- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- water_fpThe name of the FluidProperties UserObject for water
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:The name of the FluidProperties UserObject for water
BrineFluidProperties
Fluid properties for brine
A high-precision and consistent formulation for fluid properties for binary salt (NaCl) and water mixtures at pressures and temperatures of interest.
Density, enthalpy, internal energy and specific heat capacity are calculated using the formulations provided in Driesner and Heinrich (2007) and Driesner (2007).
Viscosity and thermal conductivity of brine are calculated using the formulation of Phillips et al. (1981).
Brine vapor pressure is calculated using the formulation presented in Haas Jr (1976).
Solubility of solid salt (halite) in water is given by Potter et al. (1977).
By default, the BrineFluidProperties UserObject uses the Water97FluidProperties and NaClFluidProperties which are constructed internally, so do not have to be supplied by the user.
The BrineFluidProperties UserObject takes an optional parameter water_fp
which can be used to pass a specific water formulation. This allows the user to use a tabulated version of the water properties (using TabulatedFluidProperties), which can significantly speed up the calculation of brine properties.
Range of validity
The BrineFluidProperties UserObject is valid for:
273.15 K T 1273.15 K,
0.1 MPa p 500 MPa,
0 x 1
Input Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:true to allow unimplemented property derivative terms to be set to zero for the AD API
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- fp_typeunspecified-typeType of the fluid property object
Default:unspecified-type
C++ Type:FPType
Unit:(no unit assumed)
Controllable:No
Description:Type of the fluid property object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/porous_flow/test/tests/jacobian/brineco2_liquid_2.i)
- (modules/porous_flow/examples/lava_lamp/2phase_convection.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_ic.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_gas.i)
- (modules/porous_flow/examples/fluidflower/fluidflower.i)
- (modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
- (modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_liquid.i)
- (modules/porous_flow/test/tests/jacobian/fflux14.i)
- (modules/porous_flow/examples/lava_lamp/1phase_convection.i)
- (modules/fluid_properties/test/tests/brine/brine_tabulated.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_twophase_nonisothermal.i)
- (modules/porous_flow/examples/restart/gravityeq.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2comp.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_fv.i)
- (modules/fluid_properties/test/tests/brine/brine.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
- (modules/porous_flow/test/tests/fluids/multicomponent.i)
- (modules/porous_flow/examples/restart/gas_injection.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_hightemp.i)
- (modules/porous_flow/test/tests/jacobian/brineco2_twophase.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_nonisothermal.i)
- (modules/porous_flow/examples/co2_intercomparison/1Dradial/properties.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2.i)
References
- T. Driesner.
The system H$_2$O-NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 C, 1 to 5000 bar, and 0 to 1 X$_NaCl$.
Geochimica et Cosmochimica Acta, 71:4902–4919, 2007.[BibTeX]
@article{driesner2007b, author = "Driesner, T.", title = "{The system H$\_2$O-NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 C, 1 to 5000 bar, and 0 to 1 X$\_{NaCl}$}", journal = "Geochimica et Cosmochimica Acta", volume = "71", pages = "4902--4919", year = "2007" }
- T. Driesner and C. A. Heinrich.
The system H$_2$O-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 C, 0 to 5000 bar, and 0 to 1 X$_NaCl$.
Geochimica et Cosmochimica Acta, 71:4880–4901, 2007.[BibTeX]
@article{driesner2007a, author = "Driesner, T. and Heinrich, C. A.", title = "{The system H$\_2$O-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 C, 0 to 5000 bar, and 0 to 1 X$\_{NaCl}$}", journal = "Geochimica et Cosmochimica Acta", volume = "71", pages = "4880--4901", year = "2007" }
- J. L. Haas Jr.
Physical properties of the coexisting phases and thermochemical properties of the H$_2$O component in boiling NaCl solutions.
Technical Report USGS Bulletin 1421-A, United States Geological Survey, 1976.[BibTeX]
@techreport{haas1976, author = "Haas Jr, J. L.", title = "{Physical properties of the coexisting phases and thermochemical properties of the H$\_2$O component in boiling NaCl solutions}", institution = "United States Geological Survey", number = "USGS Bulletin 1421-A", year = "1976" }
- S. L. Phillips, A. Igbene, J. A. Fair, H. Ozbek, and M. Tavana.
A technical databook for geothermal energy utilization.
Technical Report LBL-12810, Lawrence Berkeley National Laboratory, Berkeley CA, USA, 1981.[BibTeX]
@techreport{phillips1981, author = "Phillips, S. L. and Igbene, A. and Fair, J. A. and Ozbek, H. and Tavana, M.", title = "A technical databook for geothermal energy utilization", institution = "Lawrence Berkeley National Laboratory", address = "Berkeley CA, USA", number = "LBL-12810", year = "1981" }
- R. W. Potter, R. S. Babcock, and D. L. Brown.
A new method for determining the solubility of salts in aqueous solutions at elevated temperatures.
J. Res. US Geol. Surv., 5:389–395, 1977.[BibTeX]
@article{potter1977, author = "Potter, R. W. and Babcock, R. S. and Brown, D. L.", title = "A new method for determining the solubility of salts in aqueous solutions at elevated temperatures", journal = "J. Res. US Geol. Surv.", volume = "5", pages = "389--395", year = "1977" }
(modules/porous_flow/test/tests/jacobian/brineco2_liquid_2.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that give a single liquid phase, including salt as a nonlinear variable
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pgas]
[]
[zi]
[]
[xnacl]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 5e6
max = 8e6
variable = pgas
[]
[z]
type = RandomIC
min = 0.01
max = 0.03
variable = zi
[]
[xnacl]
type = RandomIC
min = 0.01
max = 0.15
variable = xnacl
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
variable = xnacl
fluid_component = 2
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[adv2]
type = PorousFlowAdvectiveFlux
variable = xnacl
fluid_component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e3
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
(modules/porous_flow/examples/lava_lamp/2phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# Initially, the model has a gas phase at the top with a saturation of 0.29
# (which corresponds to an initial value of zi = 0.2).
# Diffusion of the dissolved CO2
# component from the saturated liquid to the unsaturated liquid below reduces the
# amount of CO2 in the gas phase. As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores,
# preferably on a cluster.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[]
[initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[]
[]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymax = 2
xmax = 2
ny = 40
nx = 40
bias_y = 0.95
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.01
[]
[saturation_gas]
order = FIRST
family = MONOMIAL
[]
[xco2l]
order = FIRST
family = MONOMIAL
[]
[density_liquid]
order = FIRST
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e4
[]
[]
[ICs]
[pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[]
[zi]
type = BoundingBoxIC
variable = zi
x1 = 0
x2 = 2
y1 = 1.95
y2 = 2
inside = 0.2
outside = 0
[]
[porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
seed = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedBicubicFluidProperties
fp = co2sw
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 2
cutback_factor = 0.5
[]
[]
[Functions]
[flux]
type = ParsedFunction
symbol_values = 'delta_xco2 dt'
symbol_names = 'dx dt'
expression = 'dx/dt'
[]
[]
[Postprocessors]
[total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[]
[total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[]
[numdofs]
type = NumDOFs
[]
[delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[]
[dt]
type = TimestepSize
[]
[flux]
type = FunctionValuePostprocessor
function = flux
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_ic.i)
# Tests correct calculation of z (total mass fraction of NCG summed over all
# phases) using the PorousFlowFluidStateIC initial condition. Once z is
# calculated by the initial condition, the thermophysical properties are calculated
# and the resulting gas saturation should be equal to that given in the intial condition
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature_unit = Celsius
[]
[Variables]
[pgas]
initial_condition = 1e6
[]
[z]
[]
[]
[ICs]
[z]
type = PorousFlowFluidStateIC
saturation = 0.5
gas_porepressure = pgas
temperature = 50
variable = z
xnacl = 0.1
fluid_state = fs
[]
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
fluid_state = fs
capillary_pressure = pc
xnacl = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
execute_on = 'initial timestep_end'
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
execute_on = 'initial timestep_end'
[]
[z]
type = ElementIntegralVariablePostprocessor
variable = z
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/jacobian/brineco2_gas.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that give a single gas phase
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[xnacl]
initial_condition = 0.05
[]
[]
[Variables]
[pgas]
[]
[zi]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 5e4
max = 1e5
variable = pgas
[]
[z]
type = RandomIC
min = 0.9
max = 0.99
variable = zi
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e3
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/examples/fluidflower/fluidflower.i)
