- Cosserat_rotationsThe 3 Cosserat rotation variables
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The 3 Cosserat rotation variables
- componentAn integer corresponding to the direction the variable this kernel acts in. (0 for x, 1 for y, 2 for z)
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:An integer corresponding to the direction the variable this kernel acts in. (0 for x, 1 for y, 2 for z)
- displacementsThe string of displacements suitable for the problem statement
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The string of displacements suitable for the problem statement
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
CosseratStressDivergenceTensors
Stress divergence tensor with the additional Jacobian terms for the Cosserat rotation variables.
This kernel is used to model Cosserat media, notably in a Cosserat layered elasticity model.
This kernel should be specified for each component of the displacements variable. All Cosserat rotation variables should also be specified to each instance of this kernel.
Input Parameters
- base_nameMaterial property base name
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:Material property base name
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- coupled_variablesVector of nonlinear variable arguments this object depends on
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of nonlinear variable arguments this object depends on
- eigenstrain_namesList of eigenstrains used in the strain calculation. Used for computing their derivatives for off-diagonal Jacobian terms.
C++ Type:std::vector<MaterialPropertyName>
Unit:(no unit assumed)
Controllable:No
Description:List of eigenstrains used in the strain calculation. Used for computing their derivatives for off-diagonal Jacobian terms.
- out_of_plane_directionzThe direction of the out_of_plane_strain variable used in the WeakPlaneStress kernel.
Default:z
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:x, y, z
Controllable:No
Description:The direction of the out_of_plane_strain variable used in the WeakPlaneStress kernel.
- out_of_plane_strainThe name of the out_of_plane_strain variable used in the WeakPlaneStress kernel.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of the out_of_plane_strain variable used in the WeakPlaneStress kernel.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- temperatureThe name of the temperature variable used in the ComputeThermalExpansionEigenstrain. (Not required for simulations without temperature coupling.)
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of the temperature variable used in the ComputeThermalExpansionEigenstrain. (Not required for simulations without temperature coupling.)
- use_finite_deform_jacobianFalseJacobian for corotational finite strain
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Jacobian for corotational finite strain
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- volumetric_locking_correctionFalseSet to false to turn off volumetric locking correction
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set to false to turn off volumetric locking correction
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/solid_mechanics/test/tests/static_deformations/cosserat_glide_fake_plastic.i)
- (modules/solid_mechanics/test/tests/static_deformations/cosserat_shear.i)
- (modules/solid_mechanics/test/tests/jacobian/mc_update22_cosserat.i)
- (modules/solid_mechanics/test/tests/static_deformations/beam_cosserat_01_slippery.i)
- (modules/solid_mechanics/test/tests/jacobian/coss_elastic.i)
- (modules/solid_mechanics/test/tests/jacobian/cosserat02.i)
- (modules/solid_mechanics/test/tests/jacobian/cdp_cwp_coss01.i)
- (modules/solid_mechanics/test/tests/static_deformations/layered_cosserat_02.i)
- (modules/solid_mechanics/test/tests/static_deformations/layered_cosserat_03.i)
- (modules/solid_mechanics/test/tests/jacobian/cdpc01.i)
- (modules/solid_mechanics/test/tests/capped_weak_plane/small_deform_cosserat4.i)
- (modules/solid_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_stress.i)
- (modules/solid_mechanics/test/tests/jacobian/mc_update33_cosserat.i)
- (modules/solid_mechanics/test/tests/static_deformations/layered_cosserat_01.i)
- (modules/solid_mechanics/test/tests/jacobian/mc_update34_cosserat.i)
- (modules/solid_mechanics/test/tests/capped_mohr_coulomb/small_deform9_cosserat.i)
- (modules/solid_mechanics/test/tests/jacobian/cosserat05.i)
- (modules/solid_mechanics/test/tests/jacobian/cosserat03.i)
- (modules/porous_flow/examples/coal_mining/coarse_with_fluid.i)
- (modules/solid_mechanics/examples/coal_mining/cosserat_elastic.i)
- (modules/solid_mechanics/test/tests/jacobian/mc_update18_cosserat.i)
- (modules/solid_mechanics/test/tests/jacobian/cwpc02.i)
- (modules/solid_mechanics/examples/coal_mining/coarse.i)
- (modules/solid_mechanics/test/tests/static_deformations/beam_cosserat_01.i)
- (modules/solid_mechanics/test/tests/jacobian/mc_update1_cosserat.i)
- (modules/porous_flow/examples/coal_mining/fine_with_fluid.i)
- (modules/solid_mechanics/test/tests/capped_weak_plane/small_deform_cosserat1.i)
- (modules/solid_mechanics/test/tests/jacobian/mc_update8_cosserat.i)
- (modules/solid_mechanics/test/tests/jacobian/cosserat04.i)
- (modules/solid_mechanics/test/tests/capped_weak_plane/small_deform_cosserat3.i)
- (modules/solid_mechanics/test/tests/jacobian/mc_update23_cosserat.i)
- (modules/solid_mechanics/test/tests/static_deformations/cosserat_tension.i)
- (modules/solid_mechanics/examples/coal_mining/cosserat_mc_wp.i)
- (modules/solid_mechanics/test/tests/jacobian/cosserat06.i)
- (modules/solid_mechanics/test/tests/jacobian/mc_update24_cosserat.i)
- (modules/solid_mechanics/test/tests/jacobian/cto29.i)
- (modules/solid_mechanics/test/tests/static_deformations/cosserat_glide.i)
- (modules/solid_mechanics/test/tests/jacobian/cdpc02.i)
- (modules/solid_mechanics/examples/coal_mining/fine.i)
- (modules/solid_mechanics/test/tests/jacobian/cwpc01.i)
- (modules/solid_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_disps.i)
- (modules/solid_mechanics/examples/coal_mining/cosserat_mc_wp_sticky.i)
- (modules/solid_mechanics/test/tests/jacobian/mc_update21_cosserat.i)
- (modules/solid_mechanics/test/tests/jacobian/cosserat01.i)
- (modules/solid_mechanics/test/tests/capped_weak_plane/small_deform_cosserat2.i)
- (modules/solid_mechanics/examples/coal_mining/cosserat_mc_wp_sticky_longitudinal.i)
- (modules/solid_mechanics/test/tests/capped_mohr_coulomb/small_deform1_cosserat.i)
- (modules/solid_mechanics/examples/coal_mining/cosserat_wp_only.i)
- (modules/solid_mechanics/test/tests/initial_stress/gravity_cosserat.i)
- (modules/solid_mechanics/test/tests/jacobian/cdp_cwp_coss02.i)
- (modules/solid_mechanics/examples/coal_mining/cosserat_mc_only.i)
(modules/solid_mechanics/test/tests/static_deformations/cosserat_glide_fake_plastic.i)
# Example taken from Appendix A of
# S Forest "Mechanics of Cosserat media An introduction". Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.4476&rep=rep1&type=pdf
#
# This example uses plasticity, but with inifinitely large yield strength, so it is really elasticity
#
# Analytically, the displacements are
# wc_z = B sinh(w_e y)
# disp_x = (2 mu_c B / w_e / (mu + mu_c)) (1 - cosh(w_e y))
# with w_e^2 = 2 mu mu_c / be / (mu + mu_c)
# and B = arbitrary integration constant
#
# Also, the only nonzero stresses are
# m_zy = 2 B be w_e cosh(w_e y)
# si_yx = -4 mu mu_c/(mu + mu_c) B sinh(w_e y)
#
# MOOSE gives these stress components correctly.
# However, it also gives a seemingly non-zero si_xy
# component. Upon increasing the resolution of the
# mesh (ny=10000, for example), the stress components
# are seen to limit correctly to the above forumlae
#
# I use mu = 2, mu_c = 3, be = 0.6, so w_e = 2
# Also i use B = 1, so at y = 1
# wc_z = 3.626860407847
# disp_x = -1.65731741465
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 100
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./disp_x_zero_at_y_zero]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0
[../]
[./disp_x_fixed_at_y_max]
type = DirichletBC
variable = disp_x
boundary = top
value = -1.65731741465
[../]
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_dispz]
type = DirichletBC
variable = disp_z
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./wc_z_zero_at_y_zero]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0
[../]
[./wc_z_fixed_at_y_max]
type = DirichletBC
variable = wc_z
boundary = top
value = 3.626860407847
[../]
[]
[AuxVariables]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.1 0.6 0.6' # In Forest notation this is alpha=1.1 (this is unimportant), beta=gamma=0.6.
