 8.3145*T*if(T < '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(0.525599232981783*BCC_CR*BCC_FE*BCC_'
'VA*(BCC_CR - BCC_FE) - 0.894055608820709*BCC_CR*BCC_FE*BCC_VA + '
'0.298657718120805*BCC_CR*BCC_VA - BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T < -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(-0.525599232981783*BCC_CR*BCC_FE*BCC'
'_VA*(BCC_CR - BCC_FE) + 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - '
'0.298657718120805*BCC_CR*BCC_VA + BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) '
'+ 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(-548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T > -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA & '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA < '
'0,-79209031311018.7*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,if(T > '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA & 548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - '
'BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA > '
'0,-79209031311018.7*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,0))))*log((2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA)*if(2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA <= 0,-1.0,1.0) + 1)/(BCC_CR + BCC_FE) + '
'1.0*(BCC_CR*BCC_VA*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + '
'BCC_FE*BCC_VA*if(T >= 298.15 & T < 1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T '
'- 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < '
'6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - 25383.581,0)))/(BCC_CR '
'+ BCC_FE) + 1.0*(BCC_CR*BCC_FE*BCC_VA*(500.0 - 1.5*T)*(BCC_CR - BCC_FE) + '
'BCC_CR*BCC_FE*BCC_VA*(24600.0 - 14.98*T) + BCC_CR*BCC_FE*BCC_VA*(9.15*T - '
'14000.0)*(BCC_CR - BCC_FE)^2)/(BCC_CR + BCC_FE); G/100000'
coupled_variables = 'BCC_CR'
constant_names = 'BCC_VA T eps'
constant_expressions = '1 1000 0.01'
[]
[F_SIGMA]
type = DerivativeParsedMaterial
property_name = F_SIGMA
outputs = exodus
output_properties = F_SIGMA
expression = 'SIGMA_0FE := 1-SIGMA_0CR; SIGMA_1FE := 1-SIGMA_1CR; SIGMA_2FE := 1-SIGMA_2CR; G := '
'8.3145*T*(10.0*if(SIGMA_0CR > 1.0e-15,SIGMA_0CR*plog(SIGMA_0CR,eps),0) + '
'10.0*if(SIGMA_0FE > 1.0e-15,SIGMA_0FE*plog(SIGMA_0FE,eps),0) + 4.0*if(SIGMA_1CR > '
'1.0e-15,SIGMA_1CR*plog(SIGMA_1CR,eps),0) + 4.0*if(SIGMA_1FE > '
'1.0e-15,SIGMA_1FE*plog(SIGMA_1FE,eps),0) + 16.0*if(SIGMA_2CR > '
'1.0e-15,SIGMA_2CR*plog(SIGMA_2CR,eps),0) + 16.0*if(SIGMA_2FE > '
'1.0e-15,SIGMA_2FE*plog(SIGMA_2FE,eps),0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + '
'4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*SIGMA_2FE*(-70.0*T - 170400.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*SIGMA_2FE*(-10.0*T - 330839.0))/(10.0*SIGMA_0CR + '
'10.0*SIGMA_0FE + 4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0CR*SIGMA_1CR*SIGMA_2CR*(30.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - '
'26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= '
'2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) '
'+ 132000.0) + SIGMA_0CR*SIGMA_1CR*SIGMA_2FE*(-110.0*T + 16.0*if(T >= 298.15 & T < '
'1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - '
'5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - '
'46.0*T*log(T) + 299.31255*T - 25383.581,0)) + 14.0*if(T >= 298.15 & T < '
'2180.0,139250.0*1/T - 26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - '
'1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - '
'50.0*T*log(T) + 344.18*T - 34869.344,0)) + 123500.0) + '
'SIGMA_0CR*SIGMA_1FE*SIGMA_2CR*(4.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 26.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 140486.0) '
'+ SIGMA_0CR*SIGMA_1FE*SIGMA_2FE*(20.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 10.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 148800.0) '
'+ SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*(10.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 20.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 56200.0) + '
'SIGMA_0FE*SIGMA_1CR*SIGMA_2FE*(26.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 4.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 152700.0) '
'+ SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*(14.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 16.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 46200.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2FE*(30.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 173333.0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + 4.0*SIGMA_1CR + '
'4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE); G/100000'
coupled_variables = 'SIGMA_0CR SIGMA_1CR SIGMA_2CR'
constant_names = 'T eps'
constant_expressions = '1000 0.01'
[]
# h(eta)
[h1]
type = SwitchingFunctionMaterial
function_name = h1
h_order = HIGH
eta = eta1
[]
[h2]
type = SwitchingFunctionMaterial
function_name = h2
h_order = HIGH
eta = eta2
[]
# g(eta)
[g1]
type = BarrierFunctionMaterial
function_name = g1
g_order = SIMPLE
eta = eta1
[]
[g2]
type = BarrierFunctionMaterial
function_name = g2
g_order = SIMPLE
eta = eta2
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'D L kappa'
prop_values = '10 1 0.1 '
[]
# Coefficients for diffusion equation
[Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1(eta1)'
expression = D*h1
property_name = Dh1
coupled_variables = eta1
derivative_order = 1
[]
[Dh2a]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*10/30
property_name = Dh2a
coupled_variables = eta2
derivative_order = 1
[]
[Dh2b]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*4/30
property_name = Dh2b
coupled_variables = eta2
derivative_order = 1
[]
[Dh2c]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*16/30
property_name = Dh2c
coupled_variables = eta2
derivative_order = 1
[]
[]
[Kernels]
#Kernels for diffusion equation
[diff_time]
type = TimeDerivative
variable = cCr
[]
[diff_c1]
type = MatDiffusion
variable = cCr
diffusivity = Dh1
v = BCC_CR
args = eta1
[]
[diff_c2a]
type = MatDiffusion
variable = cCr
diffusivity = Dh2a
v = SIGMA_0CR
args = eta2
[]
[diff_c2b]
type = MatDiffusion
variable = cCr
diffusivity = Dh2b
v = SIGMA_1CR
args = eta2
[]
[diff_c2c]
type = MatDiffusion
variable = cCr
diffusivity = Dh2c
v = SIGMA_2CR
args = eta2
[]
# enforce pointwise equality of chemical potentials
[chempot1a2a]
# The BCC phase has only one sublattice
# we tie it to the first sublattice with site fraction 10/(10+4+16) in the sigma phase
type = KKSPhaseChemicalPotential
variable = BCC_CR
cb = SIGMA_0CR
kb = '${fparse 10/30}'
fa_name = F_BCC_A2
fb_name = F_SIGMA
args_b = 'SIGMA_1CR SIGMA_2CR'
[]
[chempot2a2b]
# This kernel ties the first two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_0CR
a = 10
cs = SIGMA_1CR
as = 4
F = F_SIGMA
coupled_variables = 'SIGMA_2CR'
[]
[chempot2b2c]
# This kernel ties the remaining two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_1CR
a = 4
cs = SIGMA_2CR
as = 16
F = F_SIGMA
coupled_variables = 'SIGMA_0CR'
[]
[phaseconcentration]
# This kernel ties the sum of the sublattice concentrations to the global concentration cCr
type = SLKKSMultiPhaseConcentration
variable = SIGMA_2CR
c = cCr
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g1
eta_i = eta1
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta2'
[]
[ACBulkC1]
type = SLKKSMultiACBulkC
variable = eta1
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
[lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
coupled_variables = 'eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta2dt]
type = TimeDerivative
variable = eta2
[]
[ACBulkF2]
type = KKSMultiACBulkF
variable = eta2
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g2
eta_i = eta2
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta1'
[]
[ACBulkC2]
type = SLKKSMultiACBulkC
variable = eta2
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[]
[lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
coupled_variables = 'eta1'
[]
# Lagrange-multiplier constraint kernel for lambda
[lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
h_names = 'h1 h2'
etas = 'eta1 eta2'
epsilon = 1e-6
[]
[]
[AuxKernels]
[GlobalFreeEnergy]
type = KKSMultiFreeEnergy
variable = Fglobal
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gj_names = 'g1 g2'
interfacial_vars = 'eta1 eta2'
kappa_names = 'kappa kappa'
w = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
line_search = none
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu nonzero 30'
l_max_its = 100
nl_max_its = 20
nl_abs_tol = 1e-10
end_time = 10000
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 12
iteration_window = 2
growth_factor = 1.5
cutback_factor = 0.7
dt = 0.1
[]
[]
[VectorPostprocessors]
[var]
type = LineValueSampler
start_point = '-25 0 0'
end_point = '25 0 0'
variable = 'cCr eta1 eta2 SIGMA_0CR SIGMA_1CR SIGMA_2CR'
num_points = 151
sort_by = id
execute_on = 'initial timestep_end'
[]
[mat]
type = LineMaterialRealSampler
start = '-25 0 0'
end = '25 0 0'
property = 'F_BCC_A2 F_SIGMA'
sort_by = id
execute_on = 'initial timestep_end'
[]
[]
[Postprocessors]
[F]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
execute_on = 'initial timestep_end'
[]
[cmin]
type = NodalExtremeValue
value_type = min
variable = cCr
execute_on = 'initial timestep_end'
[]
[cmax]
type = NodalExtremeValue
value_type = max
variable = cCr
execute_on = 'initial timestep_end'
[]
[ctotal]
type = ElementIntegralVariablePostprocessor
variable = cCr
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
csv = true
perf_graph = true
[]
(modules/porous_flow/test/tests/energy_conservation/except02.i)
# checking that the heat-energy postprocessor throws the correct error if the kernel_variable_number is illegal
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[temp]
[]
[]
[ICs]
[tinit]
type = FunctionIC
function = '100*x'
variable = temp
[]
[pinit]
type = FunctionIC
function = x
variable = pp
[]
[]
[Kernels]
[dummyt]
type = TimeDerivative
variable = temp
[]
[dummyp]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
viscosity = 0.001
thermal_expansion = 0
cv = 1.3
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[]
[Postprocessors]
[total_heat]
type = PorousFlowHeatEnergy
kernel_variable_number = 2
[]
[rock_heat]
type = PorousFlowHeatEnergy
[]
[fluid_heat]
type = PorousFlowHeatEnergy
include_porous_skeleton = false
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1 1 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = except01
csv = true
[]
(test/tests/materials/derivative_sum_material/random_ic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 250
ymax = 250
elem_type = QUAD4
[]
[Variables]
[./c]
[./InitialCondition]
type = RandomIC
[../]
[../]
[]
[Kernels]
[./w_res]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./free_energy1]
type = DerivativeParsedMaterial
property_name = Fa
coupled_variables = 'c'
expression = (c-0.1)^4*(1-0.1-c)^4
[../]
[./free_energy2]
type = DerivativeParsedMaterial
property_name = Fb
coupled_variables = 'c'
expression = -0.25*(c-0.1)^4*(1-0.1-c)^4
[../]
# Fa+Fb+Fb == Fc
[./free_energy3]
type = DerivativeParsedMaterial
property_name = Fc
coupled_variables = 'c'
expression = 0.5*(c-0.1)^4*(1-0.1-c)^4
outputs = all
[../]
[./dfree_energy3]
type = DerivativeParsedMaterial
property_name = dFc
coupled_variables = 'c'
material_property_names = 'F:=D[Fc,c]'
expression = F
outputs = all
[../]
[./d2free_energy3]
type = DerivativeParsedMaterial
property_name = d2Fc
coupled_variables = 'c'
material_property_names = 'F:=D[Fc,c,c]'
expression = F
outputs = all
[../]
[./free_energy]
type = DerivativeSumMaterial
property_name = F_sum
sum_materials = 'Fa Fb Fb'
coupled_variables = 'c'
outputs = all
[../]
[./dfree_energy]
type = DerivativeParsedMaterial
property_name = dF_sum
material_property_names = 'F:=D[F_sum,c]'
expression = F
coupled_variables = 'c'
outputs = all
[../]
[./d2free_energy]
type = DerivativeParsedMaterial
property_name = d2F_sum
material_property_names = 'F:=D[F_sum,c,c]'
expression = F
coupled_variables = 'c'
outputs = all
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Postprocessors]
[./F_sum]
type = ElementAverageValue
variable = F_sum
[../]
[./F_check]
type = ElementAverageValue
variable = Fc
[../]
[./dF_sum]
type = ElementAverageValue
variable = dF_sum
[../]
[./dF_check]
type = ElementAverageValue
variable = dFc
[../]
[./d2F_sum]
type = ElementAverageValue
variable = d2F_sum
[../]
[./d2F_check]
type = ElementAverageValue
variable = d2Fc
[../]
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/controls/unit_trip_control/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Functions]
[fn]
type = ParsedFunction
expression = 'sin(pi*t)'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Components]
[]
[Postprocessors]
[a]
type = FunctionValuePostprocessor
function = fn
execute_on = 'timestep_begin'
[]
[trip_state]
type = BoolControlDataValuePostprocessor
control_data_name = trip_ctrl:state
execute_on = 'timestep_end'
[]
[]
[ControlLogic]
[trip_ctrl]
type = UnitTripControl
condition = 'a > 0.6'
symbol_names = 'a'
symbol_values = 'a'
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 10
abort_on_solve_fail = true
[]
[Outputs]
csv = true
[]
(test/tests/time_integrators/convergence/explicit_convergence.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
implicit = false
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
implicit = false
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
# We are solving only mass matrices in this problem. The Jacobi
# preconditioner is a bit faster than ILU or AMG for this.
petsc_options_iname = '-pc_type'
petsc_options_value = 'jacobi'
start_time = 0.0
end_time = 0.03125
dt = 0.00390625
[./TimeIntegrator]
type = Heun
[../]
# For explicit methods, we use the LINEAR solve type.
solve_type = 'LINEAR'
l_tol = 1e-13
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-1d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 200
elem_type = EDGE2
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
lumping = true
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 20
dt = 0.00005
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/auxkernels/nodal_aux_var/nodal_aux_init_test.i)
#
# Testing nodal aux variables that are computed only at the end of the time step
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 5
[../]
[]
[AuxVariables]
active = 'aux1 aux2'
[./aux1]
order = FIRST
family = LAGRANGE
initial_condition = 2
[../]
[./aux2]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'ie diff force'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
#Coupling of nonlinear to Aux
[./force]
type = CoupledForce
variable = u
v = aux2
[../]
[]
[AuxKernels]
active = 'constant field'
#Simple Aux Kernel
[./constant]
variable = aux1
type = ConstantAux
value = 1
execute_on = nonlinear
[../]
#AuxKernel that is setup only before the simulation starts
[./field]
variable = aux2
type = CoupledAux
value = 2
coupled = u
execute_on = initial
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.1
num_steps = 2
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
file_base = out_init
[]
(modules/combined/examples/publications/rapid_dev/fig7b.i)