# FluidFlower International Benchmark study model
# CSIRO 2023
#
# This example can be used to reproduce the results presented by the
# CSIRO team as part of this benchmark study. See
# Green, C., Jackson, S.J., Gunning, J., Wilkins, A. and Ennis-King, J.,
# 2023. Modelling the FluidFlower: Insights from Characterisation and
# Numerical Predictions. Transport in Porous Media.
#
# This example takes a long time to run! The large density contrast
# between the gas phase CO2 and the water makes convergence very hard,
# so small timesteps must be taken during injection.
#
# This example uses a simplified mesh in order to be run during the
# automated testing. To reproduce the results of the benchmark study,
# replace the simple layered input mesh with the one located in the
# large_media submodule.
#
# The mesh file contains:
# - porosity as given by FluidFlower description
# - permeability as given by FluidFlower description
# - subdomain ids for each sand type
#
# The nominal thickness of the FluidFlower tank is 19mm. To keep masses consistent
# with the experiment, porosity and permeability are multiplied by the thickness
thickness = 0.019
#
# Properties associated with each sand type associated with mesh block ids
#
# block 0 - ESF (very fine sand)
sandESF = '0 10 20'
sandESF_pe = 1471.5
sandESF_krg = 0.09
sandESF_swi = 0.32
sandESF_krw = 0.71
sandESF_sgi = 0.14
# block 1 - C - Coarse lower
sandC = '1 21'
sandC_pe = 294.3
sandC_krg = 0.05
sandC_swi = 0.14
sandC_krw = 0.93
sandC_sgi = 0.1
# block 2 - D - Coarse upper
sandD = '2 22'
sandD_pe = 98.1
sandD_krg = 0.02
sandD_swi = 0.12
sandD_krw = 0.95
sandD_sgi = 0.08
# block 3 - E - Very Coarse lower
sandE = '3 13 23'
sandE_pe = 10
sandE_krg = 0.1
sandE_swi = 0.12
sandE_krw = 0.93
sandE_sgi = 0.06
# block 4 - F - Very Coarse upper
sandF = '4 14 24 34'
sandF_pe = 10
sandF_krg = 0.11
sandF_swi = 0.12
sandF_krw = 0.72
sandF_sgi = 0.13
# block 5 - G - Flush Zone
sandG = '5 15 35'
sandG_pe = 10
sandG_krg = 0.16
sandG_swi = 0.1
sandG_krw = 0.75
sandG_sgi = 0.06
# block 6 - Fault 1 - Heterogeneous
fault1 = '6 26'
fault1_pe = 10
fault1_krg = 0.16
fault1_swi = 0.1
fault1_krw = 0.75
fault1_sgi = 0.06
# block 7 - Fault 2 - Impermeable
# Note: this fault has been removed from the mesh (no elements in this region)
# block 8 - Fault 3 - Homogeneous
fault3 = '8'
fault3_pe = 10
fault3_krg = 0.16
fault3_swi = 0.1
fault3_krw = 0.75
fault3_sgi = 0.06
# Top layer
top_layer = '9'
# Boxes A, B an C used to report values (sg, sgr, xco2, etc)
boxA = '10 13 14 15 34 35'
boxB = '20 21 22 23 24 26'
boxC = '34 35'
# Furthermore, the seal sand unit in boxes A and B
seal_boxA = '10'
seal_boxB = '20'
# CO2 injection details:
# CO2 density ~1.8389 kg/m3 at 293.15 K, 1.01325e5 Pa
# Injection in Port (9, 3) for 5 hours.
# Injection in Port (17, 7) for 2:45 hours.
# Injection of 10 ml/min = 0.1666 ml/s = 1.666e-7 m3/s = ~3.06e-7 kg/s.
# Total mass of CO2 injected ~ 8.5g.
inj_rate = 3.06e-7
[Mesh]
[mesh]
type = FileMeshGenerator
file = 'fluidflower_test.e'
# file = '../../../../large_media/porous_flow/examples/fluidflower/fluidflower.e'
use_for_exodus_restart = true
[]
[]
[Debug]
show_var_residual_norms = true
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature = temperature
log_extension = false
[]
[Variables]
[pgas]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[z]
family = MONOMIAL
order = CONSTANT
fv = true
scaling = 1e4
[]
[]
[AuxVariables]
[xnacl]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.0055
[]
[temperature]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 20
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_from_file_var = porosity
[]
[porosity_times_thickness]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[permeability]
family = MONOMIAL
order = CONSTANT
fv = true
initial_from_file_var = permeability
[]
[permeability_times_thickness]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[saturation_water]
family = MONOMIAL
order = CONSTANT
[]
[saturation_gas]
family = MONOMIAL
order = CONSTANT
[]
[pressure_water]
family = MONOMIAL
order = CONSTANT
[]
[pc]
family = MONOMIAL
order = CONSTANT
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity_times_thickness]
type = ParsedAux
variable = porosity_times_thickness
coupled_variables = porosity
expression = 'porosity * ${thickness}'
execute_on = 'initial'
[]
[permeability_times_thickness]
type = ParsedAux
variable = permeability_times_thickness
coupled_variables = permeability
expression = 'permeability * ${thickness}'
execute_on = 'initial'
[]
[pressure_water]
type = ADPorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_water]
type = ADPorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_gas]
type = ADPorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'initial timestep_end'
[]
[density_water]
type = ADPorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = 'initial timestep_end'
[]
[density_gas]
type = ADPorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = 'initial timestep_end'
[]
[x1_water]
type = ADPorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = ADPorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x0_water]
type = ADPorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = ADPorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[pc]
type = ADPorousFlowPropertyAux
variable = pc
property = capillary_pressure
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass0]
type = FVPorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[flux0]
type = FVPorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[diff0]
type = FVPorousFlowDispersiveFlux
variable = pgas
fluid_component = 0
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = FVPorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[flux1]
type = FVPorousFlowAdvectiveFlux
variable = z
fluid_component = 1
[]
[diff1]
type = FVPorousFlowDispersiveFlux
variable = z
fluid_component = 1
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[DiracKernels]
[injector1]
type = ConstantPointSource
point = '0.9 0.3 0'
value = ${inj_rate}
variable = z
[]
[injector2]
type = ConstantPointSource
point = '1.7 0.7 0'
value = ${inj_rate}
variable = z
[]
[]
[Controls]
[injection1]
type = ConditionalFunctionEnableControl
enable_objects = 'DiracKernels::injector1'
conditional_function = injection_schedule1
[]
[injection2]
type = ConditionalFunctionEnableControl
enable_objects = 'DiracKernels::injector2'
conditional_function = injection_schedule2
[]
[]
[Functions]
[initial_p]
type = ParsedFunction
symbol_names = 'p0 g H rho0'
symbol_values = '101.325e3 9.81 1.5 1002'
expression = 'p0 + rho0 * g * (H - y)'
[]
[injection_schedule1]
type = ParsedFunction
expression = 'if(t >= 0 & t <= 1.8e4, 1, 0)'
[]
[injection_schedule2]
type = ParsedFunction
expression = 'if(t >= 8.1e3 & t <= 1.8e4, 1, 0)'
[]
[]
[ICs]
[p]
type = FunctionIC
variable = pgas
function = initial_p
[]
[]
[FVBCs]
[pressure_top]
type = FVPorousFlowAdvectiveFluxBC
boundary = top
porepressure_value = 1.01325e5
variable = pgas
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedBicubicFluidProperties
fp = water
save_file = false
pressure_min = 1e5
pressure_max = 1e6
temperature_min = 290
temperature_max = 300
num_p = 20
num_T = 10
[]
[co2]
type = CO2FluidProperties
[]
[co2tab]
type = TabulatedBicubicFluidProperties
fp = co2
save_file = false
pressure_min = 1e5
pressure_max = 1e6
temperature_min = 290
