- rhie_chow_user_objectThe rhie-chow user-object
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:The rhie-chow user-object
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
INSFVScalarFieldAdvection
This object adds a term for an arbitrary scalar field , where corresponds to the nonlinear variable that this kernel acts on. The nonlinear variable
can be of type MooseVariableFVReal
or for consistency with other INSFV naming conventions, can be of type INSFVScalarFieldVariable
.
When using a mixture model for multiphase flows, this kernel also allows us to add the slip velocity, which is modeled by the following term:
where:
is the slip velocity of the transported phase
When adding the slip velocity, the net advection term that is added is the following , where is the mixture velocity.
Input Parameters
- advected_interp_methodupwindThe interpolation to use for the advected quantity. Options are 'upwind', 'average', 'sou' (for second-order upwind), 'min_mod', 'vanLeer', 'quick', and 'skewness-corrected' with the default being 'upwind'.
Default:upwind
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:average, upwind, sou, min_mod, vanLeer, quick, skewness-corrected
Controllable:No
Description:The interpolation to use for the advected quantity. Options are 'upwind', 'average', 'sou' (for second-order upwind), 'min_mod', 'vanLeer', 'quick', and 'skewness-corrected' with the default being 'upwind'.
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- u_slipThe velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- v_slipThe velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
- velocity_interp_methodrcThe interpolation to use for the velocity. Options are 'average' and 'rc' which stands for Rhie-Chow. The default is Rhie-Chow.
Default:rc
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:average, rc
Controllable:No
Description:The interpolation to use for the velocity. Options are 'average' and 'rc' which stands for Rhie-Chow. The default is Rhie-Chow.
- w_slipThe velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- boundaries_to_avoidThe set of sidesets to not execute this FVFluxKernel on. This takes precedence over force_boundary_execution to restrict to less external boundaries. By default flux kernels are executed on all internal boundaries and Dirichlet boundary conditions.
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The set of sidesets to not execute this FVFluxKernel on. This takes precedence over force_boundary_execution to restrict to less external boundaries. By default flux kernels are executed on all internal boundaries and Dirichlet boundary conditions.
- boundaries_to_forceThe set of sidesets to force execution of this FVFluxKernel on. Setting force_boundary_execution to true is equivalent to listing all external mesh boundaries in this parameter.
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The set of sidesets to force execution of this FVFluxKernel on. Setting force_boundary_execution to true is equivalent to listing all external mesh boundaries in this parameter.
Boundary Execution Modification Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- ghost_layers2The number of layers of elements to ghost.
Default:2
C++ Type:unsigned short
Unit:(no unit assumed)
Controllable:No
Description:The number of layers of elements to ghost.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Parallel Ghosting Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/multiapp-scalar-transport/scalar-transport.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth_transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-w-interface-area.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/with-direction/errors/flux_bcs.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_reversal.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-advection-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/turbulent_driven_growth.i)
- (modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
mu = 1
rho = 1
k = 1e-3
diff = 1e-3
cp = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[scalar_coupled_source]
type = FVCoupledForce
variable = scalar
v = U
coef = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[]
[FunctorMaterials]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/2d-rc.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
restricted_blocks = '1'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = ${restricted_blocks}
pressure = pressure
[]
[]
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
block = ${restricted_blocks}
[]
[temperature]
type = INSFVEnergyVariable
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = temperature
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = temperature
[]
[energy_loss]
type = FVBodyForce
variable = temperature
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[top-wall-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = u
function = 0
[]
[top-wall-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = v
function = 0
[]
[bottom-wall-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = u
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[bottom-wall-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = v
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[bottom-wall-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = temperature
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
block = ${restricted_blocks}
[]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-transient.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 5}'
ymin = '${fparse -l / 2}'
ymax = '${fparse l / 2}'
nx = 10
ny = 4
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'phase_2'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = x