fill_method_bending = 'general_isotropic'
E_ijkl = '1 2 3' # In Forest notation this is lambda=1 (this is unimportant), mu=2, mu_c=3
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./stress_fake_plasticity]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-12
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = y
variable = 'disp_x wc_z stress_yx couple_stress_zy'
start_point = '0 0 0'
end_point = '0 1 0'
num_points = 11
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = cosserat_glide_fake_plastic_out
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/static_deformations/cosserat_shear.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 6
ny = 6
ymin = 0
ymax = 10
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Postprocessors]
[./disp_y_top]
type = PointValue
point = '0.5 1 0.1'
variable = disp_y
[../]
[./disp_x_top]
type = PointValue
point = '0.5 1 0.1'
variable = disp_x
[../]
[./wc_z_top]
type = PointValue
point = '0.5 1 0.1'
variable = wc_z
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
displacements = 'disp_x disp_y disp_z'
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
component = 1
displacements = 'wc_x wc_y wc_z'
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
component = 2
displacements = 'wc_x wc_y wc_z'
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
[./Periodic]
[./xperiodic]
auto_direction = x
variable = 'disp_x disp_y disp_z wc_x wc_y wc_z'
[../]
[./zperiodic]
auto_direction = z
variable = 'disp_x disp_y disp_z wc_x wc_y wc_z'
[../]
[../]
[./ux_equals_zero_on_top]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[./wcx_equals_zero_on_top]
type = DirichletBC
variable = wc_x
boundary = top
value = 0
[../]
[./wcy_equals_zero_on_top]
type = DirichletBC
variable = wc_y
boundary = top
value = 0
[../]
[./wcz_equals_zero_on_top]
type = DirichletBC
variable = wc_z
boundary = top
value = 0
[../]
# following is natural BC
[./top_cauchy_zero]
type = NeumannBC
variable = disp_x
boundary = top
value = 0
[../]
[./ux_bottom]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 1.0
[../]
[./uy_bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./uz_bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./wc_x_bottom]
type = DirichletBC
variable = wc_x
boundary = bottom
value = 0.0
[../]
[./wc_y_bottom]
type = DirichletBC
variable = wc_y
boundary = bottom
value = 0.0
[../]
[./wc_z_bottom]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0.17
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = 40
E_ijkl = '5 10 5'
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/solid_mechanics/test/tests/jacobian/mc_update22_cosserat.i)
# Cosserat version of Capped Mohr Columb (using StressUpdate)
# Shear failure, starting from a non-symmetric stress state
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 2.0
joint_shear_stiffness = 1.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6 5 4.1 5 7 2.1 4 2 2'
eigenstrain_name = ini_stress
[../]
[./cmc]
type = CappedMohrCoulombCosseratStressUpdate
host_youngs_modulus = 1
host_poissons_ratio = 0.25
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = phi
dilation_angle = psi
smoothing_tol = 1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = cmc
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/static_deformations/beam_cosserat_01_slippery.i)
# Beam bending. One end is clamped and the other end is subjected to
# a constant surface traction.
# The beam thickness is 1, and the Cosserat layer thickness is 0.5,
# so the beam contains 2 Cosserat layers.
# The joint normal stiffness is set very large and the shear stiffness very small
# so that the situation should be very close to a single beam of thickness
# 0.5.
# The deflection should be described by
# u_z = 2sx/G + 2s(1-nu^2)x^2(3L-x)/(Eh^2)
# wc_y = sx(x-2L)/(2B)
# Here
# s = applied shear stress = -2E-4
# x = coordinate along bar (0<=x<=10)
# G = shear modulus = E/2/(1+nu) = 0.4615
# nu = Poisson = 0.3
# L = length of bar = 10
# E = Young = 1.2
# h = Cosserat layer thickness = 0.5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 80
xmax = 10
ny = 1
nz = 1
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'left'
value = 0.0
[../]
[./clamp_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./clamp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./end_traction]
type = VectorNeumannBC
variable = disp_z
vector_value = '-2E-4 0 0'
boundary = right
[../]
[]
[AuxVariables]
[./wc_x]
[../]
[./wc_z]
[../]
[./strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
[../]
[./strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yx
index_i = 1
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
[../]
[./strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zx
index_i = 2
index_j = 0
[../]
[./strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zy
index_i = 2
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'disp_x disp_z stress_xx stress_xz stress_zx stress_zz wc_y couple_stress_xx couple_stress_xz couple_stress_zx couple_stress_zz'
start_point = '0 0 0'
end_point = '10 0 0'
num_points = 11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 0.5
joint_normal_stiffness = 1E16
joint_shear_stiffness = 1E-6
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_01_slippery
csv = true
exodus = true
[]
(modules/solid_mechanics/test/tests/jacobian/coss_elastic.i)
#Cosserat elastic, using ComputeMultipleInelasticCosseratStress
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '5 1 2 1 4 3 2.1 3.1 1'
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
(modules/solid_mechanics/test/tests/jacobian/cosserat02.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
active = 'cx_elastic cy_elastic cz_elastic x_couple y_couple z_couple x_moment y_moment z_moment'
[./cx_elastic]
type = CosseratStressDivergenceTensors
displacements = 'disp_x disp_y disp_z'
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
component = 1
displacements = 'wc_x wc_y wc_z'
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
component = 2
displacements = 'wc_x wc_y wc_z'
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.3 0.98 1.4'
fill_method_bending = 'general_isotropic'
E_ijkl = '1 2 1.333'
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/jacobian/cdp_cwp_coss01.i)
#Cosserat capped weak plane and capped drucker prager
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./mc_coh]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 0.8
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 0.4
[../]
[./dp]
type = SolidMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = phi
mc_dilation_angle = psi
yield_function_tolerance = 1E-11 # irrelevant here
internal_constraint_tolerance = 1E-9 # irrelevant here
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 2
[../]
[./tanphi]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = SolidMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = SolidMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = SolidMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '10 0 0 0 10 0 0 0 10'
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = 'dp wp'
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
host_youngs_modulus = 10.0
host_poissons_ratio = 0.25
base_name = dp
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-11
tip_smoother = 1
smoothing_tol = 1
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
base_name = wp
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0.1