temperature_max = 300
num_p = 20
num_T = 10
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[sandESF_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandESF_pe}
lambda = 2
block = ${sandESF}
pc_max = 1e4
sat_lr = ${sandESF_swi}
[]
[sandC_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandC_pe}
lambda = 2
block = ${sandC}
pc_max = 1e4
sat_lr = ${sandC_swi}
[]
[sandD_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandD_pe}
lambda = 2
block = ${sandD}
pc_max = 1e4
sat_lr = ${sandD_swi}
[]
[sandE_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandE_pe}
lambda = 2
block = ${sandE}
pc_max = 1e4
sat_lr = ${sandE_swi}
[]
[sandF_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandF_pe}
lambda = 2
block = ${sandF}
pc_max = 1e4
sat_lr = ${sandF_swi}
[]
[sandG_pc]
type = PorousFlowCapillaryPressureBC
pe = ${sandG_pe}
lambda = 2
block = ${sandG}
pc_max = 1e4
sat_lr = ${sandG_swi}
[]
[fault1_pc]
type = PorousFlowCapillaryPressureBC
pe = ${fault1_pe}
lambda = 2
block = ${fault1}
pc_max = 1e4
sat_lr = ${fault1_swi}
[]
[fault3_pc]
type = PorousFlowCapillaryPressureBC
pe = ${fault3_pe}
lambda = 2
block = ${fault3}
pc_max = 1e4
sat_lr = ${fault3_swi}
[]
[top_layer_pc]
type = PorousFlowCapillaryPressureConst
pc = 0
block = ${top_layer}
[]
[sandESF_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandESF_pc
[]
[sandC_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandC_pc
[]
[sandD_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandD_pc
[]
[sandE_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandE_pc
[]
[sandF_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandF_pc
[]
[sandG_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = sandG_pc
[]
[fault1_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = fault1_pc
[]
[fault3_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = fault3_pc
[]
[top_layer_fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2tab
capillary_pressure = top_layer_pc
[]
[]
[Materials]
[temperature]
type = ADPorousFlowTemperature
temperature = temperature
[]
[sandESF_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandESF_fs
capillary_pressure = sandESF_pc
block = ${sandESF}
[]
[sandC_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandC_fs
capillary_pressure = sandC_pc
block = ${sandC}
[]
[sandD_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandD_fs
capillary_pressure = sandD_pc
block = ${sandD}
[]
[sandE_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandE_fs
capillary_pressure = sandE_pc
block = ${sandE}
[]
[sandF_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandF_fs
capillary_pressure = sandF_pc
block = ${sandF}
[]
[sandG_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = sandG_fs
capillary_pressure = sandG_pc
block = ${sandG}
[]
[fault1_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = fault1_fs
capillary_pressure = fault1_pc
block = ${fault1}
[]
[fault3_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = fault3_fs
capillary_pressure = fault3_pc
block = ${fault3}
[]
[top_layer_brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
fluid_state = top_layer_fs
capillary_pressure = top_layer_pc
block = ${top_layer}
[]
[porosity]
type = ADPorousFlowPorosityConst
porosity = porosity_times_thickness
[]
[permeability]
type = ADPorousFlowPermeabilityConstFromVar
perm_xx = permeability_times_thickness
perm_yy = permeability_times_thickness
perm_zz = permeability_times_thickness
[]
[diffcoeff]
type = ADPorousFlowDiffusivityConst
tortuosity = '1 1'
diffusion_coeff = '2e-9 2e-9 0 0'
[]
[sandESF_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandESF_swi}
sum_s_res = ${fparse sandESF_sgi + sandESF_swi}
scaling = ${sandESF_krw}
block = ${sandESF}
[]
[sandESF_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandESF_sgi}
sum_s_res = ${fparse sandESF_sgi + sandESF_swi}
scaling = ${sandESF_krg}
block = ${sandESF}
[]
[sandC_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandC_swi}
sum_s_res = ${fparse sandC_sgi + sandC_swi}
scaling = ${sandC_krw}
block = ${sandC}
[]
[sandC_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandC_sgi}
sum_s_res = ${fparse sandC_sgi + sandC_swi}
scaling = ${sandC_krg}
block = ${sandC}
[]
[sandD_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandD_swi}
sum_s_res = ${fparse sandD_sgi + sandD_swi}
scaling = ${sandD_krw}
block = ${sandD}
[]
[sandD_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandD_sgi}
sum_s_res = ${fparse sandD_sgi + sandD_swi}
scaling = ${sandD_krg}
block = ${sandD}
[]
[sandE_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandE_swi}
sum_s_res = ${fparse sandE_sgi + sandE_swi}
scaling = ${sandE_krw}
block = ${sandE}
[]
[sandE_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandE_sgi}
sum_s_res = ${fparse sandE_sgi + sandE_swi}
scaling = ${sandE_krg}
block = ${sandE}
[]
[sandF_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandF_swi}
sum_s_res = ${fparse sandF_sgi + sandF_swi}
scaling = ${sandF_krw}
block = ${sandF}
[]
[sandF_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandF_sgi}
sum_s_res = ${fparse sandF_sgi + sandF_swi}
scaling = ${sandF_krg}
block = ${sandF}
[]
[sandG_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${sandG_swi}
sum_s_res = ${fparse sandG_sgi + sandG_swi}
scaling = ${sandG_krw}
block = ${sandG}
[]
[sandG_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${sandG_sgi}
sum_s_res = ${fparse sandG_sgi + sandG_swi}
scaling = ${sandG_krg}
block = ${sandG}
[]
[fault1_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${fault1_swi}
sum_s_res = ${fparse fault1_sgi + fault1_swi}
scaling = ${fault1_krw}
block = ${fault1}
[]
[fault1_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${fault1_sgi}
sum_s_res = ${fparse fault1_sgi + fault1_swi}
scaling = ${fault1_krg}
block = ${fault1}
[]
[fault3_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = ${fault3_swi}
sum_s_res = ${fparse fault3_sgi + fault3_swi}
scaling = ${fault3_krw}
block = ${fault3}
[]
[fault3_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
s_res = ${fault3_sgi}
sum_s_res = ${fparse fault3_sgi + fault3_swi}
scaling = ${fault3_krg}
block = ${fault3}
[]
[top_layer_relperm0]
type = ADPorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
block = ${top_layer}
[]
[top_layer_relperm1]
type = ADPorousFlowRelativePermeabilityBC
phase = 1
nw_phase = true
lambda = 2
block = ${top_layer}
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-ksp_snes_ew'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -sub_pc_factor_shift_type'
petsc_options_value = 'gmres lu mumps NONZERO'
# petsc_options_iname = '-ksp_type -pc_type -pc_hypre_type -sub_pc_type -sub_pc_factor_shift_type -sub_pc_factor_levels -ksp_gmres_restart'
# petsc_options_value = 'gmres hypre boomeramg lu NONZERO 4 301'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dtmax = 60
start_time = 0
end_time = 4.32e5
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-5
l_abs_tol = 1e-8
# line_search = none # Can be a useful option for this problem
[TimeSteppers]
[time]
type = FunctionDT
growth_factor = 2
cutback_factor_at_failure = 0.5
function = 'if(t<1.8e4, 2, if(t<3.6e4, 20, 60))'
[]
[]
[]
[Postprocessors]
[p_5_3]
type = PointValue
variable = pgas
point = '0.5 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_5_3_w]
type = PointValue
variable = pressure_water
point = '0.5 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_5_7]
type = PointValue
