- momentum_systemsThe solver system(s) for the momentum equation(s).
C++ Type:std::vector<SolverSystemName>
Unit:(no unit assumed)
Controllable:No
Description:The solver system(s) for the momentum equation(s).
- pressure_systemThe solver system for the pressure equation.
C++ Type:SolverSystemName
Unit:(no unit assumed)
Controllable:No
Description:The solver system for the pressure equation.
- rhie_chow_user_objectThe rhie-chow user-object
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:The rhie-chow user-object
SIMPLENonlinearAssembly
Solves the Navier-Stokes equations using the SIMPLENonlinearAssembly algorithm.
Overview
For the overview of the SIMPLE algorithm, please visit SIMPLE.
This executioner implements the same iteration but it uses MOOSE's native residual and Jacobian computing routines to build system matrices and right hand sides. Even though this introduces an overhead in terms of computational speed, it allows the utilization of the same variables, kernels and boundary conditions that are used in the monolithic solvers.
Example Input Syntax
The setup of a problem with the segregated solver in MOOSE is slightly different compared to conventional monolithic solvers. In this section, we highlight the main differences. For setting up a 2D simulation with the SIMPLE algorithm, we add three systems in MOOSE: one for each momentum component and another for the pressure. The different systems can be created within the Problem
block:
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)It is visible that we requested that MOOSE keeps previous solution iterates as well. This is necessary to facilitate the relaxation processes mentioned in SIMPLE.
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)The kernels are then created similarly to the monolithic system, with the exception that now the kernels acting on pressure are slightly different:
[FVKernels]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)By default, the coupling fields corresponding to and are called HbyA
and Ainv
, respectively. These fields are generated by INSFVRhieChowInterpolatorSegregated under the hood. This means that we need to add the user object responsible for generating these fields:
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = u
v = v
pressure = pressure
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)Next, we add the SIMPLENonlinearAssembly
executioner:
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)We see that it has a parameter called "pressure_gradient_tag". This tag needs to be added to the pressure gradient kernels to enable the separation of terms needed in . This can be easily done as follows in the FVKernels
:
[FVKernels]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)Input Parameters
- energy_systemThe solver system for the energy equation.
C++ Type:SolverSystemName
Unit:(no unit assumed)
Controllable:No
Description:The solver system for the energy equation.
- passive_scalar_systemsThe solver system(s) for the passive scalar equation(s).
C++ Type:std::vector<SolverSystemName>
Unit:(no unit assumed)
Controllable:No
Description:The solver system(s) for the passive scalar equation(s).
- pressure_gradient_tagpressure_momentum_kernelsThe name of the tags associated with the kernels in the momentum equations which are not related to the pressure gradient.
Default:pressure_momentum_kernels
C++ Type:TagName
Unit:(no unit assumed)
Controllable:No
Description:The name of the tags associated with the kernels in the momentum equations which are not related to the pressure gradient.
- print_fieldsFalseUse this to print the coupling and solution fields and matrices throughout the iteration.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Use this to print the coupling and solution fields and matrices throughout the iteration.
- solid_energy_systemThe solver system for the solid energy equation.
C++ Type:SolverSystemName
Unit:(no unit assumed)
Controllable:No
Description:The solver system for the solid energy equation.
- turbulence_field_min_limitThe lower limit imposed on turbulent quantities. The recommended value for robustness is 1e-8.
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The lower limit imposed on turbulent quantities. The recommended value for robustness is 1e-8.
- turbulence_systemsThe solver system(s) for the turbulence equation(s).
C++ Type:std::vector<SolverSystemName>
Unit:(no unit assumed)
Controllable:No
Description:The solver system(s) for the turbulence equation(s).
- verboseFalseSet to true to print additional information
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set to true to print additional information
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set the enabled status of the MooseObject.
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
Advanced Parameters
- energy_absolute_tolerance1e-05The absolute tolerance on the normalized residual of the energy equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual of the energy equation.
- momentum_absolute_tolerance1e-05The absolute tolerance on the normalized residual of the momentum equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual of the momentum equation.
- num_iterations1000The number of momentum-pressure-(other fields) iterations needed.
Default:1000
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The number of momentum-pressure-(other fields) iterations needed.
- passive_scalar_absolute_toleranceThe absolute tolerance(s) on the normalized residual(s) of the passive scalar equation(s).
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance(s) on the normalized residual(s) of the passive scalar equation(s).
- pressure_absolute_tolerance1e-05The absolute tolerance on the normalized residual of the pressure equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual of the pressure equation.
- solid_energy_absolute_tolerance1e-05The absolute tolerance on the normalized residual of the solid energy equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual of the solid energy equation.
- turbulence_absolute_toleranceThe absolute tolerance(s) on the normalized residual(s) of the turbulence equation(s).
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance(s) on the normalized residual(s) of the turbulence equation(s).
Iteration Control Parameters
- energy_equation_relaxation1The relaxation which should be used for the energy equation. (=1 for no relaxation, diagonal dominance will still be enforced)
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the energy equation. (=1 for no relaxation, diagonal dominance will still be enforced)
- momentum_equation_relaxation1The relaxation which should be used for the momentum equation. (=1 for no relaxation, diagonal dominance will still be enforced)
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the momentum equation. (=1 for no relaxation, diagonal dominance will still be enforced)
- passive_scalar_equation_relaxationThe relaxation which should be used for the passive scalar equations. (=1 for no relaxation, diagonal dominance will still be enforced)
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the passive scalar equations. (=1 for no relaxation, diagonal dominance will still be enforced)
- pressure_variable_relaxation1The relaxation which should be used for the pressure variable (=1 for no relaxation).
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the pressure variable (=1 for no relaxation).
- turbulence_equation_relaxationThe relaxation which should be used for the turbulence equations equations. (=1 for no relaxation, diagonal dominance will still be enforced)
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The relaxation which should be used for the turbulence equations equations. (=1 for no relaxation, diagonal dominance will still be enforced)
Relaxation Parameters
- energy_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the energy equation.
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the energy equation.
- energy_l_max_its10000The maximum allowed iterations in the linear solver of the energy equation.
