- PorousFlowDictatorThe UserObject that holds the list of PorousFlow variable names
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:The UserObject that holds the list of PorousFlow variable names
- gravityGravitational acceleration vector downwards (m/s^2)
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:Gravitational acceleration vector downwards (m/s^2)
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
PorousFlowFullySaturatedDarcyBase
Darcy flux suitable for models involving a fully-saturated, single phase, single component fluid. No upwinding is used
Describes the differential term The nomenclature is described here. This is fully-saturated, single-component, single-phase Darcy flow.
The multiplication by is optional: this is indicated by the parentheses. The reason for this is that the time-derivative part described by PorousFlowFullySaturatedMassTimeDerivative linearises if the total differential equation is not multiplied by density. Please see that page for a full description of the effects of not multiplying by density.
No upwinding is performed, which means many nodal Material properties are not needed and numerical diffusion is reduced. However, the numerics are less well controlled: the whole point of full upwinding is to prevent over-shoots and under-shoots. Other Kernels implement Kuzmin-Turek TVD stabilization.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacements
- multiply_by_densityTrueIf true, then this Kernel is the fluid mass flux. If false, then this Kernel is the fluid volume flux (which is common in poro-mechanics)
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:If true, then this Kernel is the fluid mass flux. If false, then this Kernel is the fluid volume flux (which is common in poro-mechanics)
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated_volume.i)
- (modules/porous_flow/test/tests/gravity/fully_saturated_grav01a.i)
- (modules/porous_flow/test/tests/poro_elasticity/terzaghi_fully_saturated_volume.i)
- (modules/porous_flow/test/tests/gravity/fully_saturated_grav01b.i)
- (modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fully_saturated.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_fully_saturated_2.i)
- (modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_fully_saturated.i)