mu = mu_mixture
rho = rho_mixture
variable = vel_x
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'phase_2'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = y
mu = mu_mixture
rho = rho_mixture
variable = vel_y
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
functor = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[vel_slip_x_var]
type = MooseVariableFVReal
[]
[vel_slip_y_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[populate_vx_slip_var]
type = FunctorAux
variable = vel_slip_x_var
functor = 'vel_slip_x'
[]
[populate_vy_slip_var]
type = FunctorAux
variable = vel_slip_y_var
functor = 'vel_slip_y'
[]
[]
[FunctorMaterials]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = '${rho_d} ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
dt = 0.1
end_time = 1.0
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
exodus = false
[CSV]
type = CSV
execute_on = 'TIMESTEP_END'
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[vslip_x]
type = SideExtremeValue
boundary = 'left'
variable = 'vel_slip_x_var'
[]
[vslip_y]
type = SideExtremeValue
boundary = 'left'
variable = 'vel_slip_y_var'
[]
[vslip_value]
type = ParsedPostprocessor
expression = 'sqrt(vslip_x*vslip_x + vslip_y*vslip_y)*vslip_x/abs(vslip_x)'
pp_names = 'vslip_x vslip_y'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/multiapp-scalar-transport/scalar-transport.i)
diff=1e-3
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
active = 'rc'
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
a_u = ax
a_v = ay
[]
[rc_bad]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[Variables]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[AuxVariables]
[ax]
type = MooseVariableFVReal
[]
[ay]
type = MooseVariableFVReal
[]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[FVKernels]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth_transient.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 3
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 0.491230114
dp = 0.001
inlet_phase_2 = 0.049
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e6
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[Problem]
identify_variable_groups_in_nl = false
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
coord_type = 'RZ'
rz_coord_axis = 'X'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 60}'
ymin = 0
ymax = '${fparse l / 2}'
nx = 20
ny = 5
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_phase_2}
[]
[interface_area]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_interface_area}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
functor = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_x'
v_slip = 'vel_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1.0
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = ${mass_exchange_coeff}
[]
[interface_area_time]
type = FVFunctorTimeKernel
variable = interface_area
functor = interface_area
[]
[interface_area_advection]
type = INSFVScalarFieldAdvection
variable = interface_area
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[interface_area_diffusion]
type = FVDiffusion
variable = interface_area
coeff = 0.1
[]
[interface_area_source_sink]
type = WCNSFV2PInterfaceAreaSourceSink
variable = interface_area
u = 'vel_x'
v = 'vel_y'
L = ${fparse l/2}
rho = 'rho_mixture'
rho_d = 'rho'
pressure = 'pressure'
k_c = '${fparse mass_exchange_coeff}'
fd = 'phase_2'
sigma = 1e-3
cutoff_fraction = 0.0
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${outlet_pressure}'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[inlet_interface_area]
type = FVDirichletBC
boundary = 'left'
variable = interface_area
value = ${inlet_interface_area}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[symmetry-phase-2]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = phase_2
[]
[symmetry-interface-area]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = interface_area
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[FunctorMaterials]
[bubble_properties]
type = GeneralFunctorFluidProps
fp = 'fp'
pressure = 'pressure'
T_fluid = 300.0
speed = 1.0
characteristic_length = 1.0
porosity = 1.0
output_properties = 'rho'
outputs = 'out'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = 'rho ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-7
dt = 0.1
end_time = 1.0
nl_max_its = 10
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
[out]
type = Exodus
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
pp_names = ''
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/exceptions/bad-restriction.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
restricted_blocks = '1'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
block = '1 2'
pressure = pressure
[]
[]
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
block = ${restricted_blocks}
[]
[temperature]
type = INSFVEnergyVariable
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = temperature
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = temperature
[]
[energy_loss]
type = FVBodyForce
variable = temperature
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[top-wall-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = u
function = 0
[]
[top-wall-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = v
function = 0
[]
[bottom-wall-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = u
mu = ${mu}
u = u
v = v
momentum_component = 'x'
[]
[bottom-wall-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = v
mu = ${mu}
u = u
v = v
momentum_component = 'y'
[]
[bottom-wall-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = temperature
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'temperature'
rho = ${rho}