Default:10000
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The maximum allowed iterations in the linear solver of the energy equation.
- energy_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the energy equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the energy equation.
- momentum_l_abs_tol1e-50The absolute tolerance on the normalized residual in the linear solver of the momentum equation.
Default:1e-50
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the momentum equation.
- momentum_l_max_its10000The maximum allowed iterations in the linear solver of the momentum equation.
Default:10000
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The maximum allowed iterations in the linear solver of the momentum equation.
- momentum_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the momentum equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the momentum equation.
- passive_scalar_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the passive scalar equation(s).
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the passive scalar equation(s).
- passive_scalar_l_max_its10000The maximum allowed iterations in the linear solver of the turbulence equation.
Default:10000
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The maximum allowed iterations in the linear solver of the turbulence equation.
- passive_scalar_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the passive scalar equation(s).
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the passive scalar equation(s).
- pressure_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the pressure equation.
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the pressure equation.
- pressure_l_max_its10000The maximum allowed iterations in the linear solver of the pressure equation.
Default:10000
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The maximum allowed iterations in the linear solver of the pressure equation.
- pressure_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the pressure equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the pressure equation.
- solid_energy_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the solid energy equation.
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the solid energy equation.
- solid_energy_l_max_its10000The maximum allowed iterations in the linear solver of the solid energy equation.
Default:10000
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The maximum allowed iterations in the linear solver of the solid energy equation.
- solid_energy_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the solid energy equation.
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the solid energy equation.
- turbulence_l_abs_tol1e-10The absolute tolerance on the normalized residual in the linear solver of the turbulence equation(s).
Default:1e-10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The absolute tolerance on the normalized residual in the linear solver of the turbulence equation(s).
- turbulence_l_max_its10000The maximum allowed iterations in the linear solver of the turbulence equation(s).
Default:10000
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The maximum allowed iterations in the linear solver of the turbulence equation(s).
- turbulence_l_tol1e-05The relative tolerance on the normalized residual in the linear solver of the turbulence equation(s).
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The relative tolerance on the normalized residual in the linear solver of the turbulence equation(s).
Linear Iteration Control Parameters
- energy_petsc_optionsSingleton PETSc options for the energy equation
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-dm_moose_print_embedding, -dm_view, -ksp_converged_reason, -ksp_gmres_modifiedgramschmidt, -ksp_monitor, -ksp_monitor_snes_lg-snes_ksp_ew, -ksp_snes_ew, -snes_converged_reason, -snes_ksp, -snes_ksp_ew, -snes_linesearch_monitor, -snes_mf, -snes_mf_operator, -snes_monitor, -snes_test_display, -snes_view
Controllable:No
Description:Singleton PETSc options for the energy equation
- energy_petsc_options_inameNames of PETSc name/value pairs for the energy equation
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-ksp_atol, -ksp_gmres_restart, -ksp_max_it, -ksp_pc_side, -ksp_rtol, -ksp_type, -mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -snes_atol, -snes_linesearch_type, -snes_ls, -snes_max_it, -snes_rtol, -snes_divergence_tolerance, -snes_type, -sub_ksp_type, -sub_pc_type
Controllable:No
Description:Names of PETSc name/value pairs for the energy equation
- energy_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the energy equation
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the energy equation
- momentum_petsc_optionsSingleton PETSc options for the momentum equation
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-dm_moose_print_embedding, -dm_view, -ksp_converged_reason, -ksp_gmres_modifiedgramschmidt, -ksp_monitor, -ksp_monitor_snes_lg-snes_ksp_ew, -ksp_snes_ew, -snes_converged_reason, -snes_ksp, -snes_ksp_ew, -snes_linesearch_monitor, -snes_mf, -snes_mf_operator, -snes_monitor, -snes_test_display, -snes_view
Controllable:No
Description:Singleton PETSc options for the momentum equation
- momentum_petsc_options_inameNames of PETSc name/value pairs for the momentum equation
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-ksp_atol, -ksp_gmres_restart, -ksp_max_it, -ksp_pc_side, -ksp_rtol, -ksp_type, -mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -snes_atol, -snes_linesearch_type, -snes_ls, -snes_max_it, -snes_rtol, -snes_divergence_tolerance, -snes_type, -sub_ksp_type, -sub_pc_type
Controllable:No
Description:Names of PETSc name/value pairs for the momentum equation
- momentum_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the momentum equation
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the momentum equation
- passive_scalar_petsc_optionsSingleton PETSc options for the passive scalar equation(s)
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-dm_moose_print_embedding, -dm_view, -ksp_converged_reason, -ksp_gmres_modifiedgramschmidt, -ksp_monitor, -ksp_monitor_snes_lg-snes_ksp_ew, -ksp_snes_ew, -snes_converged_reason, -snes_ksp, -snes_ksp_ew, -snes_linesearch_monitor, -snes_mf, -snes_mf_operator, -snes_monitor, -snes_test_display, -snes_view
Controllable:No
Description:Singleton PETSc options for the passive scalar equation(s)
- passive_scalar_petsc_options_inameNames of PETSc name/value pairs for the passive scalar equation(s)
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-ksp_atol, -ksp_gmres_restart, -ksp_max_it, -ksp_pc_side, -ksp_rtol, -ksp_type, -mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -snes_atol, -snes_linesearch_type, -snes_ls, -snes_max_it, -snes_rtol, -snes_divergence_tolerance, -snes_type, -sub_ksp_type, -sub_pc_type
Controllable:No
Description:Names of PETSc name/value pairs for the passive scalar equation(s)
- passive_scalar_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the passive scalar equation(s)
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the passive scalar equation(s)
- pressure_petsc_optionsSingleton PETSc options for the pressure equation
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-dm_moose_print_embedding, -dm_view, -ksp_converged_reason, -ksp_gmres_modifiedgramschmidt, -ksp_monitor, -ksp_monitor_snes_lg-snes_ksp_ew, -ksp_snes_ew, -snes_converged_reason, -snes_ksp, -snes_ksp_ew, -snes_linesearch_monitor, -snes_mf, -snes_mf_operator, -snes_monitor, -snes_test_display, -snes_view
Controllable:No
Description:Singleton PETSc options for the pressure equation
- pressure_petsc_options_inameNames of PETSc name/value pairs for the pressure equation