#
# Fig. 7 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Dashed black curve (2)
# Eigenstrain is globally applied. Single global elastic free energies.
# Supply the RADIUS parameter (10-35) on the command line to generate data
# for all curves in the plot.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 32
xmin = 0
xmax = 100
second_order = true
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Functions]
[./diff]
type = ParsedFunction
expression = '${RADIUS}-pos_c'
symbol_names = pos_c
symbol_values = pos_c
[../]
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./w]
[../]
# Phase order parameter
[./eta]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./Fe_fit]
order = SECOND
[../]
[]
[Physics/SolidMechanics/QuasiStatic/all]
add_variables = true
eigenstrain_names = eigenstrain
[]
[Kernels]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk1]
type = AllenCahn
variable = eta
args = 'c'
mob_name = L
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
mob_name = L
kappa_name = kappa_eta
[../]
[./Fe]
type = MaterialPropertyValue
prop_name = Fe
variable = Fe_fit
[../]
[./autoadjust]
type = MaskedBodyForce
variable = w
function = diff
mask = mask
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '1.0 1.0 0.5 1'
[../]
# forcing function mask
[./mask]
type = ParsedMaterial
property_name = mask
expression = grad/dt
material_property_names = 'grad dt'
[../]
[./grad]
type = VariableGradientMaterial
variable = c
prop = grad
[../]
[./time]
type = TimeStepMaterial
[../]
# global mechanical properties
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# eigenstrain as a function of phase
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.05 0.05 0.05 0 0 0'
prefactor = h
args = eta
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching]
type = SwitchingFunctionMaterial
function_name = h
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
property_name = Fc1
expression = 'c^2'
coupled_variables = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
property_name = Fc2
expression = '(1-c)^2'
coupled_variables = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./chemical_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = Fc
fa_name = Fc1
fb_name = Fc2
eta = eta
args = 'c'
W = 4
[../]
# global elastic free energy
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
output_properties = Fe
derivative_order = 2
[../]
# free energy
[./free_energy]
type = DerivativeSumMaterial
property_name = F
sum_materials = 'Fc Fe'
coupled_variables = 'c eta'
derivative_order = 2
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_r
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_c]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = c
target = 0.582
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_eta]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = eta
target = 0.5
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./c_min]
type = ElementExtremeValue
value_type = min
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
variable = 'Fe_fit c w'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 5000
sort_by = x
outputs = vpp
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 2.0e-9
start_time = 0.0
end_time = 100000.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
iteration_window = 1
dt = 1
[../]
[./Adaptivity]
initial_adaptivity = 5
interval = 10
max_h_level = 5
refine_fraction = 0.9
coarsen_fraction = 0.1
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
[./table]
type = CSV
delimiter = ' '
file_base = radius_${RADIUS}/eigenstrain_pp
[../]
[./vpp]
type = CSV
delimiter = ' '
sync_times = '10 50 100 500 1000 5000 10000 50000 100000'
sync_only = true
time_data = true
file_base = radius_${RADIUS}/eigenstrain_vpp
[../]
[]
(test/tests/postprocessors/time_extreme_value/time_extreme_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = FunctionDirichletBC
variable = u
boundary = left
function = 'if(t<1.0,t,1.0)'
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = right
function = 'if(t<1.0,2.0-t,1.0)'
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
active = 'max_nl_dofs nl_dofs'
[max_nl_dofs]
type = TimeExtremeValue
value_type = max
postprocessor = nl_dofs
execute_on = 'initial timestep_end'
[]
[time_of_max_nl_dofs]
type = TimeExtremeValue
value_type = max
output_type = time
postprocessor = nl_dofs
execute_on = 'initial timestep_end'
[]
[nl_dofs]
type = NumDOFs
system = NL
execute_on = 'initial timestep_end'
[]
[]
[Adaptivity]
marker = marker
max_h_level = 2
[Markers]
[marker]
type = ValueRangeMarker
lower_bound = 0.7
upper_bound = 1.3
buffer_size = 0.2
variable = u
invert = true
third_state = DO_NOTHING
[]
[]
[]
[Outputs]
csv = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test5.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[]
[SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox2
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/multilevel/time_dt_from_parent_subsub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 100
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./console]
type = Console
output_file = true
[../]
[]
(test/tests/multiapps/picard/picard_rel_tol_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
fixed_point_max_its = 10
fixed_point_rel_tol = 1e-7
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(modules/phase_field/test/tests/polycrystal_diffusion/polycrystal_void_diffusion_parsed.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
xmax = 200
ymax = 200
[]
[GlobalParams]
op_num = 4
grain_num = 4
var_name_base = gr
int_width = 8
radius = 20
bubspac = 1
numbub = 1
[]
[AuxVariables]
[bnds]
[]
[]
[AuxKernels]
[bnds]
type = BndsCalcAux
variable = bnds
v = 'gr0 gr1 gr2 gr3'
execute_on = 'INITIAL'
[]
[]
[Variables]
[PolycrystalVariables]
[]
[c]
[]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalVoronoiVoidIC]
invalue = 1.0
outvalue = 0.0
polycrystal_ic_uo = voronoi
rand_seed = 10
[../]
[../]
[./bubble_IC]
variable = c
type = PolycrystalVoronoiVoidIC
structure_type = voids
invalue = 1.0
outvalue = 0.0
polycrystal_ic_uo = voronoi
rand_seed = 10
[../]
[]
[Materials]
[Diff_v]
type = PolycrystalDiffusivity
c = c
v = 'gr0 gr1 gr2 gr3'
diffusivity = diffusivity
outputs = exodus
output_properties = 'diffusivity'
[]
[./hb]
type = DerivativeParsedMaterial
property_name = hb
coupled_variables = 'c'
expression = 'c * c * c * (6 * c * c - 15 * c + 10)'
[../]
[./hm]
type = DerivativeParsedMaterial
property_name = hm
coupled_variables = 'c'
material_property_names = 'hb'
expression = '(1-hb)'
[../]
[]
[UserObjects]
[voronoi]
type = PolycrystalVoronoi
rand_seed = 1268
[]
[]
[Kernels]
[bubble]
type = TimeDerivative
variable = c
[]
[gr0]
type = TimeDerivative
variable = gr0
[]
[gr1]
type = TimeDerivative
variable = gr1
[]
[gr2]
type = TimeDerivative
variable = gr2
[]
[gr3]
type = TimeDerivative
variable = gr3
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1.0e-9
num_steps = 1
[]
[Outputs]
execute_on = 'INITIAL TIMESTEP_END'
exodus = true
[]
(test/tests/multiapps/multiple_position_files/multiple_position_files.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./multi]
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub1.i sub2.i'
positions_file = 'position1.txt position2.txt'
output_in_position = true
[../]
[]
(test/tests/multiapps/picard_postprocessor/transient_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[sink]
type = BodyForce
variable = u
value = -1
[]
[]
[BCs]
[right]
type = PostprocessorDirichletBC
variable = u
boundary = right
postprocessor = 'from_main'
[]
[]
[Postprocessors]
[from_main]
type = Receiver
default = 0
[]
[to_main]
type = SideAverageValue
variable = u
boundary = left
[]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
[]
[Outputs]
[csv]
type = CSV
start_step = 6
[]
exodus = false
[]
(tutorials/tutorial02_multiapps/step01_multiapps/05_parent_parallel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 1
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
perf_graph = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0 1 0 0 2 0 0'
input_files = '05_sub_parallel.i'
[]
[]
(test/tests/interfaces/random/random.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./random_nodal]
[../]
[./random_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./random_nodal]
type = RandomAux
variable = random_nodal
execute_on = 'LINEAR'
[../]
[./random_elemental]
type = RandomAux
variable = random_elemental
generate_integers = true
execute_on = 'LINEAR'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
coord_type = rz
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[AuxVariables]
[./layered_average_value]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./axial_force]
type = ParsedFunction
expression = 1000*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = axial_force
[../]
[]
[AuxKernels]
[./layered_aux]
type = SpatialUserObjectAux
variable = layered_average_value
execute_on = timestep_end
user_object = layered_average
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./layered_average]
type = LayeredAverage
variable = u
direction = y
num_layers = 4
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
type = FEProblem
[]
(test/tests/time_steppers/timesequence_stepper/csvtimesequence.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
end_time = 10
[./TimeStepper]
type = CSVTimeSequenceStepper
file_name = timesequence.csv
column_name = time1
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/constraints/constraints.i)
[Mesh]
type = FileMesh
file = constraints.e
# NearestNodeLocator, which is needed by TiedValueConstraint,
# only works with ReplicatedMesh currently
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[]
[]
[Constraints]
[complete]
type = TiedValueConstraint
variable = u
secondary = 2
primary = 3
primary_variable = u
[]
[lower]
type = TiedValueConstraint
variable = u
secondary = inside_right_lower
primary = inside_left_lower
primary_variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 40
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[constraints]
type = TimePeriod
disable_objects = 'Constraints/lower Constraint::complete'
start_time = '0.0 2.0'
end_time = '2.0 4.0'
execute_on = 'initial timestep_begin'
[]
[]
(test/tests/time_steppers/timesequence_stepper/timesequence_restart3.i)
[Mesh]
file = timesequence_restart1_cp/0002-mesh.cpa.gz
[]
[Problem]
restart_file_base = timesequence_restart1_cp/0002
# There is an initial conditions overwriting the restart on the nonlinear variable u
# As you can see in the gold file, this makes the initial step output be from the
# initial condition
allow_initial_conditions_with_restart = true
[]
[Functions]
[exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[]
[forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[]
[]
[Variables]
[u]
family = LAGRANGE
order = SECOND
[]
[]
[ICs]
[u_var]
type = FunctionIC
variable = u
function = exact_fn
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[]
[]
[Executioner]
type = Transient
end_time = 4.5
[TimeStepper]
type = TimeSequenceStepper
time_sequence = '0 0.85 1.3 1.9 2 4 4.5'
[]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except03.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
at_nodes = true # Needed to force expected error
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(test/tests/postprocessors/real_parameter_reporter/real_parameter_reporter.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./coef_value]
type = RealControlParameterReporter
parameter = 'Kernels/diff/coef'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/scalar_kernels/ad_coupled_scalar/ad_coupled_scalar.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[ScalarKernels]
[time]
type = ODETimeDerivative
variable = v
[]
[flux_sink]
type = PostprocessorSinkScalarKernel
variable = v
postprocessor = scale_flux
[]
[]
[BCs]
[right]
type = DirichletBC
value = 0
variable = u
boundary = 'right'
[]
[left]
type = ADMatchedScalarValueBC
variable = u
v = v
boundary = 'left'
[]
[]
[Variables]
[u][]
[v]
family = SCALAR
order = FIRST
initial_condition = 1
[]
[]
[Postprocessors]
[flux]
type = SideDiffusiveFluxIntegral
variable = u
diffusivity = 1
boundary = 'left'
execute_on = 'initial nonlinear linear timestep_end'
[]
[scale_flux]
type = ScalePostprocessor
scaling_factor = -1
value = flux
execute_on = 'initial nonlinear linear timestep_end'
[]
[]
[Executioner]
type = Transient
dt = .1
end_time = 1
solve_type = PJFNK
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/iterative/iterative_vtk.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = VTK
nonlinear_residual_dt_divisor = 100
start_time = 1.8
end_time = 1.85
execute_on = 'nonlinear timestep_end'
[../]
[]
(modules/porous_flow/test/tests/jacobian/heat_advection01_fully_saturated.i)
# 1phase, using fully-saturated version, heat advection
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
xmin = 0
xmax = 1
ny = 1
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[temp]
[]
[pp]
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
max = 1.0
min = 0.0
[]
[pp]
type = RandomIC
variable = pp
max = 0.0
min = -1.0
[]
[]
[Kernels]
[pp]
type = TimeDerivative
variable = pp
[]
[heat_advection]
type = PorousFlowFullySaturatedHeatAdvection
variable = temp
gravity = '1 2 3'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1.1
thermal_expansion = 0
viscosity = 1
cv = 1.1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[PS]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[]
[Preconditioning]
active = check
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
(modules/phase_field/test/tests/MultiPhase/lagrangemult.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
coupled_variables = 'c eta2'
f_name = F
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
coupled_variables = 'c eta1'
f_name = F
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2'
h_names = 'h1 h2'
epsilon = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = 'eta1 eta2'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time1]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
outputs = exodus
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
outputs = exodus
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2'
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
property_name = Fa
coupled_variables = 'c'
expression = '(c-0.1)^2'
derivative_order = 2
enable_jit = true
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
property_name = Fb
coupled_variables = 'c'
expression = '(c-0.9)^2'
derivative_order = 2
enable_jit = true
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
property_name = F
fi_names = 'Fa Fb'
hi_names = 'h1 h2'
etas = 'eta1 eta2'
coupled_variables = 'c'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
#petsc_options = '-snes_ksp -snes_ksp_ew'
#petsc_options = '-ksp_monitor_snes_lg-snes_ksp_ew'
#petsc_options_iname = '-ksp_gmres_restart'
#petsc_options_value = '1000 '
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 1
dt = 0.01
dtmin = 0.01
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/scalar_transport/test/tests/ncp-lms/interpolated-ncp-lm-nodal-enforcement-nodal-forces.i)
l=10
nx=100
num_steps=10
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[lm]
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = '${l} - x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = '-1'
[]
[]
[NodalKernels]
[positive_constraint]
type = LowerBoundNodalKernel
variable = lm
v = u
exclude_boundaries = 'left right'
[]
[forces]
type = CoupledForceNodalKernel
variable = u
v = lm
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = ${l}
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[NodalKernels]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_factor_levels -snes_linesearch_type'
petsc_options_value = '0 30 16 basic'
[]
[Outputs]
exodus = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[active_lm]
type = GreaterThanLessThanPostprocessor
variable = lm
execute_on = 'nonlinear timestep_end'
value = 1e-12
[]
[violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[]
(test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/between_multiapp/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[MultiApps]
[pp_sub_0]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub0.i
[]
[pp_sub_1]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub1.i
[]
[]
[Transfers]
[pp_transfer_1]
type = MultiAppScalarToAuxScalarTransfer
from_multi_app = pp_sub_0
to_multi_app = pp_sub_1
source_variable = base_0
to_aux_scalar = from_0
[]
[pp_transfer_2]
type = MultiAppScalarToAuxScalarTransfer
from_multi_app = pp_sub_1
to_multi_app = pp_sub_0
source_variable = base_1
to_aux_scalar = from_1
[]
[]
(modules/porous_flow/test/tests/basic_advection/1phase.i)
# Basic advection of u in a 1-phase situation
#
# grad(P) = -2
# density * gravity = 4 * 0.25
# grad(P) - density * gravity = -3
# permeability = 5
# viscosity = 150
# so Darcy velocity = 0.1
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[P]
[]
[]
[ICs]
[P]
type = FunctionIC
variable = P
function = '2*(1-x)'
[]
[u]
type = FunctionIC
variable = u
function = 'if(x<0.1,1,0)'
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[u_advection]
type = PorousFlowBasicAdvection
variable = u
phase = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = ''
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 4
thermal_expansion = 0
viscosity = 150.0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = P
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[darcy_velocity]
type = PorousFlowDarcyVelocityMaterial
gravity = '0.25 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 1
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_rtol'
petsc_options_value = ' lu 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(test/tests/materials/output/output.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 10
ymax = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./test_material]
type = OutputTestMaterial
block = 0
variable = u
outputs = all
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/transient_multiapp/dt_from_multi.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_multi_sub.i'
app_type = MooseTestApp
[../]
[]
(test/tests/geomsearch/patch_update_strategy/always.i)
[Mesh]
type = FileMesh
file = long_range.e
dim = 2
patch_update_strategy = always
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
block = right
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = timestep_end
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = righttop
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = rightbottom
value = 0
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 30
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/conditional_bc/conditional_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_dirichlet]
type = OnOffDirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_neumann]
type = OnOffNeumannBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/restricted_elem_sub.i)
# yy is passed in from the parent app
[Mesh]
[line]
type = GeneratedMeshGenerator
dim = 1
nx = 4
xmax = 2
[]
[box]
type = SubdomainBoundingBoxGenerator
input = line
bottom_left = '0 -0.1 -0.1'
top_right = '1 0.1 0.1'
# need a different block ID than what is in the parent app to make sure the transfer works properly
block_id = 20
[]
[]
[AuxVariables]
[A]
family = MONOMIAL
order = CONSTANT
[]
[S]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[A_ak]
type = ParsedAux
variable = A
use_xyzt = true
expression = '2*x+4*${yy}'
execute_on = 'TIMESTEP_BEGIN'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[UserObjects]
[A_avg]
type = LayeredAverage
block = 20
num_layers = 2
direction = x
variable = A
execute_on = TIMESTEP_END
[]
[]
[Executioner]
type = Transient
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/cumulative_value_postprocessor/cumulative_value_postprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
coord_type = RZ
rz_coord_axis = X
[]
[Variables]
[u]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
scheme = implicit-euler
[TimeStepper]
type = ConstantDT
dt = 0.01
[]
start_time = 0.0
num_steps = 2
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Postprocessors]
[nonlin_it]
type = NumNonlinearIterations
[]
[cumulative_nonlin_it]
type = CumulativeValuePostprocessor
postprocessor = nonlin_it
[]
[]
[Outputs]
csv = true
[]
(modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 1e-4
nl_max_its = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
error_on_dtmin = false
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[]
(modules/phase_field/test/tests/initial_conditions/circles_from_file_ic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 56
nz = 0
xmin = 0
xmax = 200
ymin = 0
ymax = 112
zmin = 0
zmax = 0
[]
[Variables]
[./c]
[../]
[]
[ICs]
[./IC_c]
type = SmoothCircleFromFileIC
file_name = 'circles.txt'
invalue = 1
outvalue = 0
variable = c
int_width = 6
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
num_steps = 0
[]
[Outputs]
exodus = true
csv = false
[]
(test/tests/materials/stateful_internal_side_uo/internal_side_uo_stateful.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
ymin = -1
xmax = 1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[Functions]
[./fn_exact]
type = ParsedFunction
expression = 'x*x+y*y'
[../]
[./ffn]
type = ParsedFunction
expression = -4
[../]
[]
[UserObjects]
[./isuo]
type = InsideUserObject
variable = u
diffusivity = diffusivity
execute_on = 'initial timestep_end'
# use_old_prop = true # Access a stateful material on an internal side
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = ffn
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = fn_exact
[../]
[]
[Postprocessors]
[./value]
type = InsideValuePPS
user_object = isuo
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 5
[]
[Materials]
[./stateful]
type = StatefulMaterial
block = 0
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/periodic/orthogonal_pbc_on_square.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmax = 10
ymax = 10
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Functions]
[./tr_x]
type = ParsedFunction
expression = 0
[../]
[./tr_y]
type = ParsedFunction
expression = x
[../]
[./itr_x]
type = ParsedFunction
expression = y
[../]
[./itr_y]
type = ParsedFunction
expression = 0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
y_center = 1
x_spread = 0.25
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
# active = ' '
[./Periodic]
[./x]
primary = bottom
secondary = left
transform_func = 'tr_x tr_y'
inv_transform_func = 'itr_x itr_y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 10
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/controls/time_periods/transfers/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_master_app]
order = FIRST
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./from_master]
type = ScalarVariable
variable = from_master_app
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
hide = from_master_app
[]
(test/tests/multiapps/relaxation/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/restart/kernel_restartable/kernel_restartable_custom_name_second.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = RestartDiffusion
variable = u
coef = 1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1e-2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
restart_file_base = kernel_restartable_custom_name_restart_cp/LATEST
name = "SomeCrazyName" # Testing this
[]
(test/tests/time_integrators/actually_explicit_euler_verification/ee-2d-linear.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = (x+y)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*(x+y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic
[../]
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 20
dt = 0.00005
l_tol = 1e-12
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
max_rows = 10
[../]
[]
(tutorials/tutorial02_multiapps/step01_multiapps/07_sub_multilevel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[dos]
type = TransientMultiApp
positions = '0 0 0 1 0 0'
input_files = '07_sub_sub_multilevel.i'
[]
[]
(test/tests/controls/output/controllable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = u
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Outputs]
[./controls]
type = ControlOutput
clear_after_output = false
[../]
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/*/point'
execute_on = 'initial'
[../]
[]
(test/tests/executioners/executioner/steady_state_check_test.i)
#
# Run transient simulation into steady state
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
# expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
expression = -4
[../]
[./exact_fn]
type = ParsedFunction
# expression = t*t*t*((x*x)+(y*y))
expression = ((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
nl_abs_tol = 1e-14
start_time = 0.0
num_steps = 12
dt = 1
steady_state_detection = true
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_ss_check
exodus = true
[]
(test/tests/multiapps/initial_intactive/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the parent solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/misc_bcs/weak_gradient_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Functions]
[./initial_value]
type = ParsedFunction
expression = 'x'
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_value
[../]
[../]
[]
[Kernels]
active = 'diff ie'
[./diff]
type = Diffusion
variable = u
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right top bottom'
[./left]
type = SinDirichletBC
variable = u
boundary = 3
initial = 0.0
final = 1.0
duration = 10.0
[../]
[./right]
type = SinDirichletBC
variable = u
boundary = 1
initial = 1.0
final = 0.0
duration = 10.0
[../]
# Explicit Natural Boundary Conditions
[./top]
type = WeakGradientBC
variable = u
boundary = 2
[../]
[./bottom]
type = WeakGradientBC
variable = u
boundary = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 10
dt = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/iteration_adaptive/piecewise_linear.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./temp_spike]
type = PiecewiseLinear
x = '0 1 1.1 1.2 2'
y = '1 1 2 1 1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = left
function = temp_spike
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 2.0
verbose = true
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.9
optimal_iterations = 10
timestep_limiting_function = temp_spike
max_function_change = 0.5
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/grid-sequencing/vi-fine-alone.i)
l=10
nx=80
num_steps=2
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds][]
[]
[Bounds]
[./u_upper_bounds]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[../]
[./u_lower_bounds]
type = ConstantBounds
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[../]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options = '-snes_vi_monitor'
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = 'upper_violations lower_violations'
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
(test/tests/outputs/debug/show_execution_adaptivity.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Debug]
show_execution_order = 'ALWAYS'
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 2
cycles_per_step = 2
marker = marker
initial_marker = marker
max_h_level = 2
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[]
[]
(test/tests/transfers/multiapp_userobject_transfer/3d_1d_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
elem_type = EDGE2
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./disp_x_fn]
type = ParsedFunction
expression = '-x'
[../]
[./disp_z_fn]
type = ParsedFunction
expression = 'x'
[../]
[]
[AuxVariables]
[./sub_app_var]
family = MONOMIAL
order = CONSTANT
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./disp_x_ak]
type = FunctionAux
variable = disp_x
function = 'disp_x_fn'
[../]
[./disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[../]
[./disp_z_ak]
type = FunctionAux
variable = disp_z
function = 'disp_z_fn'
[../]
[]
[UserObjects]
[./sub_app_uo]
type = LayeredAverage
direction = z
variable = u
num_layers = 10
execute_on = TIMESTEP_END
use_displaced_mesh = true
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_subapp_not_parent/two_step_solve_sub_restart.i)
[Mesh]
file = two_step_solve_parent_full_solve0_checkpoint_cp/0002-mesh.cpa.gz
[]
[Problem]
restart_file_base = two_step_solve_parent_full_solve0_checkpoint_cp/LATEST
force_restart = true
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
# Initial Condition will come from the restart file
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
end_time = 2.0
dt = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/console/console_off.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
console=false
[]
(test/tests/materials/stateful_prop/many_stateful_props.i)