block = ${restricted_blocks}
[]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
mu = 2.6
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system scalar_1_system scalar_2_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[scalar_1]
type = INSFVScalarFieldVariable
solver_sys = scalar_1_system
initial_condition = 1.2
[]
[scalar_2]
type = INSFVScalarFieldVariable
solver_sys = scalar_2_system
initial_condition = 1.2
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[scalar_1_advection]
type = INSFVScalarFieldAdvection
variable = scalar_1
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_1_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar_1
[]
[scalar_1_src]
type = FVBodyForce
variable = scalar_1
value = 1.0
[]
[scalar_1_coupled_source]
type = FVCoupledForce
variable = scalar_1
v = scalar_2
coef = 0.1
[]
[scalar_2_advection]
type = INSFVScalarFieldAdvection
variable = scalar_2
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_2_diffusion]
type = FVDiffusion
coeff = '${fparse 2*diff}'
variable = scalar_2
[]
[scalar_2_src]
type = FVBodyForce
variable = scalar_2
value = 5.0
[]
[scalar_2_coupled_source]
type = FVCoupledForce
variable = scalar_2
v = scalar_1
coef = 0.05
[]
[]
[FVBCs]
inactive = "symmetry-u symmetry-v symmetry-p"
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[inlet_scalar_1]
type = FVDirichletBC
boundary = 'left'
variable = scalar_1
value = 1
[]
[inlet_scalar_2]
type = FVDirichletBC
boundary = 'left'
variable = scalar_2
value = 2
[]
### Inactive by default, some tests will turn these on ###
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
##########################################################
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
passive_scalar_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
passive_scalar_systems = 'scalar_1_system scalar_2_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
passive_scalar_equation_relaxation = '0.9 0.9'
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
passive_scalar_absolute_tolerance = '1e-13 1e-13'
print_fields = false
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = FINAL
[]
[]
[Postprocessors]
inactive = "out1 out2 in1 in2"
[out1]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_1'
boundary = right
execute_on = FINAL
outputs = csv
[]
[in1]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_1'
boundary = left
execute_on = FINAL
outputs = csv
[]
[out2]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_2'
boundary = right
execute_on = FINAL
outputs = csv
[]
[in2]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_2'
boundary = left
execute_on = FINAL
outputs = csv
[]
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux-w-interface-area.i)
mu = 10.0
rho = 100.0
mu_d = 1.0
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.0
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.01
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[Problem]
identify_variable_groups_in_nl = false
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 5}'
ymin = '${fparse -l / 2}'
ymax = '${fparse l / 2}'
nx = 20
ny = 5
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[interface_area]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
inactive = 'u_time v_time phase_2_time interface_area_time'
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
functor = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1.0
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = ${mass_exchange_coeff}
[]
[interface_area_time]
type = FVFunctorTimeKernel
variable = interface_area
functor = interface_area
[]
[interface_area_advection]
type = INSFVScalarFieldAdvection
variable = interface_area
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[interface_area_diffusion]
type = FVDiffusion
variable = interface_area
coeff = 0.1
[]
[interface_area_source_sink]
type = WCNSFV2PInterfaceAreaSourceSink
variable = interface_area
u = 'vel_x'
v = 'vel_y'
L = 1.0
rho = 'rho_mixture'
rho_d = ${rho_d}
pressure = 'pressure'
k_c = ${fparse mass_exchange_coeff * 100.0}
fd = 'phase_2'
sigma = 1e-3
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[inlet_interface_area]
type = FVDirichletBC
boundary = 'left'
variable = interface_area
value = 0.0
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FunctorMaterials]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = '${rho_d} ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
# dt = 0.1
# end_time = 1.0
# nl_max_its = 10
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
function = '${rho} * ${l} * ${U}'
pp_names = ''
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_direct.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVFunctorTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
vel_x = u
vel_y = v
rho = 'rho'
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = u
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'surface_inlet'
rho = 'rho'
momentum_component = 'x'
vel_x = u
vel_y = v
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = v
boundary = 'left'
mdot_pp = 0
area_pp = 'surface_inlet'
rho = 'rho'
momentum_component = 'y'
vel_x = u
vel_y = v
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T
T_fluid = T
boundary = 'left'
energy_pp = 'inlet_Edot'
area_pp = 'surface_inlet'
vel_x = u
vel_y = v
rho = 'rho'
cp = cp
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_flux_pp = 'inlet_scalar_flux'
area_pp = 'surface_inlet'
vel_x = u
vel_y = v
rho = 'rho'
passive_scalar = scalar
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[surface_inlet]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_Edot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * 2530 * inlet_temp * inlet_area}
[]
[inlet_scalar_flux]
type = Receiver