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-ksp_atol, -ksp_gmres_restart, -ksp_max_it, -ksp_pc_side, -ksp_rtol, -ksp_type, -mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -snes_atol, -snes_linesearch_type, -snes_ls, -snes_max_it, -snes_rtol, -snes_divergence_tolerance, -snes_type, -sub_ksp_type, -sub_pc_type
Controllable:No
Description:Names of PETSc name/value pairs for the pressure equation
- pressure_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the pressure equation
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the pressure equation
- solid_energy_petsc_optionsSingleton PETSc options for the solid energy equation
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-dm_moose_print_embedding, -dm_view, -ksp_converged_reason, -ksp_gmres_modifiedgramschmidt, -ksp_monitor, -ksp_monitor_snes_lg-snes_ksp_ew, -ksp_snes_ew, -snes_converged_reason, -snes_ksp, -snes_ksp_ew, -snes_linesearch_monitor, -snes_mf, -snes_mf_operator, -snes_monitor, -snes_test_display, -snes_view
Controllable:No
Description:Singleton PETSc options for the solid energy equation
- solid_energy_petsc_options_inameNames of PETSc name/value pairs for the solid energy equation
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-ksp_atol, -ksp_gmres_restart, -ksp_max_it, -ksp_pc_side, -ksp_rtol, -ksp_type, -mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -snes_atol, -snes_linesearch_type, -snes_ls, -snes_max_it, -snes_rtol, -snes_divergence_tolerance, -snes_type, -sub_ksp_type, -sub_pc_type
Controllable:No
Description:Names of PETSc name/value pairs for the solid energy equation
- solid_energy_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the solid energy equation
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the solid energy equation
- turbulence_petsc_optionsSingleton PETSc options for the turbulence equation(s)
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-dm_moose_print_embedding, -dm_view, -ksp_converged_reason, -ksp_gmres_modifiedgramschmidt, -ksp_monitor, -ksp_monitor_snes_lg-snes_ksp_ew, -ksp_snes_ew, -snes_converged_reason, -snes_ksp, -snes_ksp_ew, -snes_linesearch_monitor, -snes_mf, -snes_mf_operator, -snes_monitor, -snes_test_display, -snes_view
Controllable:No
Description:Singleton PETSc options for the turbulence equation(s)
- turbulence_petsc_options_inameNames of PETSc name/value pairs for the turbulence equation(s)
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:-ksp_atol, -ksp_gmres_restart, -ksp_max_it, -ksp_pc_side, -ksp_rtol, -ksp_type, -mat_fd_coloring_err, -mat_fd_type, -mat_mffd_type, -pc_asm_overlap, -pc_factor_levels, -pc_factor_mat_ordering_type, -pc_hypre_boomeramg_grid_sweeps_all, -pc_hypre_boomeramg_max_iter, -pc_hypre_boomeramg_strong_threshold, -pc_hypre_type, -pc_type, -snes_atol, -snes_linesearch_type, -snes_ls, -snes_max_it, -snes_rtol, -snes_divergence_tolerance, -snes_type, -sub_ksp_type, -sub_pc_type
Controllable:No
Description:Names of PETSc name/value pairs for the turbulence equation(s)
- turbulence_petsc_options_valueValues of PETSc name/value pairs (must correspond with "petsc_options_iname" for the turbulence equation
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Values of PETSc name/value pairs (must correspond with "petsc_options_iname" for the turbulence equation
Petsc Control Parameters
- pin_pressureFalseIf the pressure field needs to be pinned at a point.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:If the pressure field needs to be pinned at a point.
- pressure_pin_pointThe point where the pressure needs to be pinned.
C++ Type:libMesh::Point
Unit:(no unit assumed)
Controllable:No
Description:The point where the pressure needs to be pinned.
- pressure_pin_value0The value which needs to be enforced for the pressure.
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The value which needs to be enforced for the pressure.
Pressure Pin Parameters
Restart Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/channel_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-capped.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-outflow-bcs.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-non-eq-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-inc-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz-slip.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-no-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/BFS_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-velocity.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-linear-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-non-eq-bulk.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated-comparison/segregated-nonlinear.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-std-wall.i)
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
pressure_gradient_tag
Default:pressure_momentum_kernels
C++ Type:TagName
Unit:(no unit assumed)
Controllable:No
Description:The name of the tags associated with the kernels in the momentum equations which are not related to the pressure gradient.
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/channel_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe turbulent channel flow
# Case Number: 032
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
H = 1 #halfwidth of the channel
L = 30
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = 0
ymax = ${H}
nx = 20
ny = 5
bias_y = 0.7
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${bulk_u}
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e-8
solver_sys = pressure_system
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '${bulk_u}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = FVDirichletBC
boundary = 'top'
variable = vel_x
value = 0
[]
[walls-v]
type = FVDirichletBC
boundary = 'top'
variable = vel_y
value = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[inlet_TKE]
type = INSFVInletIntensityTKEBC
boundary = 'left'
variable = TKE
u = vel_x
v = vel_y
intensity = ${intensity}
[]
[inlet_TKED]
type = INSFVMixingLengthTKEDBC
boundary = 'left'
variable = TKED
k = TKE
characteristic_length = '${fparse 2*H}'
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'top'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'mu_t'
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'mu_t'
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[symmetry_TKE]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = TKE
[]
[symmetry_TKED]
type = INSFVSymmetryScalarBC
boundary = 'bottom'
variable = TKED
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[yplus]
type = MooseVariableFVReal
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
k = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.25 0.25'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/diverger/diverger.i)
mu = 2.6
rho = 1.0
cp = 700
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
# uniform_refine = 1
[fmg]
type = FileMeshGenerator
file = "diverger-2d.msh"
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
# two_term_boundary_expansion = false
[]
[T]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
solver_sys = energy_system
initial_condition = 700
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[heat_advection]
type = INSFVEnergyAdvection
variable = T
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
[]
[heat_diffusion]
type = FVDiffusion
variable = T
coeff = '10'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = vel_y
function = '0.0'
[]
[inlet-T]
type = FVDirichletBC
boundary = 'inlet'
value = 700
variable = T
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'outlet'
variable = pressure
function = 1.4
[]
[zerograd-p]
type = FVNeumannBC
boundary = 'top bottom inlet'
variable = pressure
value = 0
[]
[]
[FunctorMaterials]
[mu]
type = ADGenericFunctorMaterial #defines mu artificially for numerical convergence
prop_names = 'mu rho cp' #it converges to the real mu eventually.
