- muDynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Dynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- mu_tTurbulent viscosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Turbulent viscosity. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- rhofluid density. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:fluid density. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- tkeCoupled turbulent kinetic energy. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Coupled turbulent kinetic energy. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- uThe velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
INSFVTKEDSourceSink
The object computes the turbulent source and sink term for the turbulent kinetic energy dissipation rate equation.
Two terms are computed: destruction
and production
and the term destruction - production
is passed to the residual. A different treatment is used for the bulk and the near wall regions.
Bulk formulation:
The production of turbulent kinetic energy dissipation is modeled as follows:
where:
is a closure parameter,
is the limited turbulent kinetic energy production. For more details please refer to INSFVTKESourceSink.
The destruction of the turbulent kinetic energy dissipation rate is modeled as follows:
where:
is a closure parameter,
is the solution variable, i.e., the dissipation rate of the turbulent kinetic energy,
is the turbulent kinetic energy,
is the turbulent time scale; if the "linearized_model" is
true
, this timescale is computed from the previous iteration; if "linearized_model" isfalse
, in a nonlinear solve, this timescale is aded to the Jacobian.
Wall formulation:
All cells in contact with a boundary identified in the "walls" list are applied a different treatment in which the equilibrium value for the is set. A separate formulation is used for the sub-laminar
and logarithmic
boundary layers. The determination of whether the near-wall cell lies in the laminar or logarithmic region is performed via the non-dimensional wall distance . The non-dimensional wall distance can be defined differently according to the "wall_treatment" parameter.
The four formulations are described in more detail in INSFVTurbulentViscosityWallFunction.
If an equilibrium "wall_treatment" is defined, i.e. eq_newton
,eq_incremental
or eq_linearized
, the standard wall function formulations are used in which is found:
where:
is the density,
is the distance from the wall to the centroid of the next-to-wall cell,
is the friction velocity, defined as with the shear stress at the wall for which the condition is applied,
is the dynamic molecular viscosity.
If a non-equilibrium "wall_treatment" is defined, i.e. neq
, the is defined non-iteratively as follows:
Using non-equilibrium wall functions is recommended for problems with recirculations and boundary layer detachment. However, using non-equilibrium wall functions will deteriorate results for standard problems such as flow developing over walls.
The cells with belong to sub-laminar
boundary layer. The ones belonging to the logarithmic
boundary layer are those for which .
A different value is used for in each of the two regions. For the sub-laminar
boundary layer, the equilibrium value is determined as follows:
where:
is the turbulent dynamic viscosity.
For the logarithmic
boundary layer, the value is determined as follows:
where:
is the von Kármán constant.
When using wall functions, since the equilibrium value for is set in the cells near the wall, the user is recommended to deactivate advection and diffusion for those near wall cells.
When the wall treatment is specified in this kernel, any boundary condition for will be ignored. In other words, there is no need to impose boundary conditions for when the wall treatment is specified in his kernel.
When using near-wall treatment, we assume that the functor is computed by an object that performs near-wall treatment. Otherwise, the results obtained won't be physically correct.
Input Parameters
- C1_eps1.44First epsilon coefficient
Default:1.44
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:First epsilon coefficient
- C2_eps1.92Second epsilon coefficient
Default:1.92
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Second epsilon coefficient
- C_mu0.09Coupled turbulent kinetic energy closure.
Default:0.09
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Coupled turbulent kinetic energy closure.
- C_pl10Production limiter constant multiplier.
Default:10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Production limiter constant multiplier.
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- linearized_modelTrueBoolean to determine if the problem should be used in a linear or nonlinear solve
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Boolean to determine if the problem should be used in a linear or nonlinear solve
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- vThe velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- wThe velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- wall_treatmentneqThe method used for computing the wall functions 'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'
Default:neq
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions 'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'
- wallsBoundaries that correspond to solid walls.
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:Boundaries that correspond to solid walls.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- newton_solveFalseWhether a Newton nonlinear solve is being used
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether a Newton nonlinear solve is being used
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- ghost_layers2The number of layers of elements to ghost.
Default:2
C++ Type:unsigned short
Unit:(no unit assumed)
Controllable:No
Description:The number of layers of elements to ghost.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Parallel Ghosting Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-capped.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-non-eq-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-no-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/channel_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/BFS_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-non-eq-bulk.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-std-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-std-wall-nonlinear.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-inc-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-linear-wall.i)
linearized_model
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Boolean to determine if the problem should be used in a linear or nonlinear solve
linearized_model
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Boolean to determine if the problem should be used in a linear or nonlinear solve
walls
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:Boundaries that correspond to solid walls.