smoothing_tol = 0.1
yield_function_tol = 1E-11
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
(modules/solid_mechanics/test/tests/static_deformations/layered_cosserat_02.i)
# apply shears and Cosserat rotations and observe the stresses and moment-stresses
# with
# young = 0.7
# poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# then
# a0000 = 0.730681
# a0011 = 0.18267
# a2222 = 0.0244221
# a0022 = 0.006055
# a0101 = 0.291667
# a66 = 0.018717
# a77 = 0.155192
# b0110 = 0.000534
# b0101 = 0.000107
# and with
# u_x = y + 2*z
# u_y = x -1.5*z
# u_z = 1.1*x - 2.2*y
# wc_x = 0.5
# wc_y = 0.8
# then
# strain_xx = 0
# strain_xy = 1
# strain_xz = 2 - 0.8 = 1.2
# strain_yx = 1
# strain_yy = 0
# strain_yz = -1.5 + 0.5 = -1
# strain_zx = 1.1 + 0.8 = 1.9
# strain_zy = -2.2 - 0.5 = -2.7
# strain_zz = 0
# so that
# stress_xy = a0101*(1+1) = 0.583333
# stress_xz = a66*1.2 + a66*1.9 = 0.058021
# stress_yx = a0101*(1+1) = 0.583333
# stress_yz = a66*(-1) + a66*(-2.7) = -0.06925
# old stress_zx = a77*1.2 + a66*1.9 = 0.221793
# old stress_zy = a77*(-1) + a66*(-2.7) = -0.205728
# stress_zx = a66*1.2 + a77*1.9 = 0.317325
# stress_zy = a66*(-1) + a77*(-2.7) = -0.437735
# and all others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./strain_xx]
type = FunctionDirichletBC
variable = disp_x
boundary = 'left right'
function = 'y+2*z'
[../]
[./strain_yy]
type = FunctionDirichletBC
variable = disp_y
boundary = 'bottom top'
function = 'x-1.5*z'
[../]
[./strain_zz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'back front'
function = '1.1*x-2.2*y'
[../]
[./wc_x]
type = FunctionDirichletBC
variable = wc_x
boundary = 'left right'
function = 0.5
[../]
[./wc_y]
type = FunctionDirichletBC
variable = wc_y
boundary = 'left right'
function = 0.8
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 0.7
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = layered_cosserat_02
csv = true
[]
(modules/solid_mechanics/test/tests/static_deformations/layered_cosserat_03.i)
# apply deformations and observe the moment-stresses
# with
# young = 0.7
# poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# then
# a0000 = 0.730681
# a0011 = 0.18267
# a2222 = 0.0244221
# a0022 = 0.006055
# a0101 = 0.291667
# a66 = 0.018717
# a77 = 0.310383
# b0101 = 0.000534
# b0110 = -0.000107
# and with
# wc_x = x + 2*y + 3*z
# wc_y = -1.1*x - 2.2*y - 3.3*z
# then
# curvature_xy = 2
# curvature_yx = -1.1
# and all others are either zero at (x,y,z)=(0,0,0) or unimportant for layered Cosserat
# so that
# m_xy = b0101*(2) + b0110*(-1.1) = 0.00118
# m_yx = b0110*2 + b0101*(-1.1) = -0.000801
# and all others zero (at (x,y,z)=(0,0,0))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./wc_x]
type = FunctionDirichletBC
variable = wc_x
boundary = 'left right'
function = 'x+2*y+3*z'
[../]
[./wc_y]
type = FunctionDirichletBC
variable = wc_y
boundary = 'left right'
function = '-1.1*x-2.2*y-3.3*z'
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 0.7
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = layered_cosserat_03
csv = true
[]
(modules/solid_mechanics/test/tests/jacobian/cdpc01.i)
#Cosserat capped weak plane and capped drucker prager
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./mc_coh]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 0.8
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 0.4
[../]
[./dp]
type = SolidMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = phi
mc_dilation_angle = psi
yield_function_tolerance = 1E-11 # irrelevant here
internal_constraint_tolerance = 1E-9 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '10 0 0 0 10 0 0 0 10'
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = 'dp'
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
host_youngs_modulus = 10.0
host_poissons_ratio = 0.25
base_name = dp
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-11
tip_smoother = 1
smoothing_tol = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
(modules/solid_mechanics/test/tests/capped_weak_plane/small_deform_cosserat4.i)
# Plastic deformation. Layered Cosserat with parameters:
# Young = 10.0
# Poisson = 0.25
# layer_thickness = 10
# joint_normal_stiffness = 2.5
# joint_shear_stiffness = 2.0
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.156756756757E+01
# E_0011 = E_1100 = 3.855855855856E+00
# E_2222 = E_pp = 8.108108108108E+00
# E_0022 = E_1122 = E_2200 = E_2211 = 2.702702702703E+00
# G = E_0101 = E_0110 = E_1001 = E_1010 = 4
# Gt = E_qq = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 3.333333333333E+00
# E_2020 = E_2121 = 3.666666666667E+00
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.888888888889E+02
# B_0101 = B_1010 = 8.080808080808E+00
# B_0110 = B_1001 = -2.020202020202E+00
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 32*t/Gt
# disp_y = 24*t/Gt
# disp_z = 10*t/E_2222
# but leaving wc_x and wc_y unfixed
# yields the following strains:
# strain_xz = 32*t/Gt - wc_y = 9.6*t - wc_y
# strain_zx = wc_y
# strain_yz = 24*t/Gt + wc_x = 7.2*t + wc_x
# strain_zy = - wc_x
# strain_zz = 10*t/E_2222 = 1.23333333*t
# and all other components, and the curvature, are zero (assuming
# wc is uniform over the cube).
#
# When wc=0, the nonzero components of stress are therefore:
# stress_xx = stress_yy = 3.33333*t
# stress_xz = stress_zx = 32*t
# stress_yz = stress_zy = 24*t
# stress_zz = 10*t
# The moment stress is zero.
# So q = 40*t and p = 10*t
#
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = E_qq/Epp/2, and cohesion=20,
# the system should return to p=0, q=20, ie stress_zz=0, stress_xz=16,
# stress_yz=12 on the first time step (t=1)
# and
# stress_xx = stress_yy = 0
# and
# stress_zx = 32, and stress_zy = 24.
# This has resulted in a non-symmetric stress tensor, and there is
# zero moment stress, so the system is not in equilibrium. A
# nonzero wc must therefore be generated.
#
# The obvious choice of wc is such that stress_zx = 16 and
# stress_zy = 12, because then the final returned stress will
# be symmetric. This gives
# wc_y = - 48
# wc_x = 36
# At t=1, the nonzero components of stress are
# stress_xx = stress_yy = 3.33333
# stress_xz = 32, stress_zx = 16
# stress_yz = 24, stress_zy = 12
# stress_zz = 10*t
# The moment stress is zero.
#
# The returned stress is
# stress_xx = stress_yy = 0
# stress_xz = stress_zx = 16
# stress_yz = stress_zy = 12
# stress_zz = 0
# The total strains are given above.
# Since q returned from 40 to 20, plastic_strain_xz = 9.6/2 = 4.8
# and plastic_strain_yz = 7.2/2 = 3.6.
# Since p returned to zero, all of the total strain_zz is
# plastic, ie plastic_strain_zz = 1.23333
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 32*t/3.333333333333E+00
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 24*t/3.333333333333E+00
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 10*t/8.108108108108E+00
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./wc_x]
type = PointValue
point = '0 0 0'
variable = wc_x
[../]
[./wc_y]
type = PointValue
point = '0 0 0'
variable = wc_y
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = SolidMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = SolidMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = SolidMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = SolidMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat4
csv = true
[]
(modules/solid_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_stress.i)