prop_values = '${mu} ${rho} ${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
cp = ${cp}
temperature = 'T'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-12
pressure_l_abs_tol = 1e-12
energy_l_abs_tol = 1e-12
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
energy_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with energy transport
# Standard wall functions without temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
solver_sys = energy_system
initial_condition = 1.0
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_turb_conduction]
type = FVDiffusion
coeff = 'k_t'
variable = T_fluid
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = 'top'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = 'bottom'
value = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[k_t]
type = ADParsedFunctorMaterial
expression = 'mu_t * cp / Pr_t'
functor_names = 'mu_t ${cp} ${Pr_t}'
functor_symbols = 'mu_t cp Pr_t'
property_name = 'k_t'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
energy_equation_relaxation = 0.9
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
energy_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
energy_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-energy.i)
mu = 0.002
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 3
dx = '0.2'
dy = '0.2'
dz = '0.8'
ix = '3'
iy = '3'
iz = '12'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system w_system pressure_system energy_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
w = vel_z
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[vel_z]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = w_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
solver_sys = energy_system
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[w_advection]
type = INSFVMomentumAdvection
variable = vel_z
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[w_viscosity]
type = INSFVMomentumDiffusion
variable = vel_z
mu = ${mu}
momentum_component = 'z'
[]
[w_pressure]
type = INSFVMomentumPressure
variable = vel_z
momentum_component = 'z'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[ambient_convection]
type = NSFVEnergyAmbientConvection
variable = T_fluid
T_ambient = 350
alpha = 'alpha'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_x
function = '0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_y
function = '0'
[]
[inlet-w]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_z
function = '1.1'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom '
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = 0.0
[]
[walls-w]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_z
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'front'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'back left right top bottom'
function = 0.0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'back'
variable = T_fluid
value = 300
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp alpha'
prop_values = '${cp} ${alpha}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
# petsc_options_iname = '-pc_type -pc_hypre_type -pc_factor_shift_type'
# petsc_options_value = 'hypre boomeramg NONZERO'
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system w_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.95
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
energy_absolute_tolerance = 1e-13
print_fields = false
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/block-restriction/segregated/empty-block-segregated.i)
mu = 1.2
rho_fluid = 0.2
k_fluid = 1.1
cp_fluid = 2.3
T_cold = 310
alpha = 1e-3
Q = 200
pressure_tag = "pressure_grad"
[Problem]
kernel_coverage_check = false
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[]
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '0.3683 0.0127'
dy = '0.0127 0.2292 2.5146 0.2292 0.0127'
ix = '2 1'
iy = '1 2 3 2 1'
subdomain_id = '0 0
1 0
2 0
1 0
0 0
'
[]
[rename_block_name]
type = RenameBlockGenerator
input = cmg
old_block = '0 1 2'
new_block = 'wall_block spacer_block porous_block'
[]
[solid_fluid_interface_1]
type = SideSetsBetweenSubdomainsGenerator
input = rename_block_name
primary_block = porous_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[solid_fluid_interface_2]
type = SideSetsBetweenSubdomainsGenerator
input = solid_fluid_interface_1
primary_block = spacer_block
paired_block = wall_block
new_boundary = 'solid_fluid_interface'
[]
[wall_left_boundary_1]
type = SideSetsFromBoundingBoxGenerator
input = solid_fluid_interface_2
bottom_left = '0 0 0'
top_right = '0.1 0.0127 0'
included_boundaries = left
boundary_new = wall_left
[]
[wall_left_boundary_2]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_1
bottom_left = '0 2.9857 0'
top_right = '0.1 2.9984 0'
included_boundaries = left
boundary_new = wall_left
[]
[fluid_left_boundary]
type = SideSetsFromBoundingBoxGenerator
input = wall_left_boundary_2
bottom_left = '0 0.0127 0'
top_right = '0.1 2.9857 0'
included_boundaries = left
boundary_new = fluid_left
[]
coord_type = RZ
rz_coord_axis = Y
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolatorSegregated
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
block = 'spacer_block porous_block'
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system t_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
solver_sys = u_system
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
block = 'spacer_block porous_block'
solver_sys = v_system
[]
[pressure]
type = INSFVPressureVariable
block = 'spacer_block porous_block'
solver_sys = pressure_system
[]
[T_fluid]
type = INSFVEnergyVariable
block = 'spacer_block porous_block'
solver_sys = t_system
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
block = 'spacer_block porous_block'
[]
[]
[FVKernels]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[u_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[u_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_x
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'x'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
block = 'spacer_block porous_block'
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[v_buoyancy]
type = PINSFVMomentumBoussinesq
variable = superficial_vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho_fluid}
ref_temperature = ${T_cold}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[v_gravity]
type = PINSFVMomentumGravity
variable = superficial_vel_y
gravity = '0 -1 0'
rho = ${rho_fluid}
momentum_component = 'y'
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_conduction]
type = PINSFVEnergyDiffusion
k = 'k_fluid'
variable = T_fluid
block = 'spacer_block porous_block'
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
block = 'spacer_block porous_block'
boundaries_to_force = fluid_left
[]
[heat_source]
type = FVBodyForce
variable = T_fluid
function = ${Q}
block = 'porous_block'
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
block = 'spacer_block porous_block'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
block = 'spacer_block porous_block'
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = superficial_vel_x
boundary = 'solid_fluid_interface'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = superficial_vel_y
boundary = 'solid_fluid_interface'
function = 0
[]
[reflective_x]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_x
boundary = fluid_left
momentum_component = 'x'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_y]
type = INSFVSymmetryVelocityBC
variable = superficial_vel_y
boundary = fluid_left
momentum_component = 'y'
mu = ${mu}
u = superficial_vel_x
v = superficial_vel_y
[]
[reflective_p]
type = INSFVSymmetryPressureBC
boundary = fluid_left
variable = pressure
[]
[T_reflective]
type = FVNeumannBC
variable = T_fluid
boundary = fluid_left
value = 0
[]
[T_cold_boundary]
type = FVDirichletBC
variable = T_fluid
boundary = solid_fluid_interface
value = ${T_cold}
[]
[]
[ICs]
[porosity_spacer]
type = ConstantIC