variable = pgas
point = '0.5 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_5_7_w]
type = PointValue
variable = pressure_water
point = '0.5 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_9_3]
type = PointValue
variable = pgas
point = '0.9 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_9_3_w]
type = PointValue
variable = pressure_water
point = '0.9 0.3 0'
execute_on = 'initial timestep_end'
[]
[p_15_5]
type = PointValue
variable = pgas
point = '1.5 0.5 0'
execute_on = 'initial timestep_end'
[]
[p_15_5_w]
type = PointValue
variable = pressure_water
point = '1.5 0.5 0'
execute_on = 'initial timestep_end'
[]
[p_17_7]
type = PointValue
variable = pgas
point = '1.7 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_17_7_w]
type = PointValue
variable = pressure_water
point = '1.7 0.7 0'
execute_on = 'initial timestep_end'
[]
[p_17_11]
type = PointValue
variable = pgas
point = '1.7 1.1 0'
execute_on = 'initial timestep_end'
[]
[p_17_11_w]
type = PointValue
variable = pressure_water
point = '1.7 1.1 0'
execute_on = 'initial timestep_end'
[]
[x0mass]
type = FVPorousFlowFluidMass
fluid_component = 0
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1mass]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1gas]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '1'
execute_on = 'initial timestep_end'
[]
[boxA]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${boxA}
execute_on = 'initial timestep_end'
[]
[imm_A_sandESF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandESF_sgi}
block = 10
execute_on = 'initial timestep_end'
[]
[imm_A_sandE]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandE_sgi}
block = 13
execute_on = 'initial timestep_end'
[]
[imm_A_sandF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandF_sgi}
block = '14 34'
execute_on = 'initial timestep_end'
[]
[imm_A_sandG]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandG_sgi}
block = '15 35'
execute_on = 'initial timestep_end'
[]
[imm_A]
type = LinearCombinationPostprocessor
pp_names = 'imm_A_sandESF imm_A_sandE imm_A_sandF imm_A_sandG'
pp_coefs = '1 1 1 1'
execute_on = 'initial timestep_end'
[]
[diss_A]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 0
block = ${boxA}
execute_on = 'initial timestep_end'
[]
[seal_A]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${seal_boxA}
execute_on = 'initial timestep_end'
[]
[boxB]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${boxB}
execute_on = 'initial timestep_end'
[]
[imm_B_sandESF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandESF_sgi}
block = 20
execute_on = 'initial timestep_end'
[]
[imm_B_sandC]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandC_sgi}
block = 21
execute_on = 'initial timestep_end'
[]
[imm_B_sandD]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandD_sgi}
block = 22
execute_on = 'initial timestep_end'
[]
[imm_B_sandE]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandE_sgi}
block = 23
execute_on = 'initial timestep_end'
[]
[imm_B_sandF]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${sandF_sgi}
block = 24
execute_on = 'initial timestep_end'
[]
[imm_B_fault1]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 1
saturation_threshold = ${fault1_sgi}
block = 26
execute_on = 'initial timestep_end'
[]
[imm_B]
type = LinearCombinationPostprocessor
pp_names = 'imm_B_sandESF imm_B_sandC imm_B_sandD imm_B_sandE imm_B_sandF imm_B_fault1'
pp_coefs = '1 1 1 1 1 1'
execute_on = 'initial timestep_end'
[]
[diss_B]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = 0
block = ${boxB}
execute_on = 'initial timestep_end'
[]
[seal_B]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
block = ${seal_boxB}
execute_on = 'initial timestep_end'
[]
[boxC]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0'
block = ${boxC}
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
# exodus = true
[csv]
type = CSV
[]
[]
(modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
# Intercomparison problem 3: Radial flow from an injection well
#
# From Pruess et al, Code intercomparison builds confidence in
# numerical simulation models for geologic disposal of CO2, Energy 29 (2004)
#
# A variation with zero salinity can be run by changing the initial condition
# of the AuxVariable xnacl
[Mesh]
type = GeneratedMesh
dim = 1
nx = 500
xmax = 10000
bias_x = 1.01
coord_type = 'RZ'
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 0 0'
[]
[AuxVariables]
[pressure_liquid]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[xnacl]
initial_condition = 0.15
[]
[]
[AuxKernels]
[pressure_liquid]
type = PorousFlowPropertyAux
variable = pressure_liquid
property = pressure
phase = 0
execute_on = 'timestep_end'
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
initial_condition = 12e6
[]
[zi]
initial_condition = 0
scaling = 1e4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 5.099e-5
m = 0.457
sat_lr = 0.0
pc_max = 1e7
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedBicubicFluidProperties
fp = co2sw
[]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedBicubicFluidProperties
fp = water
temperature_min = 273.15
temperature_max = 573.15
fluid_property_output_file = water_fluid_properties.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water_fluid_properties.csv
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.12'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityVG
m = 0.457
phase = 0
s_res = 0.3
sum_s_res = 0.35
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.05
sum_s_res = 0.35
[]
[]
[BCs]
[rightwater]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
variable = pgas
use_mobility = true
PorousFlowDictator = dictator
fluid_phase = 0
multipliers = '0 1e9'
PT_shift = '12e6'
pt_vals = '0 1e9'
mass_fraction_component = 0
use_relperm = true
[]
[rightco2]
type = PorousFlowPiecewiseLinearSink
variable = zi
boundary = 'right'
use_mobility = true
PorousFlowDictator = dictator
fluid_phase = 1
multipliers = '0 1e9'
PT_shift = '12e6'
pt_vals = '0 1e9'
mass_fraction_component = 1
use_relperm = true
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 1
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres bjacobi lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 8.64e8
nl_max_its = 25
l_max_its = 100
dtmax = 5e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
[]
[]
[VectorPostprocessors]
[vars]
type = NodalValueSampler
sort_by = x
variable = 'pgas zi xnacl'
execute_on = 'timestep_end'
outputs = spatial
[]
[auxvars]
type = ElementValueSampler
sort_by = x
variable = 'saturation_gas x1 y0'
execute_on = 'timestep_end'
outputs = spatial
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '25.25 0 0'
variable = pgas
outputs = time
[]
[sgas]
type = PointValue
point = '25.25 0 0'
variable = saturation_gas
outputs = time
[]
[zi]
type = PointValue
point = '25.25 0 0'
variable = zi
outputs = time
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
outputs = time
[]
[x1]
type = PointValue
point = '25.25 0 0'
variable = x1
outputs = time
[]
[y0]
type = PointValue
point = '25.25 0 0'
variable = y0
outputs = time
[]
[xnacl]
type = PointValue
point = '25.25 0 0'
variable = xnacl
outputs = time
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
sync_times = '2.592e6 8.64e6 8.64e7 8.64e8'
[time]
type = CSV
[]
[spatial]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, the mesh is not identical to the mesh used in gravityeq.i. Rather, it is
