- mat_prop_time_derivativeThe material property containing the time derivative.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:The material property containing the time derivative.
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
FVMatPropTimeKernel
Returns a material property which should correspond to a time derivative.
Overview
This object simply populates the residual with the value of the material property passed in (specified by mat_prop_time_derivative
). It is the responsibility of the material providing this property to ensure that the time derivative is computed properly.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystem timeThe tag for the matrices this Kernel should fill
Default:system time
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system, time
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagstimeThe tag for the vectors this Kernel should fill
Default:time
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- ghost_layers1The number of layers of elements to ghost.
Default:1
C++ Type:unsigned short
Unit:(no unit assumed)
Controllable:No
Description:The number of layers of elements to ghost.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Parallel Ghosting Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity-mixed.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/dc.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
(modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
p_initial=1.01e5
T=273.15
u_in=10
eps=1
superficial_vel_in=${fparse u_in * eps}
[GlobalParams]
fp = fp
limiter = 'vanLeer'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 10
nx = 100
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[superficial_vel_x]
type = MooseVariableFVReal
initial_condition = ${superficial_vel_in}
[]
[temperature]
type = MooseVariableFVReal
initial_condition = ${T}
[]
[]
[AuxVariables]
[rho]
type = MooseVariableFVReal
[]
[superficial_rhou]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[superficial_rhou]
type = ADMaterialRealAux
variable = superficial_rhou
property = superficial_rhou
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = superficial_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = superficial_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = temperature
[]
[energy_advection]
type = PCNSFVKT
variable = temperature
eqn = "energy"
[]
[heat]
type = FVBodyForce
variable = temperature
value = 1e6
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = superficial_vel_x
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = temperature
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = superficial_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = temperature
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = temperature
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = superficial_vel_x
value = ${superficial_vel_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[superficial_vel_in]
type = ParsedVectorFunction
expression_x = '${superficial_vel_in}'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = temperature
superficial_vel_x = superficial_vel_x
fp = fp
porosity = porosity
[]
[fluid_only]
type = GenericConstantMaterial
prop_names = 'porosity'
prop_values = '${eps}'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 10
[]
steady_state_detection = false
steady_state_tolerance = 1e-12
abort_on_solve_fail = false
end_time = 100
nl_abs_tol = 1e-8
dtmin = 5e-5
automatic_scaling = true
compute_scaling_once = false
verbose = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -snes_linesearch_minlambda'
petsc_options_value = 'lu mumps NONZERO 1e-3 '
[]
[Outputs]
[exo]
type = Exodus
execute_on = 'final'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity-mixed.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
rho_in=1.30524
sup_mom_y_in=${fparse u_in * rho_in}
user_limiter='upwind'
friction_coeff=10
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 18
ny = 90
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_mom_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[sup_mom_y]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_y]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[eps]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[eps]
type = MaterialRealAux
variable = eps
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_mom_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_mom_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[drag]
type = PCNSFVMomentumFriction
variable = sup_mom_x
momentum_component = 'x'
Darcy_name = 'cl'
momentum_name = superficial_rhou
[]
[momentum_time_y]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhov_dt'
variable = sup_mom_y
[]
[momentum_advection_y]
type = PCNSFVKT
variable = sup_mom_y
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_mom_y
momentum_component = 'y'
epsilon_function = 'eps'
[]
[drag_y]
type = PCNSFVMomentumFriction
variable = sup_mom_y
momentum_component = 'y'
Darcy_name = 'cl'
momentum_name = superficial_rhov
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
velocity_function_includes_rho = true
[]
[rhou_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
velocity_function_includes_rho = true
[]
[rhov_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_y