variable = porosity
block = spacer_block
value = 1.0
[]
[porosity_fuel]
type = ConstantIC
variable = porosity
block = porous_block
value = 0.1
[]
[temp_ic_fluid]
type = ConstantIC
variable = T_fluid
value = ${T_cold}
block = 'spacer_block porous_block'
[]
[superficial_vel_x]
type = ConstantIC
variable = superficial_vel_x
value = 1E-5
block = 'spacer_block porous_block'
[]
[superficial_vel_y]
type = ConstantIC
variable = superficial_vel_y
value = 1E-5
block = 'spacer_block porous_block'
[]
[]
[FunctorMaterials]
[functor_constants_fluid]
type = ADGenericFunctorMaterial
prop_names = 'alpha_b cp k_fluid'
prop_values = '${alpha} ${cp_fluid} ${k_fluid}'
block = 'spacer_block porous_block'
[]
[density_fluid]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho_fluid}
block = 'spacer_block porous_block'
[]
[functor_constants_steel]
# We need this to avoid errors for materials not existing on every block
type = ADGenericFunctorMaterial
prop_names = 'dummy'
prop_values = 0.0
block = wall_block
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 't_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.85
energy_equation_relaxation = 0.95
pressure_variable_relaxation = 0.45
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
pin_pressure = true
pressure_pin_point = '0.2 1.5 0.0'
pressure_pin_value = 0
print_fields = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-capped.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with capped mixing length
# Standard wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
C_pl = 0.1
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C_pl = ${C_pl}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
C_pl = ${C_pl}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-outflow-bcs.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 50
ny = 10
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_u]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_x
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'x'
rho = ${rho}
[]
[outlet_v]
type = INSFVMomentumAdvectionOutflowBC
variable = vel_y
u = vel_x
v = vel_y
boundary = 'right'
momentum_component = 'y'
rho = ${rho}
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.90
pressure_variable_relaxation = 0.35
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-scalar.i)
mu = 2.6
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system scalar_1_system scalar_2_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[scalar_1]
type = INSFVScalarFieldVariable
solver_sys = scalar_1_system
initial_condition = 1.2
[]
[scalar_2]
type = INSFVScalarFieldVariable
solver_sys = scalar_2_system
initial_condition = 1.2
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[scalar_1_advection]
type = INSFVScalarFieldAdvection
variable = scalar_1
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_1_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar_1
[]
[scalar_1_src]
type = FVBodyForce
variable = scalar_1
value = 1.0
[]
[scalar_1_coupled_source]
type = FVCoupledForce
variable = scalar_1
v = scalar_2
coef = 0.1
[]
[scalar_2_advection]
type = INSFVScalarFieldAdvection
variable = scalar_2
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_2_diffusion]
type = FVDiffusion
coeff = '${fparse 2*diff}'
variable = scalar_2
[]
[scalar_2_src]
type = FVBodyForce
variable = scalar_2
value = 5.0
[]
[scalar_2_coupled_source]
type = FVCoupledForce
variable = scalar_2
v = scalar_1
coef = 0.05
[]
[]
[FVBCs]
inactive = "symmetry-u symmetry-v symmetry-p"
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[inlet_scalar_1]
type = FVDirichletBC
boundary = 'left'
variable = scalar_1
value = 1
[]
[inlet_scalar_2]
type = FVDirichletBC
boundary = 'left'
variable = scalar_2
value = 2
[]
### Inactive by default, some tests will turn these on ###
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
##########################################################
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
passive_scalar_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
passive_scalar_systems = 'scalar_1_system scalar_2_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
passive_scalar_equation_relaxation = '0.9 0.9'
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
passive_scalar_absolute_tolerance = '1e-13 1e-13'
print_fields = false
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = FINAL
[]
[]
[Postprocessors]
inactive = "out1 out2 in1 in2"
[out1]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_1'
boundary = right
execute_on = FINAL
outputs = csv
[]
[in1]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_1'
boundary = left
execute_on = FINAL
outputs = csv
[]
[out2]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_2'
boundary = right
execute_on = FINAL
outputs = csv
[]
[in2]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
advected_quantity = 'scalar_2'
boundary = left
execute_on = FINAL
outputs = csv
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-non-eq-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# Standard wall functions with non-equilibrium wall formulation
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated.i)
mu = .01
rho = 1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 20
ny = 20
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.9
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[v]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-energy-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions with temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment_v = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
wall_treatment_T = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
solver_sys = energy_system
initial_condition = 1.0
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_turb_conduction]
type = FVDiffusion
coeff = 'k_t'
variable = T_fluid
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment_v}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment_v}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = INSFVTurbulentTemperatureWallFunction
variable = T_fluid
boundary = 'top'
T_w = 1
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
cp = ${cp}
kappa = ${k}
k = TKE
wall_treatment = ${wall_treatment_T}
[]
[T_cold]
type = INSFVTurbulentTemperatureWallFunction
variable = T_fluid
boundary = 'bottom'
T_w = 0
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
cp = ${cp}
kappa = ${k}
k = TKE
wall_treatment = ${wall_treatment_T}
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment_v}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[k_t]
type = MooseVariableFVReal
initial_condition = 1.0
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment_v}
execute_on = 'NONLINEAR'
[]
[compute_k_t]
type = TurbulentConductivityAux
variable = k_t
Pr_t = ${Pr_t}
cp = ${cp}
mu_t = 'mu_t'
execute_on = 'NONLINEAR'
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
energy_equation_relaxation = 0.9
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
energy_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
energy_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/block_restriction/segregated/2d-segregated-block.i)
mu = 1.1
rho = 1.1
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
restricted_blocks = '1'
[Mesh]
parallel_type = 'replicated'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '1'
ix = '7 7'
iy = 10
subdomain_id = '1 2'
[]
[mid]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = mesh
new_boundary = 'middle'
[]
[break_top]
type = PatchSidesetGenerator
boundary = 'top'
n_patches = 2
input = mid
[]
[break_bottom]
type = PatchSidesetGenerator
boundary = 'bottom'
n_patches = 2
input = break_top
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system scalar_system'
previous_nl_solution_required = true
kernel_coverage_check = false
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
block = ${restricted_blocks}
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1.0