# This test creates several unused stateful properties.
# It's here to make sure that we don't consume too much
# memory if we store them all. With 180x180 elements
# we were previously seeing nearly a Gigabyte of memory
# consumed using TBB's map. We are now using unordered
# map which saves us 6x to 8x on memory.
[Mesh]
type = GeneratedMesh
nx = 10 #180
ny = 10 #180
dim = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
prop_state = 'old' # Use the "Old" value to compute conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[./prop1_output_init]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
execute_on = initial
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = left
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = right
value = 1.0
[../]
[]
[Materials]
[./stateful1]
type = StatefulTest
prop_names = 'thermal_conductivity'
prop_values = '1'
[../]
[./stateful2]
type = StatefulTest
prop_names = 'foo2'
prop_values = '2'
[../]
[./stateful3]
type = StatefulTest
prop_names = 'foo3'
prop_values = '3'
[../]
[./stateful4]
type = StatefulTest
prop_names = 'foo4'
prop_values = '4'
[../]
[./stateful5]
type = StatefulTest
prop_names = 'foo5'
prop_values = '5'
[../]
[./stateful6]
type = StatefulTest
prop_names = 'foo6'
prop_values = '6'
[../]
[]
[Postprocessors]
[./integral]
type = ElementAverageValue
variable = prop1
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_max_its = 10
start_time = 0.0
num_steps = 1
dt = .1
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/dmg_periodic/dmg_periodic_bc.i)
[Mesh]
[dmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 40
ny = 40
nz = 0
xmax = 40
ymax = 40
zmax = 0
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./periodic_dist]
order = FIRST
family = LAGRANGE
[../]
[./pid]
order = CONSTANT
family = monomial
[]
[]
[AuxKernels]
[./pidaux]
type = ProcessorIDAux
variable = pid
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./periodic_dist]
type = PeriodicDistanceAux
variable = periodic_dist
point = '4 6 0'
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 20
solve_type = NEWTON
nl_rel_tol = 1e-12
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.q_wall_transfer_3eqn.parent.i)
# This tests a heat flux transfer using the MultiApp system. Simple heat
# conduction problem is solved, then the heat flux is picked up by the child
# side of the solve, child side solves and transfers its variables back to the
# master
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 1
nx = 10
[]
[Functions]
[sin_fn]
type = ParsedFunction
expression = '1000*t*sin(pi*x)'
[]
[]
[Variables]
[T]
[]
[]
[AuxVariables]
[q_wall]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[q_wal_ak]
type = FunctionAux
variable = q_wall
function = sin_fn
execute_on = 'initial timestep_end'
[]
[]
[ICs]
[T_ic]
type = ConstantIC
variable = T
value = 300
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = T
[]
[diff]
type = Diffusion
variable = T
[]
[]
[BCs]
[left]
type = DirichletBC
variable = T
boundary = 'left right'
value = 300
[]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 2
nl_abs_tol = 1e-10
abort_on_solve_fail = true
[]
[MultiApps]
[thm]
type = TransientMultiApp
app_type = ThermalHydraulicsApp
input_files = phy.q_wall_transfer_3eqn.child.i
execute_on = 'initial timestep_end'
[]
[]
[Transfers]
[q_to_thm]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = thm
source_variable = q_wall
variable = q_wall
[]
[]
[Outputs]
exodus = true
show = 'q_wall'
[]
(python/peacock/tests/common/transient_with_date.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = with_date
exodus = true
[./with_date]
type = Exodus
file_base = with_date
append_date = true
append_date_format = '%Y-%m-%d'
[../]
[]
(test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_inside.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
#uniform_refine = 2
[]
[./subdomains]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[../]
[./inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/console/multiapp/picard_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(test/tests/test_harness/csvdiff.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5 # Gold file only has 4 steps
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./num_dofs]
type = NumDOFs
[../]
[]
[Outputs]
perf_graph = true
csv = true
[]
(test/tests/transfers/multiapp_postprocessor_transfer/between_multiapp/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[MultiApps]
[pp_sub_0]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub0.i
[]
[pp_sub_1]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub1.i
[]
[]
[Transfers]
[pp_transfer_1]
type = MultiAppPostprocessorTransfer
from_multi_app = pp_sub_0
to_multi_app = pp_sub_1
from_postprocessor = average_0
to_postprocessor = from_0
[]
[pp_transfer_2]
type = MultiAppPostprocessorTransfer
from_multi_app = pp_sub_1
to_multi_app = pp_sub_0
from_postprocessor = average_1
to_postprocessor = from_1
[]
[]
(examples/ex20_user_objects/ex20.i)
[Mesh]
file = two_squares.e
dim = 2
[]
[Variables]
[./u]
initial_condition = 0.01
[../]
[]
[Kernels]
[./diff]
type = ExampleDiffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = leftleft
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = rightright
value = 1
[../]
[]
[Materials]
[./badm]
type = BlockAverageDiffusionMaterial
block = 'left right'
block_average_userobject = bav
[../]
[]
[UserObjects]
[./bav]
type = BlockAverageValue
variable = u
execute_on = timestep_begin
outputs = none
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/rigidbodymotion/update_orientation_verify.i)
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 3
nx = 14
ny = 7
nz = 7
xmax = 40
ymax = 25
zmax = 25
elem_type = HEX8
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
coupled_variables = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
coupled_variables = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
coupled_variables = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
expression = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[AuxVariables]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_x]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_y]
order = CONSTANT
family = MONOMIAL
[../]
[./angle_initial]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[./vadv_x]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = x
variable = vadv_x
[../]
[./vadv_y]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = y
variable = vadv_y
[../]
[./angle_initial]
type = OutputEulerAngles
variable = angle_initial
euler_angle_provider = euler_angle_initial
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[./angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[./angle_check]
type = EulerAngleUpdaterCheck
grain_tracker_object = grain_center
euler_angle_updater = euler_angle
grain_torques_object = grain_force
grain_volumes = grain_volumes
execute_on = timestep_begin
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'initial timestep_begin linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '-200.0 -120.0 1000.0'
[../]
[./euler_angle_initial]
type = RandomEulerAngleProvider
grain_tracker_object = grain_center
seed = 12356
execute_on = 'initial timestep_begin'
[../]
[./euler_angle]
type = EulerAngleUpdater
grain_tracker_object = grain_center
euler_angle_provider = euler_angle_initial
grain_torques_object = grain_force
grain_volumes = grain_volumes
execute_on = timestep_begin
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 30
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.2
num_steps = 2
[]
[Outputs]
csv = true
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
z1 = 5.0
z2 = 20.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
z1 = 5.0
z2 = 20.0
type = BoundingBoxIC
[../]
[]
(modules/phase_field/test/tests/GrandPotentialPFM/SinteringIdeal.i)
#input file to test the GrandPotentialSinteringMaterial using the ideal energy profile
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 10
xmin = 0
xmax = 660
ymin = 0
ymax = 380
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[./InitialCondition]
type = FunctionIC
variable = w
function = f_w
[../]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./T]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = FunctionIC
variable = T
function = f_T
[../]
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 470'
y_positions = '190 190'
z_positions = ' 0 0'
radii = '150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 470
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[./f_w]
type = ParsedFunction
expression = '1.515e-7 * x'
[../]
[]
[Materials]
# Free energy coefficients for parabolic curve
[./kv]
type = ParsedMaterial
property_name = kv
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.025 1571.6'
expression = 'a*T + b'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef Egb kB'
constant_expressions = '2.69 2.1 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2; cb:=exp(-Ef/kB/T); cgb:=exp(-(Ef-Egb)/kB/T);
cb + 4.0*(cgb-cb)*(1.0 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = IDEAL
outputs = exodus
[../]
# Concentration is only meant for output
[./c]
type = ParsedMaterial
property_name = c
material_property_names = 'hs rhos hv rhov'
constant_names = 'Va'
constant_expressions = '0.04092'
expression = 'Va*(hs*rhos + hv*rhov)'
outputs = exodus
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 2
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/restart_subapp_ic/parent2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
ymin = 0
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[Functions]
[v_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[]
[AuxVariables]
[v]
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[ufn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = v_fn
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
app_type = MooseTestApp
type = TransientMultiApp
input_files = 'sub2.i'
execute_on = timestep_end
positions = '0 -1 0'
[]
[]
[Transfers]
[from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[]
[]
[Problem]
restart_file_base = parent_out_cp/0005
[]
(test/tests/multiapps/sub_cycling/sub_short.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
dt = 0.01
end_time = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/user_objects/user_object.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
initial_condition = 0.01
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./nodal]
type = AverageNodalVariableValue
variable = u
execute_on = 'TIMESTEP_END'
[../]
[./elemental]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END'
[../]
[./general]
type = PointValue
point = '0.5 0.5 0'
variable = u
execute_on = 'TIMESTEP_END'
[../]
[./internal_side]
type = NumInternalSides
[../]
[./side]
type = SideAverageValue
boundary = right
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./pp_control]
type = TimePeriod
enable_objects = '*/nodal */elemental */general */internal_side */side'
start_time = 0.5
end_time = 1
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
(modules/porous_flow/test/tests/jacobian/pls01.i)
# PorousFlowPiecewiseLinearSink with 1-phase, 1-component
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Variables]
[pp]
[]
[]
[ICs]
[pp]
type = RandomIC
variable = pp
max = 0
min = -1
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = pp
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
viscosity = 1.1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 2.2 0 0 0 3.3'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[BCs]
[flux]
type = PorousFlowPiecewiseLinearSink
boundary = 'left'
pt_vals = '-1 -0.5 0'
multipliers = '1 2 4'
variable = pp
fluid_phase = 0
use_relperm = true
use_mobility = true
flux_function = 'x*y'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 2
[]
[Outputs]
file_base = pls01
[]
(modules/porous_flow/test/tests/heat_conduction/two_phase.i)
# 2phase heat conduction, with saturation fixed at 0.5
# apply a boundary condition of T=300 to a bar that
# is initially at T=200, and observe the expected
# error-function response
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[phase0_porepressure]
initial_condition = 0
[]
[phase1_saturation]
initial_condition = 0.5
[]
[temp]
initial_condition = 200
[]
[]
[Kernels]
[dummy_p0]
type = TimeDerivative
variable = phase0_porepressure
[]
[dummy_s1]
type = TimeDerivative
variable = phase1_saturation
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[heat_conduction]
type = PorousFlowHeatConduction
variable = temp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp phase0_porepressure phase1_saturation'
number_fluid_phases = 2
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 0.4
thermal_expansion = 0
cv = 1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.3
thermal_expansion = 0
cv = 2
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.3 0 0 0 0 0 0 0 0'
wet_thermal_conductivity = '1.7 0 0 0 0 0 0 0 0'
exponent = 1.0
aqueous_phase_number = 1
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = phase0_porepressure
phase1_saturation = phase1_saturation
capillary_pressure = pc
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.8
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.0
density = 0.25
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 300
variable = temp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E1
end_time = 1E2
[]
[Postprocessors]
[t000]
type = PointValue
variable = temp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[t010]
type = PointValue
variable = temp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[t020]
type = PointValue
variable = temp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[t030]
type = PointValue
variable = temp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[t040]
type = PointValue
variable = temp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[t050]
type = PointValue
variable = temp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[t060]
type = PointValue
variable = temp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[t070]
type = PointValue
variable = temp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[t080]
type = PointValue
variable = temp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[t090]
type = PointValue
variable = temp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[t100]
type = PointValue
variable = temp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = two_phase
[csv]
type = CSV
[]
exodus = false
[]
(modules/stochastic_tools/test/tests/actions/parameter_study_action/sub_transient.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = AverageNodalVariableValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.25
solve_type = NEWTON
[]
(test/tests/userobjects/setup_interface_count/element.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = ElementSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./timestep] # once per timestep
type = ElementSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./subdomain] # 2 on initial and 4 for each timestep
type = ElementSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = ElementSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = ElementSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./execute] # 4 for initial and 8 for each timestep
type = ElementSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./threadjoin] # 1 for initial and 2 for each timestep
type = ElementSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/test_harness/long_running.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 5
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(test/tests/outputs/png/wedge.i)
[Mesh]
file = wedge.e
uniform_refine = 1
[]
[Functions]
active = 'tr_x tr_y'
[./tr_x]
type = ParsedFunction
expression = -x
[../]
[./tr_y]
type = ParsedFunction
expression = y
[../]
[]
[AuxVariables]
[two_u]
[]
[]
[AuxKernels]
[two_u]
type = ParsedAux
variable = two_u
coupled_variables = 'u'
expression = '2*u'
[]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing dot'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = -0.5
y_center = 3.0
x_spread = 0.2
y_spread = 0.2
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
#active = ' '
[./Periodic]
[./x]
primary = 1
secondary = 2
transform_func = 'tr_x tr_y'
inv_transform_func = 'tr_x tr_y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
solve_type = NEWTON
[]
[Outputs]
[png]
type = PNGOutput
resolution = 25
color = RWB
variable = 'two_u'
[]
[]
(modules/phase_field/test/tests/GrandPotentialPFM/SinteringParabolic.i)
#input file to test the GrandPotentialSinteringMaterial using the parabolic energy profile
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 10
xmin = 0
xmax = 660
ymin = 0
ymax = 380
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[./InitialCondition]
type = FunctionIC
variable = w
function = f_w
[../]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./T]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = FunctionIC
variable = T
function = f_T
[../]
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 470'
y_positions = '190 190'
z_positions = ' 0 0'
radii = '150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 470
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[./f_w]
type = ParsedFunction
expression = '1.515e-7 * x'
[../]
[]
[Materials]
# Free energy coefficients for parabolic curve
[./ks]
type = ParsedMaterial
property_name = ks
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.0025 157.16'
expression = 'a*T + b'
[../]
[./kv]
type = ParsedMaterial
property_name = kv
material_property_names = 'ks'
expression = '10 * ks'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 T'
constant_names = 'Ef Egb kB'
constant_expressions = '2.69 2.1 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2; cb:=exp(-Ef/kB/T); cgb:=exp(-(Ef-Egb)/kB/T);
cb + 4.0*(cgb-cb)*(1.0 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = PARABOLIC
outputs = exodus
[../]
# Concentration is only meant for output
[./c]
type = ParsedMaterial
property_name = c
material_property_names = 'hs rhos hv rhov'
constant_names = 'Va'
constant_expressions = '0.04092'
expression = 'Va*(hs*rhos + hv*rhov)'
outputs = exodus
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 2
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_transfer/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub.i
[]
[]
[Transfers]
[pp_transfer]
type = MultiAppPostprocessorTransfer
to_multi_app = pp_sub
from_postprocessor = average
to_postprocessor = from_parent
[]
[]
(test/tests/geomsearch/patch_update_strategy/auto.i)
[Mesh]
type = FileMesh
file = long_range.e
dim = 2
patch_update_strategy = auto
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
block = right
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = timestep_end
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = righttop
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = rightbottom
value = 0
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 30
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/time_stepper_system/active_timesteppers.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 0.8
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[TimeSteppers]
[ConstDT1]
type = ConstantDT
dt = 0.2
[]
[ConstDT2]
type = ConstantDT
dt = 0.1
[]
[]
[]
[Controls]
[c1]
type = TimePeriod
enable_objects = 'TimeStepper::ConstDT1'
disable_objects = 'TimeStepper::ConstDT2'
start_time = '0.3'
end_time = '0.8'
[]
[]
[Postprocessors]
[timestep]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
file_base='active_timesteppers'
[]
(test/tests/materials/output/output_boundary.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./block]
type = OutputTestMaterial
block = '1 2'
output_properties = tensor_property
variable = u
outputs = exodus
[../]
[./boundary_1]
type = OutputTestMaterial
boundary = 1
output_properties = real_property
outputs = exodus
variable = u
real_factor = 2
[../]
[./boundary_2]
type = OutputTestMaterial
boundary = 2
output_properties = 'real_property vector_property'
real_factor = 2
variable = u
outputs = exodus
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/energy_conservation/except01.i)
# checking that the heat-energy postprocessor throws the correct error if the phase number is entered incorrectly
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[temp]
[]
[]
[ICs]
[tinit]
type = FunctionIC
function = '100*x'
variable = temp
[]
[pinit]
type = FunctionIC
function = x
variable = pp
[]
[]
[Kernels]
[dummyt]
type = TimeDerivative
variable = temp
[]
[dummyp]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
viscosity = 0.001
thermal_expansion = 0
cv = 1.3
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[]
[Postprocessors]
[total_heat]
type = PorousFlowHeatEnergy
phase = 1
[]
[rock_heat]
type = PorousFlowHeatEnergy
[]
[fluid_heat]
type = PorousFlowHeatEnergy
include_porous_skeleton = false
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1 1 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = except01
csv = true
[]
(modules/phase_field/test/tests/phase_field_kernels/ACInterfaceStress.i)
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 8
ny = 8
nz = 8
xmax = 20
ymax = 20
zmax = 20
[]
[Variables]
[./eta]
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 12.0
invalue = 1.0
outvalue = 0.0
int_width = 16.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACInterfaceStress]
type = ACInterfaceStress
variable = eta
mob_name = 1
stress = 2.7
[../]
[]
[Materials]
[./strain]
type = GenericConstantRankTwoTensor
tensor_name = elastic_strain
tensor_values = '0.11 0.12 0.13 0.21 0.22 0.23 0.31 0.32 0.33'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 1000
[]
[Outputs]
exodus = true
[]
(test/tests/ics/from_exodus_solution/array.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[v]
order = CONSTANT
family = MONOMIAL
components = 2
[]
[]
[Kernels]
[u_time]
type = TimeDerivative
variable = u
[]
[u_diff]
type = Diffusion
variable = u
[]
[v_time]
type = ArrayTimeDerivative
variable = v
time_derivative_coefficient = tc
[]
[v_reaction]
type = ArrayCoupledForce
variable = v
v = u
coef = '1 2'
[]
[]
[Materials/tc]
type = GenericConstantArray
prop_name = tc
prop_value = '2 3'
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 2
[]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/rigidbodymotion/grain_motion2.i)
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vadvx]
order = CONSTANT
family = MONOMIAL
[../]
[./vadvy]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
coupled_variables = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
coupled_variables = c
[../]
[]
[AuxKernels]
[./vadv_x]
type = GrainAdvectionAux
component = x
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvx
[../]
[./vadv_y]
type = GrainAdvectionAux
component = y
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
variable = vadvy
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = 'initial timestep_begin'
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = 'initial timestep_begin'
field_display = CENTROID
flood_counter = grain_center
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
coupled_variables = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
expression = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = FauxGrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'initial linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '0.0 0.0 10.0 '
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
nl_max_its = 30
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.5
num_steps = 1
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_init_dt_restart.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 50.0
n_startup_steps = 2
dtmax = 6.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
dt = 1.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Problem]
restart_file_base = adapt_tstep_grow_init_dt_out_cp/LATEST
[]
(modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./mu_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./mech_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./total_potential]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = total_potential
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./mu_prop]
type = MaterialRealAux
property = mu_prop
variable = mu_prop
[../]
[./mech_prop]
type = MaterialRealAux
property = mech_prop
variable = mech_prop
[../]
[./total_potential]
type = MaterialRealAux
property = total_potential
variable = total_potential
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
property_name = mu_prop
coupled_variables = c
expression = 'c'
derivative_order = 1
[../]
[./mechanical_potential]
type = StressBasedChemicalPotential
property_name = mech_prop
stress_name = stress
direction_tensor_name = aniso_tensor
prefactor_name = 1.0
[../]
[./total_potential]
type = DerivativeSumMaterial
block = 0
property_name = total_potential
sum_materials = 'mu_prop mech_prop'
coupled_variables = 'c'
derivative_order = 2
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
expression = 'c*(1.0-c)'
coupled_variables = c
property_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(modules/level_set/examples/rotating_circle/circle_rotate.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 32
ny = 32
uniform_refine = 2
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[Variables]
[./phi]
[../]
[]
[Functions]
[./phi_exact]
type = LevelSetOlssonBubble
epsilon = 0.03
center = '0 0.5 0'
radius = 0.15
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '4*y'
expression_y = '-4*x'
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_exact
variable = phi
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = LevelSetAdvection
velocity = velocity
variable = phi
[../]
[]
[Postprocessors]
[./area]
type = LevelSetVolume
threshold = 0.5
variable = phi
location = outside
execute_on = 'initial timestep_end'
[../]
[./cfl]
type = LevelSetCFLCondition
velocity = velocity
execute_on = 'initial' #timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
end_time = 1.570796
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl
scale = 0.8
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/mesh/custom_partitioner/custom_linear_partitioner_restart_test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
[./Partitioner]
type = LibmeshPartitioner
partitioner = linear
[../]
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
file_base = custom_linear_partitioner_restart_test_out
exodus = true
[]
(modules/xfem/test/tests/moving_interface/phase_transition_2d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 11
ny = 1
xmin = 0.0
xmax = 20.0
ymin = 0.0
ymax = 5.0
elem_type = QUAD4
[]
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[velocity]
type = XFEMPhaseTransitionMovingInterfaceVelocity
diffusivity_at_positive_level_set = 5
diffusivity_at_negative_level_set = 1
equilibrium_concentration_jump = 1
value_at_interface_uo = value_uo
[]
[value_uo]
type = NodeValueAtXFEMInterface
variable = 'u'
interface_mesh_cut_userobject = 'cut_mesh'
execute_on = TIMESTEP_END
level_set_var = ls
[]
[cut_mesh]
type = InterfaceMeshCut2DUserObject
mesh_file = flat_interface_1d.e
interface_velocity_uo = velocity
heal_always = true
[]
[]
[Variables]
[u]
[]
[]
[ICs]
[ic_u]
type = FunctionIC
variable = u
function = 'if(x<5.01, 2, 1)'
[]
[]
[AuxVariables]
[ls]
order = FIRST
family = LAGRANGE
[]
[]
[Constraints]
[u_constraint]
type = XFEMEqualValueAtInterface
geometric_cut_userobject = 'cut_mesh'
use_displaced_mesh = false
variable = u
value = 2
alpha = 1e6
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[ls]
type = MeshCutLevelSetAux
mesh_cut_user_object = cut_mesh
variable = ls
execute_on = 'TIMESTEP_BEGIN'
[]
[]
[Materials]
[diffusivity_A]
type = GenericConstantMaterial
prop_names = A_diffusion_coefficient
prop_values = 5
[]
[diffusivity_B]
type = GenericConstantMaterial
prop_names = B_diffusion_coefficient
prop_values = 1
[]
[diff_combined]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = diffusion_coefficient
[]
[]
[BCs]
# Define boundary conditions
[left_u]
type = DirichletBC
variable = u
value = 2
boundary = left
[]
[right_u]
type = NeumannBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
start_time = 0.0
dt = 1
num_steps = 5
max_xfem_update = 1
[]
[Outputs]
execute_on = timestep_end
exodus = true
perf_graph = true
[]
(modules/porous_flow/test/tests/radioactive_decay/exponential_decay.i)
# ExponentialDecay
# Note that we do not get u - ref = (u_0 - ref) * exp(-rate * t)
# because of the time discretisation. We are solving
# the equation
# (u(t+dt) - u(t))/dt = -rate * (u(t+dt) - ref)
# which has solution
# u(t+dt) = (u(t) + rate * ref * dt) / (1 + rate * dt)
# With u(0)=2, rate=1.5, ref=1 and dt=0.2 we get
# u(0.2) = 1.769
# u(0.4) = 1.592
# u(0.6) = 1.455
# u(0.8) = 1.350
# u(1.0) = 1.269
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[u]
initial_condition = 2
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = u
[]
[exp_decay]
type = PorousFlowExponentialDecay
variable = u
rate = 1.5
reference = 1.0
[]
[]
[Postprocessors]
[u]
type = PointValue
variable = u
point = '0 0 0'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.2
end_time = 1
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/poroperm/poro_thm.i)