# Beam bending.
# One end is clamped and the other end is subjected to a stress
# and micromechanical moment that will induce bending.
# The stress that will induce bending around the y axis is
# stress_xx = EAz
# This implies a micromechanical moment-stress of
# m_yx = (1/12)EAh^2 for joint_shear_stiffness=0.
# For joint_shear_stiffness!=0, the micromechanical moment-stress
# is
# m_yx = (1/12)EAa^2 G/(ak_s + G)
# All other stresses and moment stresses are assumed to be zero.
# With joint_shear_stiffness=0, and introducing D=-poisson*A, the
# nonzero strains are
# ep_xx = Az
# ep_yy = Dz
# ep_zz = Dz
# kappa_xy = -D
# kappa_yx = A
# This means the displacements are:
# u_x = Axz
# u_y = Dzy
# u_z = -(A/2)x^2 + (D/2)(z^2-y^2)
# wc_x = -Dy
# wc_y = Ax
# wc_z = 0
# This is bending of a bar around the y axis, in plane stress
# (stress_yy=0). Displacements at the left-hand (x=0) are applied
# according to the above formulae; wc_x and wc_y are applied throughout
# the bar; and stress_xx is applied at the right-hand end (x=10).
# The displacements are measured and
# compared with the above formulae.
# The test uses: E=1.2, poisson=0.3, A=1.11E-2, h=2, ks=0.1, so
# stress_xx = 1.332E-2*z
# m_yx = 0.2379E-2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 10
xmin = 0
xmax = 10
ymin = -1
ymax = 1
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
#use_displaced_mesh = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./clamp_z]
type = FunctionDirichletBC
variable = disp_z
boundary = left
function = '-0.3*(z*z-y*y)/2.0*1.11E-2'
[../]
[./clamp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = left
function = '-0.3*z*y*1.11E-2'
[../]
[./clamp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./end_stress]
type = FunctionNeumannBC
boundary = right
function = z*1.2*1.11E-2
variable = disp_x
[../]
[./fix_wc_x]
type = FunctionDirichletBC
variable = wc_x
boundary = 'left' # right top bottom front back'
function = '0.3*y*1.11E-2'
[../]
[./fix_wc_y]
type = FunctionDirichletBC
variable = wc_y
boundary = 'left' # right top bottom front back'
function = '1.11E-2*x'
[../]
[./end_moment]
type = VectorNeumannBC
boundary = right
variable = wc_y
vector_value = '2.3785714286E-3 0 0'
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
[../]
[./strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yx
index_i = 1
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
[../]
[./strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zx
index_i = 2
index_j = 0
[../]
[./strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zy
index_i = 2
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'disp_x disp_y disp_z stress_xx stress_xy stress_xz stress_yx stress_yy stress_yz stress_zx stress_zy stress_zz wc_x wc_y wc_z couple_stress_xx couple_stress_xy couple_stress_xz couple_stress_yx couple_stress_yy couple_stress_yz couple_stress_zx couple_stress_zy couple_stress_zz'
start_point = '0 0 0.5'
end_point = '10 0 0.5'
num_points = 11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 2.0
joint_normal_stiffness = 1E16
joint_shear_stiffness = 0.1
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -ksp_max_it -sub_pc_factor_shift_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'gmres asm lu 1E-11 1E-11 10 1E-15 1E-10 100 NONZERO 2 100'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_02_apply_stress
exodus = true
csv = true
[]
(modules/solid_mechanics/test/tests/jacobian/mc_update33_cosserat.i)
# Cosserat version of Capped Mohr Columb (using StressUpdate)
# Compressive + shear failure, starting from a symmetric stress state
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 4E1
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 2.0
joint_shear_stiffness = 1.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-10 -12 14 -12 -5 -20 14 -20 -8'
eigenstrain_name = ini_stress
[../]
[./cmc]
type = CappedMohrCoulombCosseratStressUpdate
host_youngs_modulus = 1
host_poissons_ratio = 0.25
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = phi
dilation_angle = psi
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = cmc
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/static_deformations/layered_cosserat_01.i)
# apply uniform stretches and observe the stresses
# with
# young = 0.7
# poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# then
# a0000 = 0.730681
# a0011 = 0.18267
# a2222 = 0.0244221
# a0022 = 0.006055
# a0101 = 0.291667
# a66 = 0.018717
# a77 = 0.310383
# b0110 = 0.000534
# b0101 = 0.000107
# and with
# strain_xx = 1
# strain_yy = 2
# strain_zz = 3
# then
# stress_xx = a0000*1 + a0011*2 + a0022*3 = 1.114187
# stress_yy = a0011*1 + a0000*2 + a0022*3 = 1.662197
# stress_zz = a0022*(1+2) + a2222*3 = 0.09083
# and all others zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./strain_xx]
type = FunctionDirichletBC
variable = disp_x
boundary = 'left right'
function = x
[../]
[./strain_yy]
type = FunctionDirichletBC
variable = disp_y
boundary = 'bottom top'
function = 2*y
[../]
[./strain_zz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'back front'
function = 3*z
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 0.7
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = layered_cosserat_01
csv = true
[]
(modules/solid_mechanics/test/tests/jacobian/mc_update34_cosserat.i)
# Cosserat version of Capped Mohr Columb (using StressUpdate)
# Compressive + shear failure, starting from a non-symmetric stress state
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 1E2
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 4E1
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1E3
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 2.0
joint_shear_stiffness = 1.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-100.1 -0.1 0.2 -0.1 -0.9 0 0.2 0.1 -1.1'
eigenstrain_name = ini_stress
[../]
[./cmc]
type = CappedMohrCoulombCosseratStressUpdate
host_youngs_modulus = 1E3
host_poissons_ratio = 0.25
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = phi
dilation_angle = psi
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = cmc
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/capped_mohr_coulomb/small_deform9_cosserat.i)
# Using Cosserat with large layer thickness, so this should reduce to standard
# Using CappedMohrCoulombCosserat with tensile failure only
# A single unit element is stretched in a complicated way that
# the trial stress is
# 1.51515 0.8 0.666667
# 0.8 -3.74545 -1.85037e-17
# 0.7 -1.66533e-17 -1.27273
# with symmetric part
# 1.51515 0.8 0.6833
# 0.8 -3.74545 -1.85037e-17
# 0.6833 -1.66533e-17 -1.27273
#
# This has eigenvalues
# la = {-3.86844, 1.78368, -1.41827}
# and eigenvectors
#
# {0.15183, -0.987598, -0.03997},
# {-0.966321, -0.139815, -0.216044},
# {-0.207777, -0.0714259, 0.975565}}
#
# The tensile strength is 0.5 and Young=1 and Poisson=0.25,
# with E_0000/E_0011 = nu / (1 - nu) = 0.333333
# Using smoothing_tol=0.01, the return-map algorithm should
# return to stress_I = 0.5, which is a reduction of 1.28368, so
# stress_II = -1.41827 - 1.28368 * 0.33333 = -1.846
# stress_III = -3.86844 - 1.28368 * 0.33333 = -4.296
#
# The final stress symmetric stress is
#
# {0.29, 0.69, 0.51},
# {0.69, -4.19, -0.03},
# {0.51, -0.03, -1.74}
#
# and a final unsymmetric stress of
#
# {0.29, 0.69, 0.49},
# {0.69, -4.19, -0.03},
# {0.52, -0.03, -1.74}
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '3*x-y+z'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3*x-4*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'x-2*z'
[../]
[./wc_x]
type = DirichletBC
variable = wc_x
boundary = 'front back'
value = 0.0
[../]
[./wc_y]
type = DirichletBC
variable = wc_y
boundary = 'front back'
value = 0.0
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_I]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_II]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_III]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_I]
type = RankTwoScalarAux
scalar_type = MaxPrincipal
rank_two_tensor = stress
variable = stress_I
selected_qp = 0
[../]
[./stress_II]
type = RankTwoScalarAux
scalar_type = MidPrincipal
rank_two_tensor = stress
variable = stress_II
selected_qp = 0
[../]
[./stress_III]
type = RankTwoScalarAux
scalar_type = MinPrincipal
rank_two_tensor = stress
variable = stress_III
selected_qp = 0
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = stress_I
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = stress_II
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = stress_III
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = SolidMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1.0
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./tensile]
type = CappedMohrCoulombCosseratStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.001
yield_function_tol = 1.0E-12
host_youngs_modulus = 1.0
host_poissons_ratio = 0.25
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
nl_abs_tol = 1E-10
type = Transient
[]
[Outputs]
file_base = small_deform9_cosserat
csv = true
[]
(modules/solid_mechanics/test/tests/jacobian/cosserat05.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
active = 'cx_elastic cy_elastic cz_elastic x_couple y_couple z_couple x_moment y_moment z_moment'
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1 2.2 2.333 1.9 0.89 2.1'
fill_method_bending = 'antisymmetric'
E_ijkl = '1 2.2 2.333 1.9 0.89 2.1'
fill_method = 'antisymmetric'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/jacobian/cosserat03.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
active = 'cx_elastic cy_elastic cz_elastic x_couple y_couple z_couple x_moment y_moment z_moment'
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.3 0.98 1.4'
fill_method_bending = 'general_isotropic'
E_ijkl = '1 1.2 1.333 0.988 1 1.1 1.2 1.3 1.4 1 1.2 1.333 0.988 1 1.1 1.2 1.3 1.4 1.2 1 0.6'
fill_method = 'symmetric21'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/porous_flow/examples/coal_mining/coarse_with_fluid.i)
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
input = file
[]
[xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[]
[ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[]
[ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[]
[zmax]
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
input = ymax
[]
[zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[]
[excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 3
paired_block = 1
input = excav
new_boundary = roof
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[wc_x]
[]
[wc_y]
[]
[porepressure]
scaling = 1E-5
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[]
[]
[Kernels]
[cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[]
[x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[]
[y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[]
[x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[]
[y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[]
[gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = porepressure
fluid_component = 0
[]
[]
[AuxVariables]
[saturation]
order = CONSTANT
family = MONOMIAL
[]
[darcy_x]
order = CONSTANT
family = MONOMIAL
[]
[darcy_y]
order = CONSTANT
family = MONOMIAL
[]
[darcy_z]
order = CONSTANT
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[wc_z]
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zx]
order = CONSTANT
family = MONOMIAL
[]
[stress_zy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[perm_xx]
order = CONSTANT
family = MONOMIAL
[]
[perm_yy]
order = CONSTANT
family = MONOMIAL
[]
[perm_zz]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[]
[darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[]
[darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[]
[darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[]
[perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[]
[perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[]
[mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[]
[mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[]
[wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[]
[wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[]
[mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[]
[mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[]
[wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[]
[wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[]
[no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[]
[no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[]
[fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[]
[roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[]
[roof_bcs]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[]
[]
[Functions]
[ini_pp]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0'
symbol_values = '2E3 0.0 1E-5 1E3'
expression = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[]
[ini_xx]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0 biot'
symbol_values = '2E3 0.0 1E-5 1E3 0.7'
expression = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[]
[ini_zz]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0 biot'
symbol_values = '2E3 0.0 1E-5 1E3 0.7'
expression = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[]
[excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '0.5 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[]
[density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '0.5 0 1000.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[]
[roof_conductance]
type = ParsedFunction
symbol_names = 'end_t ymin ymax maxval minval'
symbol_values = '0.5 0 1000.0 1E7 0'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[]
[mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[]
[mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[]
[mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[]
[mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[]
[mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[]
[wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[]
[wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[]
[wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[]
[porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[]
[permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[]
[permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[]
[elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[]
[elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[]
[strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[]
[ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[]
[stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[]
[wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[]
[undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[]
[undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[]
[min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[]
[min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[]
[min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[]
[max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = perm_zz
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
# petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
# petsc_options_value = ' lu mumps'
# best if you do not have mumps:
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
# best if you do not have mumps or superlu_dist:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.014706
end_time = 0.014706 #0.5
[]
[Outputs]
time_step_interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
(modules/solid_mechanics/examples/coal_mining/cosserat_elastic.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - wc_x = 0 at y=0 and y=450.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# This is an elastic simulation, but the weak-plane and Drucker-Prager
# parameters and AuxVariables may be found below. They are irrelevant
# in this simulation. The weak-plane and Drucker-Prager cohesions,
# tensile strengths and compressive strengths have been set very high
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 403.003
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '-0.8*2500*10E-6*(403.003-z)'
[../]
[./ini_zz]
type = ParsedFunction
expression = '-2500*10E-6*(403.003-z)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = SolidMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = SolidMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = SolidMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh]
type = SolidMechanicsHardeningConstant
value = 1E12
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str]
type = SolidMechanicsHardeningConstant
value = 1E12
[../]
[./wp_compressive_str]
type = SolidMechanicsHardeningConstant
value = 1E12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str
compressive_strength = wp_compressive_str
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subs_max]
type = PointValue
point = '0 0 403.003'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'Linear'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
file_base = cosserat_elastic
time_step_interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
#[./console]
# type = Console
# output_linear = false
#[../]
[]
(modules/solid_mechanics/test/tests/jacobian/mc_update18_cosserat.i)
# Cosserat version of Capped Mohr Columb (using StressUpdate)
# Compressive failure only, starting from a non-symmetric stress state, and
# using softening
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = SolidMechanicsHardeningCubic
value_0 = 1
value_residual = 0
internal_limit = 2E-3
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = SolidMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 3E3
poisson = 0.2
layer_thickness = 1.0
joint_normal_stiffness = 1.0E3
joint_shear_stiffness = 2.0E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-2 1 -0.5 -1 -1.9 0 -0.5 0 -3'
eigenstrain_name = ini_stress
[../]
[./cmc]
type = CappedMohrCoulombCosseratStressUpdate
host_youngs_modulus = 3E3
host_poissons_ratio = 0.2
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = cmc
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/jacobian/cwpc02.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./coh]
type = SolidMechanicsHardeningConstant
value = 1
[../]
[./tanphi]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = SolidMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = SolidMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = SolidMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '1 0.1 0.2 0.1 1 0.3 0 0 2' # not symmetric
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0.1
smoothing_tol = 0.1
yield_function_tol = 1E-5
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
(modules/solid_mechanics/examples/coal_mining/coarse.i)
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
expression = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '17.0 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '17.0 0 1000.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = SolidMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = SolidMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = SolidMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5 # this gives min(disp_z)=-4.3, use dt=0.0625 if you want to restrict disp_z>=-3.2
end_time = 17.0
[]
[Outputs]
time_step_interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
(modules/solid_mechanics/test/tests/static_deformations/beam_cosserat_01.i)
# Beam bending. One end is clamped and the other end is subjected to
# a surface traction.
# The joint normal and shear stiffnesses are set very large, so
# that this situation should be identical to the standard (non-Cosserat)
# isotropic elasticity case.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
xmax = 10
ny = 1
nz = 4
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'bottom top back front left right'
value = 0.0
[../]
[./clamp_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./clamp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./end_traction]
type = VectorNeumannBC
variable = disp_z
vector_value = '-2E-4 0 0'
boundary = right
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'disp_x disp_z stress_xx stress_xz stress_zx stress_zz wc_x wc_y couple_stress_xx couple_stress_xz couple_stress_zx couple_stress_zz'
start_point = '0 0 0.5'
end_point = '10 0 0.5'
num_points = 11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 1
joint_normal_stiffness = 1E16
joint_shear_stiffness = 1E16
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_01
csv = true
exodus = true
[]
(modules/solid_mechanics/test/tests/jacobian/mc_update1_cosserat.i)
# Cosserat version of Capped Mohr Columb (using StressUpdate)
# Tensile failure only, starting from a symmetric stress state
# and returning to the plane
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 1
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = SolidMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 3E3
poisson = 0.2
layer_thickness = 1.0
joint_normal_stiffness = 1.0E3
joint_shear_stiffness = 2.0E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '2 0 0 0 0 0 0 0 -2'
eigenstrain_name = ini_stress
[../]
[./cmc]
type = CappedMohrCoulombCosseratStressUpdate
host_youngs_modulus = 3E3
host_poissons_ratio = 0.2
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = cmc
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/porous_flow/examples/coal_mining/fine_with_fluid.i)
#################################################################
#
# NOTE:
# The mesh for this model is too large for the MOOSE repository
# so is kept in the the large_media submodule
#
#################################################################
#
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = fine.e
[]
[xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
input = file
[]
[xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[]
[ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[]
[ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[]
[zmax]
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
input = ymax
[]
[zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[]
[excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 3
paired_block = 1
input = excav
new_boundary = roof
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[wc_x]
[]
[wc_y]
[]
[porepressure]
scaling = 1E-5
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[]
[]
[Kernels]
[cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[]
[x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[]
[y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[]
[x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[]
[y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[]
[gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
use_displaced_mesh = false
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
use_displaced_mesh = false
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[]
[]
[AuxVariables]
[saturation]
order = CONSTANT
family = MONOMIAL
[]
[darcy_x]
order = CONSTANT
family = MONOMIAL
[]
[darcy_y]
order = CONSTANT
family = MONOMIAL
[]
[darcy_z]
order = CONSTANT
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[wc_z]
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zx]
order = CONSTANT
family = MONOMIAL
[]
[stress_zy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[perm_xx]
order = CONSTANT
family = MONOMIAL
[]
[perm_yy]
order = CONSTANT
family = MONOMIAL
[]
[perm_zz]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[]
[darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[]
[darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[]
[darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[]
[perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[]
[perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[]
[mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[]
[mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[]
[wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[]
[wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[]
[mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[]
[mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[]
[wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[]
[wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[]
[no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[]
[no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[]
[fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[]
[roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[]
[roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[]
[]
[Functions]
[ini_pp]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0'
symbol_values = '2E3 0.0 1E-5 1E3'
expression = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[]
[ini_xx]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0 biot'
symbol_values = '2E3 0.0 1E-5 1E3 0.7'
expression = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[]
[ini_zz]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0 biot'
symbol_values = '2E3 0.0 1E-5 1E3 0.7'
expression = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[]
[excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '0.5 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[]
[density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '0.5 0 1000.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[]
[roof_conductance]
type = ParsedFunction
symbol_names = 'end_t ymin ymax maxval minval'
symbol_values = '0.5 0 1000.0 1E7 0'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[]
[mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[]
[mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[]
[mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[]
[mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[]
[mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[]
[wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[]
[wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[]
[wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity_for_aux]
type = PorousFlowPorosity
at_nodes = false
fluid = true
mechanical = true
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[]
[porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[]
[porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[]
[permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[]
[permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[]
[elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[]
[elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[]
[strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[]
[ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[]
[stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[]
[wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[]
[undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[]
[undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[]
[min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[]
[min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[]
[min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[]
[max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = perm_zz
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
# best if you don't have mumps:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.0025
end_time = 0.5
[]
[Outputs]
time_step_interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
(modules/solid_mechanics/test/tests/capped_weak_plane/small_deform_cosserat1.i)