# generated so that it is more refined near the injection boundary and at the top of
# the model, as that is where the gas plume will be present.
#
# To use the hydrostatic pressure calculated using the gravity equilibrium run as the initial
# condition for the pressure, a SolutionUserObject is used, along with a SolutionFunction to
# interpolate the pressure from the gravity equilibrium run to the initial condition for liqiud
# porepressure in this example.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we use a mesh shifted 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
type = GeneratedMesh
dim = 2
ny = 25
nx = 50
ymax = 100
xmin = 0.1
xmax = 5000
bias_x = 1.05
bias_y = 0.95
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[pp_liq]
[]
[sat_gas]
initial_condition = 0
[]
[]
[ICs]
[ppliq_ic]
type = FunctionIC
variable = pp_liq
function = ppliq_ic
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[brine_density]
family = MONOMIAL
order = CONSTANT
[]
[methane_density]
family = MONOMIAL
order = CONSTANT
[]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[pp_gas]
family = MONOMIAL
order = CONSTANT
[]
[sat_liq]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pp_liq
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = pp_liq
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = sat_gas
fluid_component = 1
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = sat_gas
fluid_component = 1
[]
[]
[AuxKernels]
[brine_density]
type = PorousFlowPropertyAux
property = density
variable = brine_density
execute_on = 'initial timestep_end'
[]
[methane_density]
type = PorousFlowPropertyAux
property = density
variable = methane_density
phase = 1
execute_on = 'initial timestep_end'
[]
[pp_gas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pp_gas
execute_on = 'initial timestep_end'
[]
[sat_liq]
type = PorousFlowPropertyAux
property = saturation
variable = sat_liq
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[gas_injection]
type = PorousFlowSink
boundary = left
variable = sat_gas
flux_function = injection_rate
fluid_phase = 1
[]
[brine_out]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pp_liq
multipliers = '0 1e9'
pt_vals = '0 1e9'
fluid_phase = 0
flux_function = 1e-6
use_mobility = true
use_relperm = true
mass_fraction_component = 0
[]
[]
[Functions]
[injection_rate]
type = ParsedFunction
symbol_values = injection_area
symbol_names = area
expression = '-1/area'
[]
[ppliq_ic]
type = SolutionFunction
solution = soln
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp_liq sat_gas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1e-5
m = 0.5
sat_lr = 0.2
pc_max = 1e7
[]
[soln]
type = SolutionUserObject
mesh = gravityeq_out.e
system_variables = porepressure
[]
[]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[methane]
type = MethaneFluidProperties
[]
[methane_tab]
type = TabulatedBicubicFluidProperties
fp = methane
save_file = false
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow2PhasePS
phase0_porepressure = pp_liq
phase1_saturation = sat_gas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
[]
[methane]
type = PorousFlowSingleComponentFluid
compute_enthalpy = false
compute_internal_energy = false
fp = methane_tab
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 5e-14 0 0 0 1e-13'
[]
[relperm_liq]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.2
sum_s_res = 0.3
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.1
sum_s_res = 0.3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e8
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
nl_max_its = 20
dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e1
growth_factor = 1.5
[]
[]
[Postprocessors]
[mass_ph0]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[mass_ph1]
type = PorousFlowFluidMass
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[injection_area]
type = AreaPostprocessor
boundary = left
execute_on = initial
[]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]
(modules/porous_flow/test/tests/jacobian/brineco2_liquid.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that give a single liquid phase
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[xnacl]
initial_condition = 0.05
[]
[]
[Variables]
[pgas]
[]
[zi]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 5e6
max = 8e6
variable = pgas
[]
[z_liquid]
type = RandomIC
min = 0.01
max = 0.03
variable = zi
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e4
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/test/tests/jacobian/fflux14.i)
# 1phase, 2components (water and salt using BrineFluidProperties), constant insitu permeability
# Constant relative perm, nonzero gravity
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 1
xmin = 0
xmax = 10
ny = 1
ymin = 0
ymax = 10
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -10 0'
[]
[Variables]
[pp]
[]
[xnacl]
[]
[]
[ICs]
[pp]
type = RandomIC
variable = pp
min = 1e6
max = 2e6
[]
[massfrac0]
type = RandomIC
variable = xnacl
min = 0.1
max = 0.2
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pp
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = xnacl
fluid_component = 1
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = xnacl
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp xnacl'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'xnacl'
[]
[brine]
type = PorousFlowBrine
phase = 0
xnacl = xnacl
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-14 0 0 0 2e-14 0 0 0 3e-14'
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
kr = 1
phase = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
exodus = false
[]
(modules/porous_flow/examples/lava_lamp/1phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# The model starts with CO2 in the liquid phase only. The CO2 diffuses into the brine.
# As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[]
[initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[]
[]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymin = 1.5
ymax = 2
xmax = 2
ny = 20
nx = 40
bias_y = 0.95
[]
[AuxVariables]
[xnacl]
initial_condition = 0.01
[]
[saturation_gas]
order = FIRST
family = MONOMIAL
[]
[xco2l]
order = FIRST
family = MONOMIAL
[]
[density_liquid]
order = FIRST
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e4
[]
[]
[ICs]
[pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[]
[zi]
type = ConstantIC
value = 0
variable = zi
[]
[porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
seed = 0
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0.04
variable = zi
boundary = top
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedBicubicFluidProperties
fp = co2sw
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
growth_factor = 2
cutback_factor = 0.5
[]
[]
[Functions]
[flux]
type = ParsedFunction
symbol_values = 'delta_xco2 dt'
symbol_names = 'dx dt'
expression = 'dx/dt'
[]
[]
[Postprocessors]
[total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[]
[total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[]
[numdofs]
type = NumDOFs
[]
[delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[]
[dt]
type = TimestepSize
[]
[flux]
type = FunctionValuePostprocessor
function = flux
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
(modules/fluid_properties/test/tests/brine/brine_tabulated.i)
# Test BrineFluidProperties calculations of density, viscosity and thermal
# conductivity with a TabulatedBiCubicFluidProperties water.
#
# Experimental density values from Pitzer et al, "Thermodynamic properties
# of aqueous sodium chloride solution", Journal of Physical and Chemical
# Reference Data, 13, 1-102 (1984)
#
# Experimental viscosity values from Phillips et al, "Viscosity of NaCl and
# other solutions up to 350C and 50MPa pressures", LBL-11586 (1980)
#
# Thermal conductivity values from Ozbek and Phillips, "Thermal conductivity of
# aqueous NaCl solutions from 20C to 330C", LBL-9086 (1980)
#
# --------------------------------------------------------------
# Pressure (Mpa) | 20 | 20 | 40
# Temperature (C) | 50 | 200 | 200
# NaCl molality (mol/kg) | 2 | 2 | 5
# NaCl mass fraction (kg/kg) | 0.1047 | 0.1047 | 0.2261
# --------------------------------------------------------------
# Expected values
# --------------------------------------------------------------
# Density (kg/m^3) | 1068.52 | 959.27 | 1065.58
# Viscosity (1e-6Pa.s) | 679.8 | 180.0 | 263.1
# Thermal conductivity (W/m/K) | 0.630 | 0.649 | 0.633
# --------------------------------------------------------------
# Calculated values
# --------------------------------------------------------------
# Density (kg/m^3) | 1067.18 | 958.68 | 1065.46
# Viscosity (1e-6 Pa.s) | 681.1 | 181.98 | 266.1
# Thermal conductivity (W/m/K) | 0.637 | 0.662 | 0.658
# --------------------------------------------------------------
#
# All results are within expected accuracy
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 1
xmax = 3
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Variables]
[./dummy]
[../]
[]
[AuxVariables]
[./pressure]
family = MONOMIAL
order = CONSTANT
[../]
[./temperature]
family = MONOMIAL
order = CONSTANT
[../]
[./xnacl]
family = MONOMIAL
order = CONSTANT
[../]
[./density]
family = MONOMIAL
order = CONSTANT
[../]
[./enthalpy]
family = MONOMIAL
order = CONSTANT
[../]
[./internal_energy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Functions]
[./pic]
type = ParsedFunction
expression = 'if(x<2,20e6, 40e6)'
[../]
[./tic]
type = ParsedFunction
expression = 'if(x<1, 323.15, 473.15)'
[../]
[./xic]
type = ParsedFunction
expression = 'if(x<2,0.1047, 0.2261)'
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
function = pic
variable = pressure
[../]
[./t_ic]
type = FunctionIC
function = tic
variable = temperature
[../]
[./x_ic]
type = FunctionIC
function = xic
variable = xnacl
[../]
[]
[AuxKernels]
[./density]
type = MaterialRealAux
variable = density
property = density
[../]
[./enthalpy]
type = MaterialRealAux
variable = enthalpy
property = enthalpy
[../]
[./internal_energy]
type = MaterialRealAux
variable = internal_energy
property = e
[../]
[]
[FluidProperties]
[./water]
type = Water97FluidProperties
[../]
[./water_tab]
type = TabulatedBicubicFluidProperties
fp = water
save_file = false
[../]
[./brine]
type = BrineFluidProperties
water_fp = water_tab
[../]
[]
[Materials]
[./fp_mat]
type = MultiComponentFluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
xmass = xnacl
fp = brine
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = dummy
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Postprocessors]
[./density0]
type = ElementalVariableValue
variable = density
elementid = 0
[../]
[./density1]
type = ElementalVariableValue
variable = density
elementid = 1
[../]
[./density2]
type = ElementalVariableValue
variable = density
elementid = 2
[../]
[./enthalpy0]
type = ElementalVariableValue
variable = enthalpy
elementid = 0
[../]
[./enthalpy1]
type = ElementalVariableValue
variable = enthalpy
elementid = 1
[../]
[./enthalpy2]
type = ElementalVariableValue
variable = enthalpy
elementid = 2
[../]
[./e0]
type = ElementalVariableValue
variable = internal_energy
elementid = 0
[../]
[./e1]
type = ElementalVariableValue
variable = internal_energy
elementid = 1
[../]
[./e2]
type = ElementalVariableValue
variable = internal_energy
elementid = 2
[../]
[]
[Outputs]
csv = true
file_base = brine_out
[]
(modules/porous_flow/test/tests/jacobian/brineco2_twophase_nonisothermal.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for nonisothermal two phase conditions, including salt as a nonlinear variable
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
xmax = 10
ymax = 10
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e-4
[]
[xnacl]
[]
[temperature]
scaling = 1e-7
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 1e6
max = 4e6
variable = pgas
seed = 1
[]
[z]
type = RandomIC
min = 0.2
max = 0.8
variable = zi
seed = 1
[]
[xnacl]
type = RandomIC
min = 0.01
max = 0.15
variable = xnacl
seed = 1
[]
[temperature]
type = RandomIC
min = 20
max = 80
variable = temperature
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
variable = xnacl
fluid_component = 2
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[adv2]
type = PorousFlowAdvectiveFlux
variable = xnacl
fluid_component = 2
[]
[energy]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heat]
type = PorousFlowHeatAdvection
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl temperature'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
pc_max = 1e3
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature = temperature
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1000
density = 2500
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
(modules/porous_flow/examples/restart/gravityeq.i)
