- momentum_componentThe component of the momentum equation that this kernel applies to.
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:The component of the momentum equation that this kernel applies to.
- rhie_chow_user_objectThe rhie-chow user-object
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:The rhie-chow user-object
- rhoThe density. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The density. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
PINSFVMomentumFriction
This kernel adds the friction term to the porous media Navier Stokes momentum equations. This kernel must be used with the canonical PINSFV variable set, e.g. pressure and superficial velocity, and supports Darcy and Forchheimer friction models in two flavors:
Standard friction formulation
Set parameter: "standard_friction_formulation" = 'true'
Darcy drag model (1) Forchheimer drag model (2)
Simplified friction formulation
Set parameter: "standard_friction_formulation" = 'false'
Darcy drag model (3) Forchheimer drag model (4)
where is the i-th component of the friction force (denoted by in Finite Volume Incompressible Porous media Navier Stokes, Eq. (1)), the friction factor, which may be anisotropic, the fluid dynamic viscosity, the fluid density, and the i-th component of the fluid superficial velocity. We have used a negative sign to match the notation used in Finite Volume Incompressible Porous media Navier Stokes, Eq. (1) where the friction force is on the right-hand-side of the equation. When moved to the left-hand side, which is done when setting up a Newton scheme, the term becomes positive which is what is shown in the source code itself. Darcy and Forchheimer terms represent fundamentally different friction effects. Darcy is meant to represent viscous effects and as shown in Eq. (1),Eq. (3), it has a linear dependence on the fluid velocity. Meanwhile, Forchheimer is meant to represent inertial effects and as shown in Eq. (2), Eq. (4) it has a quadratic dependence on velocity.
For the non-porous medium version of the above equations set parameter "is_porous_medium" to false
. (epsilon = 1)
Computation of friction factors and pre-factors
To outline how friction factors for Darcy and Forchheimer may be calculated, let's consider a specific example. We'll draw from the Ergun equation, which is outlined here. Let's consider the form:
where is the bed length, is the fluid dynamic viscosity and is representative of the diameter of the pebbles in the pebble bed. We can divide the equation through by , recognize that denotes such that , multiply the equation through by , move all terms to the left-hand-side, and do some term manipulation in order to yield:
If we define the hydraulic diameter as , then the above equation can be rewritten as:
Let's introduce the interstitial fluid velocity to rewrite the above equation as:
Then dividing through by :
(5)
We are now very close the forms for Darcy and Forchheimer espoused by Holzmann and SimScale which is:
(6)
Looking at Eq. (6) we can rearrange Eq. (5):
and arrive at the Ergun expression for the Darcy coefficient:
and the Ergun expression for the Forchheimer coefficient:
where we have made the multiplication explicit to make the 1.75 factor from the Ergun wikipedia page more recognizable. We perform a similar separation in the implementation of the Ergun Forchheimer coefficient outlined in FunctorErgunDragCoefficients.
Input Parameters
- Darcy_nameName of the Darcy coefficients property. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Name of the Darcy coefficients property. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- Forchheimer_nameName of the Forchheimer coefficients property. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Name of the Forchheimer coefficients property. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- is_porous_mediumTrueBoolean to choose the type of medium.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Boolean to choose the type of medium.
- muThe dynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The dynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- porosity1The porosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
Default:1
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The porosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- speedThe magnitude of the interstitial velocity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The magnitude of the interstitial velocity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- standard_friction_formulationTrueBoolean to choose the type of friction formulation.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Boolean to choose the type of friction formulation.
- uThe velocity in the x direction. Superficial in the case of porous treatment, interstitial otherwise. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the x direction. Superficial in the case of porous treatment, interstitial otherwise. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- vThe velocity in the y direction. Superficial in the case of porous treatment, interstitial otherwise. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the y direction. Superficial in the case of porous treatment, interstitial otherwise. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- wThe velocity in the z direction. Superficial in the case of porous treatment, interstitial otherwise. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the z direction. Superficial in the case of porous treatment, interstitial otherwise. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- ghost_layers1The number of layers of elements to ghost.
Default:1
C++ Type:unsigned short
Unit:(no unit assumed)
Controllable:No
Description:The number of layers of elements to ghost.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Parallel Ghosting Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-advection-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
- (modules/navier_stokes/test/tests/finite_volume/materials/ergun/ergun.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/natural_convection/natural_circulation_pipe.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/discontinuous-body-forces.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz-slip.i)
- (modules/navier_stokes/examples/solidification/gallium_melting.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-rz-by-parts.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/friction/2d-rc-friction.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/solidification/pipe_solidification.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/pressure-interpolation-corrected.i)
standard_friction_formulation
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Boolean to choose the type of friction formulation.
standard_friction_formulation
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Boolean to choose the type of friction formulation.
is_porous_medium
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Boolean to choose the type of medium.