solver_sys = u_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
solver_sys = energy_system
two_term_boundary_expansion = false
block = ${restricted_blocks}
[]
[scalar]
type = INSFVScalarFieldVariable
block = ${restricted_blocks}
solver_sys = scalar_system
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = 'bottom_0'
[]
[energy_diffusion]
type = FVDiffusion
coeff = 1.1
variable = T_fluid
[]
[energy_loss]
type = FVBodyForce
variable = T_fluid
value = -0.1
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = 'bottom_0'
[]
[scalar_diffusion]
type = FVDiffusion
coeff = 1.0
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top_0'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'middle'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[outlet_scalar]
type = FVDirichletBC
boundary = 'middle'
variable = scalar
value = 1
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom_0'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom_0'
variable = pressure
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-12
pressure_l_abs_tol = 1e-12
energy_l_abs_tol = 1e-12
passive_scalar_l_abs_tol = 1e-12
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
passive_scalar_systems = 'scalar_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.99
passive_scalar_equation_relaxation = 0.99
num_iterations = 100
pressure_absolute_tolerance = 1e-9
momentum_absolute_tolerance = 1e-9
energy_absolute_tolerance = 1e-9
passive_scalar_absolute_tolerance = 1e-9
print_fields = false
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '2'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
block = ${restricted_blocks}
[]
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-inc-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Incremental wall function formulation (similar to OpenFOAM)
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/segregated/lid-driven-segregated-energy.i)
mu = 1
rho = 1
k = 0.01
cp = 1
alpha = 1
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
rayleigh = 1e3
hot_temp = ${rayleigh}
temp_ref = '${fparse hot_temp / 2.}'
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
solver_sys = energy_system
two_term_boundary_expansion = false
[]
[]
[FVKernels]
inactive = 'u_buoyancy u_gravity v_buoyancy v_gravity'
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[u_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_x
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
alpha_name = ${alpha}
momentum_component = 'x'
[]
[u_gravity]
type = INSFVMomentumGravity
variable = vel_x
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_buoyancy]
type = INSFVMomentumBoussinesq
variable = vel_y
T_fluid = T_fluid
gravity = '0 -1 0'
rho = ${rho}
ref_temperature = ${temp_ref}
alpha_name = ${alpha}
momentum_component = 'y'
[]
[v_gravity]
type = INSFVMomentumGravity
variable = vel_y
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[temp_conduction]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'left right top bottom'
function = 0.0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = 'top'
value = 0
[]
[]
[FunctorMaterials]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
cp = ${cp}
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.90
energy_equation_relaxation = 0.99
pressure_variable_relaxation = 0.30
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
energy_absolute_tolerance = 1e-13
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
energy_petsc_options_iname = '-pc_type -pc_hypre_type'
energy_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
energy_l_tol = 0.0
pressure_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-scalar.i)
mu = 0.002
rho = 1.0
diff = 1.5
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 3
dx = '0.2'
dy = '0.2'
dz = '0.8'
ix = '3'
iy = '3'
iz = '6'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system w_system pressure_system scalar_1_system scalar_2_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
w = vel_z
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[vel_z]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = w_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[scalar_1]
type = INSFVScalarFieldVariable
solver_sys = scalar_1_system
initial_condition = 1.2
[]
[scalar_2]
type = INSFVScalarFieldVariable
solver_sys = scalar_2_system
initial_condition = 1.2
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[w_advection]
type = INSFVMomentumAdvection
variable = vel_z
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[w_viscosity]
type = INSFVMomentumDiffusion
variable = vel_z
mu = ${mu}
momentum_component = 'z'
[]
[w_pressure]
type = INSFVMomentumPressure
variable = vel_z
momentum_component = 'z'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[scalar_1_advection]
type = INSFVScalarFieldAdvection
variable = scalar_1
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_1_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar_1
[]
[scalar_1_src]
type = FVBodyForce
variable = scalar_1
value = 1.0
[]
[scalar_1_coupled_source]
type = FVCoupledForce
variable = scalar_1
v = scalar_2
coef = 0.1
[]
[scalar_2_advection]
type = INSFVScalarFieldAdvection
variable = scalar_2
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_2_diffusion]
type = FVDiffusion
coeff = '${fparse 2*diff}'
variable = scalar_2
[]
[scalar_2_src]
type = FVBodyForce
variable = scalar_2
value = 5.0
[]
[scalar_2_coupled_source]
type = FVCoupledForce
variable = scalar_2
v = scalar_1
coef = 0.05
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_x
function = '0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_y
function = '0'
[]
[inlet-w]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_z
function = '1.1'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom '
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = 0.0
[]
[walls-w]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_z
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'front'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'back left right top bottom'
function = 0.0
[]
[inlet_scalar_1]
type = FVDirichletBC
boundary = 'back'
variable = scalar_1
value = 1
[]
[inlet_scalar_2]
type = FVDirichletBC
boundary = 'back'
variable = scalar_2
value = 2
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
passive_scalar_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
passive_scalar_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system w_system'
pressure_system = 'pressure_system'
passive_scalar_systems = 'scalar_1_system scalar_2_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
passive_scalar_equation_relaxation = '0.98 0.98'
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
passive_scalar_absolute_tolerance = '1e-13 1e-13'
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz-slip.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
coord_type = 'RZ'
rz_coord_axis = X
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1.25'
dy = '0.2'
ix = '30'
iy = '7'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
inactive = 'u_friction v_friction'
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[u_friction]
type = PINSFVMomentumFriction
variable = vel_x
u = vel_x
v = vel_y
momentum_component = 'x'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
standard_friction_formulation = false
rho = ${rho}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_friction]
type = PINSFVMomentumFriction
variable = vel_y
u = vel_x
v = vel_y
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
standard_friction_formulation = false
rho = ${rho}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = vel_x
momentum_component = 'x'
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = vel_y
momentum_component = 'y'
[]
[symmetry_u]
type = INSFVSymmetryVelocityBC
variable = vel_x
boundary = 'bottom'
momentum_component = 'x'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_v]
type = INSFVSymmetryVelocityBC
variable = vel_y