# Plastic deformation. Layered Cosserat with parameters:
# Young = 1.0
# Poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.043195
# E_0011 = E_1100 = 0.260799
# E_2222 = 0.02445
# E_0022 = E_1122 = E_2200 = E_2211 = 0.006112
# G = E_0101 = E_0110 = E_1001 = E_1010 = 0.416667
# Gt = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 0.019084
# E_2020 = E_2121 = 0.217875
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.68056E-5
# B_0101 = B_1010 = 7.92021E-4
# B_0110 = B_1001 = -1.584E-4
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = t
# omega_x = omega_y = omega_z = 0
# yields the following strains:
# strain_xz = 8*t
# strain_yz = 6*t
# strain_zz = t
# and all other components, and the curvature, are zero.
# The nonzero components of stress are therefore:
# stress_xx = stress_yy = 0.006112*t
# stress_xz = stress_zx = 0.152671*t
# stress_yz = stress_zy = 0.114504*t
# stress_zz = 0.0244499*t
# The moment stress is zero.
# So q = 0.19084*t and p = 0.0244*t.
#
# With large cohesion, but tensile strength = 0.0244499, the
# system is elastic up to t=1. After that time
# stress_zz = 0.0244499 (for t>=1)
# and
# stress_xx = stress_yy = 0.006112 (for t>=1), since the
# elastic trial increment is exactly canelled by the Poisson's
# contribution from the return to the yield surface.
# The plastic strains are zero for t<=1, but for larger times:
# plastic_strain_zz = (t - 1) (for t>=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = SolidMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = SolidMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = SolidMechanicsHardeningConstant
value = 0.024449878
[../]
[./c_strength]
type = SolidMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.0
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
nl_abs_tol = 1E-14
end_time = 3
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat1
csv = true
[]
(modules/solid_mechanics/test/tests/jacobian/mc_update8_cosserat.i)
# Cosserat version of Capped Mohr Columb (using StressUpdate)
# Tensile failure only, starting from a non-symmetric stress state, and
# using softening
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningCubic
value_0 = 1
value_residual = 0
internal_limit = 2E-3
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = SolidMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 3E3
poisson = 0.2
layer_thickness = 1.0
joint_normal_stiffness = 1.0E3
joint_shear_stiffness = 2.0E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '2 -1 0.5 1 1.9 0 0.5 0 3'
eigenstrain_name = ini_stress
[../]
[./cmc]
type = CappedMohrCoulombCosseratStressUpdate
host_youngs_modulus = 3E3
host_poissons_ratio = 0.2
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = cmc
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/jacobian/cosserat04.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
active = 'cx_elastic cy_elastic cz_elastic x_couple y_couple z_couple x_moment y_moment z_moment'
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1 2.2 2.333 1.988 1 2.1 2.2 2.3 2.4 1 2.2 2.333 1.988 1 2.1 2.2 2.3 2.4 2.2 2 1.6'
fill_method_bending = 'symmetric21'
E_ijkl = '1.07 1.2 1.333 0.988 1.123 1.1 1.25 1.3 1.4 1 1.2 1.333 0.9 1.11 1.16 1.28 1.35 1.45 1.03 1 0.6'
fill_method = 'symmetric21'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/capped_weak_plane/small_deform_cosserat3.i)
# Plastic deformation. Layered Cosserat with parameters:
# Young = 10.0
# Poisson = 0.25
# layer_thickness = 10
# joint_normal_stiffness = 2.5
# joint_shear_stiffness = 2.0
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.156756756757E+01
# E_0011 = E_1100 = 3.855855855856E+00
# E_2222 = E_pp = 8.108108108108E+00
# E_0022 = E_1122 = E_2200 = E_2211 = 2.702702702703E+00
# G = E_0101 = E_0110 = E_1001 = E_1010 = 4
# Gt = E_qq = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 3.333333333333E+00
# E_2020 = E_2121 = 3.666666666667E+00
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.888888888889E+02
# B_0101 = B_1010 = 8.080808080808E+00
# B_0110 = B_1001 = -2.020202020202E+00
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 32*t/Gt
# disp_y = 24*t/Gt
# disp_z = 10*t/E_2222
# omega_x = omega_y = omega_z = 0
# yields the following strains:
# strain_xz = 32*t/Gt = 9.6*t
# strain_yz = 24*t/Gt = 7.2*t
# strain_zz = 10*t/E_2222 = 1.23333333*t
# and all other components, and the curvature, are zero.
# The nonzero components of stress are therefore:
# stress_xx = stress_yy = 3.33333*t
# stress_xz = stress_zx = 32*t
# stress_yz = stress_zy = 24*t
# stress_zz = 10*t
# The moment stress is zero.
# So q = 40*t and p = 10*t
#
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = E_qq/Epp/2, and cohesion=20,
# the system should return to p=0, q=20, ie stress_zz=0, stress_xz=16,
# stress_yz=12 on the first time step (t=1)
# and
# stress_xx = stress_yy = 0
# and
# stress_zx = 32, and stress_zy = 24.
# Although this has resulted in a non-symmetric stress tensor, the
# moments generated are cancelled by the boundary conditions on
# omega_x and omega_y. (Removing these boundary conditions results
# in a symmetric stress tensor, and some omega!=0 being generated.)
# No moment stresses are generated because omega=0=curvature.
#
# The total strains are given above (strain_xz = 9.6,
# strain_yz = 7.2 and strain_zz = 1.23333).
# Since q returned from 40 to 20, plastic_strain_xz = strain_xz/2 = 4.8
# and plastic_strain_yz = strain_yz/2 = 3.6.
# Since p returned to zero, all of the total strain_zz is
# plastic, ie plastic_strain_zz = 1.23333
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./bottom_wc_x]
type = DirichletBC
variable = wc_x
boundary = back
value = 0.0
[../]
[./bottom_wc_y]
type = DirichletBC
variable = wc_y
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 32*t/3.333333333333E+00
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 24*t/3.333333333333E+00
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 10*t/8.108108108108E+00
[../]
[./top_wc_x]
type = DirichletBC
variable = wc_x
boundary = front
value = 0.0
[../]
[./top_wc_y]
type = DirichletBC
variable = wc_y
boundary = front
value = 0.0
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = SolidMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = SolidMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = SolidMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = SolidMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat3
csv = true
[]
(modules/solid_mechanics/test/tests/jacobian/mc_update23_cosserat.i)
# Cosserat version of Capped Mohr Columb (using StressUpdate)
# Tensile + shear failure, starting from a symmetric stress state
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 1
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 4E1
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 2.0
joint_shear_stiffness = 1.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '10 12 -14.9 12 5 20 -14 20 8'
eigenstrain_name = ini_stress
[../]
[./cmc]
type = CappedMohrCoulombCosseratStressUpdate
host_youngs_modulus = 1
host_poissons_ratio = 0.25
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = phi
dilation_angle = psi
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = cmc
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/static_deformations/cosserat_tension.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
zmax = 0.2
[]
[bottom_xline1]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0 0'
input = generated_mesh
[]
[bottom_xline2]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0.5 0 0'
input = bottom_xline1
[]
[bottom_xline3]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '1 0 0'
input = bottom_xline2
[]
[bottom_zline1]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '0 0 0.0'
input = bottom_xline3
[]
[bottom_zline2]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '0 0 0.1'
input = bottom_zline1
[]
[bottom_zline3]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '0 0 0.2'
input = bottom_zline2
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Postprocessors]
[./disp_y_top]
type = PointValue
point = '0.5 1 0.1'
variable = disp_y
[../]
[./wc_z_top]
type = PointValue
point = '0.5 1 0.1'
variable = wc_z
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
[./y_bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./x_line]
type = DirichletBC
variable = disp_z
boundary = 101
value = 0
[../]
[./z_line]
type = DirichletBC
variable = disp_x
boundary = 102
value = 0
[../]
[./wc_x_bottom]
type = DirichletBC
variable = wc_x
boundary = bottom
value = 0
[../]
[./wc_y_bottom]
type = DirichletBC
variable = wc_y
boundary = bottom
value = 0
[../]
[./wc_z_bottom]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0
[../]
[./top_force]
type = NeumannBC
variable = disp_y
boundary = top
value = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = 0.5
E_ijkl = '1 2 1.3333'
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = cosserat_tension_out
exodus = true
[]
(modules/solid_mechanics/examples/coal_mining/cosserat_mc_wp.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
expression = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax e_h closure_dist'
symbol_values = '1.0 0 150.0 -3.0 15.0'
expression = 'e_h*max(min((min(t/end_t,1)*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
symbol_names = 'end_t ymin ymax e_h closure_dist'
symbol_values = '1.0 0 150.0 -3.0 15.0'
expression = 'e_h*min(t/end_t,1)*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = SolidMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = SolidMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = SolidMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 10000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_wp
time_step_interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
(modules/solid_mechanics/test/tests/jacobian/cosserat06.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
active = 'cx_elastic cy_elastic cz_elastic x_couple y_couple z_couple x_moment y_moment z_moment'
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1111 1112 1113 1121 1122 1123 1131 1132 1133 1112 1212 1213 1221 1222 1223 1231 1232 1233 1113 1213 1313 1321 1322 1323 1331 1332 1333 1121 1221 1321 2121 2122 2123 2131 2132 2133 1122 1222 1322 2122 2222 2223 2231 2232 2233 1123 1223 1323 2123 2223 2323 2331 2332 2333 1131 1231 1331 2131 2231 2331 3131 3132 3133 1132 1232 1332 2132 2232 2332 3132 3232 3233 1133 1233 1333 2133 2233 2333 3133 3233 3333'
fill_method_bending = 'general'
E_ijkl = '1111 1112 1113 1121 1122 1123 1131 1132 1133 1112 1212 1213 1221 1222 1223 1231 1232 1233 1113 1213 1313 1321 1322 1323 1331 1332 1333 1121 1221 1321 2121 2122 2123 2131 2132 2133 1122 1222 1322 2122 2222 2223 2231 2232 2233 1123 1223 1323 2123 2223 2323 2331 2332 2333 1131 1231 1331 2131 2231 2331 3131 3132 3133 1132 1232 1332 2132 2232 2332 3132 3232 3233 1133 1233 1333 2133 2233 2333 3133 3233 3333'
fill_method = 'general'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/jacobian/mc_update24_cosserat.i)
# Cosserat version of Capped Mohr Columb (using StressUpdate)
# Tensile + shear failure, starting from a non-symmetric stress state
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 1E2
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 1E8
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 4E1
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1E3
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 2.0E3
joint_shear_stiffness = 1.0E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '100.1 0.1 -0.2 0.1 0.9 0 -0.2 0 1.1'
eigenstrain_name = ini_stress
[../]
[./cmc]
type = CappedMohrCoulombCosseratStressUpdate
host_youngs_modulus = 1E3
host_poissons_ratio = 0.25
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = phi
dilation_angle = psi
smoothing_tol = 0.5
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = cmc
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/jacobian/cto29.i)
# CappedDruckerPragerCosserat
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningCubic
value_0 = 1
value_residual = 2
internal_limit = 100
[../]
[./cs]
type = SolidMechanicsHardeningCubic
value_0 = 5
value_residual = 3
internal_limit = 100
[../]
[./mc_coh]
type = SolidMechanicsHardeningCubic
value_0 = 10
value_residual = 1
internal_limit = 100
[../]
[./phi]
type = SolidMechanicsHardeningCubic
value_0 = 0.8
value_residual = 0.4
internal_limit = 50
[../]
[./psi]
type = SolidMechanicsHardeningCubic
value_0 = 0.4
value_residual = 0
internal_limit = 10
[../]
[./dp]
type = SolidMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = phi
mc_dilation_angle = psi
yield_function_tolerance = 1E-11 # irrelevant here
internal_constraint_tolerance = 1E-9 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 2.1
poisson = 0.1
layer_thickness = 1.0
joint_normal_stiffness = 3.0
joint_shear_stiffness = 2.5
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6 5 4 5.1 7 2 4 2.1 2'
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = dp
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
host_youngs_modulus = 2.1
host_poissons_ratio = 0.1
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-11
tip_smoother = 0.1
smoothing_tol = 0.1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/static_deformations/cosserat_glide.i)
# Example taken from Appendix A of
# S Forest "Mechanics of Cosserat media An introduction". Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.4476&rep=rep1&type=pdf
#
# Analytically, the displacements are
# wc_z = B sinh(w_e y)
# disp_x = (2 mu_c B / w_e / (mu + mu_c)) (1 - cosh(w_e y))
# with w_e^2 = 2 mu mu_c / be / (mu + mu_c)
# and B = arbitrary integration constant
#
# Also, the only nonzero stresses are
# m_zy = 2 B be w_e cosh(w_e y)
# si_yx = -4 mu mu_c/(mu + mu_c) B sinh(w_e y)
#
# MOOSE gives these stress components correctly.
# However, it also gives a seemingly non-zero si_xy
# component. Upon increasing the resolution of the
# mesh (ny=10000, for example), the stress components
# are seen to limit correctly to the above forumlae
#
# I use mu = 2, mu_c = 3, be = 0.6, so w_e = 2
# Also i use B = 1, so at y = 1
# wc_z = 3.626860407847
# disp_x = -1.65731741465
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 100
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./disp_x_zero_at_y_zero]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0
[../]
[./disp_x_fixed_at_y_max]
type = DirichletBC
variable = disp_x
boundary = top
value = -1.65731741465
[../]
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_dispz]
type = DirichletBC
variable = disp_z
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./wc_z_zero_at_y_zero]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0
[../]
[./wc_z_fixed_at_y_max]
type = DirichletBC
variable = wc_z
boundary = top
value = 3.626860407847
[../]
[]
[AuxVariables]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.1 0.6 0.6' # In Forest notation this is alpha=1.1 (this is unimportant), beta=gamma=0.6.
fill_method_bending = 'general_isotropic'
E_ijkl = '1 2 3' # In Forest notation this is lambda=1 (this is unimportant), mu=2, mu_c=3
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = y
variable = 'disp_x wc_z stress_yx couple_stress_zy'
start_point = '0 0 0'
end_point = '0 1 0'
num_points = 11
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = cosserat_glide_out
exodus = true
csv = true
[]
(modules/solid_mechanics/test/tests/jacobian/cdpc02.i)
#Cosserat capped weak plane and capped drucker prager
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./mc_coh]
type = SolidMechanicsHardeningConstant
value = 4
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 0.8
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 0.4
[../]
[./dp]
type = SolidMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = phi
mc_dilation_angle = psi
yield_function_tolerance = 1E-11 # irrelevant here
internal_constraint_tolerance = 1E-9 # irrelevant here
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '5 1 2 1 4 3 2.1 3.1 1'
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = 'dp'
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
host_youngs_modulus = 10.0
host_poissons_ratio = 0.25
base_name = dp
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-11
tip_smoother = 1
smoothing_tol = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
(modules/solid_mechanics/examples/coal_mining/fine.i)
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/fine.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
expression = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '100.0 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '100.0 0 1000.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = SolidMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = SolidMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = SolidMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5
end_time = 100.0
[]
[Outputs]
time_step_interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
(modules/solid_mechanics/test/tests/jacobian/cwpc01.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./coh]
type = SolidMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = SolidMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = SolidMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = SolidMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '10 0 0 0 10 0 0 0 10'
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 1
smoothing_tol = 1
yield_function_tol = 1E-11
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
(modules/solid_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_disps.i)