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-advection-slip.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
mu_interp_method = 'average'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 5}'
ymin = '${fparse -l / 2}'
ymax = '${fparse l / 2}'
nx = 10
ny = 6
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection_slip]
type = WCNSFV2PMomentumAdvectionSlip
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
rho_d = ${rho_d}
fd = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = x
mu = mu_mixture
rho = rho_mixture
variable = vel_x
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection_slip]
type = WCNSFV2PMomentumAdvectionSlip
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
rho_d = ${rho_d}
fd = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = y
mu = mu_mixture
rho = rho_mixture
variable = vel_y
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FunctorMaterials]
[phase_1]
property_name = 'phase_1'
type = ADParsedFunctorMaterial
functor_names = 'phase_2'
expression = '1 - phase_2'
outputs = 'out'
output_properties = 'phase_1'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
outputs = 'out'
output_properties = 'vel_slip_x'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
outputs = 'out'
output_properties = 'vel_slip_y'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = '${rho_d} ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
[out]
type = Exodus
hide = 'Re lin cum_lin'
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
[]
[lin]
type = NumLinearIterations
[]
[cum_lin]
type = CumulativeValuePostprocessor
postprocessor = lin
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
mu = 1.1
rho = 1.1
pressure_tag = "pressure_grad"
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = 1
nx = 40
ny = 6
[]
[]
[GlobalParams]
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolatorSegregated
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
solver_sys = u_system
two_term_boundary_expansion = false
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
solver_sys = pressure_system
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = "u_friction v_friction"
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[u_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_x
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[v_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_y
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
inactive = 'slip-u slip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.4
[]
### Are disabled by default but we switch it on for certain tests ###
[slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_x
momentum_component = 'x'
[]
[slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_y
momentum_component = 'y'
[]
#####################################################################
[]
[FunctorMaterials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.01 0.02 0.03 0.01 0.02 0.03'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = superficial_vel_x
superficial_vel_y = superficial_vel_y
porosity = porosity
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.85
pressure_variable_relaxation = 0.45
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/materials/ergun/ergun.i)
# This file simulates flow of fluid in a porous elbow for the purpose of verifying
# correct implementation of the various different solution variable sets. This input
# tests correct implementation of the primitive superficial variable set. Flow enters on the top
# and exits on the right. Because the purpose is only to test the equivalence of
# different equation sets, no solid energy equation is included.
porosity_left = 0.4
porosity_right = 0.6
pebble_diameter = 0.06
mu = 1.81e-5 # This has been increased to avoid refining the mesh
M = 28.97e-3
R = 8.3144598
# inlet mass flowrate, kg/s
mdot = -10.0
# inlet mass flux (superficial)
mflux_in_superficial = ${fparse mdot / (pi * 0.5 * 0.5)}
# inlet mass flux (interstitial)
mflux_in_interstitial = ${fparse mflux_in_superficial / porosity_left}
p_initial = 201325.0
T_initial = 300.0
rho_initial = ${fparse p_initial / T_initial * M / R}
vel_y_initial = ${fparse mflux_in_interstitial / rho_initial}
vel_x_initial = 0.0
superficial_vel_y_initial = ${fparse mflux_in_superficial / rho_initial}
superficial_vel_x_initial = 1e-12
# Computation parameters
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
# ==============================================================================
# GEOMETRY AND MESH
# ==============================================================================
[Mesh]
[fmg]
type = FileMeshGenerator
file = 'ergun_in.e'
[]
coord_type = RZ
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[GlobalParams]
porosity = porosity
pebble_diameter = ${pebble_diameter}
fp = fp
# rho for the kernels. Must match fluid property!
rho = ${rho_initial}
fv = true
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
# behavior at time of test creation
two_term_boundary_expansion = false
rhie_chow_user_object = 'rc'
[]
# ==============================================================================
# VARIABLES AND KERNELS
# ==============================================================================
[Variables]
[pressure]
type = INSFVPressureVariable
initial_condition = ${p_initial}
[]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${superficial_vel_x_initial}
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${superficial_vel_y_initial}
[]
[]
[FVKernels]
# Mass Equation.
[mass]
type = PINSFVMassAdvection
variable = 'pressure'
[]
# Momentum x component equation.
[vel_x_time]
type = PINSFVMomentumTimeDerivative
variable = 'superficial_vel_x'
momentum_component = 'x'
[]
[vel_x_advection]
type = PINSFVMomentumAdvection
variable = 'superficial_vel_x'
momentum_component = 'x'
[]
[vel_x_viscosity]
type = PINSFVMomentumDiffusion
variable = 'superficial_vel_x'
momentum_component = 'x'
mu = 'mu'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = 'superficial_vel_x'
pressure = pressure
momentum_component = 'x'
[]
[u_friction]
type = PINSFVMomentumFriction
variable = 'superficial_vel_x'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
momentum_component = 'x'
speed = speed
mu = 'mu'
[]