# Test that porosity is correctly calculated.
# Porosity = biot + (phi0 - biot) * exp(-vol_strain + (biot - 1) / solid_bulk * (porepressure - ref_pressure) + thermal_exp_coeff * (temperature - ref_temperature))
# The parameters used are:
# biot = 0.7
# phi0 = 0.5
# vol_strain = 0.5
# solid_bulk = 0.3
# porepressure = 2
# ref_pressure = 3
# thermal_exp_coeff = 0.5
# temperature = 4
# ref_temperature = 3.5
# which yield porosity = 0.276599996677
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
biot_coefficient = 0.7
[]
[Variables]
[porepressure]
initial_condition = 2
[]
[temperature]
initial_condition = 4
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[ICs]
[disp_x]
type = FunctionIC
function = '0.5 * x'
variable = disp_x
[]
[]
[Kernels]
[dummy_p]
type = TimeDerivative
variable = porepressure
[]
[dummy_t]
type = TimeDerivative
variable = temperature
[]
[dummy_x]
type = TimeDerivative
variable = disp_x
[]
[dummy_y]
type = TimeDerivative
variable = disp_y
[]
[dummy_z]
type = TimeDerivative
variable = disp_z
[]
[]
[AuxVariables]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[Postprocessors]
[porosity]
type = PointValue
variable = porosity
point = '0 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure temperature'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[total_strain]
type = ComputeSmallStrain
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[porosity]
type = PorousFlowPorosity
mechanical = true
fluid = true
thermal = true
ensure_positive = false
porosity_zero = 0.5
solid_bulk = 0.3
thermal_expansion_coeff = 0.5
reference_porepressure = 3
reference_temperature = 3.5
[]
[]
[Executioner]
solve_type = Newton
type = Transient
num_steps = 1
[]
[Outputs]
csv = true
[]
(test/tests/meshgenerators/distributed_rectilinear/ghosting_elements/num_layers.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 10
ny = 10
partition="linear"
num_side_layers = 2
[]
[]
[AuxVariables]
[ghosting0]
order = CONSTANT
family = MONOMIAL
[]
[ghosting1]
order = CONSTANT
family = MONOMIAL
[]
[ghosting2]
order = CONSTANT
family = MONOMIAL
[]
[evaluable0]
order = CONSTANT
family = MONOMIAL
[]
[evaluable1]
order = CONSTANT
family = MONOMIAL
[]
[evaluable2]
order = CONSTANT
family = MONOMIAL
[]
[proc]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[ghosting0]
type = ElementUOAux
variable = ghosting0
element_user_object = ghosting_uo0
field_name = "ghosted"
execute_on = initial
[]
[ghosting1]
type = ElementUOAux
variable = ghosting1
element_user_object = ghosting_uo1
field_name = "ghosted"
execute_on = initial
[]
[ghosting2]
type = ElementUOAux
variable = ghosting2
element_user_object = ghosting_uo2
field_name = "ghosted"
execute_on = initial
[]
[evaluable0]
type = ElementUOAux
variable = evaluable0
element_user_object = ghosting_uo0
field_name = "evaluable"
execute_on = initial
[]
[evaluable1]
type = ElementUOAux
variable = evaluable1
element_user_object = ghosting_uo1
field_name = "evaluable"
execute_on = initial
[]
[evaluable2]
type = ElementUOAux
variable = evaluable2
element_user_object = ghosting_uo2
field_name = "evaluable"
execute_on = initial
[]
[proc]
type = ProcessorIDAux
variable = proc
execute_on = initial
[]
[]
[UserObjects]
[ghosting_uo0]
type = ElemSideNeighborLayersGeomTester
execute_on = initial
element_side_neighbor_layers = 2
rank = 0
[]
[ghosting_uo1]
type = ElemSideNeighborLayersGeomTester
execute_on = initial
element_side_neighbor_layers = 2
rank = 1
[]
[ghosting_uo2]
type = ElemSideNeighborLayersGeomTester
execute_on = initial
element_side_neighbor_layers = 2
rank = 2
[]
[]
[Variables]
[./u]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = -0.01
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.01
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = -0.01
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = right
value = 0.01
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/serialized_solution/adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./aux_serialized]
type = TestSerializedSolution
system = aux
[../]
[./nl_serialized]
type = TestSerializedSolution
system = nl
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
marker = box_refine
[./Markers]
[./box_refine]
type = BoxMarker
bottom_left = '0.2 0.2 0'
top_right = '0.8 0.8 0'
inside = REFINE
outside = DONT_MARK
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/phase_field/test/tests/misc/interface_flux.i)
#
# This test demonstrates an InterfaceKernel (InterfaceDiffusionFlux) that can
# replace a pair of integrated DiffusionFluxBC boundary conditions.
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./box1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.51 1 0'
input = gen
[../]
[./box2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.49 0 0'
top_right = '1 1 0'
input = box1
[../]
[./iface_u]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 10
input = box2
[../]
[]
[Variables]
[./u2]
block = 1
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt((x-0.4)^2+(y-0.5)^2);if(r<0.05,5,1)'
[../]
[../]
[./v2]
block = 2
[./InitialCondition]
type = FunctionIC
function = 'r:=sqrt((x-0.7)^2+(y-0.5)^2);if(r<0.05,5,1)'
[../]
[../]
[]
[Kernels]
[./u2_diff]
type = Diffusion
variable = u2
block = 1
[../]
[./u2_dt]
type = TimeDerivative
variable = u2
block = 1
[../]
[./v2_diff]
type = Diffusion
variable = v2
block = 2
[../]
[./v2_dt]
type = TimeDerivative
variable = v2
block = 2
[../]
[]
[InterfaceKernels]
[./iface]
type = InterfaceDiffusionBoundaryTerm
boundary = 10
variable = u2
neighbor_var = v2
[../]
[]
[Executioner]
type = Transient
dt = 0.002
num_steps = 6
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(test/tests/time_integrators/crank-nicolson/cranic.i)
#
# Testing a solution that is second order in space and second order in time
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*((x*x)+(y*y))-(4*t*t)
[../]
[./exact_fn]
type = ParsedFunction
expression = t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'crank-nicolson'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/MultiPhase/penalty.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 14
ny = 10
nz = 0
xmin = 10
xmax = 40
ymin = 15
ymax = 35
elem_type = QUAD4
[]
[GlobalParams]
penalty = 5
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 30.0
y1 = 25.0
radius = 4.0
invalue = 0.9
outvalue = 0.1
int_width = 2.0
[../]
[../]
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
[]
[Kernels]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
coupled_variables = 'c eta2'
f_name = F
[../]
[./ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./penalty1]
type = SwitchingFunctionPenalty
variable = eta1
etas = 'eta1 eta2'
h_names = 'h1 h2'
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
coupled_variables = 'c eta1'
f_name = F
[../]
[./ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./penalty2]
type = SwitchingFunctionPenalty
variable = eta2
etas = 'eta1 eta2'
h_names = 'h1 h2'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = 'eta1 eta2'
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time1]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1 '
[../]
[./consts2]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 1'
[../]
[./hsum]
type = ParsedMaterial
expression = h1+h2
property_name = hsum
material_property_names = 'h1 h2'
coupled_variables = 'c'
outputs = exodus
[../]
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2'
[../]
[./free_energy_A]
type = DerivativeParsedMaterial
property_name = Fa
coupled_variables = 'c'
expression = '(c-0.1)^2'
derivative_order = 2
[../]
[./free_energy_B]
type = DerivativeParsedMaterial
property_name = Fb
coupled_variables = 'c'
expression = '(c-0.9)^2'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeMultiPhaseMaterial
property_name = F
fi_names = 'Fa Fb'
hi_names = 'h1 h2'
etas = 'eta1 eta2'
coupled_variables = 'c'
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 15
l_tol = 1.0e-6
nl_max_its = 50
nl_rel_tol = 1.0e-7
nl_abs_tol = 1.0e-9
start_time = 0.0
num_steps = 2
dt = 0.05
dtmin = 0.01
[]
[Debug]
# show_var_residual_norms = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except09.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
compute_enthalpy = false
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
use_enthalpy = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(test/tests/outputs/intervals/no_intermediate.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
execute_on = 'initial final'
[../]
[]
(modules/stochastic_tools/test/tests/reporters/stochastic_reporter/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
error_on_dtmin = false
[]
[Postprocessors]
[pp]
type = Receiver
default = 0
[]
[]
vector_val0 = 0
vector_val1= ${fparse vector_val0 * 10}
vector_val2= ${fparse vector_val0 * 100}
vector_val3= ${fparse vector_val0 * 1000}
[VectorPostprocessors]
[vpp]
type = ConstantVectorPostprocessor
vector_names = 'vec'
value = '${vector_val0} ${vector_val1} ${vector_val2} ${vector_val3}'
[]
[]
[Reporters]
[constant]
type = ConstantReporter
integer_names = 'int'
integer_values = 0
string_names = 'str'
string_values = 'this_value'
[]
[mesh]
type = MeshInfo
items = sidesets
[]
[]
(test/tests/vectorpostprocessors/point_value_sampler_history/point_value_sampler_history.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./point_sample]
type = PointValueSampler
variable = 'u'
points = '0.1 0.1 0'
sort_by = x
contains_complete_history = true
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(test/tests/materials/stateful_coupling/stateful_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./aux]
order = FIRST
family = LAGRANGE
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Materials]
# This material couples to an aux variable and
# uses it in stateful property initialization
[./stateful_mat]
type = StatefulTest
coupled = aux
prop_names = thermal_conductivity
prop_values = -1 # ignored
output_properties = thermal_conductivity
outputs = exodus
[../]
[]
[Executioner]
type = Transient
num_steps = 4
[]
[Outputs]
exodus = true
[]
[Debug]
show_material_props = true
[]
(modules/phase_field/test/tests/anisotropic_interfaces/kobayashi.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 32
ny = 32
xmax = 0.7
ymax = 0.7
[]
[Variables]
[./w]
[../]
[./T]
[../]
[]
[ICs]
[./wIC]
type = SmoothCircleIC
variable = w
int_width = 0.1
x1 = 0.35
y1 = 0.35
radius = 0.08
outvalue = 0
invalue = 1
[../]
[]
[Kernels]
[./w_dot]
type = TimeDerivative
variable = w
[../]
[./anisoACinterface1]
type = ACInterfaceKobayashi1
variable = w
mob_name = M
[../]
[./anisoACinterface2]
type = ACInterfaceKobayashi2
variable = w
mob_name = M
[../]
[./AllenCahn]
type = AllenCahn
variable = w
mob_name = M
f_name = fbulk
coupled_variables = 'T'
[../]
[./T_dot]
type = TimeDerivative
variable = T
[../]
[./CoefDiffusion]
type = Diffusion
variable = T
[../]
[./w_dot_T]
type = CoefCoupledTimeDerivative
variable = T
v = w
coef = -1.8 #This is -K from kobayashi's paper
[../]
[]
[Materials]
[./free_energy]
type = DerivativeParsedMaterial
property_name = fbulk
coupled_variables = 'w T'
constant_names = 'alpha gamma T_e pi'
constant_expressions = '0.9 10 1 4*atan(1)'
expression = 'm:=alpha/pi * atan(gamma * (T_e - T)); 1/4*w^4 - (1/2 - m/3) * w^3 + (1/4 - m/2) * w^2'
derivative_order = 2
outputs = exodus
[../]
[./material]
type = InterfaceOrientationMaterial
op = w
[../]
[./consts]
type = GenericConstantMaterial
prop_names = 'M'
prop_values = '3333.333'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
scheme = bdf2
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-08
l_tol = 1e-4
l_max_its = 30
dt = 0.001
num_steps = 6
[]
[Outputs]
exodus = true
perf_graph = true
execute_on = 'INITIAL FINAL'
[]
(modules/phase_field/test/tests/free_energy_material/MathFreeEnergy.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = SmoothCircleIC
variable = c
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 1.0
outvalue = -0.8
int_width = 4.0
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[./free_energy]
type = MathFreeEnergy
property_name = F
c = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-5
nl_max_its = 40
nl_rel_tol = 5.0e-14
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
execute_on = 'timestep_end'
[./oversample]
type = Exodus
refinements = 2
[../]
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test8.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '4 4 1'
[]
[interior_nodeset]
type = BoundingBoxNodeSetGenerator
input = SubdomainBoundingBox1
new_boundary = interior_ns
bottom_left = '2 2 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
block = 1
input = interior_nodeset
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/functions/piecewise_multilinear/fourDa.i)
# PiecewiseMultilinear function test in 3D with function depending on time
#
# This test uses a function on the unit cube.
# For t<=3 the function is unity at (x,y,z)=(0,0,0) and zero elsewhere
# For t>=7 the function is unity at (x,y,z)=(1,1,1) and zero elsewhere
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 1
nx = 2
ymin = 0
ymax = 1
ny = 2
zmin = 0
zmax = 1
nz = 2
[]
[Variables]
[./dummy]
[../]
[]
[Kernels]
[./dummy_kernel]
type = TimeDerivative
variable = dummy
[../]
[]
[AuxVariables]
[./f]
[../]
[]
[AuxKernels]
[./f_AuxK]
type = FunctionAux
function = fourDa
variable = f
[../]
[]
[Functions]
[./fourDa]
type = PiecewiseMultilinear
data_file = fourDa.txt
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 10
[]
[Outputs]
file_base = fourDa
exodus = true
hide = dummy
[]
(modules/phase_field/test/tests/polycrystal_diffusion/polycrystal_void_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
xmax = 200
ymax = 200
[]
[GlobalParams]
op_num = 4
grain_num = 4
var_name_base = gr
int_width = 8
radius = 20
bubspac = 1
numbub = 1
[]
[AuxVariables]
[bnds]
[]
[]
[AuxKernels]
[bnds]
type = BndsCalcAux
variable = bnds
v = 'gr0 gr1 gr2 gr3'
execute_on = 'INITIAL'
[]
[]
[Variables]
[PolycrystalVariables]
[]
[bubble]
[]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalVoronoiVoidIC]
invalue = 1.0
outvalue = 0.0
polycrystal_ic_uo = voronoi
rand_seed = 10
[../]
[../]
[./bubble_IC]
variable = bubble
type = PolycrystalVoronoiVoidIC
structure_type = voids
invalue = 1.0
outvalue = 0.0
polycrystal_ic_uo = voronoi
rand_seed = 10
[../]
[]
[Materials]
[Diff_v]
type = PolycrystalDiffusivity
c = bubble
v = 'gr0 gr1 gr2 gr3'
diffusivity = diffusivity
outputs = exodus
output_properties = 'diffusivity'
[]
[./hb]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hb
all_etas = 'bubble gr0 gr1 gr2 gr3'
phase_etas = 'bubble'
[../]
[./hm]
type = SwitchingFunctionMultiPhaseMaterial
h_name = hm
all_etas = 'bubble gr0 gr1 gr2 gr3'
phase_etas = 'gr0 gr1 gr2 gr3'
[../]
[]
[UserObjects]
[voronoi]
type = PolycrystalVoronoi
rand_seed = 1268
[]
[]
[Kernels]
[bubble]
type = TimeDerivative
variable = bubble
[]
[gr0]
type = TimeDerivative
variable = gr0
[]
[gr1]
type = TimeDerivative
variable = gr1
[]
[gr2]
type = TimeDerivative
variable = gr2
[]
[gr3]
type = TimeDerivative
variable = gr3
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1.0e-9
num_steps = 1
[]
[Outputs]
execute_on = 'INITIAL TIMESTEP_END'
exodus = true
[]
(test/tests/userobjects/Terminator/terminator_soft.i)
###########################################################
# This is a test of the UserObject System. The
# Terminator UserObject executes independently after
# each solve and can terminate the solve early due to
# user-defined criteria. (Type: GeneralUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 6
xmin = -15.0
xmax = 15.0
ymin = -3.0
ymax = 3.0
elem_type = QUAD4
[]
[Variables]
[c]
order = FIRST
family = LAGRANGE
initial_condition = 1
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[]
[UserObjects]
[arnold]
type = Terminator
expression = 'dt > 20'
fail_mode = SOFT
execute_on = TIMESTEP_END
[]
[]
[Kernels]
[cres]
type = Diffusion
variable = c
[]
[time]
type = TimeDerivative
variable = c
[]
[]
[BCs]
[c]
type = DirichletBC
variable = c
boundary = left
value = 0
[]
[]
[Executioner]
type = Transient
dt = 100
num_steps = 6
nl_abs_step_tol = 1e-10
[]
[Outputs]
csv = true
print_linear_residuals = false
[]
(test/tests/time_integrators/implicit-euler/ie-monomials.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = MONOMIAL
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 1
[../]
[]
[Functions]
active = 'forcing_fn exact_fn'
[./forcing_fn]
type = ParsedFunction
expression = 2*pow(e,-x-(y*y))*(1-2*y*y)
[../]
[./exact_fn]
type = ParsedGradFunction
value = pow(e,-x-(y*y))
grad_x = -pow(e,-x-(y*y))
grad_y = -2*y*pow(e,-x-(y*y))
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./abs] # u * v
type = Reaction
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[DGKernels]
[./dg_diff]
type = DGDiffusion
variable = u
epsilon = -1
sigma = 6
[../]
[]
[BCs]
[./all]
type = DGFunctionDiffusionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
epsilon = -1
sigma = 6
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
nl_rel_tol = 1e-10
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
console = true
[]
(test/tests/controls/error/disable_executioner.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[./func_control]
type = TestControl
test_type = 'disable_executioner' # tests error
parameter = 'Executioner::*/enable'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/multiapps/restart_multilevel/parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
ymin = 0
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[Functions]
[v_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[]
[AuxVariables]
[v]
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[ufn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = v_fn
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
checkpoint = true
[]
[MultiApps]
[sub_app]
app_type = MooseTestApp
type = TransientMultiApp
input_files = 'sub.i'
execute_on = timestep_end
positions = '0 -1 0'
[]
[]
[Transfers]
[from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[]
[]
(test/tests/multiapps/picard_multilevel/fullsolve_multilevel/sub_level1.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u]
[]
[w]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = v
[]
[diffusion]
type = Diffusion
variable = v
[]
[source]
type = CoupledForce
variable = v
v = u
[]
[]
[BCs]
[dirichlet0]
type = DirichletBC
variable = v
boundary = '0'
value = 0
[]
[dirichlet]
type = DirichletBC
variable = v
boundary = '2'
value = 100
[]
[]
[Postprocessors]
[avg_u]
type = ElementAverageValue
variable = u
execute_on = 'initial linear'
[]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial linear'
[]
[avg_w]
type = ElementAverageValue
variable = w
execute_on = 'initial linear'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
end_time = 0.1
dt = 0.02
[]
[MultiApps]
[level2-]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = sub_level2.i
execute_on = 'timestep_end'
# sub_cycling = true
[]
[]
[Transfers]
[v_to_sub]
type = MultiAppGeneralFieldShapeEvaluationTransfer
source_variable = v
variable = v
to_multi_app = level2-
execute_on = 'timestep_end'
[]
[w_from_sub]
type = MultiAppGeneralFieldShapeEvaluationTransfer
source_variable = w
variable = w
from_multi_app = level2-
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
perf_graph = true
# print_linear_residuals = false
[]
(modules/optimization/examples/simpleTransient/forward.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[]
[Variables]
[u]
[]
[]
[VectorPostprocessors]
[src_values]
type = CSVReader
csv_file = source_params.csv
header = true
outputs = none
[]
[]
[ICs]
[initial]
type = FunctionIC
variable = u
function = exact
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[src]
type = BodyForce
variable = u
function = source
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'left right top bottom'
value = 0
[]
[]
[Functions]
[exact]
type = ParsedFunction
value = '2*exp(-2.0*(x - sin(2*pi*t))^2)*exp(-2.0*(y - cos(2*pi*t))^2)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/pi'
[]
[source]
type = NearestReporterCoordinatesFunction
x_coord_name = src_values/coordx
y_coord_name = src_values/coordy
time_name = src_values/time
value_name = src_values/values
[]
[]
[Executioner]
type = Transient
num_steps = 100
end_time = 1
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
reuse_preconditioner = true
reuse_preconditioner_max_linear_its = 50
[]
[Reporters]
[measured_data]
type = OptimizationData
measurement_file = mms_data.csv
file_xcoord = x
file_ycoord = y
file_zcoord = z
file_time = t
file_value = u
variable = u
execute_on = timestep_end
objective_name = objective_value
outputs = none
[]
[]
[Postprocessors]
[topRight_pp]
type = PointValue
point = '0.5 0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[bottomRight_pp]
type = PointValue
point = '-0.5 0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[bottomLeft_pp]
type = PointValue
point = '-0.5 -0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[topLeft_pp]
type = PointValue
point = '0.5 -0.5 0'
variable = u
execute_on = TIMESTEP_END
[]
[]
[Outputs]
csv = true
console = false
[]
(modules/porous_flow/test/tests/jacobian/hcs02.i)
# apply a half-cubic heat sink flux
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[temp]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = temp
number_fluid_phases = 0
number_fluid_components = 0
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
min = -1
max = 0
[]
[]
[Kernels]
[dummy_temp]
type = TimeDerivative
variable = temp
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[]
[BCs]
[flux_w]
type = PorousFlowHalfCubicSink
boundary = 'left'
center = 0.1
cutoff = -1.1
max = 2.2
variable = temp
flux_function = 'x*y'
[]
[flux_g]
type = PorousFlowHalfCubicSink
boundary = 'top left front'
center = 0.5
cutoff = -1.1
max = -2.2
variable = temp
flux_function = '-x*y'
[]
[flux_1]
type = PorousFlowHalfCubicSink
boundary = 'right'
center = -0.1
cutoff = -1.1
max = 1.2
variable = temp
flux_function = '-1.1*x*y'
[]
[flux_2]
type = PorousFlowHalfCubicSink
boundary = 'bottom'
center = 3.2
cutoff = -1.1
max = 1.2
variable = temp
flux_function = '0.5*x*y'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = hcs02
[]
(test/tests/multiapps/relaxation/picard_relaxed_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
initial_condition = 1
[]
[inverse_v]
initial_condition = 1
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = inverse_v
[]
[]
[AuxKernels]
[invert_v]
type = QuotientAux
variable = inverse_v
denominator = v
numerator = 20.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[Neumann_right]
type = NeumannBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
relaxation_factor = 0.95
transformed_variables = u
[]
[Outputs]
exodus = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = picard_relaxed_sub.i
# The input was originally created with effectively no restore
# see the changes made for #5554 then reverted in #28115
no_restore = true
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(modules/porous_flow/test/tests/energy_conservation/heat01.i)
# checking that the heat-energy postprocessor correctly calculates the energy
# 0phase, constant porosity
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[temp]
[]
[]
[ICs]
[tinit]
type = FunctionIC
function = '100*x'
variable = temp
[]
[]
[Kernels]
[dummy]
type = TimeDerivative
variable = temp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp'
number_fluid_phases = 0
number_fluid_components = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[]
[]
[Postprocessors]
[total_heat]
type = PorousFlowHeatEnergy
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1 1 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = heat01
csv = true
[]
(modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i)