# Beam bending.
# Displacements are applied to a beam and stresses and moment-stresses
# are measured. Note that since these quantities are averaged over
# elements, to get a good agreement with the analytical solution the
# number of elements (nz) should be increased. Using nx=10
# and nz=10 yields roughly 1% error.
# The displacements applied are a pure-bend around the y axis
# with an additional displacement in the y direction so that
# the result (below) will end up being plane stress (stress_yy=0):
# u_x = Axz
# u_y = Dzy
# u_z = -(A/2)x^2 + (D/2)(z^2-y^2)
# wc_x = -Dy
# wc_y = Ax
# wc_z = 0
# Here A and D are arbitrary constants.
# This results in strains being symmetric, and the only
# nonzero ones are
# ep_xx = Az
# ep_yy = Dz
# ep_zz = Dz
# kappa_xy = -D
# kappa_yx = A
# Then choosing D = -poisson*A gives, for layered Cosserat:
# stress_xx = EAz
# m_yx = (1-poisson^2)*A*B = (1/12)EAh^2 (last equality for joint_shear_stiffness=0)
# where h is the layer thickness. All other stress and moment-stress
# components are zero.
# The test uses: E=1.2, poisson=0.3, A=1.11E-2, h=2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
xmax = 10
ny = 1
nz = 10
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./clamp_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'left right top bottom front back'
function = '-1.11E-2*x*x/2-0.3*(z*z-y*y)/2.0*1.11E-2'
[../]
[./clamp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'left right top bottom front back'
function = '-0.3*z*y*1.11E-2'
[../]
[./clamp_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'left right top bottom front back'
function = '1.11E-2*x*z'
[../]
[./clamp_wc_x]
type = FunctionDirichletBC
variable = wc_x
boundary = 'left right top bottom front back'
function = '0.3*y*1.11E-2'
[../]
[./clamp_wc_y]
type = FunctionDirichletBC
variable = wc_y
boundary = 'left right top bottom front back'
function = '1.11E-2*x'
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 2.0
joint_normal_stiffness = 1E16
joint_shear_stiffness = 1E-15
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_02_apply_disps
exodus = true
[]
(modules/solid_mechanics/examples/coal_mining/cosserat_mc_wp_sticky.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 at z=0, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=0 and y=450.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 403.003
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 18
normal = '0 0 1'
input = excav
[]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = '18'
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '-0.8*2500*10E-6*(403.003-z)'
[../]
[./ini_zz]
type = ParsedFunction
expression = '-2500*10E-6*(403.003-z)'
[../]
[./excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '1.0 0 150.0 1E-9 1 15'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '1.0 0 150.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = SolidMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = SolidMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = SolidMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = 0
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Postprocessors]
[./subs_max]
type = PointValue
point = '0 0 403.003'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.01
end_time = 1.0
[]
[Outputs]
file_base = cosserat_mc_wp_sticky
time_step_interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
(modules/solid_mechanics/test/tests/jacobian/mc_update21_cosserat.i)
# Cosserat version of Capped Mohr Columb (using StressUpdate)
# Shear failure, starting from a symmetric stress state
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 2.0
joint_shear_stiffness = 1.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '3 0 0 0 3 0 0 0 1.5'
eigenstrain_name = ini_stress
[../]
[./cmc]
type = CappedMohrCoulombCosseratStressUpdate
host_youngs_modulus = 1
host_poissons_ratio = 0.25
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = phi
dilation_angle = psi
smoothing_tol = 1
yield_function_tol = 1.0E-12
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = cmc
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/jacobian/cosserat01.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
active = 'cx_elastic cy_elastic cz_elastic x_moment y_moment z_moment'
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[../]
[SolidMechanics]
displacements = 'wc_x wc_y wc_z'
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = 0.5
E_ijkl = '1 2 1.3333'
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
[]
(modules/solid_mechanics/test/tests/capped_weak_plane/small_deform_cosserat2.i)
# Plastic deformation. Layered Cosserat with parameters:
# Young = 1.0
# Poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.043195
# E_0011 = E_1100 = 0.260799
# E_2222 = 0.02445
# E_0022 = E_1122 = E_2200 = E_2211 = 0.006112
# G = E_0101 = E_0110 = E_1001 = E_1010 = 0.416667
# Gt = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 0.019084
# E_2020 = E_2121 = 0.217875
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.68056E-5
# B_0101 = B_1010 = 7.92021E-4
# B_0110 = B_1001 = -1.584E-4
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = -t
# omega_x = omega_y = omega_z = 0
# yields the following strains:
# strain_xz = 8*t
# strain_yz = 6*t
# strain_zz = -t
# and all other components, and the curvature, are zero.
# The nonzero components of stress are therefore:
# stress_xx = stress_yy = -0.006112*t
# stress_xz = stress_zx = 0.152671*t
# stress_yz = stress_zy = 0.114504*t
# stress_zz = -0.0244499*t
# The moment stress is zero.
# So q = 0.19084*t and p = -0.0244*t.
#
# With large cohesion, but compressive strength = 0.0244499, the
# system is elastic up to t=1. After that time
# stress_zz = -0.0244499 (for t>=1)
# and
# stress_xx = stress_yy = -0.006112 (for t>=1), since the
# elastic trial increment is exactly canelled by the Poisson's
# contribution from the return to the yield surface.
# The plastic strains are zero for t<=1, but for larger times:
# plastic_strain_zz = - (t - 1) (for t>=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = -t
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = SolidMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = SolidMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = SolidMechanicsHardeningConstant
value = 40
[../]
[./c_strength]
type = SolidMechanicsHardeningConstant
value = 0.024449878
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.0
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
nl_abs_tol = 1E-14
end_time = 3
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat2
csv = true
[]
(modules/solid_mechanics/examples/coal_mining/cosserat_mc_wp_sticky_longitudinal.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a longitudinal section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between -300<=y<=1800. The excavation sits in 0<=y<=1500. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=-300 and y=1800
# - disp_z = 0 at z=0, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=300 and y=1800.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400
bias_z = 1.1
ny = 140 # 15m elements
ymin = -300
ymax = 1800
[]
[left]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 1500 3'
input = bottom
[]
[roof]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 18
normal = '0 0 1'
input = excav
[]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = '18'
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
expression = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '1.0 0 1500.0 1E-9 1 15'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '1.0 0 1500.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = SolidMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = SolidMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = SolidMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = 0
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Postprocessors]
[./subs]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 100
start_time = 0.0
dt = 0.01 # 1 element per step
end_time = 1.0
[]
[Outputs]
file_base = cosserat_mc_wp_sticky_longitudinal
time_step_interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
#[./console]
# type = Console
# output_linear = false
#[../]
[]
(modules/solid_mechanics/test/tests/capped_mohr_coulomb/small_deform1_cosserat.i)
# Using Cosserat with large layer thickness, so this should reduce to standard
# Using CappedMohrCoulombCosserat with tensile failure only
# checking for small deformation
# A single element is stretched by 1E-6m in z direction, and by small amounts in x and y directions
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and the minimum principal stress value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '0.1E-6*x'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '0.2E-6*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = '1E-6*z'
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 1
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 4.0E6
poisson = 0.0
layer_thickness = 1.0
joint_normal_stiffness = 1.0E16
joint_shear_stiffness = 1.0E16
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./tensile]
type = CappedMohrCoulombCosseratStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.0
yield_function_tol = 1.0E-9
host_youngs_modulus = 4.0E6
host_poissons_ratio = 0.0
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
nl_abs_tol = 1E-10
type = Transient
[]
[Outputs]
file_base = small_deform1_cosserat
csv = true
[]
(modules/solid_mechanics/examples/coal_mining/cosserat_wp_only.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see Drucker-Prager parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# Weak-plane cohesion = 0.1 MPa
# Weak-plane friction angle = 20 deg
# Weak-plane dilation angle = 10 deg
# Weak-plane tensile strength = 0.1 MPa
# Weak-plane compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
expression = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax e_h closure_dist'
symbol_values = '1.0 0 150.0 -3.0 15.0'
expression = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
symbol_names = 'end_t ymin ymax e_h closure_dist'
symbol_values = '1.0 0 150.0 -3.0 15.0'
expression = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = SolidMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = SolidMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = SolidMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = SolidMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'wp'
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_wp_only
time_step_interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
(modules/solid_mechanics/test/tests/initial_stress/gravity_cosserat.i)
# Apply an initial stress that should be
# exactly that caused by gravity, and then
# do a transient step to check that nothing
# happens
# TODO: currently this has no div(moment_stress)
# contriution to the Kernels. This is because
# there is no way in MOOSE of calculating
# moment stresses and applying initial stresses.
# This will become possible after issue #7243 is
# resolved.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -10
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[./weight]
type = BodyForce
variable = disp_z
value = -0.5 # this is density*gravity
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./x]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./weight]
type = ParsedFunction
expression = '0.5*z' # initial stress that should result from the weight force
[../]
[./kxx]
type = ParsedFunction
expression = '0.4*z' # some arbitrary xx and yy stress that should not affect the result
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.1 0.6 0.6' # In Forest notation this is alpha=1.1 (this is unimportant), beta=gamma=0.6.
fill_method_bending = 'general_isotropic'
fill_method = symmetric_isotropic
E_ijkl = '0.4 0.4' # young = 1, poisson = 0.25
[../]
[./strain]
type = ComputeCosseratSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'kxx 0 0 0 kxx 0 0 0 weight'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.0
dt = 1.0
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-8
nl_rel_tol = 1E-12
l_tol = 1E-3
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = gravity_cosserat
exodus = true
[]
(modules/solid_mechanics/test/tests/jacobian/cdp_cwp_coss02.i)
#Cosserat capped weak plane and capped drucker prager, coming back to a mix of shear and tensile failure in both
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[]
[UserObjects]
[./ts]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./cs]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./mc_coh]
type = SolidMechanicsHardeningConstant
value = 10
[../]
[./phi]
type = SolidMechanicsHardeningConstant
value = 0.8
[../]
[./psi]
type = SolidMechanicsHardeningConstant
value = 0.4
[../]
[./dp]
type = SolidMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = phi
mc_dilation_angle = psi
yield_function_tolerance = 1E-11 # irrelevant here
internal_constraint_tolerance = 1E-9 # irrelevant here
[../]
[./coh]
type = SolidMechanicsHardeningConstant
value = 2
[../]
[./tanphi]
type = SolidMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = SolidMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = SolidMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = SolidMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '1 0.1 0 0.1 2 0 11 12 10' # note unsymmetric
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = 'dp wp'
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
host_youngs_modulus = 10.0
host_poissons_ratio = 0.25
base_name = dp
DP_model = dp
tensile_strength = ts
compressive_strength = cs
yield_function_tol = 1E-11
tip_smoother = 1
smoothing_tol = 1
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
base_name = wp
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0.1
smoothing_tol = 0.1
yield_function_tol = 1E-11
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
(modules/solid_mechanics/examples/coal_mining/cosserat_mc_only.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see weak-plane parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
expression = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax e_h closure_dist'
symbol_values = '1.0 0 150.0 -3.0 15.0'
expression = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
symbol_names = 'end_t ymin ymax e_h closure_dist'
symbol_values = '1.0 0 150.0 -3.0 15.0'
expression = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = SolidMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = SolidMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = SolidMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = mc
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_only
time_step_interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]