- mass_fluxThe mass flux at this point in kg/s (positive is flux in, negative is flux out)
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The mass flux at this point in kg/s (positive is flux in, negative is flux out)
- pointThe x,y,z coordinates of the point source (sink)
C++ Type:libMesh::Point
Unit:(no unit assumed)
Controllable:No
Description:The x,y,z coordinates of the point source (sink)
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
PorousFlowSquarePulsePointSource
PorousFlowSquarePulsePointSource
implements a constant mass point source that adds (removes) fluid at a constant mass flux rate for times between the specified start and end times. If no start and end times are specified, the source (sink) starts at the start of the simulation and continues to act indefinitely. For instance:
[DiracKernels]
[sink1]
type = PorousFlowSquarePulsePointSource
start_time = 100
end_time = 300
point = '0.5 0.5 0'
mass_flux = -0.1
variable = pp
[]
[sink]
type = PorousFlowSquarePulsePointSource
start_time = 600
end_time = 1400
point = '0.5 0.5 0'
mass_flux = -0.1
variable = pp
[]
[source]
point = '0.5 0.5 0'
start_time = 1500
mass_flux = 0.2
end_time = 2000
variable = pp
type = PorousFlowSquarePulsePointSource
[]
[]
(modules/porous_flow/test/tests/dirackernels/squarepulse1.i)Input Parameters
- allow_moving_sourcesFalseIf true, allow Dirac sources to move, even if the mesh does not move, during the simulation.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:If true, allow Dirac sources to move, even if the mesh does not move, during the simulation.
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- end_time1e+30The time at which the source will end (Default is 1e30)
Default:1e+30
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The time at which the source will end (Default is 1e30)
- point_not_found_behaviorIGNOREBy default (IGNORE), it is ignored if an added point cannot be located in the specified subdomains. If this option is set to ERROR, this situation will result in an error. If this option is set to WARNING, then a warning will be issued.
Default:IGNORE
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:ERROR, WARNING, IGNORE
Controllable:No
Description:By default (IGNORE), it is ignored if an added point cannot be located in the specified subdomains. If this option is set to ERROR, this situation will result in an error. If this option is set to WARNING, then a warning will be issued.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- start_time0The time at which the source will start (Default is 0)
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The time at which the source will start (Default is 0)
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- drop_duplicate_pointsTrueBy default points added to a DiracKernel are dropped if a point at the same locationhas been added before. If this option is set to false duplicate points are retainedand contribute to residual and Jacobian.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:By default points added to a DiracKernel are dropped if a point at the same locationhas been added before. If this option is set to false duplicate points are retainedand contribute to residual and Jacobian.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/porous_flow/test/tests/dirackernels/theis_rz.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
- (modules/porous_flow/test/tests/dirackernels/theis3.i)
- (modules/porous_flow/test/tests/dirackernels/theis1.i)
- (modules/porous_flow/test/tests/dirackernels/theis2.i)
- (modules/porous_flow/test/tests/fluidstate/theis.i)
- (modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
- (modules/porous_flow/examples/solute_tracer_transport/solute_tracer_transport_2D.i)
- (modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
- (modules/porous_flow/test/tests/dirackernels/squarepulse1.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
- (modules/porous_flow/test/tests/recover/theis.i)
(modules/porous_flow/test/tests/dirackernels/squarepulse1.i)
# Test PorousFlowSquarePulsePointSource DiracKernel
[Mesh]
type = GeneratedMesh
dim = 2
bias_x = 1.1
bias_y = 1.1
ymax = 1
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = pp
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[]
[Postprocessors]
[total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-14
dt = 200
end_time = 2000
[]
[Outputs]
perf_graph = true
file_base = squarepulse1
csv = true
execute_on = 'initial timestep_end'
[con]
output_linear = true
type = Console
[]
[]
[ICs]
[PressureIC]
variable = pp
type = ConstantIC
value = 20e6
[]
[]
[DiracKernels]
[sink1]
type = PorousFlowSquarePulsePointSource
start_time = 100
end_time = 300
point = '0.5 0.5 0'
mass_flux = -0.1
variable = pp
[]
[sink]
type = PorousFlowSquarePulsePointSource
start_time = 600
end_time = 1400
point = '0.5 0.5 0'
mass_flux = -0.1
variable = pp
[]
[source]
point = '0.5 0.5 0'
start_time = 1500
mass_flux = 0.2
end_time = 2000
variable = pp
type = PorousFlowSquarePulsePointSource
[]
[]
(modules/porous_flow/test/tests/dirackernels/theis_rz.i)
# Theis problem: Flow to single sink using BasicTHM
# SinglePhase
# RZ mesh
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 100
bias_x = 1.05
coord_type = RZ
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 20E6
[]
[]
[PorousFlowBasicTHM]
dictator_name = dictator
add_darcy_aux = false
fp = simple_fluid
gravity = '0 0 0'
multiply_by_density = false
porepressure = pp
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