#
# KKS coupled with elasticity. Physical parameters for matrix and precipitate phases
# are gamma and gamma-prime phases, respectively, in the Ni-Al system.
# Parameterization is as described in L.K. Aagesen et al., Computational Materials
# Science, 140, 10-21 (2017), with isotropic elastic properties in both phases
# and without eigenstrain.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmax = 200
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.13
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
initial_condition = 0.235
[../]
[]
[AuxVariables]
[./energy_density]
family = MONOMIAL
[../]
[./extra_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
symbol_names = 'delta_eta r0'
symbol_values = '6.431 100'
[../]
[./ic_func_c]
type = ParsedFunction
expression = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));0.235*eta_an^3*(6*eta_an^2-15*eta_an+10)+0.13*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
symbol_names = 'delta r0'
symbol_values = '6.431 100'
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0033
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./extra_xx]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 0
index_j = 0
variable = extra_xx
[../]
[./extra_yy]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 1
index_j = 1
variable = extra_yy
[../]
[./extra_zz]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 2
index_j = 2
variable = extra_zz
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain_xx
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = strain_yy
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
property_name = fm
coupled_variables = 'cm'
expression = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
property_name = f_total_matrix
sum_materials = 'fm fe_m'
coupled_variables = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
property_name = fp
coupled_variables = 'cp'
expression = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
property_name = f_total_ppt
sum_materials = 'fp fe_p'
coupled_variables = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = exodus
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.1365'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = matrix
fill_method = symmetric_isotropic
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = ppt
fill_method = symmetric_isotropic
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_ppt]
type = ComputeRSphericalSmallStrain
base_name = ppt
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./interface_stress]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.0033
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-9
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
(test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value_ts_begin.i)
[Mesh]
file = square-2x2-nodeids.e
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = AverageNodalVariableValue
variable = u
boundary = 10
execute_on = TIMESTEP_BEGIN
[../]
[./node4]
type = AverageNodalVariableValue
variable = v
boundary = 13
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_avg_nodal_var_value_ts_begin
exodus = true
[]
(modules/phase_field/test/tests/GrandPotentialPFM/SinteringBase.i)
#input file to test the materials GrandPotentialTensorMaterial and GrandPotentialSinteringMaterial
[Mesh]
type = GeneratedMesh
dim = 2
nx = 17
ny = 17
xmin = 0
xmax = 680
ymin = 0
ymax = 680
[]
[GlobalParams]
op_num = 4
var_name_base = gr
int_width = 40
[]
[Variables]
[./w]
[../]
[./phi]
[../]
[./PolycrystalVariables]
[../]
[]
[AuxVariables]
[./bnds]
[../]
[./T]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = FunctionIC
variable = T
function = f_T
[../]
[../]
[]
[ICs]
[./phi_IC]
type = SpecifiedSmoothCircleIC
variable = phi
x_positions = '190 490 190 490'
y_positions = '190 190 490 490'
z_positions = ' 0 0 0 0'
radii = '150 150 150 150'
invalue = 0
outvalue = 1
[../]
[./gr0_IC]
type = SmoothCircleIC
variable = gr0
x1 = 190
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr1_IC]
type = SmoothCircleIC
variable = gr1
x1 = 490
y1 = 190
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr2_IC]
type = SmoothCircleIC
variable = gr2
x1 = 190
y1 = 490
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[./gr3_IC]
type = SmoothCircleIC
variable = gr3
x1 = 490
y1 = 490
z1 = 0
radius = 150
invalue = 1
outvalue = 0
[../]
[]
[Functions]
[./f_T]
type = ConstantFunction
value = 1600
[../]
[]
[Materials]
# Free energy coefficients for parabolic curves
[./ks]
type = ParsedMaterial
property_name = ks
coupled_variables = 'T'
constant_names = 'a b'
constant_expressions = '-0.0025 157.16'
expression = 'a*T + b'
[../]
[./kv]
type = ParsedMaterial
property_name = kv
material_property_names = 'ks'
expression = '10*ks'
[../]
# Diffusivity and mobilities
[./chiD]
type = GrandPotentialTensorMaterial
f_name = chiD
solid_mobility = L
void_mobility = Lv
chi = chi
surface_energy = 19.7
c = phi
T = T
D0 = 2.0e11
GBmob0 = 1.4759e9
Q = 2.77
Em = 2.40
bulkindex = 1
gbindex = 20
surfindex = 100
outputs = exodus
[../]
# Equilibrium vacancy concentration
[./cs_eq]
type = DerivativeParsedMaterial
property_name = cs_eq
coupled_variables = 'gr0 gr1 gr2 gr3 T'
constant_names = 'Ef c_GB kB'
constant_expressions = '2.69 0.189 8.617343e-5'
expression = 'bnds:=gr0^2 + gr1^2 + gr2^2 + gr3^2; exp(-Ef/kB/T) + 4.0 * c_GB * (1 - bnds)^2'
[../]
# Everything else
[./sintering]
type = GrandPotentialSinteringMaterial
chemical_potential = w
void_op = phi
Temperature = T
surface_energy = 19.7
grainboundary_energy = 9.86
void_energy_coefficient = kv
solid_energy_coefficient = ks
equilibrium_vacancy_concentration = cs_eq
solid_energy_model = PARABOLIC
[../]
[]
[Kernels]
[./dt_gr0]
type = TimeDerivative
variable = gr0
[../]
[./dt_gr1]
type = TimeDerivative
variable = gr1
[../]
[./dt_gr2]
type = TimeDerivative
variable = gr2
[../]
[./dt_gr3]
type = TimeDerivative
variable = gr3
[../]
[./dt_phi]
type = TimeDerivative
variable = phi
[../]
[./dt_w]
type = TimeDerivative
variable = w
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[./T_aux]
type = FunctionAux
variable = T
function = f_T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = JFNK
dt = 1
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/multi_stage_time_integrator/unconverged_1st_stage.i)
# This test is designed to check that a time step solve should stop if *any*
# time integrator solve stage fails, not just the *last* stage. If a time
# integrator does not check convergence per stage, then a time step proceeds
# past intermediate stages without checking nonlinear convergence. This test
# is designed to check that the 2nd stage is never even entered by making it
# impossible for the first stage to converge.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 5
[]
[Functions]
[./ic]
type = ParsedFunction
expression = 0
[../]
[./forcing_fn]
type = ParsedFunction
expression = x
[../]
[./exact_fn]
type = ParsedFunction
expression = t*x
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./body]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = u
function = ic
[../]
[]
[BCs]
[./bcs]
type = FunctionDirichletBC
variable = u
boundary = '0 1'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
type = LStableDirk2
[../]
num_steps = 1
abort_on_solve_fail = true
solve_type = NEWTON
nl_max_its = 0
[]
(test/tests/bcs/periodic/wedge_sys.i)
[Mesh]
file = wedge.e
[]
[Functions]
active = 'tr_x tr_y'
[./tr_x]
type = ParsedFunction
expression = -x
[../]
[./tr_y]
type = ParsedFunction
expression = y
[../]
[]
[Variables]
active = 'u temp'
# active = 'temp'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing dot dot_T diff_T'
# active = 'dot_T diff_T'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = -0.5
y_center = 3.0
x_spread = 0.2
y_spread = 0.2
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[./dot_T]
type = TimeDerivative
variable = temp
[../]
[./diff_T]
type = Diffusion
variable = temp
[../]
[]
[BCs]
#active = ' '
[./Periodic]
[./x]
primary = 1
secondary = 2
transform_func = 'tr_x tr_y'
inv_transform_func = 'tr_x tr_y'
variable = u
[../]
[../]
[./left_temp]
type = DirichletBC
value = 0
boundary = 1
variable = temp
[../]
[./right_temp]
type = DirichletBC
value = 1
boundary = 2
variable = temp
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_wedge_sys
exodus = true
[]
(modules/chemical_reactions/test/tests/desorption/mollified_langmuir_desorption.i)
# testing the entire desorption DEs with mollification
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = 0
xmax = 1
[]
[Variables]
[./pressure]
[../]
[./conc]
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./p_ic]
type = ConstantIC
variable = pressure
value = 1.0
[../]
[./conc_ic]
type = ConstantIC
variable = conc
value = 1.0
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
variable = conc
[../]
[./flow_from_matrix]
type = DesorptionFromMatrix
variable = conc
pressure_var = pressure
[../]
[./rho_dot]
type = TimeDerivative
variable = pressure
[../]
[./flux_to_porespace]
type = DesorptionToPorespace
variable = pressure
conc_var = conc
[../]
[]
[Postprocessors]
[./mass_rho]
type = ElementIntegralVariablePostprocessor
block = 0
variable = pressure
execute_on = 'initial timestep_end'
[../]
[./mass_conc]
type = ElementIntegralVariablePostprocessor
block = 0
variable = conc
execute_on = 'initial timestep_end'
[../]
[./mass_tot]
type = FunctionValuePostprocessor
function = mass_fcn
execute_on = 'initial timestep_end'
[../]
[./p0]
type = PointValue
variable = pressure
point = '0 0 0'
execute_on = 'initial timestep_end'
[../]
[./c0]
type = PointValue
variable = conc
point = '0 0 0'
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./mass_fcn]
type = ParsedFunction
expression = a+b
symbol_names = 'a b'
symbol_values = 'mass_rho mass_conc'
[../]
[]
[Materials]
[./lang_stuff]
type = MollifiedLangmuirMaterial
block = 0
one_over_desorption_time_const = 0.90909091
one_over_adsorption_time_const = 0.90909091
langmuir_density = 0.88
langmuir_pressure = 1.23
pressure_var = pressure
conc_var = conc
mollifier = 1E-4
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 2
[]
[Outputs]
file_base = mollified_langmuir_desorption
time_step_interval = 10
csv = 10
[] # Outputs
(test/tests/mesh/adapt/patch_recovery_test.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 4
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.5
coarsen_fraction = 0.05
# max_h_level = 8
error_estimator = PatchRecoveryErrorEstimator
[../]
[]
[Outputs]
file_base = patch_out
exodus = true
[]
(test/tests/outputs/residual/output_residual_elem.i)
[Mesh]
file = sq-2blk.e
uniform_refine = 3
[]
[Variables]
# variable in the whole domain
[./u]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
# subdomain restricted variable
[./v]
order = CONSTANT
family = MONOMIAL
block = '1'
[../]
[]
[Functions]
[./forcing_fn_u]
type = ParsedFunction
expression = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./forcing_fn_v]
type = ParsedFunction
expression = t
[../]
# [./exact_fn]
# type = ParsedFunction
# expression = t*t*t*((x*x)+(y*y))
# [../]
# [./exact_fn_v]
# type = ParsedFunction
# expression = t+1
# [../]
[]
[Kernels]
[./ie_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = forcing_fn_u
[../]
[./ie_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./ffn_v]
type = BodyForce
variable = v
function = forcing_fn_v
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_elem
exodus = true
[]
[Debug]
show_var_residual = 'u v'
show_var_residual_norms = true
[]
(modules/phase_field/test/tests/rigidbodymotion/update_orientation.i)
# test file for applyting advection term and observing rigid body motion of grains
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 15
nz = 0
xmax = 50
ymax = 25
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./eta]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
coupled_variables = eta
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./motion]
type = MultiGrainRigidBodyMotion
variable = w
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./eta_dot]
type = TimeDerivative
variable = eta
[../]
[./vadv_eta]
type = SingleGrainRigidBodyMotion
variable = eta
c = c
v = eta
grain_tracker_object = grain_center
grain_force = grain_force
grain_volumes = grain_volumes
[../]
[./acint_eta]
type = ACInterface
variable = eta
mob_name = M
coupled_variables = c
kappa_name = kappa_eta
[../]
[./acbulk_eta]
type = AllenCahn
variable = eta
mob_name = M
f_name = F
coupled_variables = c
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c kappa_eta'
prop_values = '5.0 2.0 0.1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
coupled_variables = 'c eta'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
expression = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2+(c-eta)^2
derivative_order = 2
[../]
[]
[AuxVariables]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./centroids]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_x]
order = CONSTANT
family = MONOMIAL
[../]
[./vadv_y]
order = CONSTANT
family = MONOMIAL
[../]
[./angle_initial]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_center
field_display = UNIQUE_REGION
execute_on = timestep_begin
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_center
field_display = VARIABLE_COLORING
execute_on = timestep_begin
[../]
[./centroids]
type = FeatureFloodCountAux
variable = centroids
execute_on = timestep_begin
field_display = CENTROID
flood_counter = grain_center
[../]
[./vadv_x]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = x
variable = vadv_x
[../]
[./vadv_y]
type = GrainAdvectionAux
grain_force = grain_force
grain_volumes = grain_volumes
grain_tracker_object = grain_center
execute_on = timestep_begin
component = y
variable = vadv_y
[../]
[./angle_initial]
type = OutputEulerAngles
variable = angle_initial
euler_angle_provider = euler_angle_initial
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[./angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle
grain_tracker = grain_center
output_euler_angle = phi2
execute_on = timestep_begin
[../]
[]
[VectorPostprocessors]
[./forces]
type = GrainForcesPostprocessor
grain_force = grain_force
[../]
[./grain_volumes]
type = FeatureVolumeVectorPostprocessor
flood_counter = grain_center
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./grain_center]
type = GrainTracker
variable = eta
outputs = none
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
[../]
[./grain_force]
type = ConstantGrainForceAndTorque
execute_on = 'initial timestep_begin linear nonlinear'
force = '0.5 0.0 0.0 '
torque = '0.0 0.0 10.0'
[../]
[./euler_angle_initial]
type = RandomEulerAngleProvider
grain_tracker_object = grain_center
execute_on = 'initial timestep_begin'
[../]
[./euler_angle]
type = EulerAngleUpdater
grain_tracker_object = grain_center
euler_angle_provider = euler_angle_initial
grain_torques_object = grain_force
grain_volumes = grain_volumes
execute_on = timestep_begin
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 30
l_max_its = 30
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
start_time = 0.0
dt = 0.2
num_steps = 5
[]
[Outputs]
exodus = true
[]
[ICs]
[./rect_c]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = c
x1 = 10.0
type = BoundingBoxIC
[../]
[./rect_eta]
y2 = 20.0
y1 = 5.0
inside = 1.0
x2 = 30.0
variable = eta
x1 = 10.0
type = BoundingBoxIC
[../]
[]
(test/tests/time_steppers/iteration_adaptive/multi_piecewise_linear.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./temp_spike1]
type = PiecewiseLinear
x = '1 3 5'
y = '1 4 4'
[../]
[./temp_spike2]
type = PiecewiseLinear
x = '0 2 4'
y = '1 1 2'
[../]
[temp_spike]
type = ParsedFunction
expression = 'temp_spike1 + temp_spike2'
symbol_names = 'temp_spike1 temp_spike2'
symbol_values = 'temp_spike1 temp_spike2'
[]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = left
function = temp_spike
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0
end_time = 5
verbose = true
[./TimeStepper]
type = IterationAdaptiveDT
dt = 10
optimal_iterations = 10
timestep_limiting_function = 'temp_spike1 temp_spike2'
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
csv = true
[]
(test/tests/dirackernels/front_tracking/front_tracking.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./v_all_around]
type = DirichletBC
variable = v
boundary = 'bottom left right top'
value = 0
[../]
[]
[UserObjects]
[./tdf]
type = TrackDiracFront
var = u
execute_on = timestep_begin
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[DiracKernels]
[./front_source]
front_uo = tdf
variable = v
type = FrontSource
[../]
[]
(test/tests/outputs/console/moose_console.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = ConsoleMessageKernel
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
time_step_interval = 2
[]
(tutorials/tutorial02_multiapps/step01_multiapps/04_sub1_multiple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_aniso_cleavage_plane.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./c]
family = LAGRANGE
order = FIRST
[../]
[]
[Physics]
[./SolidMechanics]
[./QuasiStatic]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[]
[Kernels]
[./ACbulk]
type = AllenCahn
variable = c
f_name = F
[../]
[./ACInterfaceCleavageFracture]
type = ACInterfaceCleavageFracture
variable = c
beta_penalty = 1
cleavage_plane_normal = '-0.707 0.707 0.0'
[../]
[./dcdt]
type = TimeDerivative
variable = c
[../]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
preset = true
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
preset = true
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
preset = true
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
property_name = L
expression = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
property_name = kappa_op
expression = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
property_name = degradation
coupled_variables = 'c'
expression = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
property_name = local_fracture_energy
coupled_variables = 'c'
material_property_names = 'gc_prop l'
expression = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
coupled_variables = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
property_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 5
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/sub_cycling/sub_iteration_adaptive.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/layered_average/layered_average_1d_displaced.i)
# This tests that Layered user objects work with displaced meshes. Originally,
# the mesh is aligned with x-axis. Then we displace the mesh to be aligned with
# z-axis and sample along the z-direction.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
elem_type = EDGE2
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./left_fn]
type = ParsedFunction
expression = 't + 1'
[../]
[./disp_x_fn]
type = ParsedFunction
expression = '-x'
[../]
[./disp_z_fn]
type = ParsedFunction
expression = 'x'
[../]
[]
[AuxVariables]
[./la]
family = MONOMIAL
order = CONSTANT
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./la_ak]
type = SpatialUserObjectAux
variable = la
user_object = la_uo
execute_on = TIMESTEP_END
use_displaced_mesh = true
[../]
[./disp_x_ak]
type = FunctionAux
variable = disp_x
function = 'disp_x_fn'
[../]
[./disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[../]
[./disp_z_ak]
type = FunctionAux
variable = disp_z
function = 'disp_z_fn'
[../]
[]
[UserObjects]
[./la_uo]
type = LayeredAverage
direction = z
variable = u
num_layers = 5
execute_on = TIMESTEP_END
use_displaced_mesh = true
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = left
function = left_fn
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 2
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/postprocessor_final/postprocessor_final.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./vpp]
type = LineValueSampler
variable = u
start_point = '0 0 0'
end_point = '1 1 0'
outputs = test
num_points = 10
sort_by = id
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./test]
type = CSV
execute_on = final
[../]
[]
(test/tests/multiapps/restart_subapp_ic/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[u_fn]
type = ParsedFunction
expression = t*x
[]
[ffn]
type = ParsedFunction
expression = x
[]
[]
[Variables]
[u]
initial_condition = 4.2
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[fn]
type = BodyForce
variable = u
function = ffn
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[]
[]
[Problem]
# Being restarted by the parent, yet the ICs are overriding the initial solution
# See t=0.5s in the gold/parent2_out_sub_app0.e file
allow_initial_conditions_with_restart = true
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/power_law_creep/ad_restart1.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[]
[]
[Functions]
[top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[u_top_pull]
type = ADPressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[]
[u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[]
[radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[]
[power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 6
dt = 0.1
[]
[Outputs]
exodus = true
[out]
type = Checkpoint
num_files = 1
[]
[]
(modules/phase_field/test/tests/SimpleACInterface/SimpleACInterface.i)
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 50
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 25.0
y1 = 25.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./ACInterface]
type = SimpleACInterface
variable = eta
kappa_name = 1
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
block = 0
property_name = F
coupled_variables = 'eta'
expression = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 15
l_tol = 1.0e-4
nl_max_its = 10
nl_rel_tol = 1.0e-11
start_time = 0.0
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/conservative_advection/no_upwinding_2D.i)