default = ${fparse inlet_velocity * 0.2 * inlet_area}
[]
[]
[FluidProperties]
[fp]
type = SimpleFluidProperties
density0 = 1980
cp = 2530
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/with-direction/errors/flux_bcs.i)
l = 5
inlet_area = 2
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
rho = 1000
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${l} ${l}'
dy = '${inlet_area}'
ix = '5 5'
iy = '2'
subdomain_id = '1 2'
[]
[side_set]
type = SideSetsBetweenSubdomainsGenerator
input = gen
primary_block = '1'
paired_block = '2'
new_boundary = 'mid-inlet'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
block = 2
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
block = 2
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
block = 2
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
block = 2
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
block = 2
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
block = 2
[]
[T_solid]
type = MooseVariableFVReal
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
# Mass equation
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
# X component momentum equation
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
# Y component momentum equation
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
# Energy equation
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
# Solid temperature
[solid_temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_solid
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'mid-inlet'
velocity_pp = 'inlet_velocity'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'mid-inlet'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'mid-inlet'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'mid-inlet'
temperature_pp = 'inlet_T'
velocity_pp = 'inlet_velocity'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'mid-inlet'
scalar_value_pp = 'inlet_scalar_value'
velocity_pp = 'inlet_velocity'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
passive_scalar = scalar
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = '${fparse 1980 * inlet_velocity * inlet_area}'
[]
[inlet_velocity]
type = Receiver
default = ${inlet_velocity}
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k rho'
prop_values = '${cp} ${k} ${rho}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
# Mass equation
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
# X component momentum equation
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
# Y component momentum equation
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
# Energy equation
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVFunctorTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'left'
temperature_pp = 'inlet_T'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
passive_scalar = scalar
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/pressure_driven_growth.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 3
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 0.491230114
dp = 0.001
inlet_phase_2 = 0.049
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e5
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[Problem]
identify_variable_groups_in_nl = false
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
coord_type = 'RZ'
rz_coord_axis = 'X'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 60}'
ymin = 0
ymax = '${fparse l / 2}'
nx = 20
ny = 5
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_phase_2}
[]
[interface_area]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_interface_area}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_x'
v_slip = 'vel_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1.0
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = ${mass_exchange_coeff}
[]
[interface_area_advection]
type = INSFVScalarFieldAdvection
variable = interface_area
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[interface_area_diffusion]
type = FVDiffusion
variable = interface_area
coeff = 0.1
[]
[interface_area_source_sink]
type = WCNSFV2PInterfaceAreaSourceSink
variable = interface_area
u = 'vel_x'
v = 'vel_y'
L = ${fparse l/2}
rho = 'rho_mixture'
rho_d = 'rho'
pressure = 'pressure'
k_c = '${fparse mass_exchange_coeff}'
fd = 'phase_2'
sigma = 1e-3
cutoff_fraction = 0.0
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${outlet_pressure}'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[inlet_interface_area]
type = FVDirichletBC
boundary = 'left'
variable = interface_area
value = ${inlet_interface_area}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[symmetry-phase-2]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = phase_2
[]
[symmetry-interface-area]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = interface_area
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[FunctorMaterials]
[bubble_properties]
type = GeneralFunctorFluidProps
fp = 'fp'
pressure = 'pressure'
T_fluid = 300.0
speed = 1.0
characteristic_length = 1.0
porosity = 1.0
output_properties = 'rho'
outputs = 'out'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = 'rho ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
[out]
type = Exodus
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
pp_names = ''
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
restricted_blocks = '1'
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system scalar_system'
previous_nl_solution_required = true
kernel_coverage_check = false
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
block = ${restricted_blocks}
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1.0
solver_sys = u_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
solver_sys = energy_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