boundary = 'bottom'
momentum_component = 'y'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[]
[FunctorMaterials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.5
pressure_variable_relaxation = 0.3
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-no-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = ''
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[walls_TKED]
type = INSFVTKEDWallFunctionBC
boundary = 'left right top bottom'
variable = TKED
u = vel_x
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
[]
[walls_TKE]
type = FVDirichletBC
boundary = 'left right top bottom'
variable = TKE
value = ${k_init}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.9 0.9'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/BFS_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe BFS
# Case Number: 031
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H/ Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${fparse 10.0*H} ${fparse 20.0*H}'
dy = '${H} ${fparse 5*H}'
ix = '8 16'
iy = '2 8'
subdomain_id = '
2 1
1 1
'
[]
[corner_walls]
type = SideSetsBetweenSubdomainsGenerator
input = gen
primary_block = '1'
paired_block = '2'
new_boundary = 'wall-side'
[]
[delete_bottom]
type = BlockDeletionGenerator
input = corner_walls
block = '2'
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${bulk_u}
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e-8
solver_sys = pressure_system
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
functor = 0
[]
[inlet_TKE]
type = INSFVInletIntensityTKEBC
boundary = 'left'
variable = TKE
u = vel_x
v = vel_y
intensity = ${intensity}
[]
[inlet_TKED]
type = INSFVMixingLengthTKEDBC
boundary = 'left'
variable = TKED
k = TKE
characteristic_length = '${fparse 2*H}'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
functor = 0
[]
[walls-u]
type = FVDirichletBC
boundary = ${walls}
variable = vel_x
value = 0
[]
[walls-v]
type = FVDirichletBC
boundary = ${walls}
variable = vel_y
value = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = ${walls}
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.3 0.3'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
[]
[Outputs]
exodus = true
[console]
type = Console
outlier_variable_norms = false
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-energy.i)
mu = 2.6
rho = 1.0
k = 5.0
cp = 700
alpha = 150
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
solver_sys = energy_system
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[ambient_convection]
type = NSFVEnergyAmbientConvection
variable = T_fluid
T_ambient = 350
alpha = 'alpha'
[]
[]
[FVBCs]
inactive = "symmetry-u symmetry-v symmetry-p"
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 300
[]
### Inactive by default, some tests will turn these on ###
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
##########################################################
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
energy_equation_relaxation = 0.99
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
energy_absolute_tolerance = 1e-13
print_fields = false
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp alpha'
prop_values = '${cp} ${alpha}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/3d/3d-segregated-velocity.i)
mu = 0.002
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 3
dx = '0.2'
dy = '0.2'
dz = '0.8'
ix = '3'
iy = '3'
iz = '12'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system w_system pressure_system'
previous_nl_solution_required = true
error_on_jacobian_nonzero_reallocation = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
w = vel_z
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[vel_z]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = w_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[w_advection]
type = INSFVMomentumAdvection
variable = vel_z
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[w_viscosity]
type = INSFVMomentumDiffusion
variable = vel_z
mu = ${mu}
momentum_component = 'z'
[]
[w_pressure]
type = INSFVMomentumPressure
variable = vel_z
momentum_component = 'z'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_x
function = '0'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_y
function = '0'
[]
[inlet-w]
type = INSFVInletVelocityBC
boundary = 'back'
variable = vel_z
function = '1.1'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom '
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_y
function = 0.0
[]
[walls-w]
type = INSFVNoSlipWallBC
boundary = 'left right top bottom'
variable = vel_z
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'front'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'back left right top bottom'
function = 0.0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system w_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.6
pressure_variable_relaxation = 0.3
num_iterations = 100
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated/2d/2d-segregated-velocity-rz.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
coord_type = 'RZ'
rz_coord_axis = X
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1.25'
dy = '0.2'
ix = '30'
iy = '7'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0.0
[]
[symmetry_u]
type = INSFVSymmetryVelocityBC
variable = vel_x
boundary = 'bottom'
momentum_component = 'x'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_v]
type = INSFVSymmetryVelocityBC
variable = vel_y
boundary = 'bottom'
momentum_component = 'y'
mu = ${mu}
u = vel_x
v = vel_y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-15
pressure_l_abs_tol = 1e-15
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 100
pressure_absolute_tolerance = 1e-14
momentum_absolute_tolerance = 1e-14
print_fields = false
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-linear-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Linear wall function formulation (faster runs)
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-momentum.i)
mu = 1.1
rho = 1.1
pressure_tag = "pressure_grad"
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = 1
nx = 40
ny = 6
[]
[]
[GlobalParams]
advected_interp_method = 'average'
velocity_interp_method = 'rc'
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolatorSegregated
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
solver_sys = u_system
two_term_boundary_expansion = false
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
solver_sys = pressure_system
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = "u_friction v_friction"
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[u_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_x
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[v_friction]
type = PINSFVMomentumFriction
variable = superficial_vel_y
momentum_component = 'y'
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
speed = speed
mu = ${mu}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
inactive = 'slip-u slip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[symmetry-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.4
[]
### Are disabled by default but we switch it on for certain tests ###
[slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_x
momentum_component = 'x'
[]
[slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top'
variable = superficial_vel_y
momentum_component = 'y'
[]
#####################################################################
[]
[FunctorMaterials]
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.01 0.02 0.03 0.01 0.02 0.03'
[]
[speed]
type = PINSFVSpeedFunctorMaterial
superficial_vel_x = superficial_vel_x
superficial_vel_y = superficial_vel_y
porosity = porosity
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.85
pressure_variable_relaxation = 0.45
num_iterations = 150
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-non-eq-bulk.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# Standard wall functions with non-equilibrium bulk formaultion