# 2D test of advection with no upwinding
# Note there are overshoots or undershoots
# but numerical diffusion is minimized.
# The center of the blob advects with the correct velocity
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_blob]
type = FunctionIC
variable = u
function = 'if(x<0.2,if(y<0.2,1,0),0)'
[../]
[]
[Kernels]
[./udot]
type = TimeDerivative
variable = u
[../]
[./advection]
type = ConservativeAdvection
variable = u
velocity = '2 1 0'
[../]
[]
[Executioner]
type = Transient
solve_type = LINEAR
dt = 0.01
end_time = 0.1
l_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(test/tests/functormaterials/time_derivatives/functor_time_derivatives.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 4.0
ymin = 0.0
ymax = 6.0
zmin = 0.0
zmax = 10.0
[]
[Variables]
[v1]
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = v1
[]
[source]
type = BodyForce
variable = v1
function = 10
[]
[]
[Functions]
[f1]
type = ParsedFunction
expression = '- 4 * t'
[]
[f2]
type = ConstantFunction
value = 3
[]
[]
[AuxVariables]
[v2]
[AuxKernel]
type = ParsedAux
expression = '3 * t'
use_xyzt = true
[]
[]
[]
[FunctorMaterials]
[time_derivatives]
type = ADGenericFunctorTimeDerivativeMaterial
prop_names = 'f1dt f2dt v1dt v2dt'
prop_values = 'f1 f2 v1 v2'
[]
[]
[Postprocessors]
[f1_time]
type = ElementExtremeFunctorValue
functor = f1dt
value_type = max
execute_on = 'INITIAL'
[]
[f2_time]
type = ElementExtremeFunctorValue
functor = f2dt
value_type = max
execute_on = 'INITIAL'
[]
[v1_time]
type = ElementExtremeFunctorValue
functor = v1dt
value_type = max
# derivatives are not available on INITIAL and TIMESTEP_BEGIN
execute_on = 'TIMESTEP_END'
[]
[v2_time]
type = ElementExtremeFunctorValue
functor = v2dt
value_type = max
# derivatives are not available on INITIAL and TIMESTEP_BEGIN
execute_on = 'TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Outputs]
csv = true
[]
(test/tests/controls/time_periods/bcs/bcs_enable_disable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./right2]
type = FunctionDirichletBC
variable = u
boundary = right
function = (y*(t-1))+1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./period0]
type = TimePeriod
enable_objects = 'BCs::right'
disable_objects = 'BCs::right2'
start_time = '0'
end_time = '0.5'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/optimization/test/tests/simp/2d_twoconstraints.i)
cost_frac = 0.3
vol_frac = 0.2
[Mesh]
[planet]
type = ConcentricCircleMeshGenerator
has_outer_square = false
radii = 1
num_sectors = 10
rings = 2
preserve_volumes = false
[]
[moon]
type = ConcentricCircleMeshGenerator
has_outer_square = false
radii = 0.5
num_sectors = 8
rings = 2
preserve_volumes = false
[]
[combine]
type = CombinerGenerator
inputs = 'planet moon'
positions = '0 0 0 -1.5 -0.5 0'
[]
[]
[AuxVariables]
[mat_den]
family = MONOMIAL
order = CONSTANT
initial_condition = 0.1
[]
[Dc]
family = MONOMIAL
order = CONSTANT
initial_condition = -1.0
[]
[Cc]
family = MONOMIAL
order = CONSTANT
initial_condition = -1.0
[]
[Cost]
family = MONOMIAL
order = CONSTANT
initial_condition = 1.0
[]
[]
[Variables]
[u]
[]
[v]
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[dt_u]
type = TimeDerivative
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[dt_v]
type = TimeDerivative
variable = v
[]
[]
[Materials]
[thermal_cond]
type = GenericFunctionMaterial
prop_values = '-1.4*abs(y)-2.7*abs(x)'
prop_names = thermal_cond
outputs = 'exodus'
[]
[thermal_compliance_sensitivity]
type = GenericFunctionMaterial
prop_values = '-3*abs(y)-1.5*abs(x)'
prop_names = thermal_sensitivity
outputs = 'exodus'
[]
[cost_sensitivity]
type = GenericFunctionMaterial
prop_values = '-0.3*y*y-0.5*abs(x*y)'
prop_names = cost_sensitivity
outputs = 'exodus'
[]
[cost_sensitivity_parsed]
type = DerivativeParsedMaterial
expression = "if(mat_den<0.2,1.0,0.5)"
coupled_variables = 'mat_den'
property_name = cost_sensitivity_parsed
[]
[cc]
type = CostSensitivity
design_density = mat_den
cost = cost_sensitivity_parsed
outputs = 'exodus'
declare_suffix = 'for_testing'
[]
[]
[BCs]
[flux_u]
type = DirichletBC
variable = u
boundary = outer
value = 3.0
[]
[flux_v]
type = DirichletBC
variable = v
boundary = outer
value = 7.0
[]
[]
[UserObjects]
[rad_avg]
type = RadialAverage
radius = 0.1
weights = linear
prop_name = thermal_sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[rad_avg_cost]
type = RadialAverage
radius = 1.2
weights = linear
prop_name = cost_sensitivity
execute_on = TIMESTEP_END
force_preaux = true
[]
[update]
type = DensityUpdateTwoConstraints
density_sensitivity = Dc
cost_density_sensitivity = Cc
cost = Cost
cost_fraction = ${cost_frac}
design_density = mat_den
volume_fraction = ${vol_frac}
bisection_lower_bound = 0
bisection_upper_bound = 1.0e16
relative_tolerance = 1.0e-3
bisection_move = 0.15
execute_on = TIMESTEP_BEGIN
[]
[calc_sense]
type = SensitivityFilter
density_sensitivity = Dc
design_density = mat_den
filter_UO = rad_avg
execute_on = TIMESTEP_END
force_postaux = true
[]
[calc_sense_cost]
type = SensitivityFilter
density_sensitivity = Cc
design_density = mat_den
filter_UO = rad_avg_cost
execute_on = TIMESTEP_END
force_postaux = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 3
nl_rel_tol = 1e-04
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_multi_pps_lim.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[timestep_fn1]
type = PiecewiseLinear
x = '0 40'
y = '10 1'
[]
[timestep_fn2]
type = PiecewiseLinear
x = '0 40'
y = '2 5'
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[dt]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 10
[]
[right]
type = NeumannBC
variable = u
boundary = right
value = -1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 40.0
dtmax = 6.0
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
timestep_limiting_postprocessor = 'timestep_pp1 timestep_pp2'
dt = 1.0
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[timestep_pp1]
type = FunctionValuePostprocessor
function = timestep_fn1
[]
[timestep_pp2]
type = FunctionValuePostprocessor
function = timestep_fn2
[]
[]
[Outputs]
csv = true
[]
(test/tests/materials/stateful_prop/stateful_prop_adaptivity_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
uniform_refine = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
prop_state = old # Use the "Old" value to compute conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./stateful]
type = StatefulTest
prop_names = thermal_conductivity
prop_values = 1.0
[../]
[]
[Postprocessors]
[./integral]
type = ElementAverageValue
variable = prop1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 10
start_time = 0.0
num_steps = 4
dt = .1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
marker = box
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.2 0.2 0.2'
top_right = '0.4 0.4 0.4'
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/time_steppers/dt2/dt2_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 15
ny = 15
elem_type = QUAD4
[]
[GlobalParams]
slope = 1
t_jump = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = TEIC
[../]
[../]
[]
[Kernels]
active = 'td diff ffn'
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = TEJumpFFN
variable = u
[../]
[]
[BCs]
active = 'all'
[./all]
type = TEJumpBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Postprocessors]
active = 'dt'
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-7
# l_tol = 1e-5
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
start_time = 0.0
end_time = 5
num_steps = 500000
dtmax = 0.25
[./TimeStepper]
type = DT2
dt = 0.1
e_max = 3e-1
e_tol = 1e-1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
csv = false
exodus = true
[]
(modules/phase_field/test/tests/flood_counter_aux_test/nodal_flood_periodic_2var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./bubble_map0]
order = FIRST
family = LAGRANGE
[../]
[./bubble_map1]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diffv]
type = Diffusion
variable = v
[../]
[./forcing_1]
type = GaussContForcing
variable = u
x_center = 1.0
y_center = 1.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_2]
type = GaussContForcing
variable = u
x_center = 20.0
y_center = 39.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_3]
type = GaussContForcing
variable = u
x_center = 39.0
y_center = 20.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_4]
type = GaussContForcing
variable = u
x_center = 15.0
y_center = 15.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_1v]
type = GaussContForcing
variable = v
x_center = 8.0
y_center = 8.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_2v]
type = GaussContForcing
variable = v
x_center = 18.0
y_center = 22.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_3v]
type = GaussContForcing
variable = v
x_center = 39.0
y_center = 20.0
x_spread = 0.5
y_spread = 0.5
[../]
[./forcing_4v]
type = GaussContForcing
variable = v
x_center = 32.0
y_center = 8.0
x_spread = 0.5
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[./dotv]
type = TimeDerivative
variable = v
[../]
[]
[AuxKernels]
[./mapper0]
type = FeatureFloodCountAux
variable = bubble_map0
execute_on = timestep_end
flood_counter = bubbles
map_index = 0
[../]
[./mapper1]
type = FeatureFloodCountAux
variable = bubble_map1
execute_on = timestep_end
flood_counter = bubbles
map_index = 1
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = 'u v'
auto_direction = 'x y'
[../]
[../]
[]
[UserObjects]
[./bubbles]
type = FeatureFloodCount
variable = 'u v'
threshold = 0.3
execute_on = timestep_end
use_single_map = false
use_global_numbering = true
outputs = none
flood_entity_type = NODAL
[../]
[]
[Executioner]
type = Transient
dt = 4.0
num_steps = 5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_2var
exodus = true
[]
(test/tests/mortar/continuity-2d-conforming/equalgradient.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-conf.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lmx]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[./lmy]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[]
[ICs]
[./block1]
type = FunctionIC
variable = u
block = 1
function = y
[../]
[./block2]
type = FunctionIC
variable = u
block = 2
function = y-0.5
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[Constraints]
[./cedx]
type = EqualGradientConstraint
secondary_variable = u
variable = lmx
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
component = 0
[../]
[./cedy]
type = EqualGradientConstraint
secondary_variable = u
variable = lmy
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
component = 1
[../]
[]
[BCs]
[./all]
type = DiffusionFluxBC
variable = u
boundary = '2 4 100 101'
[../]
[./boundary]
type = DirichletBC
boundary = 1
variable = u
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
boundary = 3
variable = u
function = 0.5-t
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
nl_rel_tol = 1e-11
l_tol = 1e-10
l_max_its = 10
dt = 0.05
num_steps = 3
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(test/tests/outputs/intervals/output_final.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 6
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
time_step_interval = 5
execute_on = 'final timestep_end'
[../]
[]
(modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_parent_bad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'phase_field_sub.i'
# Here we'll attempt to load a different module that's not compiled into this module
app_type = InvalidApp
# Here we set an input file specific relative library path instead of using MOOSE_LIBRARY_PATH
library_path = '../../../../../phase_field/lib'
[../]
[]
(test/tests/time_steppers/timesequence_stepper/timesequence_restart1.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
end_time = 4.0
[./TimeStepper]
type = TimeSequenceStepper
time_sequence = '0 0.85 1.3 2 4'
[../]
[]
[Outputs]
exodus = true
[./checkpoint]
type = Checkpoint
num_files = 4
[../]
[]
(test/tests/mesh/unique_ids/unique_ids.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[UserObjects]
[./verify_elem_unique_ids]
type = VerifyElementUniqueID
[../]
[./verify_nodal_unique_ids]
type = VerifyNodalUniqueID
[../]
[]
(test/tests/outputs/iterative/output_step_window.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
start_step = 2
end_step = 5
[../]
[]
(modules/optimization/test/tests/executioners/transient_and_adjoint/nonuniform_tstep.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
[]
[Variables]
[u]
[]
[u_adjoint]
solver_sys = adjoint
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[src]
type = BodyForce
variable = u
value = 10
[]
[src_adjoint]
type = BodyForce
variable = u_adjoint
value = 100
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = u
boundary = 'top right'
value = 0
[]
[]
[Executioner]
type = TransientAndAdjoint
forward_system = nl0
adjoint_system = adjoint
[TimeStepper]
type = TimeSequenceStepper
time_sequence = '0 0.1 0.2 0.4 0.7 1.1 1.4 1.6 1.7'
[]
end_time = 1.7
nl_rel_tol = 1e-12
l_tol = 1e-12
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[u_adjoint_avg]
type = ElementAverageValue
variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[inner_product]
type = VariableInnerProduct
variable = u
second_variable = u_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[]
[Outputs]
[forward]
type = CSV
[]
[adjoint]
type = CSV
execute_on = 'INITIAL ADJOINT_TIMESTEP_END'
[]
[console]
type = Console
execute_postprocessors_on = 'INITIAL TIMESTEP_END ADJOINT_TIMESTEP_END'
[]
[]
(modules/level_set/test/tests/verification/1d_level_set_supg_mms/1d_level_set_supg_mms.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 32
nx = 64
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[ICs]
[./phi_ic]
function = phi_exact
variable = phi
type = FunctionIC
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Functions]
[./phi_exact]
type = ParsedFunction
expression = 'a*exp(1/(10*t))*sin(2*pi*x/b) + 1'
symbol_names = 'a b'
symbol_values = '1 8'
[../]
[./phi_mms]
type = ParsedFunction
expression = '-a*exp(1/(10*t))*sin(2*pi*x/b)/(10*t^2) + 2*pi*a*exp(1/(10*t))*cos(2*pi*x/b)/b'
symbol_names = 'a b'
symbol_values = '1 8'
[../]
[./velocity_func]
type = ParsedVectorFunction
expression_x = '1'
expression_y = '1'
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./time_supg]
type = LevelSetTimeDerivativeSUPG
variable = phi
velocity = velocity
[../]
[./phi_advection]
type = LevelSetAdvection
variable = phi
velocity = velocity
[../]
[./phi_forcing]
type = BodyForce
variable = phi
function = phi_mms
[../]
[./phi_advection_supg]
type = LevelSetAdvectionSUPG
variable = phi
velocity = velocity
[../]
[./phi_forcing_supg]
type = LevelSetForcingFunctionSUPG
velocity = velocity
variable = phi
function = phi_mms
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = phi_exact
variable = phi
[../]
[./h]
type = AverageElementSize
[../]
[./point]
type = PointValue
point = '0.1 0 0'
variable = phi
[../]
[]
[Executioner]
type = Transient
start_time = 1
dt = 0.01
end_time = 1.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
scheme = bdf2
nl_rel_tol = 1e-12
[]
[Outputs]
time_step_interval = 10
execute_on = 'timestep_end'
csv = true
[]
(test/tests/problems/reference_residual_problem/abs_ref.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[GlobalParams]
absolute_value_vector_tags = 'absref'
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'absref'
extra_tag_vectors = 'absref'
[]
[Variables]
[u][]
[v]
scaling = 1e-6
[]
[]
[Functions]
[ramp]
type = ParsedFunction
expression = 'if(t < 5, t - 5, 0) * x'
[]
[]
[Kernels]
[u_dt]
type = TimeDerivative
variable = u
[]
[u_coupled_rx]
type = CoupledForce
variable = u
v = v
coef = 1
[]
[v_dt]
type = TimeDerivative
variable = v
[]
[v_neg_force]
type = BodyForce
variable = v
value = ${fparse -1 / 2}
function = ramp
[]
[v_force]
type = BodyForce
variable = v
value = 1
function = ramp
[]
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END INITIAL'
[]
[v_avg]
type = ElementAverageValue
variable = v
execute_on = 'TIMESTEP_END INITIAL'
[]
[timestep]
type = TimePostprocessor
outputs = 'none'
[]
[v_old]
type = ElementAverageValue
variable = v
execute_on = TIMESTEP_BEGIN
outputs = none
[]
[u_old]
type = ElementAverageValue
variable = u
execute_on = TIMESTEP_BEGIN
outputs = none
[]
[v_exact]
type = ParsedPostprocessor
pp_names = 'timestep v_old'
expression = 't := if(timestep > 5, 5, timestep); (t^2 - 9 * t) / 8'
[]
[u_exact]
type = ParsedPostprocessor
pp_names = 'u_old v_exact'
expression = 'u_old + v_exact'
[]
[]
[Executioner]
type = Transient
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = none
num_steps = 10
nl_rel_tol = 1e-06
verbose = true
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/restart/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
expression = t*x
[../]
[./ffn]
type = ParsedFunction
expression = x
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i)
# KKS phase-field model coupled with elasticity using Khachaturyan's scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170403a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
expression = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
symbol_names = 'delta_eta'
symbol_values = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
expression = '0.2389*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1339*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
symbol_names = 'delta'
symbol_values = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
expression = 'volume*psi_alpha'
symbol_names = 'volume psi_alpha'
symbol_values = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
expression = '(psi_int - psi_eq_int) / dy / dz'
symbol_names = 'psi_int psi_eq_int dy dz'
symbol_values = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
coupled_variables = 'Fglobal w c f_el sigma11 e11'
expression = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
property_name = fm
coupled_variables = 'cm'
expression = '6.55*(cm-0.13)^2'
[../]
# Chemical Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
property_name = fp
coupled_variables = 'cp'
expression = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
f_name = f_el_mat
args = 'eta'
outputs = exodus
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# 1- h(eta), putting in function explicitly
[./one_minus_h_eta_explicit]
type = DerivativeParsedMaterial
property_name = one_minus_h_explicit
coupled_variables = eta
expression = 1-eta^3*(6*eta^2-15*eta+10)
outputs = exodus
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
base_name = C_matrix
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = C_ppt
fill_method = symmetric9
[../]
[./C]
type = CompositeElasticityTensor
args = eta
tensors = 'C_matrix C_ppt'
weights = 'one_minus_h_explicit h'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeVariableEigenstrain
eigen_base = '0.00377 0.00377 0.00377 0 0 0'
prefactor = h
args = eta
eigenstrain_name = 'eigenstrain_ppt'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = fm
fb_name = fp
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fp
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = fm
[../]
[./ACBulk_el] #This adds df_el/deta for strain interpolation
type = AllenCahn
variable = eta
f_name = f_el_mat
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[./int_position]
type = FindValueOnLine
start_point = '-10 0 0'
end_point = '10 0 0'
v = eta
target = 0.5
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
time_step_interval = 20
[../]
checkpoint = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
(test/tests/time_steppers/function_dt/function_dt_no_interpolation.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = t*t*(x*x+y*y)
[../]
[./forcing_fn]
type = ParsedFunction
expression = 2*t*(x*x+y*y)-4*t*t
[../]
[./dts]
type = PiecewiseConstant
x = '0 4 8 12 20'
y = '0 1 2 4 8'
direction = right
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./u_var]
type = FunctionIC
variable = u
function = exact_fn
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = exact_fn
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 20
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/controls/error/no_parameter_found.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[./func_control]
type = TestControl
test_type = 'real'
parameter = 'unknown_param_name'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/materials/output/output_block.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.5
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[]
[]
[Materials]
[block_1]
type = OutputTestMaterial
block = 1
output_properties = 'real_property tensor_property'
outputs = exodus
variable = u
[]
[block_2]
type = OutputTestMaterial
block = 2
output_properties = 'vector_property tensor_property'
outputs = exodus
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/examples/paper/sub.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = AverageNodalVariableValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[receiver]
type = SamplerReceiver
[]
[]
[Outputs]
console = false
[]
(modules/stochastic_tools/test/tests/reporters/AISActiveLearning/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = -0.193289
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1.60831
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
(test/tests/parser/cli_multiapp_single/dt_from_parent.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_parent_sub.i'
app_type = MooseTestApp
[../]
[]
(modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/master.i)
# This tests an action used to exchange T_wall, T_fluid and HTC between
# a heat conduction simulation and a THM simulation
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 0.1
nx = 2
ymax = 1
ny = 10
parallel_type = replicated
coord_type = RZ
[]
[Variables]
[T]
[]
[]
[ICs]
[T_ic]
type = ConstantIC
variable = T
value = 300
[]
[]
[AuxVariables]
[T_fluid]
family = MONOMIAL
order = CONSTANT
initial_condition = 300
[]
[htc]
family = MONOMIAL
order = CONSTANT
initial_condition = 0
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = T
[]
[diff]
type = Diffusion
variable = T
[]
[]
[CoupledHeatTransfers]
[right]
boundary = right
T_fluid = 'T_fluid'
T = T
T_wall = T_wall
htc = 'htc'
multi_app = thm
T_fluid_user_objects = 'T_uo'
htc_user_objects = 'Hw_uo'
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 10
skip_coordinate_collapsing = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 10
nl_abs_tol = 1e-10
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[MultiApps]
[thm]
type = TransientMultiApp
app_type = ThermalHydraulicsApp
input_files = sub.i
execute_on = 'TIMESTEP_END'
[]
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[T_wall_avg]
type = SideAverageValue
variable = T
boundary = right
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_fluid_avg]
type = ElementAverageValue
variable = T_fluid
execute_on = 'INITIAL TIMESTEP_END'
[]
[htc_avg]
type = ElementAverageValue
variable = htc
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
(modules/porous_flow/test/tests/dirackernels/bh_except11.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_relative_permeability = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(test/tests/transfers/multiapp_userobject_transfer/main_nearest_sub_app.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0.3 0.1 0.3 0.7 0.1 0.3'
type = TransientMultiApp
input_files = sub.i
app_type = MooseTestApp
[../]
[]
[Transfers]
[./layered_transfer]
direction = from_multiapp
user_object = layered_average
variable = multi_layered_average
type = MultiAppUserObjectTransfer
multi_app = sub_app
nearest_sub_app = true
[../]
[./element_layered_transfer]
direction = from_multiapp
user_object = layered_average
variable = element_multi_layered_average
type = MultiAppUserObjectTransfer
multi_app = sub_app
nearest_sub_app = true
[../]
[]
(test/tests/mesh/adapt/interval.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 4
dt = .1
[./Adaptivity]
interval = 2
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/tosub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
coord_type = rz
[]
[Variables]
[u]
initial_condition = 1
[]
[]
[AuxVariables]
[multi_layered_average]
[]
[element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[axial_force]
type = ParsedFunction
expression = 1000*y
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[force]
type = BodyForce
variable = u
function = axial_force
[]
[]
[BCs]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/cutback_factor_at_failure/constant_dt_cutback.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_steps = '3'
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./TimeStepper]
type = ConstantDT
dt = 0.1
cutback_factor_at_failure = 0.8
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/coupled_time_derivative/ad_coupled_time_derivative_test.i)