# Initial run to establish gravity equilibrium. As only brine is present (no gas),
# we can use the single phase equation of state and kernels, reducing the computational
# cost. An estimate of the hydrostatic pressure gradient is used as the initial condition
# using an approximate brine density of 1060 kg/m^3.
# The end time is set to a large value (~100 years) to allow the pressure to reach
# equilibrium. Steady state detection is used to halt the run when a steady state is reached.
[Mesh]
type = GeneratedMesh
dim = 2
ny = 10
nx = 10
ymax = 100
xmax = 5000
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[porepressure]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
function = ppic
variable = porepressure
[]
[]
[Functions]
[ppic]
type = ParsedFunction
expression = '10e6 + 1060*9.81*(100-y)'
[]
[]
[BCs]
[top]
type = DirichletBC
variable = porepressure
value = 10e6
boundary = top
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[brine_density]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = porepressure
[]
[flux0]
type = PorousFlowFullySaturatedDarcyFlow
variable = porepressure
[]
[]
[AuxKernels]
[brine_density]
type = PorousFlowPropertyAux
property = density
variable = brine_density
execute_on = 'initial timestep_end'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = porepressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 3e9
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
steady_state_detection = true
steady_state_tolerance = 1e-12
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e1
[]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2comp.i)
# Pressure pulse in 1D with 1 phase but 2 components (where density and viscosity depend on mass fraction)
# This test uses BrineFluidProperties with the PorousFlowMultiComponentFluid material, but could be run using
# the PorousFlowBrine material instead.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp xnacl'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Variables]
[pp]
initial_condition = 1e6
[]
[xnacl]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = xnacl
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = xnacl
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
phase = 0
execute_on = 'initial timestep_end'
[]
[]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 293
[]
[mass_fractions]
type = PorousFlowMassFraction
mass_fraction_vars = xnacl
[]
[ps]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[brine]
type = PorousFlowMultiComponentFluid
x = xnacl
fp = brine
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-7 0 0 0 1e-7 0 0 0 1e-7'
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
kr = 1
phase = 0
[]
[]
[BCs]
[left_p]
type = DirichletBC
boundary = left
value = 2e6
variable = pp
[]
[right_p]
type = DirichletBC
boundary = right
value = 1e6
variable = pp
[]
[left_xnacl]
type = DirichletBC
boundary = left
value = 0.2
variable = xnacl
[]
[right_xnacl]
type = DirichletBC
boundary = right
value = 0
variable = xnacl
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -pc_factor_shift_type'
petsc_options_value = 'bcgs lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[xnacl_000]
type = PointValue
variable = xnacl
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[density_000]
type = PointValue
variable = density
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[xnacl_020]
type = PointValue
variable = xnacl
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[density_020]
type = PointValue
variable = density
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[xnacl_040]
type = PointValue
variable = xnacl
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[density_040]
type = PointValue
variable = density
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[xnacl_060]
type = PointValue
variable = xnacl
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[density_060]
type = PointValue
variable = density
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[xnacl_080]
type = PointValue
variable = xnacl
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[density_080]
type = PointValue
variable = density
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[xnacl_100]
type = PointValue
variable = xnacl
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[density_100]
type = PointValue
variable = density
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
# Two phase Theis problem: Flow from single source.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
#
# This test takes a few minutes to run, so is marked heavy
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2000
xmax = 2000
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[xnacl]
initial_condition = 0.1
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = xnacl
[]
[flux2]
type = PorousFlowAdvectiveFlux
fluid_component = 2
variable = xnacl
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
fluid_property_file = 'fluid_properties.csv'
allow_fp_and_tabulation = true
error_on_out_of_bounds = false
[]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
temperature_min = 273.15
temperature_max = 573.15
fluid_property_output_file = water_fluid_properties.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water_fluid_properties.csv
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[VectorPostprocessors]
[line]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
start_point = '0 0 0'
end_point = '2000 0 0'
num_points = 10000
variable = 'pgas zi xnacl x1 saturation_gas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '4 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '4 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '4 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '4 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '4 0 0'
variable = y0
[]
[xnacl]
type = PointValue
point = '4 0 0'
variable = xnacl
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_fv.i)
# Tests correct calculation of properties in PorousFlowBrineCO2 using FV variables
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 30
[]
[Variables]
[pg]
type = MooseVariableFVReal
initial_condition = 20e6
[]
[z]
type = MooseVariableFVReal
initial_condition = 0.2
[]
[]
[AuxVariables]
[xnacl]
type = MooseVariableFVReal
initial_condition = 0.1
[]
[pressure_gas]
type = MooseVariableFVReal
[]
[pressure_water]
type = MooseVariableFVReal
[]
[saturation_gas]
type = MooseVariableFVReal
[]
[saturation_water]
type = MooseVariableFVReal
[]
[density_water]
type = MooseVariableFVReal
[]
[density_gas]
type = MooseVariableFVReal
[]
[viscosity_water]
type = MooseVariableFVReal
[]
[viscosity_gas]
type = MooseVariableFVReal
[]
[enthalpy_water]
type = MooseVariableFVReal
[]
[enthalpy_gas]
type = MooseVariableFVReal
[]
[internal_energy_water]
type = MooseVariableFVReal
[]
[internal_energy_gas]
type = MooseVariableFVReal
[]
[x0_water]
type = MooseVariableFVReal
[]
[x0_gas]
type = MooseVariableFVReal
[]
[x1_water]
type = MooseVariableFVReal
[]
[x1_gas]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[pressure_water]
type = ADPorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = 'timestep_end'
[]
[pressure_gas]
type = ADPorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = 'timestep_end'
[]
[saturation_water]
type = ADPorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = 'timestep_end'
[]
[saturation_gas]
type = ADPorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[density_water]
type = ADPorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = 'timestep_end'
[]
[density_gas]
type = ADPorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = 'timestep_end'
[]
[viscosity_water]
type = ADPorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = 'timestep_end'
[]
[viscosity_gas]
type = ADPorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = 'timestep_end'
[]
[enthalpy_water]
type = ADPorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = 'timestep_end'
[]
[enthalpy_gas]
type = ADPorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = 'timestep_end'
[]
[internal_energy_water]
type = ADPorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = 'timestep_end'
[]
[internal_energy_gas]
type = ADPorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = 'timestep_end'
[]
[x1_water]
type = ADPorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[x1_gas]
type = ADPorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = 'timestep_end'
[]
[x0_water]
type = ADPorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = 'timestep_end'
[]
[x0_gas]
type = ADPorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass0]
type = FVPorousFlowMassTimeDerivative
variable = pg
fluid_component = 0
[]
[mass1]
type = FVPorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pg z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = ADPorousFlowTemperature
[]
[brineco2]
type = ADPorousFlowFluidState
gas_porepressure = pg
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = ADPorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = ADPorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = ADPorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = ADPorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
execute_on = 'timestep_end'
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
execute_on = 'timestep_end'
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
execute_on = 'timestep_end'
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
execute_on = 'timestep_end'
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
execute_on = 'timestep_end'
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
execute_on = 'timestep_end'
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
execute_on = 'timestep_end'
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
execute_on = 'timestep_end'
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
execute_on = 'timestep_end'
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
execute_on = 'timestep_end'
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
execute_on = 'timestep_end'
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
execute_on = 'timestep_end'
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
execute_on = 'timestep_end'
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
execute_on = 'timestep_end'
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
execute_on = 'timestep_end'
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
execute_on = 'timestep_end'
[]