solver_sys = scalar_system
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = 'bottom_0'
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = T_fluid
[]
[energy_loss]
type = FVBodyForce
variable = T_fluid
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = 'bottom_0'
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1.0
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-12
pressure_l_abs_tol = 1e-12
energy_l_abs_tol = 1e-12
passive_scalar_l_abs_tol = 1e-12
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
passive_scalar_systems = 'scalar_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.99
passive_scalar_equation_relaxation = 0.99
num_iterations = 100
pressure_absolute_tolerance = 1e-9
momentum_absolute_tolerance = 1e-9
energy_absolute_tolerance = 1e-9
passive_scalar_absolute_tolerance = 1e-9
print_fields = false
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
block = ${restricted_blocks}
[]
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-drift-flux.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 5}'
ymin = '${fparse -l / 2}'
ymax = '${fparse l / 2}'
nx = 10
ny = 4
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'phase_2'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = x
mu = mu_mixture
rho = rho_mixture
variable = vel_x
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'phase_2'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = y
mu = mu_mixture
rho = rho_mixture
variable = vel_y
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FunctorMaterials]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
outputs = 'out'
output_properties = 'vel_slip_x'
ghost_layers = 5
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
outputs = 'out'
output_properties = 'vel_slip_y'
ghost_layers = 5
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
outputs = 'out'
output_properties = 'phase_1'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = '${rho_d} ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
print_linear_residuals = true
print_nonlinear_residuals = true
[out]
type = Exodus
hide = 'Re lin cum_lin'
[]
[perf]
type = PerfGraphOutput
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
[]
[lin]
type = NumLinearIterations
[]
[cum_lin]
type = CumulativeValuePostprocessor
postprocessor = lin
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_reversal.i)
rho = 'rho'
l = 10
inlet_area = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 6
ny = 3
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e6
[]
[]
[FVKernels]
# Mass equation
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
# X component momentum equation
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
# Y component momentum equation
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
# Energy equation
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
rho = rho
drho_dt = drho_dt
dh_dt = dh_dt
h = h
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVFunctorTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'left'
temperature_pp = 'inlet_T'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
passive_scalar = scalar
[]
[outlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'right'
mdot_pp = 'outlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[outlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'right'
mdot_pp = 'outlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[outlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'right'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[outlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'right'
temperature_pp = 'inlet_T'
mdot_pp = 'outlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[outlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'right'
scalar_value_pp = 'inlet_scalar_value'
mdot_pp = 'outlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
passive_scalar = scalar
[]
# Walls
[no_slip_x]
type = INSFVNaturalFreeSlipBC
variable = vel_x
momentum_component = x
boundary = 'top bottom'
[]
[no_slip_y]
type = INSFVNaturalFreeSlipBC
variable = vel_y
momentum_component = y
boundary = 'top bottom'
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_mdot]
type = Receiver
default = ${fparse 1980 * inlet_velocity * inlet_area}
#outputs = none
[]
[outlet_mdot]
type = Receiver
default = ${fparse -1980 * inlet_velocity * inlet_area}
outputs = none
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
outputs = none
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
outputs = none
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
outputs = none
[]
[left_mdot]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = rho
boundary = left
#advected_interp_method = ${advected_interp_method}
[]
[right_mdot]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = rho
boundary = right
advected_interp_method = upwind #${advected_interp_method}
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k rho'
prop_values = '${cp} ${k} 1980'
[]
#[rho]
# type = RhoFromPTFunctorMaterial
# fp = fp
# temperature = T_fluid
# pressure = pressure
#[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-1
optimal_iterations = 6
growth_factor = 4
[]
end_time = 500000
nl_abs_tol = 1e-7
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/rayleigh-bernard-two-phase.i)
mu = 1.0
rho = 1e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.0
g = -9.81
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 11
ny = 11
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[pin_pressure]
type = NSPressurePin
variable = pressure
pin_type = point-value
point = '0 0 0'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = 'rho_mixture'
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyant]