# Momentum y component equation.
[vel_y_time]
type = PINSFVMomentumTimeDerivative
variable = 'superficial_vel_y'
momentum_component = 'y'
[]
[vel_y_advection]
type = PINSFVMomentumAdvection
variable = 'superficial_vel_y'
momentum_component = 'y'
[]
[vel_y_viscosity]
type = PINSFVMomentumDiffusion
variable = 'superficial_vel_y'
momentum_component = 'y'
mu = 'mu'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = 'superficial_vel_y'
pressure = pressure
momentum_component = 'y'
[]
[v_friction]
type = PINSFVMomentumFriction
variable = 'superficial_vel_y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
momentum_component = 'y'
mu = 'mu'
speed = speed
[]
[gravity]
type = PINSFVMomentumGravity
variable = 'superficial_vel_y'
gravity = '0 -9.81 0'
momentum_component = 'y'
[]
[]
# ==============================================================================
# AUXVARIABLES AND AUXKERNELS
# ==============================================================================
[AuxVariables]
[T_fluid]
initial_condition = ${T_initial}
order = CONSTANT
family = MONOMIAL
[]
[vel_x]
initial_condition = ${fparse vel_x_initial}
order = CONSTANT
family = MONOMIAL
[]
[vel_y]
initial_condition = ${fparse vel_y_initial}
order = CONSTANT
family = MONOMIAL
[]
[porosity_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_x]
type = FunctorAux
variable = vel_x
functor = vel_x_mat
[]
[vel_y]
type = FunctorAux
variable = vel_y
functor = vel_y_mat
[]
[porosity_out]
type = FunctorAux
variable = porosity_out
functor = porosity
[]
[]
# ==============================================================================
# FLUID PROPERTIES, MATERIALS AND USER OBJECTS
# ==============================================================================
[FluidProperties]
[fp]
type = IdealGasFluidProperties
k = 0.0
mu = ${mu}
gamma = 1.4
molar_mass = ${M}
[]
[]
[FunctorMaterials]
[enthalpy]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = 'superficial_vel_x'
superficial_vel_y = 'superficial_vel_y'
porosity = porosity
vel_x = vel_x_mat
vel_y = vel_y_mat
[]
[kappa]
type = FunctorKappaFluid
[]
[const_Fdrags_mat]
type = FunctorErgunDragCoefficients
porosity = porosity
[]
[fluidprops]
type = GeneralFunctorFluidProps
mu_rampdown = mu_func
porosity = porosity
characteristic_length = ${pebble_diameter}
T_fluid = 'T_fluid'
pressure = 'pressure'
speed = 'speed'
[]
[]
d = 0.05
[Functions]
[mu_func]
type = PiecewiseLinear
x = '1 3 5 10 15 20'
y = '1e5 1e4 1e3 1e2 1e1 1'
[]
[real_porosity_function]
type = ParsedFunction
expression = 'if (x < 0.6 - ${d}, ${porosity_left}, if (x > 0.6 + ${d}, ${porosity_right},
(x-(0.6-${d}))/(2*${d})*(${porosity_right}-${porosity_left}) + ${porosity_left}))'
[]
[porosity]
type = ParsedFunction
expression = 'if (x < 0.6 - ${d}, ${porosity_left}, if (x > 0.6 + ${d}, ${porosity_right},
(x-(0.6-${d}))/(2*${d})*(${porosity_right}-${porosity_left}) + ${porosity_left}))'
[]
[]
# ==============================================================================
# BOUNDARY CONDITIONS
# ==============================================================================
[FVBCs]
[outlet_p]
type = INSFVOutletPressureBC
variable = 'pressure'
function = ${p_initial}
boundary = 'right'
[]
## No or Free slip BC
[free-slip-wall-x]
type = INSFVNaturalFreeSlipBC
boundary = 'bottom wall_1 wall_2 left'
variable = superficial_vel_x
momentum_component = 'x'
[]
[free-slip-wall-y]
type = INSFVNaturalFreeSlipBC
boundary = 'bottom wall_1 wall_2 left'
variable = superficial_vel_y
momentum_component = 'y'
[]
## Symmetry
[symmetry-x]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = 'mu'
momentum_component = 'x'
[]
[symmetry-y]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = 'mu'
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = 'pressure'
[]
## inlet
[inlet_vel_x]
type = INSFVInletVelocityBC
variable = 'superficial_vel_x'
function = ${superficial_vel_x_initial}
boundary = 'top'
[]
[inlet_vel_y]
type = INSFVInletVelocityBC
variable = 'superficial_vel_y'
function = ${superficial_vel_y_initial}
boundary = 'top'
[]
[]
# ==============================================================================
# EXECUTION PARAMETERS
# ==============================================================================
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
# Problem time parameters
dtmin = 0.01
dtmax = 2000
end_time = 3000
# must be the same as the fluid
# Iterations parameters
l_max_its = 50
l_tol = 1e-8
nl_max_its = 25
# nl_rel_tol = 5e-7
nl_abs_tol = 2e-7
# Automatic scaling
automatic_scaling = true
verbose = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.025
cutback_factor = 0.5
growth_factor = 2.0
[]