wall_treatment
Default:neq
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions 'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'
wall_treatment
Default:neq
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions 'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'
wall_treatment
Default:neq
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions 'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-capped.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with capped mixing length
# Standard wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
C_pl = 0.1
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C_pl = ${C_pl}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
C_pl = ${C_pl}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-non-eq-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# Standard wall functions with non-equilibrium wall formulation
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-no-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = ''
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[walls_TKED]
type = INSFVTKEDWallFunctionBC
boundary = 'left right top bottom'
variable = TKED
u = vel_x
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
[]
[walls_TKE]
type = FVDirichletBC
boundary = 'left right top bottom'
variable = TKE
value = ${k_init}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.9 0.9'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/channel_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe turbulent channel flow
# Case Number: 032
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
H = 1 #halfwidth of the channel
L = 30
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = 0
ymax = ${H}
nx = 20
ny = 5
bias_y = 0.7
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${bulk_u}
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e-8
solver_sys = pressure_system
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '${bulk_u}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = FVDirichletBC
boundary = 'top'
variable = vel_x
value = 0
[]
[walls-v]
type = FVDirichletBC
boundary = 'top'
variable = vel_y
value = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[inlet_TKE]
type = INSFVInletIntensityTKEBC
boundary = 'left'
variable = TKE
u = vel_x
v = vel_y
intensity = ${intensity}
[]
[inlet_TKED]
type = INSFVMixingLengthTKEDBC
boundary = 'left'
variable = TKED
k = TKE
characteristic_length = '${fparse 2*H}'
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'top'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'mu_t'
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'mu_t'
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[symmetry_TKE]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = TKE
[]
[symmetry_TKED]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = TKED
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[yplus]
type = MooseVariableFVReal
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
k = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.25 0.25'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/BFS_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe BFS
# Case Number: 031
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H/ Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${fparse 10.0*H} ${fparse 20.0*H}'
dy = '${H} ${fparse 5*H}'
ix = '8 16'
iy = '2 8'
subdomain_id = '
2 1
1 1
'
[]
[corner_walls]
type = SideSetsBetweenSubdomainsGenerator
input = gen
primary_block = '1'
paired_block = '2'
new_boundary = 'wall-side'
[]
[delete_bottom]
type = BlockDeletionGenerator
input = corner_walls
block = '2'
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${bulk_u}
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e-8
solver_sys = pressure_system
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = 0
[]
[inlet_TKE]
type = INSFVInletIntensityTKEBC
boundary = 'left'
variable = TKE
u = vel_x
v = vel_y
intensity = ${intensity}
[]
[inlet_TKED]
type = INSFVMixingLengthTKEDBC
boundary = 'left'
variable = TKED
k = TKE
characteristic_length = '${fparse 2*H}'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
functor = 0
[]
[walls-u]
type = FVDirichletBC
boundary = ${walls}
variable = vel_x
value = 0
[]
[walls-v]
type = FVDirichletBC
boundary = ${walls}
variable = vel_y
value = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = ${walls}
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.3 0.3'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
[]
[Outputs]
exodus = true
[console]
type = Console
outlier_variable_norms = false
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-non-eq-bulk.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# Standard wall functions with non-equilibrium bulk formaultion
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions with temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment_v = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
wall_treatment_T = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
solver_sys = energy_system
initial_condition = 1.0
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_turb_conduction]
type = FVDiffusion
coeff = 'k_t'
variable = T_fluid
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment_v}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment_v}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = INSFVTurbulentTemperatureWallFunction
variable = T_fluid
boundary = 'top'
T_w = 1
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
cp = ${cp}
kappa = ${k}
k = TKE
wall_treatment = ${wall_treatment_T}
[]
[T_cold]
type = INSFVTurbulentTemperatureWallFunction
variable = T_fluid
boundary = 'bottom'
T_w = 0
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
cp = ${cp}
kappa = ${k}
k = TKE
wall_treatment = ${wall_treatment_T}
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment_v}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[k_t]
type = MooseVariableFVReal
initial_condition = 1.0
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment_v}
execute_on = 'NONLINEAR'
[]
[compute_k_t]
type = TurbulentConductivityAux
variable = k_t
Pr_t = ${Pr_t}
cp = ${cp}
mu_t = 'mu_t'
execute_on = 'NONLINEAR'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
energy_equation_relaxation = 0.9
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
energy_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
energy_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-std-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
mu_interp_method = 'average'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
mu_interp_method = 'average'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
coeff_interp_method = 'average'
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
coeff_interp_method = 'average'
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with energy transport
# Standard wall functions without temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
solver_sys = energy_system
initial_condition = 1.0
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_turb_conduction]
type = FVDiffusion
coeff = 'k_t'
variable = T_fluid
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = 'top'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = 'bottom'
value = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[k_t]
type = ADParsedFunctorMaterial
expression = 'mu_t * cp / Pr_t'
functor_names = 'mu_t ${cp} ${Pr_t}'
functor_symbols = 'mu_t cp Pr_t'
property_name = 'k_t'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
energy_equation_relaxation = 0.9
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
energy_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
energy_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-std-wall-nonlinear.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# No wall functions
# Newton Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
walls = ''
linearized_model = false
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 10
ny = 10
[]
[]
[Problem]
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-10
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-10
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 0.2
[]
[TKE]
type = INSFVEnergyVariable
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
initial_condition = ${eps_init}
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
mu_interp_method = average
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
mu_interp_method = average
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
mu_interp_method = average
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
mu_interp_method = average
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[TKE_time]
type = FVFunctorTimeKernel
variable = TKE
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
coeff_interp_method = average
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
linearized_model = ${linearized_model}
[]
[TKED_time]
type = FVFunctorTimeKernel
variable = TKED
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
coeff_interp_method = average
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
linearized_model = ${linearized_model}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_TKE]
type = FVDirichletBC
boundary = 'left right top bottom'
variable = TKE
value = ${k_init}
[]
[walls_TKED]
type = FVDirichletBC
boundary = 'left right top bottom'
variable = TKED
value = ${eps_init}
[]
[]
[FunctorMaterials]
[mu_t_material]
type = INSFVkEpsilonViscosityFunctorMaterial
tke = TKE
epsilon = TKED
rho = ${rho}
[]
[]
[Executioner]
type = Transient
end_time = 200
dt = 0.01
steady_state_detection = true
steady_state_tolerance = 1e-3
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type -snes_linesearch_damping'
petsc_options_value = 'lu NONZERO 0.5'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
nl_max_its = 50
line_search = none
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = true
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-inc-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Incremental wall function formulation (similar to OpenFOAM)
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-linear-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Linear wall function formulation (faster runs)
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]