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/segregated/2d-heated.i)
mu = 1
rho = 1
k = 1e-3
cp = 1
u_inlet = 1
T_inlet = 200
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '5 5'
dy = '1.0'
ix = '10 10'
iy = '5'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = PINSFVRhieChowInterpolatorSegregated
u = superficial_vel_x
v = superficial_vel_y
pressure = pressure
porosity = porosity
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system energy_system solid_energy_system'
previous_nl_solution_required = true
[]
[Variables]
[superficial_vel_x]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
solver_sys = u_system
two_term_boundary_expansion = false
[]
[superficial_vel_y]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
two_term_boundary_expansion = false
solver_sys = pressure_system
[]
[T_fluid]
type = INSFVEnergyVariable
two_term_boundary_expansion = false
solver_sys = energy_system
initial_condition = 200
[]
[T_solid]
type = MooseVariableFVReal
two_term_boundary_expansion = false
solver_sys = solid_energy_system
initial_condition = 200
[]
[]
[AuxVariables]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.5
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_x
mu = ${mu}
porosity = porosity
momentum_component = 'x'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_x
momentum_component = 'x'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = superficial_vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = superficial_vel_y
mu = ${mu}
porosity = porosity
momentum_component = 'y'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = superficial_vel_y
momentum_component = 'y'
pressure = pressure
porosity = porosity
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
boundaries_to_force = bottom
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
k = ${k}
variable = T_fluid
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_fluid
is_solid = false
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[solid_energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_solid
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = T_solid
is_solid = true
T_fluid = 'T_fluid'
T_solid = 'T_solid'
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_x
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = superficial_vel_y
function = 0
[]
[inlet-T]
type = FVDirichletBC
variable = T_fluid
value = ${T_inlet}
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_x
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = superficial_vel_y
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'T_solid'
value = 250
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_x
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'x'
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = superficial_vel_y
u = superficial_vel_x
v = superficial_vel_y
mu = ${mu}
momentum_component = 'y'
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[FunctorMaterials]
[constants]
type = ADGenericFunctorMaterial
prop_names = 'h_cv cp'
prop_values = '0.1 ${cp}'
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
energy_l_abs_tol = 1e-14
solid_energy_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
energy_l_tol = 0
solid_energy_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
energy_system = 'energy_system'
solid_energy_system = 'solid_energy_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.4
energy_equation_relaxation = 1.0
num_iterations = 160
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
energy_absolute_tolerance = 1e-13
solid_energy_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/segregated-comparison/segregated-nonlinear.i)
mu = 2.6
rho = 1.0
advected_interp_method = 'average'
velocity_interp_method = 'rc'
pressure_tag = "pressure_grad"
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.3'
dy = '0.3'
ix = '3'
iy = '3'
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.5
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1.1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0.0'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0.0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0.0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1.4
[]
[zero-grad-pressure]
type = FVFunctionNeumannBC
variable = pressure
boundary = 'top left bottom'
function = 0.0
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
momentum_l_tol = 0
pressure_l_tol = 0
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.3
num_iterations = 2
pressure_absolute_tolerance = 1e-13
momentum_absolute_tolerance = 1e-13
print_fields = false
[]
[Outputs]
exodus = true
execute_on = FINAL
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/lid-driven-turb-std-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
[]
[Problem]
nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolatorSegregated
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = u_system
two_term_boundary_expansion = false
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 0.0
solver_sys = v_system
two_term_boundary_expansion = false
[]
[pressure]
type = INSFVPressureVariable
solver_sys = pressure_system
initial_condition = 0.2
two_term_boundary_expansion = false
[]
[TKE]
type = INSFVEnergyVariable
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = INSFVEnergyVariable
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[FVKernels]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu_t'
momentum_component = 'x'
complete_expansion = true
u = vel_x
v = vel_y
mu_interp_method = 'average'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_turbulent]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu_t'
momentum_component = 'y'
complete_expansion = true
u = vel_x
v = vel_y
mu_interp_method = 'average'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
extra_vector_tags = ${pressure_tag}
[]
[p_diffusion]
type = FVAnisotropicDiffusion
variable = pressure
coeff = "Ainv"
coeff_interp_method = 'average'
[]
[p_source]
type = FVDivergence
variable = pressure
vector_field = "HbyA"
force_boundary_execution = true
[]
[TKE_advection]
type = INSFVTurbulentAdvection
variable = TKE
rho = ${rho}
[]
[TKE_diffusion]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = ${mu}
[]
[TKE_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKE
coeff = 'mu_t'
scaling_coef = ${sigma_k}
coeff_interp_method = 'average'
[]
[TKE_source_sink]
type = INSFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[TKED_advection]
type = INSFVTurbulentAdvection
variable = TKED
rho = ${rho}
walls = ${walls}
[]
[TKED_diffusion]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = ${mu}
walls = ${walls}
[]
[TKED_diffusion_turbulent]
type = INSFVTurbulentDiffusion
variable = TKED
coeff = 'mu_t'
scaling_coef = ${sigma_eps}
walls = ${walls}
coeff_interp_method = 'average'
[]
[TKED_source_sink]
type = INSFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
k = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = ${lid_velocity}
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[walls_mu_t]
type = INSFVTurbulentViscosityWallFunction
boundary = 'left right top bottom'
variable = mu_t
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
k = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
two_term_boundary_expansion = false
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
k = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLENonlinearAssembly
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKED_system TKE_system'
pressure_gradient_tag = ${pressure_tag}
momentum_equation_relaxation = 0.8
pressure_variable_relaxation = 0.5
turbulence_equation_relaxation = '0.8 0.8'
num_iterations = 500
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_max_its = 30
pressure_l_max_its = 30
momentum_l_tol = 0.0
pressure_l_tol = 0.0
turbulence_l_tol = 0.0
print_fields = false
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
exodus = true
csv = false
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]