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
velocity_function_includes_rho = true
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
velocity_function_includes_rho = true
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_y
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
[wall_pressure_x]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right'
variable = sup_mom_x
[]
[wall_pressure_y]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right'
variable = sup_mom_y
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_bottom]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'bottom'
[]
[sup_mom_x_bottom_and_walls]
type = FVDirichletBC
variable = sup_mom_x
value = 0
boundary = 'bottom left right'
[]
[sup_mom_y_walls]
type = FVDirichletBC
variable = sup_mom_y
value = 0
boundary = 'left right'
[]
[sup_mom_y_bottom]
type = FVDirichletBC
variable = sup_mom_y
value = ${sup_mom_y_in}
boundary = 'bottom'
[]
[p_top]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'top'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
expression_x = '0'
expression_y = '${sup_mom_y_in}'
[]
[eps]
type = ParsedFunction
expression = 'if(y < 2.8, 1,
if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
if(y < 6.8, .5,
if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
if(y < 10.8, .25,
if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
if(y < 14.8, .5,
if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_rhou = sup_mom_x
superficial_rhov = sup_mom_y
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[ad_generic]
type = ADGenericConstantVectorMaterial
prop_names = 'cl'
prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-7
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu mumps'
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/dc.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
rho_in=1.30524
sup_mom_y_in=${fparse u_in * rho_in}
user_limiter='min_mod'
friction_coeff=10
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 18
ny = 90
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_mom_x]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[sup_mom_y]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
[]
[]
[AuxVariables]
[vel_y]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[eps]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[eps]
type = MaterialRealAux
variable = eps
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKTDC
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_mom_x
[]
[momentum_advection]
type = PCNSFVKTDC
variable = sup_mom_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[drag]
type = PCNSFVMomentumFriction
variable = sup_mom_x
momentum_component = 'x'
Darcy_name = 'cl'
momentum_name = superficial_rhou
[]
[momentum_time_y]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhov_dt'
variable = sup_mom_y
[]
[momentum_advection_y]
type = PCNSFVKTDC
variable = sup_mom_y
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_mom_y
momentum_component = 'y'
epsilon_function = 'eps'
[]
[drag_y]
type = PCNSFVMomentumFriction
variable = sup_mom_y
momentum_component = 'y'
Darcy_name = 'cl'
momentum_name = superficial_rhov
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKTDC
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
velocity_function_includes_rho = true
[]
[rhou_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
velocity_function_includes_rho = true
[]
[rhov_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_y
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
velocity_function_includes_rho = true
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
velocity_function_includes_rho = true
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_y
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
[wall_pressure_x]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right'
variable = sup_mom_x
[]
[wall_pressure_y]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right'
variable = sup_mom_y
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_bottom]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'bottom'
[]
[sup_mom_x_bottom_and_walls]
type = FVDirichletBC
variable = sup_mom_x
value = 0
boundary = 'bottom left right'
[]
[sup_mom_y_walls]
type = FVDirichletBC
variable = sup_mom_y
value = 0
boundary = 'left right'
[]
[sup_mom_y_bottom]
type = FVDirichletBC
variable = sup_mom_y
value = ${sup_mom_y_in}
boundary = 'bottom'
[]
[p_top]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'top'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
expression_x = '0'
expression_y = '${sup_mom_y_in}'
[]
[eps]
type = ParsedFunction
expression = 'if(y < 2.8, 1,
if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
if(y < 6.8, .5,
if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
if(y < 10.8, .25,
if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
if(y < 14.8, .5,
if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_rhou = sup_mom_x
superficial_rhov = sup_mom_y
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[ad_generic]
type = ADGenericConstantVectorMaterial
prop_names = 'cl'
prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10
nl_abs_tol = 1e-8
automatic_scaling = true
compute_scaling_once = false