###########################################################
# This is a simple test of the CoupledTimeDerivative kernel.
# The expected solution for the variable v is
# v(x) = 1/2 * (x^2 + x)
###########################################################
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./fn_u]
type = BodyForce
variable = u
function = 1
[../]
[./time_v]
type = ADCoupledTimeDerivative
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = v
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
file_base = coupled_time_derivative_test_out
[]
(modules/functional_expansion_tools/test/tests/standard_use/multiapp_print_coefficients.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
print_when_set = true # Print coefficients when a MultiAppFXTransfer is executed
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
print_state = true # Print after the FX coefficients are computer
print_when_set = true # Print coefficients when a MultiAppFXTransfer is executed
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/postprocessors/nodal_var_value/pps_output_test.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
expression = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
expression = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
expression = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
outputs = exodus
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
outputs = console
[../]
[./avg_v]
type = AverageElementSize
outputs = none
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/misc/deprecation/deprecate-old-for-new-param.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Functions]
[diff_func_x]
type = ParsedFunction
expression = 1/t
[]
[diff_func_y]
type = ParsedFunction
expression = 't*t + x'
[]
[]
[Kernels]
[diff]
type = VectorMatDiffusion
variable = u
coef = diffusion
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = '0'
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = '1'
[]
[]
[Materials]
[gfm]
type = GenericFunctionVectorMaterial
block = 0
prop_names = diffusion
prop_values = 'diff_func_x diff_func_y 0'
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/petsc_options/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/dmg_periodic/dmg_simple_periodic_bc.i)
[Mesh]
[dmg]
type = DistributedRectilinearMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 10
xmax = 1
ymax = 1
zmax = 1
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[forcing]
type = BodyForce
variable = u
[]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y z'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 5
solve_type = NEWTON
nl_rel_tol = 1e-10
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/markers/two_circle_marker/two_circle_marker.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.02
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
num_steps = 6
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 1
initial_marker = two_circle_marker
cycles_per_step = 1
marker = two_circle_marker
max_h_level = 1
[./Markers]
[./two_circle_marker]
type = TwoCircleMarker
point1 = '0.5 0.5 0'
radius1 = 0.3
point2 = '0.35 0.25 0'
radius2 = 0.3
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
print_mesh_changed_info = true
[../]
[]
(test/tests/bcs/periodic/no_add_scalar.i)
# Test to make sure that periodic boundaries
# are not applied to scalar variables.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[./scalar]
family = SCALAR
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = x
[../]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = c
[../]
[./diff]
type = Diffusion
variable = c
[../]
[]
[ScalarKernels]
[./scalar]
type = ODETimeDerivative
variable = scalar
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 3
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/periodic/trapezoid.i)
[Mesh]
file = trapezoid.e
uniform_refine = 1
[]
[Functions]
[./tr_x]
type = ParsedFunction
expression = -x*cos(pi/3)
[../]
[./tr_y]
type = ParsedFunction
expression = x*sin(pi/3)
[../]
[./itr_x]
type = ParsedFunction
expression = -x/cos(pi/3)
[../]
[./itr_y]
type = ParsedFunction
expression = 0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = 2
y_center = -1
x_spread = 0.25
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./x]
primary = 1
secondary = 4
transform_func = 'tr_x tr_y'
inv_transform_func = 'itr_x itr_y'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_trapezoid
exodus = true
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_pps_lim.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./timestep_fn]
type = PiecewiseLinear
x = '0. 40.'
y = '10. 1. '
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 40.0
n_startup_steps = 2
dtmax = 6.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
timestep_limiting_postprocessor = timestep_pp
dt = 1.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
# Just use a simple postprocessor to test capability to limit the time step length to the postprocessor value
[./timestep_pp]
type = FunctionValuePostprocessor
function = timestep_fn
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/fromsub_fixed_meshes_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.1
ymax = 0.1
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./disp_fun]
type = ParsedFunction
expression = 2*t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./disp_kern]
type = FunctionAux
variable = disp_x
function = disp_fun
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/moving_interface/phase_transition_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 11
ny = 1
nz = 1
xmin = 0.0
xmax = 20.0
ymin = 0.0
ymax = 5.0
zmin = 0.0
zmax = 5.0
elem_type = HEX8
[]
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[velocity]
type = XFEMPhaseTransitionMovingInterfaceVelocity
diffusivity_at_positive_level_set = 5
diffusivity_at_negative_level_set = 1
equilibrium_concentration_jump = 1
value_at_interface_uo = value_uo
[]
[value_uo]
type = NodeValueAtXFEMInterface
variable = 'u'
interface_mesh_cut_userobject = 'cut_mesh'
execute_on = TIMESTEP_END
level_set_var = ls
[]
[cut_mesh]
type = InterfaceMeshCut3DUserObject
mesh_file = flat_interface_2d.e
interface_velocity_uo = velocity
heal_always = true
[]
[]
[Variables]
[u]
[]
[]
[ICs]
[ic_u]
type = FunctionIC
variable = u
function = 'if(x<5.01, 2, 1)'
[]
[]
[AuxVariables]
[ls]
order = FIRST
family = LAGRANGE
[]
[]
[Constraints]
[u_constraint]
type = XFEMEqualValueAtInterface
geometric_cut_userobject = 'cut_mesh'
use_displaced_mesh = false
variable = u
value = 2
alpha = 1e6
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[ls]
type = MeshCutLevelSetAux
mesh_cut_user_object = cut_mesh
variable = ls
execute_on = 'TIMESTEP_BEGIN'
[]
[]
[Materials]
[diffusivity_A]
type = GenericConstantMaterial
prop_names = A_diffusion_coefficient
prop_values = 5
[]
[diffusivity_B]
type = GenericConstantMaterial
prop_names = B_diffusion_coefficient
prop_values = 1
[]
[diff_combined]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = diffusion_coefficient
[]
[]
[BCs]
# Define boundary conditions
[left_u]
type = DirichletBC
variable = u
value = 2
boundary = left
[]
[right_u]
type = NeumannBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
start_time = 0.0
dt = 1
num_steps = 5
max_xfem_update = 1
[]
[Outputs]
execute_on = timestep_end
exodus = true
perf_graph = true
[]
(modules/phase_field/test/tests/KKS_system/kks_example_multiphase_nested.i)
#
# This test is for the nested solve of 3-phase KKS model
# The split-form of the Cahn-Hilliard equation instead of the Fick's diffusion equation is solved
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 40
ymin = 0
ymax = 40
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[BCs]
[Periodic]
[all]
auto_direction = 'x y'
[]
[]
[]
[AuxVariables]
[Energy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Variables]
# concentration
[c]
order = FIRST
family = LAGRANGE
[]
# order parameter 1
[eta1]
order = FIRST
family = LAGRANGE
[]
# order parameter 2
[eta2]
order = FIRST
family = LAGRANGE
[]
# order parameter 3
[eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
# chemical potential
[mu]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
# Lagrange multiplier
[lambda]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
[]
[ICs]
[eta1]
variable = eta1
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.9
outvalue = 0.1
int_width = 4
[]
[eta2]
variable = eta2
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.1
outvalue = 0.9
int_width = 4
[]
[c]
variable = c
type = SmoothCircleIC
x1 = 20.0
y1 = 20.0
radius = 10
invalue = 0.2
outvalue = 0.5
int_width = 2
[]
[]
[Materials]
# simple toy free energies
[F1]
type = DerivativeParsedMaterial
property_name = F1
expression = '20*(c1-0.2)^2'
material_property_names = 'c1'
additional_derivative_symbols = 'c1'
compute = false
[]
[F2]
type = DerivativeParsedMaterial
property_name = F2
expression = '20*(c2-0.5)^2'
material_property_names = 'c2'
additional_derivative_symbols = 'c2'
compute = false
[]
[F3]
type = DerivativeParsedMaterial
property_name = F3
expression = '20*(c3-0.8)^2'
material_property_names = 'c3'
additional_derivative_symbols = 'c3'
compute = false
[]
[KKSPhaseConcentrationMultiPhaseMaterial]
type = KKSPhaseConcentrationMultiPhaseMaterial
global_cs = 'c'
all_etas = 'eta1 eta2 eta3'
hj_names = 'h1 h2 h3'
ci_names = 'c1 c2 c3'
ci_IC = '0.2 0.5 0.8'
Fj_names = 'F1 F2 F3'
min_iterations = 1
max_iterations = 1000
absolute_tolerance = 1e-11
relative_tolerance = 1e-10
[]
[KKSPhaseConcentrationMultiPhaseDerivatives]
type = KKSPhaseConcentrationMultiPhaseDerivatives
global_cs = 'c'
all_etas = 'eta1 eta2 eta3'
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
ci_names = 'c1 c2 c3'
[]
# Switching functions for each phase
# h1(eta1, eta2, eta3)
[h1]
type = SwitchingFunction3PhaseMaterial
eta_i = eta1
eta_j = eta2
eta_k = eta3
property_name = h1
[]
# h2(eta1, eta2, eta3)
[h2]
type = SwitchingFunction3PhaseMaterial
eta_i = eta2
eta_j = eta3
eta_k = eta1
property_name = h2
[]
# h3(eta1, eta2, eta3)
[h3]
type = SwitchingFunction3PhaseMaterial
eta_i = eta3
eta_j = eta1
eta_k = eta2
property_name = h3
[]
# Barrier functions for each phase
[g1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
[]
[g2]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta2
function_name = g2
[]
[g3]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta3
function_name = g3
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'L kappa M'
prop_values = '0.7 1.0 0.025'
[]
[]
[Kernels]
[lambda_lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-04
[]
[eta1_lagrange]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
coupled_variables = 'eta2 eta3'
[]
[eta2_lagrange]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
coupled_variables = 'eta1 eta3'
[]
[eta3_lagrange]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
coupled_variables = 'eta1 eta2'
[]
#Kernels for Cahn-Hilliard equation
[diff_time]
type = CoupledTimeDerivative
variable = mu
v = c
[]
[CHBulk]
type = NestedKKSMultiSplitCHCRes
variable = c
all_etas = 'eta1 eta2 eta3'
global_cs = 'c'
w = mu
c1_names = 'c1'
F1_name = F1
coupled_variables = 'eta1 eta2 eta3 mu'
[]
[ckernel]
type = SplitCHWRes
variable = mu
mob_name = M
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = NestedKKSMultiACBulkF
variable = eta1
global_cs = 'c'
eta_i = eta1
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
gi_name = g1
mob_name = L
wi = 1.0
coupled_variables = 'c eta2 eta3'
[]
[ACBulkC1]
type = NestedKKSMultiACBulkC
variable = eta1
global_cs = 'c'
eta_i = eta1
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
coupled_variables = 'c eta2 eta3'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
# Kernels for Allen-Cahn equation for eta2
[deta2dt]
type = TimeDerivative
variable = eta2
[]
[ACBulkF2]
type = NestedKKSMultiACBulkF
variable = eta2
global_cs = 'c'
eta_i = eta2
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
gi_name = g2
mob_name = L
wi = 1.0
coupled_variables = 'c eta1 eta3'
[]
[ACBulkC2]
type = NestedKKSMultiACBulkC
variable = eta2
global_cs = 'c'
eta_i = eta2
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
coupled_variables = 'c eta1 eta3'
[]
[ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[]
# Kernels for Allen-Cahn equation for eta3
[deta3dt]
type = TimeDerivative
variable = eta3
[]
[ACBulkF3]
type = NestedKKSMultiACBulkF
variable = eta3
global_cs = 'c'
eta_i = eta3
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
gi_name = g3
mob_name = L
wi = 1.0
coupled_variables = 'c eta1 eta2'
[]
[ACBulkC3]
type = NestedKKSMultiACBulkC
variable = eta3
global_cs = 'c'
eta_i = eta3
all_etas = 'eta1 eta2 eta3'
ci_names = 'c1 c2 c3'
hj_names = 'h1 h2 h3'
Fj_names = 'F1 F2 F3'
coupled_variables = 'c eta1 eta2'
[]
[ACInterface3]
type = ACInterface
variable = eta3
kappa_name = kappa
[]
[]
[AuxKernels]
[Energy_total]
type = KKSMultiFreeEnergy
Fj_names = 'F1 F2 F3'
hj_names = 'h1 h2 h3'
gj_names = 'g1 g2 g3'
variable = Energy
w = 1
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa kappa kappa'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-11
num_steps = 2
dt = 0.5
[]
[Preconditioning]
active = 'full'
[full]
type = SMP
full = true
[]
[mydebug]
type = FDP
full = true
[]
[]
[Outputs]
file_base = kks_example_multiphase_nested
exodus = true
[]
(test/tests/bcs/periodic/all_periodic_trans.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
nz = 0
xmax = 10
ymax = 10
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Functions]
[./tr_x]
type = ParsedFunction
expression = x
[../]
[./tr_y]
type = ParsedFunction
expression = y+10
[../]
[./itr_x]
type = ParsedFunction
expression = x
[../]
[./itr_y]
type = ParsedFunction
expression = y-10
[../]
[./tr_x2]
type = ParsedFunction
expression = x+10
[../]
[./tr_y2]
type = ParsedFunction
expression = y
[../]
[./itr_x2]
type = ParsedFunction
expression = x-10
[../]
[./itr_y2]
type = ParsedFunction
expression = y
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = 2
y_center = 1
x_spread = 0.25
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
# active = ' '
[./Periodic]
[./x]
primary = bottom
secondary = top
transform_func = 'tr_x tr_y'
inv_transform_func = 'itr_x itr_y'
[../]
[./y]
primary = left
secondary = right
transform_func = 'tr_x2 tr_y2'
inv_transform_func = 'itr_x2 itr_y2'
[../]
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 10
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/transfers/multiapp_conservative_transfer/parent_userobject.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[multi_layered_average]
[]
[element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
[]
[VectorPostprocessors]
[to_nearest_point]
type = NearestPointIntegralVariablePostprocessor
variable = multi_layered_average
points = '0.3 0.1 0.3 0.7 0.1 0.3'
execute_on = 'transfer'
[]
[to_nearest_point_element]
type = NearestPointIntegralVariablePostprocessor
variable = element_multi_layered_average
points = '0.3 0.1 0.3 0.7 0.1 0.3'
execute_on = 'transfer'
[]
[]
[MultiApps]
[sub_app]
positions = '0.3 0.1 0.3 0.7 0.1 0.3'
type = TransientMultiApp
input_files = sub_userobject.i
app_type = MooseTestApp
[]
[]
[Transfers]
[layered_transfer]
source_user_object = layered_average
variable = multi_layered_average
type = MultiAppGeneralFieldUserObjectTransfer
from_multi_app = sub_app
skip_coordinate_collapsing = true
from_postprocessors_to_be_preserved = 'from_postprocessor'
to_postprocessors_to_be_preserved = 'to_nearest_point'
[]
[element_layered_transfer]
source_user_object = layered_average
variable = element_multi_layered_average
type = MultiAppGeneralFieldUserObjectTransfer
from_multi_app = sub_app
skip_coordinate_collapsing = true
from_postprocessors_to_be_preserved = 'from_postprocessor'
to_postprocessors_to_be_preserved = 'to_nearest_point_element'
[]
[]
(test/tests/outputs/png/adv_diff_reaction_transient_test.i)
[Mesh]
dim = 2
file = Mesh12.e
[]
[Variables]
active = 'phi'
[./phi]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
active = 'trans advection diffusion source'
[./trans]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = Advection0
variable = phi
Au = 10.
Bu = -6.
Cu = 5.
Av = 10.
Bv = 8.
Cv = -1.
[../]
[./diffusion]
type = Diffusion0
variable = phi
Ak = 10.
Bk = 0.1
Ck = 0.1
[../]
[./source]
type = ForcingFunctionXYZ0
variable = phi
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
Au = 10.
Bu = -6.
Cu = 5.
Av = 10.
Bv = 8.
Cv = -1.
Ak = 10.
Bk = 0.1
Ck = 0.1
[../]
[]
[BCs]
active = 'btm_sca rgt_sca top_sca lft_sca'
[./btm_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 1
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[./rgt_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 2
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[./top_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 3
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[./lft_sca]
type = DirichletBCfuncXYZ0
variable = phi
boundary = 4
omega0 = 2.
A0 = 1.
B0 = 1.2
C0 = 0.8
[../]
[]
[Executioner]
type = Transient #Steady
scheme = bdf2
nl_rel_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_factor_levels -pc_factor_mat_ordering_type'
petsc_options_value = '20 rcm'
start_time = 0.0
end_time = 1.