type = INSFVMomentumGravity
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
gravity = '0 ${g} 0'
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyant]
type = INSFVMomentumGravity
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
gravity = '0 ${g} 0'
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1e-3
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${U_lid}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[bottom_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'bottom'
value = 1.0
[]
[top_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'top'
value = 0.0
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[phase_1]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[compute_phase_1]
type = ParsedAux
variable = phase_1
coupled_variables = 'phase_2'
expression = '1 - phase_2'
[]
[]
[FunctorMaterials]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_1_names = '${rho_d} ${mu_d}'
phase_2_names = '${rho} ${mu}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[]
[Postprocessors]
[average_void]
type = ElementAverageValue
variable = 'phase_2'
[]
[max_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = max
[]
[min_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = min
[]
[max_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = max
[]
[min_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = min
[]
[max_x_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_x'
value_type = max
[]
[max_y_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_y'
value_type = max
[]
[max_drag_coefficient]
type = ElementExtremeFunctorValue
functor = 'drag_coefficient'
value_type = max
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
iteration_window = 2
growth_factor = 2
cutback_factor = 0.5
dt = 1e-3
[]
nl_max_its = 20
nl_rel_tol = 1e-03
nl_abs_tol = 1e-9
l_max_its = 5
end_time = 1e8
[]
[Outputs]
exodus = false
[CSV]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
mu = 0.002
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 3
dx = '0.2'
dy = '0.2'
dz = '0.8'
ix = '3'
iy = '3'
iz = '6'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system w_system pressure_system scalar_1_system scalar_2_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
w = vel_z
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[vel_z]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = w_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[scalar_1]
type = INSFVScalarFieldVariable
solver_sys = scalar_1_system
initial_condition = 1.2
[]
[scalar_2]
type = INSFVScalarFieldVariable
solver_sys = scalar_2_system
initial_condition = 1.2
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[w_advection]
type = INSFVMomentumAdvection
variable = vel_z
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[w_viscosity]
type = INSFVMomentumDiffusion
variable = vel_z
mu = ${mu}
momentum_component = 'z'
[]
[w_pressure]
type = INSFVMomentumPressure
variable = vel_z
momentum_component = 'z'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[scalar_1_advection]
type = INSFVScalarFieldAdvection
variable = scalar_1
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_1_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar_1
[]
[scalar_1_src]
type = FVBodyForce
variable = scalar_1
value = 1.0
[]
[scalar_1_coupled_source]
type = FVCoupledForce
variable = scalar_1
v = scalar_2
coef = 0.1
[]
[scalar_2_advection]
type = INSFVScalarFieldAdvection
variable = scalar_2
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_2_diffusion]
type = FVDiffusion
coeff = '${fparse 2*diff}'
variable = scalar_2
[]
[scalar_2_src]
type = FVBodyForce
variable = scalar_2
value = 5.0
[]
[scalar_2_coupled_source]
type = FVCoupledForce
variable = scalar_2
v = scalar_1
coef = 0.05
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_x
function = '0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_y
function = '0'
[]
[inlet-w]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_z
function = '1.1'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom '
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = 0.0
[]
[walls-w]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_z
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'front'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'back left right top bottom'
function = 0.0
[]
[inlet_scalar_1]
type = FVDirichletBC
boundary = 'back'
variable = scalar_1
value = 1
[]
[inlet_scalar_2]
type = FVDirichletBC
boundary = 'back'
variable = scalar_2
value = 2
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
passive_scalar_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system w_system'
pressure_system = 'pressure_system'
passive_scalar_systems = 'scalar_1_system scalar_2_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
passive_scalar_equation_relaxation = '0.98 0.98'
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
passive_scalar_absolute_tolerance = '1e-13 1e-13'
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
Re = 1e4
von_karman_const = 0.2
D = 1
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * D / Re}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = '${fparse 0.5 * D}'
nx = 20
ny = 10
bias_y = '${fparse 1 / 1.2}'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion_rans]
type = INSFVMixingLengthScalarDiffusion
variable = scalar
mixing_length = 'mixing_length'
u = vel_x
v = vel_y
schmidt_number = 1.0
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top bottom'
variable = 'mixing_length'
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[wall-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[wall-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'total_viscosity'
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'total_viscosity'