resid_vs_jac_scaling_param = 0.5
verbose = true
steady_state_detection = true
steady_state_tolerance = 1e-8
normalize_solution_diff_norm_by_dt = false
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
[out]
type = Exodus
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = ''
[num_nl]
type = NumNonlinearIterations
[]
[total_nl]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
friction_coeff=10
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 18
ny = 90
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[sup_vel_y]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_y]
type = MooseVariableFVReal
[]
[sup_mom_y]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[eps]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[sup_mom_y]
type = ADMaterialRealAux
variable = sup_mom_y
property = superficial_rhov
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[eps]
type = MaterialRealAux
variable = eps
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[drag]
type = PCNSFVMomentumFriction
variable = sup_vel_x
momentum_component = 'x'
Darcy_name = 'cl'
momentum_name = superficial_rhou
[]
[momentum_time_y]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhov_dt'
variable = sup_vel_y
[]
[momentum_advection_y]
type = PCNSFVKT
variable = sup_vel_y
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_vel_y
momentum_component = 'y'
epsilon_function = 'eps'
[]
[drag_y]
type = PCNSFVMomentumFriction
variable = sup_vel_y
momentum_component = 'y'
Darcy_name = 'cl'
momentum_name = superficial_rhov
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_vel_y
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_vel_y
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
[wall_pressure_x]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right'
variable = sup_vel_x
[]
[wall_pressure_y]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right'
variable = sup_vel_y
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_bottom]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'bottom'
[]
[sup_vel_x_bottom_and_walls]
type = FVDirichletBC
variable = sup_vel_x
value = 0
boundary = 'bottom left right'
[]
[sup_vel_y_walls]
type = FVDirichletBC
variable = sup_vel_y
value = 0
boundary = 'left right'
[]
[sup_vel_y_bottom]
type = FVDirichletBC
variable = sup_vel_y
value = ${u_in}
boundary = 'bottom'
[]
[p_top]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'top'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
expression_x = '0'
expression_y = '${u_in}'
[]
[eps]
type = ParsedFunction
expression = 'if(y < 2.8, 1,
if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
if(y < 6.8, .5,
if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
if(y < 10.8, .25,
if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
if(y < 14.8, .5,
if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
superficial_vel_y = sup_vel_y
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[ad_generic]
type = ADGenericConstantVectorMaterial
prop_names = 'cl'
prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-7
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu mumps'
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 18
nx = 180
[]
[to_pt5]
input = cartesian
type = SubdomainBoundingBoxGenerator
bottom_left = '2 0 0'
top_right = '4 1 0'
block_id = 1
[]
[pt5]
input = to_pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '4 0 0'
top_right = '6 1 0'
block_id = 2
[]
[to_pt25]
input = pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '6 0 0'
top_right = '8 1 0'
block_id = 3
[]
[pt25]
input = to_pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '8 0 0'
top_right = '10 1 0'
block_id = 4
[]
[to_pt5_again]
input = pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '10 0 0'
top_right = '12 1 0'
block_id = 5
[]
[pt5_again]
input = to_pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '12 0 0'
top_right = '14 1 0'
block_id = 6
[]
[to_one]
input = pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '14 0 0'
top_right = '16 1 0'
block_id = 7
[]
[one]
input = to_one
type = SubdomainBoundingBoxGenerator
bottom_left = '16 0 0'
top_right = '18 1 0'
block_id = 8
[]
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_x]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[worst_courant]
type = MooseVariableFVReal
[]
[porosity]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_x]
type = ADMaterialRealAux
variable = vel_x
property = vel_x
execute_on = 'timestep_end'
[]
[sup_mom_x]
type = ADMaterialRealAux
variable = sup_mom_x
property = superficial_rhou
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[worst_courant]
type = Courant
variable = worst_courant
u = sup_vel_x
execute_on = 'timestep_end'
[]
[porosity]
type = MaterialRealAux
variable = porosity
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = sup_vel_x
value = ${u_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
expression_x = '${u_in}'
[]
[eps]
type = ParsedFunction
expression = 'if(x < 2, 1,
if(x < 4, 1 - .5 / 2 * (x - 2),
if(x < 6, .5,
if(x < 8, .5 - .25 / 2 * (x - 6),
if(x < 10, .25,
if(x < 12, .25 + .25 / 2 * (x - 10),
if(x < 14, .5,
if(x < 16, .5 + .5 / 2 * (x - 14),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-8
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]