num_steps = 60000
dt = .2
n_startup_steps = 0
[]
[Outputs]
[png]
type = PNGOutput
resolution = 1
color = RWB
[]
[]
(test/tests/multiapps/time_offset/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the parent solve
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/level_set/test/tests/transfers/markers/multi_level/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[AuxVariables]
[./marker]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
hide = 'u'
exodus = true
[]
(modules/porous_flow/test/tests/sinks/s11_act.i)
# Test that using PorousFlowSinkBC we get the same answer as in s11.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
zmin = 0
zmax = 10
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0.1
[]
[]
[Variables]
[pp]
initial_condition = 1
[]
[temp]
initial_condition = 2
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[heat_conduction]
type = TimeDerivative
variable = temp
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 10
thermal_expansion = 0
viscosity = 11
[]
[]
[Materials]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.125
[]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[]
[Modules]
[PorousFlow]
[BCs]
[left]
type = PorousFlowSinkBC
boundary = left
fluid_phase = 0
T_in = 300
fp = simple_fluid
flux_function = -1
[]
[]
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.25
end_time = 1
nl_rel_tol = 1E-12
nl_abs_tol = 1E-12
[]
[Outputs]
file_base = s11
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[]
(modules/phase_field/test/tests/phase_field_crystal/PFCTrad/pfct_newton_split1_asm5.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
xmax = 8
ymax = 8
[]
[Variables]
[./n]
[./InitialCondition]
type = RandomIC
min = -1
max = 4
[../]
[../]
[./u]
scaling = 1e2
[../]
[./v]
scaling = 1e1
[../]
[]
[Kernels]
[./ndot]
type = TimeDerivative
variable = n
[../]
[./n_bulk]
type = CHBulkPFCTrad
variable = n
[../]
[./u_term]
type = MatDiffusion
variable = n
v = u
diffusivity = C2
[../]
[./v_term]
type = MatDiffusion
variable = n
v = v
diffusivity = C4
[../]
[./u_rctn]
type = Reaction
variable = u
[../]
[./u_gradn]
type = LaplacianSplit
variable = u
c = n
[../]
[./v_rctn]
type = Reaction
variable = v
[../]
[./v_gradu]
type = LaplacianSplit
variable = v
c = u
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./PFCTrad]
type = PFCTradMaterial
order = 4
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 100
l_tol = 1e-04
nl_rel_tol = 1e-09
nl_abs_tol = 1e-11
splitting = 'nuv'
petsc_options = '-snes_view'
num_steps = 2
dt = 0.1
[]
[Splits]
[./nuv]
splitting = 'v nu'
splitting_type = schur
schur_type = full
schur_pre = Sp
#petsc_options = '-dm_view'
[../]
[./nu]
vars = 'n u'
petsc_options = '-ksp_monitor'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_asm_overlap -sub_pc_type'
petsc_options_value = ' 101 asm 5 lu'
[../]
[./v]
vars = 'v'
#petsc_options = '-ksp_monitor'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 101 preonly lu 0'
#full = true
[../]
[]
[Outputs]
execute_on = 'initial timestep_end linear'
exodus = true
[]
(modules/geochemistry/test/tests/nodal_void_volume/nodal_void_volume_adaptive.i)
# Computes nodal void volume, when using adaptivity, and compares with the Postprocessor hand-calculated values
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1 2 2'
dy = '1 4'
[]
[]
[Adaptivity]
initial_marker = u_marker
marker = u_marker
max_h_level = 1
[Markers]
[u_marker]
type = ValueRangeMarker
variable = u
invert = true
lower_bound = 0.02
upper_bound = 0.98
[]
[]
[]
[Variables]
[u]
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'if(x<2,0,1)'
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = u
[]
[u]
type = Diffusion
variable = u
[]
[]
[Executioner]
type = Transient
dt = 1
end_time = 2
[]
[Outputs]
csv = true
[]
[UserObjects]
[nodal_void_volume]
type = NodalVoidVolume
porosity = porosity
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[vol]
[]
[]
[AuxKernels]
[porosity]
type = FunctionAux
variable = porosity
function = 'if(x<4, 1, 2)'
[]
[vol]
type = NodalVoidVolumeAux
variable = vol
nodal_void_volume_uo = nodal_void_volume
[]
[]
[Postprocessors]
[quarter]
type = PointValue
point = '0 0 0'
variable = vol
[]
[half]
type = PointValue
point = '1 0 0'
variable = vol
[]
[three_quarters]
type = PointValue
point = '2 0 0'
variable = vol
[]
[one_and_half_to_34s]
type = PointValue
point = '4 0 0'
variable = vol
[]
[one_to_14]
type = PointValue
point = '6 0 0'
variable = vol
[]
[one_and_quarter]
type = PointValue
point = '0 1 0'
variable = vol
[]
[two_and_half]
type = PointValue
point = '1 1 0'
variable = vol
[]
[three_and_three_quarters]
type = PointValue
point = '2 1 0'
variable = vol
[]
[seven_and_half_to_334]
type = PointValue
point = '4 1 0'
variable = vol
[]
[five_to_54]
type = PointValue
point = '6 1 0'
variable = vol
[]
[]
(test/tests/outputs/displacement/displacement_transient_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD4
displacements = 'u v'
[]
[Functions]
[./right_u]
type = ParsedFunction
expression = 0.1*t
[../]
[./fn_v]
type = ParsedFunction
expression = (x+1)*y*0.1*t
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 1
function = right_u
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '0 2'
function = fn_v
[../]
[]
[Executioner]
type = Transient
dt = 0.1
start_time = 0
num_steps = 10
solve_type = 'PJFNK'
[]
[Outputs]
[./out_displaced]
type = Exodus
use_displaced = true
[../]
[]
(test/tests/postprocessors/default_value/real_value_override.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = DefaultPostprocessorDiffusion
variable = u
pps_name = 0.5 # Here we supply a real value to use as the Postprocessor
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.1
num_steps = 10
[]
[Outputs]
exodus = true
[]
(test/tests/markers/two_circle_marker/two_circle_marker_gaussian_ic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./gaussian_ic]
type = FunctionIC
variable = u
function = gaussian_2d
[../]
[]
[Functions]
[./gaussian_2d]
type = ParsedFunction
expression = exp(-((x-x0)*(x-x0)+(y-y0)*(y-y0))/2.0/sigma/sigma)
symbol_names = 'sigma x0 y0'
symbol_values = '0.05 0.35 0.25'
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.02
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = u
auto_direction = 'x y'
[../]
[../]
[]
[Executioner]
type = Transient
num_steps = 6
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 1
initial_marker = two_circle_marker
cycles_per_step = 1
marker = two_circle_marker
max_h_level = 1
[./Markers]
[./two_circle_marker]
type = TwoCircleMarker
point1 = '0.5 0.5 0'
radius1 = 0.3
point2 = '0.35 0.25 0'
radius2 = 0.3
shut_off_time = 0.15
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
print_mesh_changed_info = true
[../]
[]
(tutorials/tutorial02_multiapps/step03_coupling/02_parent_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ParsedMaterial
property_name = D
coupled_variables = 'vt'
expression = 'vt'
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
fixed_point_max_its = 10
nl_abs_tol = 1e-10
fixed_point_rel_tol = 1e-6
fixed_point_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '02_sub_picard.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(modules/level_set/examples/rotating_circle/circle_rotate_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 32
ny = 32
uniform_refine = 2
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./phi_0]
[../]
[./marker]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./reinit]
type = LevelSetOlssonReinitialization
variable = phi
phi_0 = phi_0
epsilon = 0.03
[../]
[]
[Problem]
type = LevelSetReinitializationProblem
[]
[UserObjects]
[./arnold]
type = LevelSetOlssonTerminator
tol = 1
min_steps = 3
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0
num_steps = 100
nl_abs_tol = 1e-14
scheme = crank-nicolson
line_search = none
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
dt = 0.003
[]
[Outputs]
[]
(modules/level_set/test/tests/reinitialization/reinit.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 8
ny = 8
uniform_refine = 3
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./phi_0]
[../]
[]
[BCs]
[./Periodic]
[./all]
variable = phi
auto_direction = 'x y'
[../]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./reinit]
type = LevelSetOlssonReinitialization
variable = phi
phi_0 = phi_0
epsilon = 0.05
[../]
[]
[Problem]
type = LevelSetReinitializationProblem
[]
[UserObjects]
[./arnold]
type = LevelSetOlssonTerminator
tol = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
num_steps = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 5
growth_factor = 5
[../]
[]
(modules/combined/test/tests/elastic_patch/ad_elastic_patch_rspherical.i)
#
# Patch test for 1D spherical elements
#
# The 1D mesh is pinned at x=0. The displacement at the outer node is set to
# 3e-3*X where X is the x-coordinate of that node. That gives a strain of
# 3e-3 for the x, y, and z directions.
#
# Young's modulus is 1e6, and Poisson's ratio is 0.25. This gives:
#
# Stress xx, yy, zz = E/(1+nu)/(1-2nu)*strain*((1-nu) + nu + nu) = 6000
#
[GlobalParams]
displacements = 'disp_x'
temperature = temp
[]
[Mesh]
file = elastic_patch_rspherical.e
coord_type = RSPHERICAL
[]
[Variables]
[disp_x]
[]
[temp]
initial_condition = 117.56
[]
[]
[Physics/SolidMechanics/QuasiStatic/All]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz'
[]
[Kernels]
[heat]
type = TimeDerivative
variable = temp
[]
[]
[BCs]
[ur]
type = FunctionDirichletBC
variable = disp_x
boundary = '1 2'
function = '3e-3*x'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
[]
[stress]
type = ComputeStrainIncrementBasedStress
[]
[]
[Materials]
[density]
type = ADDensity
density = 0.283
outputs = all
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(modules/phase_field/examples/cahn-hilliard/Math_CH.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmax = 60
ymax = 60
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[./InitialCondition]
type = RandomIC
min = -0.1
max = 0.1
[../]
[../]
[]
[Kernels]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[./CHbulk]
type = CHMath
variable = c
[../]
[./CHint]
type = CHInterface
variable = c
mob_name = M
kappa_name = kappa_c
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 0.5'
[../]
[]
[Postprocessors]
[./top]
type = SideIntegralVariablePostprocessor
variable = c
boundary = top
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
scheme = bdf2
# Preconditioning using the additive Schwartz method and LU decomposition
petsc_options_iname = '-pc_type -sub_ksp_type -sub_pc_type'
petsc_options_value = 'asm preonly lu '
# Alternative preconditioning options using Hypre (algebraic multi-grid)
#petsc_options_iname = '-pc_type -pc_hypre_type'
#petsc_options_value = 'hypre boomeramg'
l_tol = 1e-4
l_max_its = 30
dt = 2.0
end_time = 80.0
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test3.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/perf_graph/multi_app/sub_full.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(modules/scalar_transport/test/tests/ncp-lms/interpolated-ncp-lm-nodal-enforcement.i)
l=10
num_steps=10
nx=100
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
elem_type = EDGE3
[]
[Variables]
[u]
order = SECOND
[]
[lm]
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = '${l} - x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = '-1'
[]
[lm_coupled_force]
type = CoupledForce
variable = u
v = lm
[]
[]
[NodalKernels]
[positive_constraint]
type = LowerBoundNodalKernel
variable = lm
v = u
exclude_boundaries = 'left right'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = ${l}
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_factor_levels -snes_linesearch_type'
petsc_options_value = '0 30 16 basic'
[]
[Outputs]
exodus = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[active_lm]
type = GreaterThanLessThanPostprocessor
variable = lm
execute_on = 'nonlinear timestep_end'
value = 1e-12
[]
[violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-12
comparator = 'less'
[]
[]
(modules/phase_field/test/tests/initial_conditions/BimodalInverseSuperellipsoidsIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 50
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = THIRD
family = HERMITE
[../]
[]
[ICs]
[./c]
type = BimodalInverseSuperellipsoidsIC
variable = c
x_positions = '25.0'
y_positions = '25.0'
z_positions = '0.0'
as = '20.0'
bs = '20.0'
cs = '1'
ns = '3.5'
npart = 8
invalue = 1.0
outvalue = -0.8
nestedvalue = -1.5
int_width = 0.0
large_spac = 5
small_spac = 2
small_a = 3
small_b = 3
small_c = 3
small_n = 2
size_variation_type = none
numtries = 10000
[../]
[]
[Kernels]
[./ie_c]
type = TimeDerivative
variable = c
[../]
[./CHSolid]
type = CHMath
variable = c
mob_name = M
[../]
[./CHInterface]
type = CHInterface
variable = c
kappa_name = kappa_c
mob_name = M
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
[../]
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
l_tol = 1.0e-4
nl_max_its = 40
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 1
dt = 2.0
[]
[Outputs]
exodus = false
[./out]
type = Exodus
refinements = 2
[../]
[]
(modules/phase_field/test/tests/phase_field_kernels/AllenCahn.i)
#
# Test the parsed function free enery Allen-Cahn Bulk kernel
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 12
ymax = 12
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0.0
y1 = 0.0
radius = 6.0
invalue = 0.9
outvalue = 0.1
int_width = 3.0
[../]
[../]
[]
[Kernels]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = 1
variable_L = false
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L'
prop_values = '1'
[../]
[./free_energy]
type = DerivativeParsedMaterial
property_name = F
coupled_variables = 'eta'
expression = '2 * eta^2 * (1-eta)^2 - 0.2*eta'
derivative_order = 2
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/parent2_wrong_positions.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub_app]
order = THIRD
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub2.i
[../]
[]
[Transfers]
[./pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub
from_postprocessor = point_value
to_aux_scalar = from_sub_app
[../]
[]
(test/tests/controls/bool_function_control/bool_function_control.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Functions]
[solve_fn]
type = ParsedFunction
expression = 'if(t<0.3, 1, 0)'
[]
[]
[Variables]
[u]
initial_condition = 1
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[bf]
type = BodyForce
variable = u
function = 1
[]
[]
[Controls]
[solve_ctrl]
type = BoolFunctionControl
function = solve_fn
parameter = '*/*/solve'
execute_on = timestep_begin
[]
[]
[Postprocessors]
[./u_val]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_begin'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
[]
[Outputs]
csv = true
[]
(test/tests/outputs/perf_graph/multi_app/sub_sub_cycle.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1 # This will be constrained by the master solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(modules/navier_stokes/include/kernels/INSTemperatureTimeDerivative.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
// Forward Declarations
/**
* This class computes the time derivative for the incompressible
* Navier-Stokes momentum equation. Could instead use CoefTimeDerivative
* for this.
*/
class INSTemperatureTimeDerivative : public TimeDerivative
{
public:
static InputParameters validParams();
INSTemperatureTimeDerivative(const InputParameters & parameters);
virtual ~INSTemperatureTimeDerivative() {}
protected:
virtual Real computeQpResidual();
virtual Real computeQpJacobian();
virtual Real computeQpOffDiagJacobian(unsigned jvar);
// Parameters
const MaterialProperty<Real> & _rho;
const MaterialProperty<Real> & _cp;
};
(modules/heat_transfer/include/kernels/HeatConductionTimeDerivative.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
// MOOSE includes
#include "TimeDerivative.h"
#include "Material.h"
// Forward Declarations
/**
* A class for defining the time derivative of the heat equation.
*
* By default this Kernel computes:
* \f$ \rho * c_p * \frac{\partial T}{\partial t}, \f$
* where \f$ \rho \f$ and \f$ c_p \f$ are material properties with the names "density" and
* "specific_heat", respectively.
*/
class HeatConductionTimeDerivative : public TimeDerivative
{
public:
/// Contructor for Heat Equation time derivative term.
static InputParameters validParams();
HeatConductionTimeDerivative(const InputParameters & parameters);
protected:
/// Compute the residual of the Heat Equation time derivative.
virtual Real computeQpResidual();
/// Compute the jacobian of the Heat Equation time derivative.
virtual Real computeQpJacobian();
const MaterialProperty<Real> & _specific_heat;
const MaterialProperty<Real> * const _specific_heat_dT;
const MaterialProperty<Real> & _density;
const MaterialProperty<Real> * const _density_dT;
};
(examples/ex06_transient/include/kernels/ExampleTimeDerivative.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
class ExampleTimeDerivative : public TimeDerivative
{
public:
ExampleTimeDerivative(const InputParameters & parameters);
static InputParameters validParams();
protected:
virtual Real computeQpResidual() override;
virtual Real computeQpJacobian() override;
const Real _time_coefficient;
};
(modules/navier_stokes/include/kernels/INSMomentumTimeDerivative.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
// Forward Declarations
/**
* This class computes the time derivative for the incompressible
* Navier-Stokes momentum equation. Could instead use CoefTimeDerivative
* for this.
*/
class INSMomentumTimeDerivative : public TimeDerivative
{
public:
static InputParameters validParams();
INSMomentumTimeDerivative(const InputParameters & parameters);
virtual ~INSMomentumTimeDerivative() {}
protected:
virtual Real computeQpResidual();
virtual Real computeQpJacobian();
virtual Real computeQpOffDiagJacobian(unsigned jvar);
// Parameters
const MaterialProperty<Real> & _rho;
};
(modules/navier_stokes/include/kernels/PINSFEFluidVelocityTimeDerivative.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
#include "SinglePhaseFluidProperties.h"
/**
* Implements the time derivative term for a momentum component in a porous medium. This class
* allows for variation of density with pressure and temperature and, through chain rule
* multiplication of partial derivatives, includes the time variation of density
*/
class PINSFEFluidVelocityTimeDerivative : public TimeDerivative
{
public:
static InputParameters validParams();
PINSFEFluidVelocityTimeDerivative(const InputParameters & parameters);
protected:
virtual Real computeQpResidual();
virtual Real computeQpJacobian();
bool _conservative_form;
const VariableValue & _pressure;
const VariableValue & _temperature;
const VariableValue & _temperature_dot;
const VariableValue & _pressure_dot;
const MaterialProperty<Real> & _rho;
const SinglePhaseFluidProperties & _eos;
};
(modules/navier_stokes/include/kernels/PINSFEFluidTemperatureTimeDerivative.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
#include "SinglePhaseFluidProperties.h"
/**
* Implements the time derivative term for fluid energy in a porous medium. This class allows for
* variation of density with pressure and temperature and, through chain rule multiplication of
* partial derivatives, includes the time variation of density
*/
class PINSFEFluidTemperatureTimeDerivative : public TimeDerivative
{
public:
static InputParameters validParams();
PINSFEFluidTemperatureTimeDerivative(const InputParameters & parameters);
protected:
virtual Real computeQpResidual() override;
virtual Real computeQpJacobian() override;
bool _conservative_form;
const VariableValue & _pressure;
const VariableValue & _pressure_dot;
const VariableValue & _porosity;
const MaterialProperty<Real> & _rho;
const MaterialProperty<Real> & _cp;
const SinglePhaseFluidProperties & _eos;
};
(modules/xfem/test/include/kernels/TestMatTimeDerivative.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
class TestMatTimeDerivative : public TimeDerivative
{
public:
static InputParameters validParams();
TestMatTimeDerivative(const InputParameters & parameters);
protected:
virtual Real computeQpResidual() override;
virtual Real computeQpJacobian() override;
const MaterialProperty<Real> & _mat_prop_value;
};
(modules/chemical_reactions/include/kernels/CoupledBEKinetic.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
/**
* Derivative of mineral species concentration wrt time
*/
class CoupledBEKinetic : public TimeDerivative
{
public:
static InputParameters validParams();
CoupledBEKinetic(const InputParameters & parameters);
protected:
virtual Real computeQpResidual() override;
private:
/// Porosity
const MaterialProperty<Real> & _porosity;
/// Weight of the kinetic mineral concentration in the total primary species concentration
const std::vector<Real> _weight;
/// Coupled kinetic mineral concentrations
const std::vector<const VariableValue *> _vals;
/// Coupled old values of kinetic mineral concentrations
const std::vector<const VariableValue *> _vals_old;
};
(modules/richards/include/kernels/RichardsMassChange.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
#include "RichardsVarNames.h"
// Forward Declarations
/**
* Kernel = (mass - mass_old)/dt
* where mass = porosity*density*saturation
* This is used for the time derivative in Richards simulations
* Note that it is not lumped, so usually you want to use RichardsLumpedMassChange instead
*/
class RichardsMassChange : public TimeDerivative
{
public:
static InputParameters validParams();
RichardsMassChange(const InputParameters & parameters);
protected:
virtual Real computeQpResidual();
virtual Real computeQpJacobian();
virtual Real computeQpOffDiagJacobian(unsigned int jvar);
/// holds info on the Richards variables
const RichardsVarNames & _richards_name_UO;
/**
* the Richards variable number
* eg, if richards name = 'pwater pgas poil', and this
* kernel is for pgas, then _pvar = 1
*/
unsigned int _pvar;
/// whether to use SUPG for this kernel (not recommended)
bool _use_supg;
/// fluid mass (or fluid masses in multiphase) at quadpoints
const MaterialProperty<std::vector<Real>> & _mass;
/// d(fluid mass_i)/d(var_j)
const MaterialProperty<std::vector<std::vector<Real>>> & _dmass;
/// old value of fluid mass (or fluid masses in multiphase) at quadpoints
const MaterialProperty<std::vector<Real>> & _mass_old;
/// tau_SUPG
const MaterialProperty<std::vector<RealVectorValue>> & _tauvel_SUPG;
/// derivative of tau_SUPG wrt grad(variable)
const MaterialProperty<std::vector<std::vector<RealTensorValue>>> & _dtauvel_SUPG_dgradv;
/// deriv of tau_SUPG wrt variable
const MaterialProperty<std::vector<std::vector<RealVectorValue>>> & _dtauvel_SUPG_dv;
/**
* Derivative of residual with respect to wrt_num Richards variable
* This is used by both computeQpJacobian and computeQpOffDiagJacobian
* @param wrt_num take the derivative of the residual wrt this Richards variable
*/
Real computeQpJac(unsigned int wrt_num);
};
(modules/chemical_reactions/include/kernels/PrimaryTimeDerivative.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
// Forward Declaration
/**
* Define the Kernel for a CoupledConvectionReactionSub operator that looks like:
* storage * delta pressure / delta t
*/
class PrimaryTimeDerivative : public TimeDerivative
{
public:
static InputParameters validParams();
PrimaryTimeDerivative(const InputParameters & parameters);
protected:
virtual Real computeQpResidual() override;
virtual Real computeQpJacobian() override;
/// Material property of porosity
const MaterialProperty<Real> & _porosity;
};
(framework/include/kernels/CoefTimeDerivative.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
/**
* Time derivative term multiplied by a coefficient
*/
class CoefTimeDerivative : public TimeDerivative
{
public:
static InputParameters validParams();
CoefTimeDerivative(const InputParameters & parameters);
protected:
virtual Real computeQpResidual();
virtual Real computeQpJacobian();
/// The coefficient the time derivative is multiplied with
Real _coef;
};
(modules/chemical_reactions/include/kernels/CoupledBEEquilibriumSub.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
/**
* Time derivative of primary species in given equilibrium species
*/
class CoupledBEEquilibriumSub : public TimeDerivative
{
public:
static InputParameters validParams();
CoupledBEEquilibriumSub(const InputParameters & parameters);
protected:
virtual Real computeQpResidual() override;
virtual Real computeQpJacobian() override;
virtual Real computeQpOffDiagJacobian(unsigned int jvar) override;
private:
/// Weight of the equilibrium species in the total primary species
const Real _weight;
/// Equilibrium constant for the equilibrium species
const VariableValue & _log_k;
/// Stoichiometric coefficient of the primary species in the equilibrium species
const Real _sto_u;
/// Stoichiometric coefficients of the coupled primary species in the equilibrium species
const std::vector<Real> _sto_v;
/// Activity coefficient of primary species in the equilibrium species
const VariableValue & _gamma_u;
/// Old activity coefficient of primary species in the equilibrium species
const VariableValue & _gamma_u_old;
/// Activity coefficients of coupled primary species in the equilibrium species
const std::vector<const VariableValue *> _gamma_v;
/// Old activity coefficients of coupled primary species in the equilibrium species
const std::vector<const VariableValue *> _gamma_v_old;
/// Activity coefficient of equilibrium species
const VariableValue & _gamma_eq;
/// Old activity coefficient of equilibrium species
const VariableValue & _gamma_eq_old;
/// Porosity
const MaterialProperty<Real> & _porosity;
/// Coupled primary species variable numbers
const std::vector<unsigned int> _vars;
/// Coupled primary species concentrations
const std::vector<const VariableValue *> _v_vals;
/// Old values of coupled primary species concentrations
const std::vector<const VariableValue *> _v_vals_old;
/// Old value of the primary species concentration.
const VariableValue & _u_old;
};
(examples/ex16_timestepper/include/kernels/ExampleImplicitEuler.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "TimeDerivative.h"
class ExampleImplicitEuler : public TimeDerivative
{
public:
ExampleImplicitEuler(const InputParameters & parameters);
static InputParameters validParams();
protected:
virtual Real computeQpResidual() override;
virtual Real computeQpJacobian() override;
const MaterialProperty<Real> & _time_coefficient;
};