# Steady state detection.
steady_state_detection = true
steady_state_tolerance = 1e-7
steady_state_start_time = 400
[]
# ==============================================================================
# POSTPROCESSORS DEBUG AND OUTPUTS
# ==============================================================================
[Postprocessors]
[mass_flow_in]
type = VolumetricFlowRate
boundary = 'top'
vel_x = 'superficial_vel_x'
vel_y = 'superficial_vel_y'
advected_quantity = ${rho_initial}
execute_on = 'INITIAL TIMESTEP_END'
[]
[mass_flow_out]
type = VolumetricFlowRate
boundary = 'right'
vel_x = 'superficial_vel_x'
vel_y = 'superficial_vel_y'
advected_quantity = ${rho_initial}
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in]
type = SideAverageValue
variable = pressure
boundary = 'top'
[]
[dP]
type = LinearCombinationPostprocessor
pp_names = 'p_in'
pp_coefs = '1.0'
b = ${fparse -p_initial}
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/natural_convection/natural_circulation_pipe.i)
# natural convection through a pipe
# Reference solution in "reference_pipe_natural_convection.py"
# Reference mdot: 0.0792 kg/s
# this input
# iy mdot
# 10 8.302364e-02
# 20 8.111192e-02
# 40 8.007924e-02
# 80 7.954403e-02
# 160 7.927201e-02
# Convergence to the analytical result is observed
height = 10.0
gravity = 9.81
p0 = 1e5
molar_mass = 29.0e-3
T0 = 328
Ru = 8.3145
Ri = '${fparse Ru / molar_mass}'
density = '${fparse p0 / (Ri * T0)}'
head = '${fparse height * density * gravity}'
k = 25.68e-3
gamma = 1.4
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.1'
ix = '2'
dy = '${height}'
iy = '5'
[]
[]
[GlobalParams]
rhie_chow_user_object = pins_rhie_chow_interpolator
[]
[FluidProperties]
[air]
type = IdealGasFluidProperties
molar_mass = ${molar_mass}
k = ${k}
gamma = ${gamma}
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'weakly-compressible'
add_energy_equation = true
gravity = '0 -${gravity} 0'
density = rho
dynamic_viscosity = mu
specific_heat = cp
thermal_conductivity = k
initial_velocity = '0 1e-6 0'
initial_pressure = ${p0}
initial_temperature = ${T0}
inlet_boundaries = 'bottom'
momentum_inlet_types = 'fixed-pressure'
momentum_inlet_function = '${fparse p0 + head}'
energy_inlet_types = 'fixed-temperature'
energy_inlet_function = '${T0}'
energy_scaling = 1e-5
wall_boundaries = 'left right'
momentum_wall_types = 'slip slip'
energy_wall_types = 'heatflux heatflux'
energy_wall_function = '300 300'
outlet_boundaries = 'top'
momentum_outlet_types = 'fixed-pressure'
pressure_function = '${fparse p0}'
momentum_advection_interpolation = 'upwind'
mass_advection_interpolation = 'upwind'
porous_medium_treatment = true
porosity = porosity
energy_advection_interpolation = 'average'
[]
[]
[FVKernels]
[u_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_x
Darcy_name = linear_friction_coeff
momentum_component = 'x'
standard_friction_formulation = false
rho = rho
[]
[v_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_y
Darcy_name = linear_friction_coeff
momentum_component = 'y'
standard_friction_formulation = false
rho = rho
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
end_time = 1e4
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.1
growth_factor = 2
iteration_window = 2
optimal_iterations = 6
[]
[]
[Functions]
[mu_rampdown_fn]
type = PiecewiseLinear
x = '0 0.5 1 5 10 100 1000 2000'
y = '1000 1000 100 10 1 1 1 0'
[]
[]
[FunctorMaterials]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = air
pressure = pressure
T_fluid = T_fluid
speed = speed
force_define_density = true
mu_rampdown = 'mu_rampdown_fn'
characteristic_length = 1
porosity = porosity
[]
[scalar_props]
type = ADGenericFunctorMaterial
prop_names = 'porosity loss_coeff'
prop_values = '1 1.3'
[]
[linear_friction]
type = ADParsedFunctorMaterial
property_name = 'linear_friction'
expression = 'loss_coeff * rho'
functor_names = 'loss_coeff rho'
[]
[linear_friction_coeff]
type = ADGenericVectorFunctorMaterial
prop_names = 'linear_friction_coeff'
prop_values = 'linear_friction linear_friction linear_friction'
[]
[]
[AuxVariables]
[rho_var]
type = MooseVariableFVReal
[]
[cp_var]
type = MooseVariableFVReal
[]
[rho_cp_T_fluid_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[rho_var_aux]
type = FunctorAux
variable = rho_var
functor = rho
[]
[cp_var_aux]
type = FunctorAux
variable = cp_var
functor = cp
[]
[rho_cp_T_fluid_var_aux]
type = ParsedAux
variable = rho_cp_T_fluid_var
coupled_variables = 'rho_var cp_var T_fluid'
expression = 'rho_var * cp_var * T_fluid'
[]
[]
[Postprocessors]
[inlet_mfr]
type = VolumetricFlowRate
vel_x = superficial_vel_x
vel_y = superficial_vel_y
advected_quantity = rho
boundary = bottom
advected_interp_method = average
[]
[outlet_mfr]
type = VolumetricFlowRate
vel_x = superficial_vel_x
vel_y = superficial_vel_y
advected_quantity = rho
boundary = top
advected_interp_method = average
[]
[inlet_energy]
type = VolumetricFlowRate
vel_x = superficial_vel_x
vel_y = superficial_vel_y
advected_quantity = rho_cp_T_fluid_var
boundary = bottom
advected_interp_method = average
[]
[outlet_energy]
type = VolumetricFlowRate
vel_x = superficial_vel_x
vel_y = superficial_vel_y
advected_quantity = rho_cp_T_fluid_var
boundary = top
advected_interp_method = average
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/discontinuous-body-forces.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 9
[]
[subdomain]
type = SubdomainBoundingBoxGenerator
bottom_left = '5 -1 0'
top_right = '10 1 0'
block_id = 1
input = gen
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_friction_linear]
type = PINSFVMomentumFriction
variable = u
Darcy_name = friction_coefficient
momentum_component = 'x'
block = '1'
standard_friction_formulation = false
rho = ${rho}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_friction_linear]
type = PINSFVMomentumFriction
variable = v
Darcy_name = friction_coefficient
momentum_component = 'y'
block = '1'
standard_friction_formulation = false
rho = ${rho}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[friction_coefficient]
type = ADGenericVectorFunctorMaterial
prop_names = 'friction_coefficient'
prop_values = '25 25 25'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz-slip.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
coord_type = 'RZ'
rz_coord_axis = X
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1.25'
dy = '0.2'
ix = '30'
iy = '7'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
inactive = 'u_friction v_friction'
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[u_friction]
type = PINSFVMomentumFriction
variable = vel_x
u = vel_x
v = vel_y
momentum_component = 'x'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
standard_friction_formulation = false
rho = ${rho}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_friction]
type = PINSFVMomentumFriction
variable = vel_y
u = vel_x
v = vel_y
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
standard_friction_formulation = false
rho = ${rho}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = vel_x
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = vel_y
momentum_component = 'y'
[]
[symmetry_u]
type = INSFVSymmetryVelocityBC
variable = vel_x
boundary = 'bottom'
momentum_component = 'x'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_v]
type = INSFVSymmetryVelocityBC
variable = vel_y
boundary = 'bottom'
momentum_component = 'y'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[]
[FunctorMaterials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.5
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/examples/solidification/gallium_melting.i)