[x0mass]
type = FVPorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = FVPorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
file_base = brineco2
execute_on = 'timestep_end'
perf_graph = false
[]
(modules/fluid_properties/test/tests/brine/brine.i)
# Test BrineFluidProperties calculations of density, viscosity and thermal
# conductivity
#
# Experimental density values from Pitzer et al, "Thermodynamic properties
# of aqueous sodium chloride solution", Journal of Physical and Chemical
# Reference Data, 13, 1-102 (1984)
#
# Experimental viscosity values from Phillips et al, "Viscosity of NaCl and
# other solutions up to 350C and 50MPa pressures", LBL-11586 (1980)
#
# Thermal conductivity values from Ozbek and Phillips, "Thermal conductivity of
# aqueous NaCl solutions from 20C to 330C", LBL-9086 (1980)
#
# --------------------------------------------------------------
# Pressure (Mpa) | 20 | 20 | 40
# Temperature (C) | 50 | 200 | 200
# NaCl molality (mol/kg) | 2 | 2 | 5
# NaCl mass fraction (kg/kg) | 0.1047 | 0.1047 | 0.2261
# --------------------------------------------------------------
# Expected values
# --------------------------------------------------------------
# Density (kg/m^3) | 1068.52 | 959.27 | 1065.58
# Viscosity (1e-6Pa.s) | 679.8 | 180.0 | 263.1
# Thermal conductivity (W/m/K) | 0.630 | 0.649 | 0.633
# --------------------------------------------------------------
# Calculated values
# --------------------------------------------------------------
# Density (kg/m^3) | 1067.18 | 958.68 | 1065.46
# Viscosity (1e-6 Pa.s) | 681.1 | 181.98 | 266.1
# Thermal conductivity (W/m/K) | 0.637 | 0.662 | 0.658
# --------------------------------------------------------------
#
# All results are within expected accuracy
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 1
xmax = 3
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Variables]
[./dummy]
[../]
[]
[AuxVariables]
[./pressure]
family = MONOMIAL
order = CONSTANT
[../]
[./temperature]
family = MONOMIAL
order = CONSTANT
[../]
[./xnacl]
family = MONOMIAL
order = CONSTANT
[../]
[./density]
family = MONOMIAL
order = CONSTANT
[../]
[./enthalpy]
family = MONOMIAL
order = CONSTANT
[../]
[./internal_energy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Functions]
[./pic]
type = ParsedFunction
expression = 'if(x<2,20e6, 40e6)'
[../]
[./tic]
type = ParsedFunction
expression = 'if(x<1, 323.15, 473.15)'
[../]
[./xic]
type = ParsedFunction
expression = 'if(x<2,0.1047, 0.2261)'
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
function = pic
variable = pressure
[../]
[./t_ic]
type = FunctionIC
function = tic
variable = temperature
[../]
[./x_ic]
type = FunctionIC
function = xic
variable = xnacl
[../]
[]
[AuxKernels]
[./density]
type = MaterialRealAux
variable = density
property = density
[../]
[./enthalpy]
type = MaterialRealAux
variable = enthalpy
property = enthalpy
[../]
[./internal_energy]
type = MaterialRealAux
variable = internal_energy
property = e
[../]
[]
[FluidProperties]
[./brine]
type = BrineFluidProperties
[../]
[]
[Materials]
[./fp_mat]
type = MultiComponentFluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
xmass = xnacl
fp = brine
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = dummy
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Postprocessors]
[./density0]
type = ElementalVariableValue
variable = density
elementid = 0
[../]
[./density1]
type = ElementalVariableValue
variable = density
elementid = 1
[../]
[./density2]
type = ElementalVariableValue
variable = density
elementid = 2
[../]
[./enthalpy0]
type = ElementalVariableValue
variable = enthalpy
elementid = 0
[../]
[./enthalpy1]
type = ElementalVariableValue
variable = enthalpy
elementid = 1
[../]
[./enthalpy2]
type = ElementalVariableValue
variable = enthalpy
elementid = 2
[../]
[./e0]
type = ElementalVariableValue
variable = internal_energy
elementid = 0
[../]
[./e1]
type = ElementalVariableValue
variable = internal_energy
elementid = 1
[../]
[./e2]
type = ElementalVariableValue
variable = internal_energy
elementid = 2
[../]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
# Two phase nonisothermal Theis problem: Flow from single source.
# Constant rate injection 2 kg/s of cold CO2 into warm reservoir
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 40
xmin = 0.1
xmax = 200
bias_x = 1.05
[]
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[xnacl]
initial_condition = 0.1
[]
[temperature]
initial_condition = 70
scaling = 1e-4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = xnacl
[]
[flux2]
type = PorousFlowAdvectiveFlux
fluid_component = 2
variable = xnacl
[]
[energy]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heatadv]
type = PorousFlowHeatAdvection
variable = temperature
[]
[conduction]
type = PorousFlowHeatConduction
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl temperature'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature = temperature
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[rockheat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1000
density = 2500
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '50 0 0 0 50 0 0 0 50'
[]
[]
[BCs]
[cold_gas]
type = DirichletBC
boundary = left
variable = temperature
value = 20
[]
[gas_injecton]
type = PorousFlowSink
boundary = left
variable = zi
flux_function = -0.159155
[]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[righttemp]
type = DirichletBC
boundary = right
value = 70
variable = temperature
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e4
nl_abs_tol = 1e-7
nl_rel_tol = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '2 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '2 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '2 0 0'
variable = zi
[]
[temperature]
type = PointValue
point = '2 0 0'
variable = temperature
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '2 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '2 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
csv = true
[]
(modules/porous_flow/test/tests/fluids/multicomponent.i)
# Test the density and viscosity calculated by the brine material using PorousFlowMultiComponentFluid
# Pressure 20 MPa
# Temperature 50C
# xnacl = 0.1047 (equivalent to 2.0 molality)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Variables]
[pp]
initial_condition = 20e6
[]
[]
[Kernels]
[dummy]
type = Diffusion
variable = pp
[]
[]
[AuxVariables]
[temp]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1047
[]
[]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[brine]
type = PorousFlowMultiComponentFluid
temperature_unit = Celsius
x = xnacl
phase = 0
fp = brine
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Postprocessors]
[pressure]
type = ElementIntegralVariablePostprocessor
variable = pp
[]
[temperature]
type = ElementIntegralVariablePostprocessor
variable = temp
[]
[xnacl]
type = ElementIntegralVariablePostprocessor
variable = xnacl
[]
[density]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_density_qp0'
[]
[viscosity]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_viscosity_qp0'
[]
[enthalpy]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_enthalpy_qp0'
[]
[internal_energy]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_internal_energy_qp0'
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = brine1
csv = true
[]
(modules/porous_flow/examples/restart/gas_injection.i)
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, where the mesh used is identical to the mesh used in gravityeq.i, we can use
# the basic restart capability by simply setting the initial condition for porepressure
# using the results from gravityeq.i.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we shift the mesh 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Results can be improved by uniformly refining the initial mesh.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
uniform_refine = 1
[file]
type = FileMeshGenerator
file = gravityeq_out.e
[]
[translate]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0.1 0 0'
input = file
[]
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[pp_liq]
initial_from_file_var = porepressure
[]
[sat_gas]
initial_condition = 0
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[brine_density]
family = MONOMIAL
order = CONSTANT
[]
[methane_density]
family = MONOMIAL
order = CONSTANT
[]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[pp_gas]
family = MONOMIAL
order = CONSTANT
[]
[sat_liq]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pp_liq
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = pp_liq
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = sat_gas
fluid_component = 1
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = sat_gas
fluid_component = 1
[]
[]
[AuxKernels]
[brine_density]
type = PorousFlowPropertyAux
property = density
variable = brine_density
execute_on = 'initial timestep_end'
[]
[methane_density]
type = PorousFlowPropertyAux
property = density
variable = methane_density
phase = 1
execute_on = 'initial timestep_end'
[]
[pp_gas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pp_gas
execute_on = 'initial timestep_end'
[]
[sat_liq]
type = PorousFlowPropertyAux
property = saturation
variable = sat_liq
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[gas_injection]
type = PorousFlowSink
boundary = left
variable = sat_gas
flux_function = injection_rate
fluid_phase = 1
[]
[brine_out]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pp_liq
multipliers = '0 1e9'
pt_vals = '0 1e9'
fluid_phase = 0
flux_function = 1e-6
use_mobility = true
[]
[]
[Functions]
[injection_rate]
type = ParsedFunction
symbol_values = injection_area
symbol_names = area
expression = '-10/area'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp_liq sat_gas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1e-5
m = 0.5
sat_lr = 0.2
[]
[]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[methane]
type = MethaneFluidProperties
[]
[methane_tab]
type = TabulatedBicubicFluidProperties
fp = methane
save_file = false
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow2PhasePS
phase0_porepressure = pp_liq
phase1_saturation = sat_gas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
[]
[methane]
type = PorousFlowSingleComponentFluid
compute_enthalpy = false
compute_internal_energy = false
fp = methane_tab
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[relperm_liq]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.2