momentum_component = y
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = 'mixing_length'
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_velocity.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_velocity = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 10
ny = 5
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_velocity}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[]
[AuxVariables]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
# Scalar concentration equation
[scalar_time]
type = FVFunctorTimeKernel
variable = scalar
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
variable = scalar
coeff = 1.1
[]
[scalar_source]
type = FVBodyForce
variable = scalar
function = 2.1
[]
[]
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
velocity_pp = 'inlet_u'
rho = 'rho'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
velocity_pp = 'inlet_u'
rho = 'rho'
momentum_component = 'x'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
velocity_pp = 0
rho = 'rho'
momentum_component = 'y'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
T_fluid = T_fluid
boundary = 'left'
velocity_pp = 'inlet_u'
temperature_pp = 'inlet_T'
rho = 'rho'
cp = 'cp'
vel_x = vel_x
vel_y = vel_y
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
velocity_pp = 'inlet_u'
vel_x = vel_x
vel_y = vel_y
rho = rho
passive_scalar = scalar
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
# used for the boundary conditions in this example
[Postprocessors]
[inlet_u]
type = Receiver
default = ${inlet_velocity}
[]
[area_pp_left]
type = AreaPostprocessor
boundary = 'left'
execute_on = 'INITIAL'
[]
[inlet_T]
type = Receiver
default = ${inlet_temp}
[]
[inlet_scalar_value]
type = Receiver
default = 0.2
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-2
optimal_iterations = 6
[]
end_time = 1
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/channel-advection-slip.i)
mu = 1.0
rho = 10.0
mu_d = 0.1
rho_d = 1.0
l = 2
U = 1
dp = 0.01
inlet_phase_2 = 0.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
mu_interp_method = 'average'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 5}'
ymin = '${fparse -l / 2}'
ymax = '${fparse l / 2}'
nx = 10
ny = 6
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection_slip]
type = WCNSFV2PMomentumAdvectionSlip
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
rho_d = ${rho_d}
fd = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = x
mu = mu_mixture
rho = rho_mixture
variable = vel_x
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection_slip]
type = WCNSFV2PMomentumAdvectionSlip
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
rho_d = ${rho_d}
fd = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_friction]
type = PINSFVMomentumFriction
Darcy_name = Darcy_coefficient_vec
is_porous_medium = false
momentum_component = y
mu = mu_mixture
rho = rho_mixture
variable = vel_y
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FunctorMaterials]
[phase_1]
property_name = 'phase_1'
type = ADParsedFunctorMaterial
functor_names = 'phase_2'
expression = '1 - phase_2'
outputs = 'out'
output_properties = 'phase_1'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
outputs = 'out'
output_properties = 'vel_slip_x'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
outputs = 'out'
output_properties = 'vel_slip_y'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = '${rho_d} ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
[out]
type = Exodus
hide = 'Re lin cum_lin'
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
[]
[lin]
type = NumLinearIterations
[]
[cum_lin]
type = CumulativeValuePostprocessor
postprocessor = lin
[]
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_interface_area_model/turbulent_driven_growth.i)
###############################################################################
# Validation test based on Hibiki and Ishii experiment [1] reported in Figure 5
# [1] Hibiki, T., & Ishii, M. (2000). One-group interfacial area transport of
# bubbly flows in vertical round tubes.
# International Journal of Heat and Mass Transfer, 43(15), 2711-2726.
###############################################################################
mu = 1.0
rho = 1000.0
mu_d = 1.0
rho_d = 1.0
l = ${fparse 50.8/1000.0}
U = 5.031429
dp = 0.005
inlet_phase_2 = 0.442
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
mass_exchange_coeff = 0.0
inlet_interface_area = ${fparse 6.0*inlet_phase_2/dp}
outlet_pressure = 1e5
[GlobalParams]
rhie_chow_user_object = 'rc'
density_interp_method = 'average'
mu_interp_method = 'average'
[]
[Problem]
identify_variable_groups_in_nl = false
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
coord_type = 'RZ'
rz_coord_axis = 'X'
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = '${fparse l * 60}'
ymin = 0
ymax = '${fparse l / 2}'
nx = 20
ny = 5
[]
uniform_refine = 0
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_phase_2}
[]
[interface_area]
type = INSFVScalarFieldVariable
initial_condition = ${inlet_interface_area}
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_x
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_drift]
type = WCNSFV2PMomentumDriftFlux
variable = vel_y
rho_d = ${rho_d}
fd = 'rho_mixture_var'
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
limit_interpolation = true
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_x'
v_slip = 'vel_y'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1.0
[]
[phase_2_src]
type = NSFVMixturePhaseInterface
variable = phase_2
phase_coupled = phase_1
alpha = ${mass_exchange_coeff}
[]
[interface_area_advection]
type = INSFVScalarFieldAdvection
variable = interface_area
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = 'upwind'