##########################################################
# Simulation of Gallium Melting Experiment
# Ref: Gau, C., & Viskanta, R. (1986). Melting and solidification of a pure metal on a vertical wall.
# Key physics: melting/solidification, convective heat transfer, natural convection
##########################################################
mu = 1.81e-3
rho_solid = 6093
rho_liquid = 6093
k_solid = 32
k_liquid = 32
cp_solid = 381.5
cp_liquid = 381.5
L = 80160
alpha_b = 1.2e-4
T_solidus = 302.93
T_liquidus = '${fparse T_solidus + 0.1}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
T_cold = 301.15
T_hot = 311.15
Nx = 100
Ny = 50
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 88.9e-3
ymin = 0
ymax = 63.5e-3
nx = ${Nx}
ny = ${Ny}
[]
[]
[AuxVariables]
[U]
type = MooseVariableFVReal
[]
[fl]
type = MooseVariableFVReal
initial_condition = 0.0
[]
[density]
type = MooseVariableFVReal
[]
[th_cond]
type = MooseVariableFVReal
[]
[cp_var]
type = MooseVariableFVReal
[]
[darcy_coef]
type = MooseVariableFVReal
[]
[fch_coef]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[compute_fl]
type = NSLiquidFractionAux
variable = fl
temperature = T
T_liquidus = '${T_liquidus}'
T_solidus = '${T_solidus}'
execute_on = 'TIMESTEP_END'
[]
[rho_out]
type = FunctorAux
functor = 'rho_mixture'
variable = 'density'
[]
[th_cond_out]
type = FunctorAux
functor = 'k_mixture'
variable = 'th_cond'
[]
[cp_out]
type = FunctorAux
functor = 'cp_mixture'
variable = 'cp_var'
[]
[darcy_out]
type = FunctorAux
functor = 'Darcy_coefficient'
variable = 'darcy_coef'
[]
[fch_out]
type = FunctorAux
functor = 'Forchheimer_coefficient'
variable = 'fch_coef'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[T]
type = INSFVEnergyVariable
initial_condition = '${T_cold}'
scaling = 1e-4
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = rho_mixture
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
variable = vel_x
momentum_component = 'x'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
ref_temperature = ${T_cold}
momentum_component = 'x'
[]
[u_gravity]
type = INSFVMomentumGravity
variable = vel_x
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
momentum_component = 'x'
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = rho_mixture
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
variable = vel_y
momentum_component = 'y'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
ref_temperature = ${T_cold}
momentum_component = 'y'
[]
[v_gravity]
type = INSFVMomentumGravity
variable = vel_y
gravity = '0 -9.81 0'
rho = '${rho_liquid}'
momentum_component = 'y'
[]
[T_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = rho_mixture
dh_dt = dh_dt
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = k_mixture
variable = T
[]
[energy_source]
type = NSFVPhaseChangeSource
variable = T
L = ${L}
liquid_fraction = fl
T_liquidus = ${T_liquidus}
T_solidus = ${T_solidus}
rho = 'rho_mixture'
[]
[]
[FVBCs]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = 0
[]
[hot_wall]
type = FVDirichletBC
variable = T
value = '${T_hot}'
boundary = 'left'
[]
[cold_wall]
type = FVDirichletBC
variable = T
value = '${T_cold}'
boundary = 'right'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = rho_mixture
cp = cp_mixture
temperature = 'T'
[]
[eff_cp]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
prop_names = 'cp_mixture k_mixture rho_mixture'
phase_1_fraction = fl
[]
[mushy_zone_resistance]
type = INSFVMushyPorousFrictionFunctorMaterial
liquid_fraction = 'fl'
mu = '${mu}'
rho_l = '${rho_liquid}'
dendrite_spacing_scaling = 1e-1
[]
[friction]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coeff Forchheimer_coeff'
prop_values = 'darcy_coef darcy_coef darcy_coef fch_coef fch_coef fch_coef'
[]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b'
prop_values = '${alpha_b}'
[]
[]
[Executioner]
type = Transient
# Time-stepping parameters
start_time = 0.0
end_time = 200.0
num_steps = 2
[TimeStepper]
type = IterationAdaptiveDT
# Raise time step often but not by as much
# There's a rough spot for convergence near 10% fluid fraction
optimal_iterations = 15
growth_factor = 1.5
dt = 0.1
[]
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-6
nl_max_its = 30
line_search = 'none'
[]
[Postprocessors]
[ave_p]
type = ElementAverageValue
variable = 'pressure'
execute_on = 'INITIAL TIMESTEP_END'
[]
[ave_fl]
type = ElementAverageValue
variable = 'fl'
execute_on = 'INITIAL TIMESTEP_END'
[]
[ave_T]
type = ElementAverageValue
variable = 'T'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[VectorPostprocessors]
[vel_x]
type = ElementValueSampler
variable = 'vel_x fl'
sort_by = 'x'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-rz-by-parts.i)
mu = 1.1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = 1
nx = 40
ny = 10
[]
coord_type = 'RZ'
rz_coord_axis = 'X'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
porosity = porosity
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'v_pressure_volumetric'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressureFlux
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[u_friction]
type = PINSFVMomentumFriction
variable = u
momentum_component = 'x'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure_volumetric]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_pressure_by_parts_flux]
type = PINSFVMomentumPressureFlux
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_pressure_by_parts_volume_term]
type = PNSFVMomentumPressureFluxRZ
variable = v
pressure = pressure
porosity = porosity
momentum_component = 'y'
[]
[v_friction]
type = PINSFVMomentumFriction
variable = v
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[]
[FVBCs]
inactive = 'free-slip-u free-slip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = u
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = u