sum_s_res = 0.3
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.1
sum_s_res = 0.3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e8
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
nl_max_its = 20
dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e1
[]
[]
[Postprocessors]
[mass_ph0]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[mass_ph1]
type = PorousFlowFluidMass
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[injection_area]
type = AreaPostprocessor
boundary = left
execute_on = initial
[]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
checkpoint = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
# Injection of supercritical CO2 into a single brine saturated cell. The CO2 initially fully
# dissolves into the brine, increasing its density slightly. After a few time steps,
# the brine is saturated with CO2, and subsequently a supercritical gas phase of CO2 saturated
# with a small amount of H2O is formed. Salt is included as a nonlinear variable.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 30
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
[]
[xnacl]
initial_condition = 0.1
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
variable = z
point = '0.5 0.5 0'
mass_flux = 2
[]
[]
[BCs]
[left]
type = DirichletBC
value = 20e6
variable = pgas
boundary = left
[]
[right]
type = DirichletBC
value = 20e6
variable = pgas
boundary = right
[]
[]
[AuxVariables]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = 'initial timestep_end'
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = 'initial timestep_end'
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'initial timestep_end'
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = 'initial timestep_end'
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = 'initial timestep_end'
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = 'initial timestep_end'
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = 'initial timestep_end'
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
variable = xnacl
fluid_component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 10
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
execute_on = 'initial timestep_end'
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
execute_on = 'initial timestep_end'
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
execute_on = 'initial timestep_end'
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
execute_on = 'initial timestep_end'
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
execute_on = 'initial timestep_end'
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
execute_on = 'initial timestep_end'
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
execute_on = 'initial timestep_end'
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
execute_on = 'initial timestep_end'
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
execute_on = 'initial timestep_end'
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
execute_on = 'initial timestep_end'
[]
[xnacl]
type = ElementIntegralVariablePostprocessor
variable = xnacl
execute_on = 'initial timestep_end'
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x2mass]
type = PorousFlowFluidMass
fluid_component = 2
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
file_base = brineco2_2
execute_on = 'initial timestep_end'
perf_graph = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_hightemp.i)
# Tests correct calculation of properties in PorousFlowBrineCO2 in the elevated
# temperature regime (T > 110C)
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 250
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
initial_condition = 0.2
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.1
[]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
execute_on = 'TIMESTEP_END'
perf_graph = false
[]
(modules/porous_flow/test/tests/jacobian/brineco2_twophase.i)
# Tests correct calculation of properties derivatives in PorousFlowFluidState
# for conditions that are appropriate for two phases
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[xnacl]
initial_condition = 0.05
[]
[]
[Variables]
[pgas]
[]
[zi]
[]
[]
[ICs]
[pgas]
type = RandomIC
min = 1e6
max = 4e6
variable = pgas
seed = 1
[]
[z]
type = RandomIC
min = 0.2
max = 0.8
variable = zi
seed = 2
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = zi
fluid_component = 1
[]
[adv0]
type = PorousFlowAdvectiveFlux
variable = pgas
fluid_component = 0
[]
[adv1]
type = PorousFlowAdvectiveFlux
variable = zi
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e1
pc_max = 1e4
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 50
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sgas]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = sgas
[]
[]
[Postprocessors]
[sgas_min]
type = ElementExtremeValue
variable = sgas
value_type = min
[]
[sgas_max]
type = ElementExtremeValue
variable = sgas
value_type = max
[]
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_nonisothermal.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
initial_condition = 0.2
[]
[temperature]
initial_condition = 70
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.1
[]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_water]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_gas]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_water]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[enthalpy_water]
type = PorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = timestep_end
[]
[enthalpy_gas]
type = PorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = timestep_end
[]
[internal_energy_water]
type = PorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = timestep_end
[]
[internal_energy_gas]
type = PorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[heat]
type = TimeDerivative
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z temperature'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature = temperature
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/examples/co2_intercomparison/1Dradial/properties.i)
# Liquid and gas properties for code intercomparison problem 3
#
# From Pruess et al, Code intercomparison builds confidence in
# numerical simulation models for geologic disposal of CO2, Energy 29 (2004)
#
# This test simply calculates density and viscosity of each phase for
# various pressures and salinities, as well as mass fractions of CO2 in the
# liquid phase and H2O in the gas phase.
#
# Four versions of this are run:
# 1) No CO2, 0 salt mass fraction (pure water)
# 2) Enough CO2 to form gas phase, 0 salt mass fraction (pure water)
# 3) No CO2, 0.15 salt mass fraction
# 4) Enough CO2 to form gas phase, 0.15 salt mass fraction
#
# These results compare well with detailed results presented in Pruess et al,
# Intercomparison of numerical simulation codes for geologic disposal of CO2,
# LBNL-51813 (2002)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
xmax = 4
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[AuxVariables]
[density_liquid]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_liquid]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[xnacl]
initial_condition = 0.0
[]
[]
[AuxKernels]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_liquid]
type = PorousFlowPropertyAux
variable = viscosity_liquid
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
order = CONSTANT
family = MONOMIAL
[]
[zi]
initial_condition = 0.0
[]
[]
[Functions]
[pic]
type = ParsedFunction
expression = 'if(x<1,12e6,if(x<2,16e6,if(x<3,20e6,24e6)))'
[]
[]
[ICs]
[pic]
type = FunctionIC
function = pic
variable = pgas
[]
[]
[Kernels]
[diffusionp]
type = NullKernel
variable = pgas
[]
[diffusionz]
type = NullKernel
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 45
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
perf_graph = true
csv = true
execute_on = timestep_end
file_base = properties_water
[]
[VectorPostprocessors]
[vpp]
type = ElementValueSampler
variable = 'pgas density_liquid density_gas viscosity_liquid viscosity_gas x1 y0'
sort_by = x
[]
[]
(modules/porous_flow/test/tests/fluidstate/brineco2.i)
# Tests correct calculation of properties in PorousFlowBrineCO2
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 30
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
initial_condition = 0.2
[]
[]
[AuxVariables]
[xnacl]
initial_condition = 0.1
[]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_water]
order = CONSTANT
family = MONOMIAL
[]
[enthalpy_gas]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_water]
order = CONSTANT
family = MONOMIAL
[]
[internal_energy_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = timestep_end
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = timestep_end
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = timestep_end
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = timestep_end
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = timestep_end
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = timestep_end
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = timestep_end
[]
[enthalpy_water]
type = PorousFlowPropertyAux
variable = enthalpy_water
property = enthalpy
phase = 0
execute_on = timestep_end
[]
[enthalpy_gas]
type = PorousFlowPropertyAux
variable = enthalpy_gas
property = enthalpy
phase = 1
execute_on = timestep_end
[]
[internal_energy_water]
type = PorousFlowPropertyAux
variable = internal_energy_water
property = internal_energy
phase = 0
execute_on = timestep_end
[]
[internal_energy_gas]
type = PorousFlowPropertyAux
variable = internal_energy_gas
property = internal_energy
phase = 1
execute_on = timestep_end
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = timestep_end
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = timestep_end
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 1
nl_abs_tol = 1e-12
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
[]
[enthalpy_water]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_water
[]
[enthalpy_gas]
type = ElementIntegralVariablePostprocessor
variable = enthalpy_gas
[]
[internal_energy_water]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_water
[]
[internal_energy_gas]
type = ElementIntegralVariablePostprocessor
variable = internal_energy_gas
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
[]
[]
[Outputs]
csv = true
file_base = brineco2
execute_on = 'TIMESTEP_END'
perf_graph = false
[]