viscosity = 0.001
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.05
[]
[biot_mod]
type = PorousFlowConstantBiotModulus
fluid_bulk_modulus = 2E9
biot_coefficient = 1.0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[]
[DiracKernels]
[sink]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = -0.16E-3 # recall this is a volumetric flux because multiply_by_density = false in the Action, so this corresponds to a mass_flux of 0.16 kg/s/m because density=1000
variable = pp
[]
[]
[VectorPostprocessors]
[pp]
type = LineValueSampler
num_points = 25
start_point = '0 0 0'
end_point = '100 0 0'
sort_by = x
variable = pp
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 200
end_time = 1E3
nl_abs_tol = 1e-10
[]
[Outputs]
perf_graph = true
[csv]
type = CSV
execute_on = final
[]
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
# Two phase Theis problem: Flow from single source.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
#
# This test takes a few minutes to run, so is marked heavy
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2000
xmax = 2000
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[xnacl]
initial_condition = 0.1
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = xnacl
[]
[flux2]
type = PorousFlowAdvectiveFlux
fluid_component = 2
variable = xnacl
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
fluid_property_file = 'fluid_properties.csv'
allow_fp_and_tabulation = true
error_on_out_of_bounds = false
[]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
temperature_min = 273.15
temperature_max = 573.15
fluid_property_output_file = water_fluid_properties.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water_fluid_properties.csv
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[VectorPostprocessors]
[line]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
start_point = '0 0 0'
end_point = '2000 0 0'
num_points = 10000
variable = 'pgas zi xnacl x1 saturation_gas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '4 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '4 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '4 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '4 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '4 0 0'
variable = y0
[]
[xnacl]
type = PointValue
point = '4 0 0'
variable = xnacl
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/test/tests/dirackernels/theis3.i)
# Two phase Theis problem: Flow from single source
# Constant rate injection 0.5 kg/s
# 1D cylindrical mesh
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 2000
bias_x = 1.05
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[ppwater]
initial_condition = 20e6
[]
[sgas]
initial_condition = 0
[]
[]
[AuxVariables]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = ppwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = ppwater
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = sgas
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater sgas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 1e5
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
viscosity = 1e-3
thermal_expansion = 0
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 10
viscosity = 1e-4
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = ppwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
compute_enthalpy = false
compute_internal_energy = false
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
compute_enthalpy = false
compute_internal_energy = false
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = ppwater
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 0.5
variable = sgas
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-8 1E-10 20'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e4
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 2
[]
[]
[VectorPostprocessors]
[line]
type = NodalValueSampler
sort_by = x
variable = 'ppwater sgas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[ppwater]
type = PointValue
point = '4 0 0'
variable = ppwater
[]
[sgas]
type = PointValue
point = '4 0 0'
variable = sgas
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[]
[Outputs]
file_base = theis3
print_linear_residuals = false
perf_graph = true
[csv]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/test/tests/dirackernels/theis1.i)
# Theis problem: Flow to single sink
# SinglePhase
# Cartesian mesh with logarithmic distribution in x and y.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
bias_x = 1.1
bias_y = 1.1
ymax = 100
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
compute_enthalpy = false
compute_internal_energy = false
[]
[Variables]
[pp]
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[Postprocessors]
[porepressure]
type = PointValue
point = '0 0 0'
variable = pp
execute_on = 'initial timestep_end'
[]
[total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 200
end_time = 1E3
nl_abs_tol = 1e-10
[]
[Outputs]
perf_graph = true
file_base = theis1
[csv]
type = CSV
execute_on = final
[]
[]
[ICs]
[PressureIC]
variable = pp
type = ConstantIC
value = 20e6
[]
[]
[DiracKernels]
[sink]
type = PorousFlowSquarePulsePointSource
end_time = 1000
point = '0 0 0'
mass_flux = -0.04
variable = pp
[]
[]
[BCs]
[right]
type = DirichletBC
variable = pp
value = 20e6
boundary = right
[]
[top]
type = DirichletBC
variable = pp
value = 20e6
boundary = top
[]
[]
[VectorPostprocessors]
[pressure]
type = SideValueSampler
variable = pp
sort_by = x
execute_on = timestep_end
boundary = bottom
[]
[]
(modules/porous_flow/test/tests/dirackernels/theis2.i)