[]
[interface_area_diffusion]
type = FVDiffusion
variable = interface_area
coeff = 0.1
[]
[interface_area_source_sink]
type = WCNSFV2PInterfaceAreaSourceSink
variable = interface_area
u = 'vel_x'
v = 'vel_y'
L = ${fparse l/2}
rho = 'rho_mixture'
rho_d = 'rho'
pressure = 'pressure'
k_c = '${fparse mass_exchange_coeff}'
fd = 'phase_2'
sigma = 1e-3
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${U}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '${outlet_pressure}'
[]
[inlet_phase_2]
type = FVDirichletBC
boundary = 'left'
variable = phase_2
value = ${inlet_phase_2}
[]
[inlet_interface_area]
type = FVDirichletBC
boundary = 'left'
variable = interface_area
value = ${inlet_interface_area}
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[symmetry-phase-2]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = phase_2
[]
[symmetry-interface-area]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = interface_area
[]
[]
[AuxVariables]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[FunctorMaterials]
[bubble_properties]
type = GeneralFunctorFluidProps
fp = 'fp'
pressure = 'pressure'
T_fluid = 300.0
speed = 1.0
characteristic_length = 1.0
porosity = 1.0
output_properties = 'rho'
outputs = 'out'
[]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_2_names = '${rho} ${mu}'
phase_1_names = 'rho ${mu_d}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[]
[Outputs]
[out]
type = Exodus
[]
[]
[Postprocessors]
[Re]
type = ParsedPostprocessor
expression = '${rho} * ${l} * ${U}'
pp_names = ''
[]
[rho_outlet]
type = SideAverageValue
boundary = 'right'
variable = 'rho_mixture_var'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/two_phase/mixture_model/lid-driven-two-phase.i)
mu = 1.0
rho = 1.0e3
mu_d = 0.3
rho_d = 1.0
dp = 0.01
U_lid = 0.1
g = -9.81
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'upwind'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 10
ny = 10
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[phase_2]
type = INSFVScalarFieldVariable
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[pin_pressure]
type = NSPressurePin
variable = pressure
pin_type = point-value
point = '0 0 0'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = 'rho_mixture'
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_mixture'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_buoyant]
type = INSFVMomentumGravity
variable = vel_x
rho = 'rho_mixture'
momentum_component = 'x'
gravity = '0 ${g} 0'
[]
# NOTE: the friction terms for u and v are missing
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_mixture'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_buoyant]
type = INSFVMomentumGravity
variable = vel_y
rho = 'rho_mixture'
momentum_component = 'y'
gravity = '0 ${g} 0'
[]
[phase_2_time]
type = FVFunctorTimeKernel
variable = phase_2
[]
[phase_2_advection]
type = INSFVScalarFieldAdvection
variable = phase_2
u_slip = 'vel_slip_x'
v_slip = 'vel_slip_y'
[]
[phase_2_diffusion]
type = FVDiffusion
variable = phase_2
coeff = 1e-3
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${U_lid}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[bottom_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'bottom'
value = 1.0
[]
[top_phase_2]
type = FVDirichletBC
variable = phase_2
boundary = 'top'
value = 0.0
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[drag_coefficient]
type = MooseVariableFVReal
[]
[rho_mixture_var]
type = MooseVariableFVReal
[]
[mu_mixture_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[populate_cd]
type = FunctorAux
variable = drag_coefficient
functor = 'Darcy_coefficient'
[]
[populate_rho_mixture_var]
type = FunctorAux
variable = rho_mixture_var
functor = 'rho_mixture'
[]
[populate_mu_mixture_var]
type = FunctorAux
variable = mu_mixture_var
functor = 'mu_mixture'
[]
[]
[FunctorMaterials]
[populate_u_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_x'
momentum_component = 'x'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
gravity = '0 ${g} 0'
[]
[populate_v_slip]
type = WCNSFV2PSlipVelocityFunctorMaterial
slip_velocity_name = 'vel_slip_y'
momentum_component = 'y'
u = 'vel_x'
v = 'vel_y'
rho = ${rho}
mu = 'mu_mixture'
rho_d = ${rho_d}
particle_diameter = ${dp}
linear_coef_name = 'Darcy_coefficient'
gravity = '0 ${g} 0'
[]
[compute_phase_1]
type = ADParsedFunctorMaterial
property_name = phase_1
functor_names = 'phase_2'
expression = '1 - phase_2'
[]
[CD]
type = NSFVDispersePhaseDragFunctorMaterial
rho = 'rho_mixture'
mu = mu_mixture
u = 'vel_x'
v = 'vel_y'
particle_diameter = ${dp}
[]
[mixing_material]
type = NSFVMixtureFunctorMaterial
phase_1_names = '${rho_d} ${mu_d}'
phase_2_names = '${rho} ${mu}'
prop_names = 'rho_mixture mu_mixture'
phase_1_fraction = 'phase_2'
[]
[]
[Postprocessors]
[average_void]
type = ElementAverageValue
variable = 'phase_2'
[]
[max_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = max
[]
[min_y_velocity]
type = ElementExtremeValue
variable = 'vel_y'
value_type = min
[]
[max_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = max
[]
[min_x_velocity]
type = ElementExtremeValue
variable = 'vel_x'
value_type = min
[]
[max_x_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_x'
value_type = max
[]
[max_y_slip_velocity]
type = ElementExtremeFunctorValue
functor = 'vel_slip_y'
value_type = max
[]
[max_drag_coefficient]
type = ElementExtremeFunctorValue
functor = 'drag_coefficient'
value_type = max
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
iteration_window = 2
growth_factor = 2.0
cutback_factor = 0.5
dt = 1e-3
[]
nl_max_its = 10
nl_rel_tol = 1e-03
nl_abs_tol = 1e-9
l_max_its = 5
end_time = 1e8
[]
[Outputs]
exodus = false
[CSV]
type = CSV
execute_on = 'FINAL'
[]
[]