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = v
momentum_component = 'y'
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[FunctorMaterials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = u
superficial_vel_y = v
porosity = porosity
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 5}'
ymin = '${fparse -l / 2}'
ymax = '${fparse l / 2}'
nx = 10
ny = 4
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'phase_2'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = x
mu = mu_mixture
rho = rho_mixture
variable = vel_x
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'phase_2'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = y
mu = mu_mixture
rho = rho_mixture
variable = vel_y
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FunctorMaterials]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
outputs = 'out'
output_properties = 'vel_slip_x'
ghost_layers = 5
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
outputs = 'out'
output_properties = 'vel_slip_y'
ghost_layers = 5
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
outputs = 'out'
output_properties = 'phase_1'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = '${rho_d} ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
print_linear_residuals = true
print_nonlinear_residuals = true
[out]
type = Exodus
hide = 'Re lin cum_lin'
[]
[perf]
type = PerfGraphOutput
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
[]
[lin]
type = NumLinearIterations
[]
[cum_lin]
type = CumulativeValuePostprocessor
postprocessor = lin
[]
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-transient.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 5}'
ymin = '${fparse -l / 2}'
ymax = '${fparse l / 2}'
nx = 10
ny = 4
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'phase_2'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = x
mu = mu_mixture
rho = rho_mixture
variable = vel_x
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'phase_2'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = y
mu = mu_mixture
rho = rho_mixture
variable = vel_y
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
functor = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[vel_slip_x_var]
type = MooseVariableFVReal
[]
[vel_slip_y_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[populate_vx_slip_var]
type = FunctorAux
variable = vel_slip_x_var
functor = 'vel_slip_x'
[]
[populate_vy_slip_var]
type = FunctorAux
variable = vel_slip_y_var
functor = 'vel_slip_y'
[]
[]
[FunctorMaterials]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = '${rho_d} ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
dt = 0.1
end_time = 1.0
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
exodus = false
[CSV]
type = CSV
execute_on = 'TIMESTEP_END'
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[vslip_x]
type = SideExtremeValue
boundary = 'left'
variable = 'vel_slip_x_var'
[]
[vslip_y]
type = SideExtremeValue
boundary = 'left'
variable = 'vel_slip_y_var'
[]
[vslip_value]
type = ParsedPostprocessor
expression = 'sqrt(vslip_x*vslip_x + vslip_y*vslip_y)*vslip_x/abs(vslip_x)'
pp_names = 'vslip_x vslip_y'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
mu = 1.1
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '2.5 2.5'
dy = '1.0'
ix = '20 20'
iy = '20'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Variables]
inactive = 'lambda'
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'mean-pressure'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[u_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_x
momentum_component = 'x'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
mu = ${mu}
rho = ${rho}
speed = speed
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_y
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[mean-pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.01
[]
[]
[FVBCs]
inactive = 'free-slip-u free-slip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_x
momentum_component = 'x'
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_y
momentum_component = 'y'
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[FunctorMaterials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
[speec]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = superficial_vel_x
superficial_vel_y = superficial_vel_y
porosity = porosity
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = superficial_vel_x
boundary = 'right'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/friction/2d-rc-friction.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = -1
ymax = 1
nx = 50
ny = 10
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
inactive = 'u_friction_quad v_friction_quad'
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction_linear]
type = PINSFVMomentumFriction
variable = vel_x
Darcy_name = friction_coefficient
momentum_component = 'x'
rho = ${rho}
standard_friction_formulation = false
[]
[u_friction_quad]
type = PINSFVMomentumFriction
variable = vel_x
speed = speed
Forchheimer_name = friction_coefficient
momentum_component = 'x'
rho = ${rho}
standard_friction_formulation = false
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction_linear]
type = PINSFVMomentumFriction
variable = vel_y
Darcy_name = friction_coefficient
momentum_component = 'y'
rho = ${rho}
standard_friction_formulation = false
[]
[v_friction_quad]
type = PINSFVMomentumFriction
variable = vel_y
speed = speed
Forchheimer_name = friction_coefficient
momentum_component = 'y'
rho = ${rho}
standard_friction_formulation = false
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
inactive = exponential_friction_coefficient
[friction_coefficient]
type = ADGenericVectorFunctorMaterial
prop_names = 'friction_coefficient'
prop_values = '25 25 25'
[]
[speed_material]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = vel_x
superficial_vel_y = vel_y
porosity = 1
vel_x = vel_x_mat
vel_y = vel_y_mat
[]
[Re_material]
type = ReynoldsNumberFunctorMaterial
speed = speed
characteristic_length = 2
rho = ${rho}
mu = ${mu}
[]
[exponential_coeff]
type = ExponentialFrictionMaterial
friction_factor_name = 'exponential_coeff'
Re = Re
c1 = 0.25
c2 = 0.55
[]
[exponential_friction_coefficient]
type = ADGenericVectorFunctorMaterial
prop_names = 'friction_coefficient'
prop_values = 'exponential_coeff exponential_coeff exponential_coeff'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/solidification/pipe_solidification.i)
mu = 8.8871e-4
rho_solid = 997.561
rho_liquid = 997.561
k_solid = 0.6203
k_liquid = 0.6203
cp_solid = 4181.72
cp_liquid = 4181.72
L = 3e5
T_liquidus = 285
T_solidus = 280
advected_interp_method = 'average'
velocity_interp_method = 'rc'
U_inlet = '${fparse 0.5 * mu / rho_liquid / 0.5}'
T_inlet = 300.0
T_cold = 200.0
Nx = 30
Ny = 5
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
coord_type = 'RZ'
rz_coord_axis = 'X'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = '${fparse 0.5 * 1.0}'
nx = ${Nx}
ny = ${Ny}
bias_y = '${fparse 1 / 1.2}'
[]
[rename1]
type = RenameBoundaryGenerator
input = gen
old_boundary = 'left'
new_boundary = 'inlet'
[]
[rename2]
type = RenameBoundaryGenerator
input = rename1
old_boundary = 'right'
new_boundary = 'outlet'
[]
[rename3]
type = RenameBoundaryGenerator
input = rename2
old_boundary = 'bottom'
new_boundary = 'symmetry'
[]
[rename4]
type = RenameBoundaryGenerator
input = rename3
old_boundary = 'top'
new_boundary = 'wall'
[]
[rename5]
type = ParsedGenerateSideset
input = rename4
normal = '0 1 0'
combinatorial_geometry = 'x>2.0 & x<8.0 & y>0.49999'
new_sideset_name = 'cooled_wall'
[]
[]
[AuxVariables]
[U]
type = MooseVariableFVReal
[]
[fl]
type = MooseVariableFVReal
initial_condition = 1.0
[]
[density]
type = MooseVariableFVReal
[]
[th_cond]
type = MooseVariableFVReal
[]
[cp_var]
type = MooseVariableFVReal
[]
[darcy_coef]
type = MooseVariableFVReal
[]
[fch_coef]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[compute_fl]
type = NSLiquidFractionAux
variable = fl
temperature = T
T_liquidus = '${T_liquidus}'
T_solidus = '${T_solidus}'
execute_on = 'TIMESTEP_END'
[]
[rho_out]
type = FunctorAux
functor = 'rho_mixture'
variable = 'density'
[]
[th_cond_out]
type = FunctorAux
functor = 'k_mixture'
variable = 'th_cond'
[]
[cp_out]
type = FunctorAux
functor = 'cp_mixture'
variable = 'cp_var'
[]
[darcy_out]
type = FunctorAux
functor = 'Darcy_coefficient'
variable = 'darcy_coef'
[]
[fch_out]
type = FunctorAux
functor = 'Forchheimer_coefficient'
variable = 'fch_coef'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
initial_condition = '${T_inlet}'
scaling = 1.0
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = rho_mixture
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
variable = vel_x
momentum_component = 'x'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = rho_mixture
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = rho_mixture
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
variable = vel_y
momentum_component = 'y'
u = vel_x
v = vel_y
Darcy_name = 'Darcy_coeff'
Forchheimer_name = 'Forchheimer_coeff'
rho = ${rho_liquid}
mu = ${mu}
standard_friction_formulation = false
[]
[T_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = rho_mixture
dh_dt = dh_dt
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = k_mixture
variable = T
[]
[energy_source]
type = NSFVPhaseChangeSource
variable = T
L = ${L}
liquid_fraction = fl
T_liquidus = ${T_liquidus}
T_solidus = ${T_solidus}
rho = 'rho_mixture'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_x
function = '${U_inlet}'
[]
[sym_u]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = vel_y
function = 0
[]
[sym_v]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = y
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'outlet'
variable = pressure
function = 0
[]
[sym_p]
type = INSFVSymmetryPressureBC
boundary = 'symmetry'
variable = pressure
[]
[sym_T]
type = INSFVSymmetryScalarBC
variable = T
boundary = 'symmetry'
[]
[cooled_wall]
type = FVFunctorDirichletBC
variable = T
functor = '${T_cold}'
boundary = 'cooled_wall'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = rho_mixture
cp = cp_mixture
temperature = 'T'
[]
[eff_cp]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${cp_solid} ${k_solid} ${rho_solid}'
phase_1_names = '${cp_liquid} ${k_liquid} ${rho_liquid}'
prop_names = 'cp_mixture k_mixture rho_mixture'
phase_1_fraction = fl
[]
[mushy_zone_resistance]
type = INSFVMushyPorousFrictionFunctorMaterial
liquid_fraction = 'fl'
mu = '${mu}'
rho_l = '${rho_liquid}'
[]
[friction]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coeff Forchheimer_coeff'
prop_values = 'darcy_coef darcy_coef darcy_coef fch_coef fch_coef fch_coef'
[]
[]
[Executioner]
type = Transient
dt = 5e3
end_time = 1e4
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-8
nl_max_its = 12
[]
[Postprocessors]
[average_T]
type = ElementAverageValue
variable = T
outputs = csv
execute_on = FINAL
[]
[]
[VectorPostprocessors]
[sat]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0.0 0 0'
end_point = '10.0 0 0'
num_points = '${Nx}'
sort_by = x
variable = 'T'
execute_on = FINAL
[]
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/pressure-interpolation-corrected.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
darcy = 1.1
forch = 1.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 2
ny = 2
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
porosity = porosity
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolator
u = u
v = v
porosity = porosity
pressure = pressure
smoothing_layers = 2
[]
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[eps_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[eps_out]
type = FunctorAux
variable = eps_out
functor = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_drag]
type = PINSFVMomentumFriction
variable = u
momentum_component = 'x'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[u_correction]
type = PINSFVMomentumFrictionCorrection
variable = u
momentum_component = 'x'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[u_forcing]
type = INSFVBodyForce
variable = u
functor = forcing_u
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
pressure = pressure
porosity = porosity
momentum_component = 'y'
[]
[v_drag]
type = PINSFVMomentumFriction
variable = v
momentum_component = 'y'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[v_correction]
type = PINSFVMomentumFrictionCorrection
variable = v
momentum_component = 'y'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[v_forcing]
type = INSFVBodyForce
variable = v
functor = forcing_v
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
functor = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
functor = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[FunctorMaterials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '${darcy} ${darcy} ${darcy} ${forch} ${forch} ${forch}'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = u
superficial_vel_y = v
porosity = porosity
[]
[]
[Functions]
[porosity]
type = ParsedFunction
expression = '.5 + .1 * sin(pi * x / 4) * cos(pi * y / 4)'
[]
[exact_u]
type = ParsedFunction
expression = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
expression = 'darcy*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) + (1/2)*forch*rho*sqrt(sin((1/4)*x*pi)^2*cos((1/2)*y*pi)^2 + sin((1/2)*y*pi)^2*cos((1/2)*x*pi)^2)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(0.1*pi^2*sin((1/4)*x*pi)*sin((1/4)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.025*pi^2*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.01*pi^2*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^3 - 1/4*pi^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(0.025*pi^2*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.1*pi^2*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.01*pi^2*sin((1/2)*y*pi)*cos((1/4)*x*pi)^2*cos((1/2)*x*pi)*cos((1/4)*y*pi)^2/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^3 - 1/4*pi^2*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)) + 0.025*pi*mu*(0.1*pi*sin((1/4)*x*pi)*sin((1/4)*y*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + (1/2)*pi*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5))*sin((1/4)*x*pi)*sin((1/4)*y*pi) - 0.025*pi*mu*(-0.1*pi*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 1/2*pi*sin((1/2)*x*pi)*sin((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5))*cos((1/4)*x*pi)*cos((1/4)*y*pi) + 0.1*pi*rho*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 0.1*pi*rho*sin((1/2)*y*pi)^2*cos((1/4)*x*pi)*cos((1/2)*x*pi)^2*cos((1/4)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + (1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - 1/4*pi*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
symbol_names = 'mu rho darcy forch'
symbol_values = '${mu} ${rho} ${darcy} ${forch}'
[]
[exact_v]
type = ParsedFunction
expression = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_v]
type = ParsedFunction
expression = 'darcy*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) + (1/2)*forch*rho*sqrt(sin((1/4)*x*pi)^2*cos((1/2)*y*pi)^2 + sin((1/2)*y*pi)^2*cos((1/2)*x*pi)^2)*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(-0.1*pi^2*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)*sin((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.025*pi^2*sin((1/4)*x*pi)^2*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.01*pi^2*sin((1/4)*x*pi)^3*sin((1/4)*y*pi)^2*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^3 - 1/4*pi^2*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)) - mu*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*(0.025*pi^2*sin((1/4)*x*pi)^2*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 0.05*pi^2*cos((1/4)*x*pi)^2*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + 0.01*pi^2*sin((1/4)*x*pi)*cos((1/4)*x*pi)^2*cos((1/4)*y*pi)^2*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^3 - 1/16*pi^2*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)) + 0.025*pi*mu*(0.1*pi*sin((1/4)*x*pi)^2*sin((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 1/2*pi*sin((1/4)*x*pi)*sin((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5))*sin((1/4)*x*pi)*sin((1/4)*y*pi) - 0.025*pi*mu*(-0.1*pi*sin((1/4)*x*pi)*cos((1/4)*x*pi)*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 + (1/4)*pi*cos((1/4)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5))*cos((1/4)*x*pi)*cos((1/4)*y*pi) + 0.1*pi*rho*sin((1/4)*x*pi)^3*sin((1/4)*y*pi)*cos((1/2)*y*pi)^2/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - 0.1*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/4)*y*pi)*cos((1/2)*y*pi)/(0.2*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 1)^2 - pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + (1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5) + (3/2)*pi*(0.1*sin((1/4)*x*pi)*cos((1/4)*y*pi) + 0.5)*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
symbol_names = 'mu rho darcy forch'
symbol_values = '${mu} ${rho} ${darcy} ${forch}'
[]
[exact_p]
type = ParsedFunction
expression = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
expression = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
symbol_names = 'rho'
symbol_values = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = false
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2FunctorError
approximate = u
exact = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2FunctorError
approximate = v
exact = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
type = ElementL2FunctorError
approximate = pressure
exact = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]