# Theis problem: Flow to single sink
# Constant rate injection between 200 and 1000 s.
# Cartesian mesh with logarithmic distribution in x and y.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
bias_x = 1.1
bias_y = 1.1
ymax = 100
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
compute_enthalpy = false
compute_internal_energy = false
[]
[Variables]
[pp]
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 200
end_time = 1000
nl_abs_tol = 1e-10
[]
[Outputs]
perf_graph = true
file_base = theis2
[csv]
type = CSV
execute_on = final
[]
[]
[ICs]
[PressureIC]
variable = pp
type = ConstantIC
value = 20e6
[]
[]
[DiracKernels]
[sink]
type = PorousFlowSquarePulsePointSource
start_time = 200
end_time = 1000
point = '0 0 0'
mass_flux = -0.04
variable = pp
[]
[]
[BCs]
[right]
type = DirichletBC
variable = pp
value = 20e6
boundary = right
[]
[top]
type = DirichletBC
variable = pp
value = 20e6
boundary = top
[]
[]
[VectorPostprocessors]
[pressure]
type = SideValueSampler
variable = pp
sort_by = x
execute_on = timestep_end
boundary = bottom
[]
[]
(modules/porous_flow/test/tests/fluidstate/theis.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 40
xmax = 200
bias_x = 1.05
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-8 1E-10 20'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 2e2
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 2
[]
[]
[VectorPostprocessors]
[line]
type = NodalValueSampler
sort_by = x
variable = 'pgas zi'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '1 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '1 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '1 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '1 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '1 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
# Note: this test is the same as theis.i, but uses the tabulated version of the CO2FluidProperties
[Mesh]
type = GeneratedMesh
dim = 1
nx = 80
xmax = 200
bias_x = 1.05
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = tabulated
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[tabulated]
type = TabulatedBicubicFluidProperties
fp = co2
fluid_property_file = fluid_properties.csv
# We try to avoid using both, but some properties are not implemented in the tabulation
allow_fp_and_tabulation = true
# Test was design prior to bounds check
error_on_out_of_bounds = false
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = fluid_properties.csv
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-8 1E-10 20'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 8e2
[TimeStepper]
type = IterationAdaptiveDT
dt = 2
growth_factor = 2
[]
[]
[VectorPostprocessors]
[line]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
start_point = '0 0 0'
end_point = '200 0 0'
num_points = 1000
variable = 'pgas zi x1 saturation_gas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '1 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '1 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '1 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '1 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '1 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
file_base = theis_tabulated_csvout
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/examples/solute_tracer_transport/solute_tracer_transport_2D.i)
# Longitudinal dispersivity
disp = 5
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
xmin = -50
xmax = 50
ny = 60
ymin = 0
ymax = 50
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
initial_condition = 1e5
[]
[C]
initial_condition = 0
[]
[]
[AuxVariables]
[Darcy_vel_x]
order = CONSTANT
family = MONOMIAL
[]
[Darcy_vel_y]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[Darcy_vel_x]
type = PorousFlowDarcyVelocityComponent
variable = Darcy_vel_x
component = x
fluid_phase = 0
[]
[Darcy_vel_y]
type = PorousFlowDarcyVelocityComponent
variable = Darcy_vel_y
component = y
fluid_phase = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure C'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Kernels]
[mass_der_water]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[adv_pp]
type = PorousFlowFullySaturatedDarcyFlow
variable = porepressure
fluid_component = 1
[]
[diff_pp]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = porepressure
disp_trans = 0
disp_long = ${disp}
[]
[mass_der_C]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = C
[]
[adv_C]
type = PorousFlowFullySaturatedDarcyFlow
fluid_component = 0
variable = C
[]
[diff_C]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = C
disp_trans = 0
disp_long = ${disp}
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[ps]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.25
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = C
[]
[temperature]
type = PorousFlowTemperature
temperature = 293
[]
[diff]
type = PorousFlowDiffusivityConst
diffusion_coeff = '0 0'
tortuosity = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
kr = 1
phase = 0
[]
[]
[DiracKernels]
[source_P]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 1e-1
variable = porepressure
[]
[source_C]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 1e-7
variable = C
[]
[]
[BCs]
[constant_outlet_porepressure_]
type = DirichletBC
variable = porepressure
value = 1e5
boundary = 'top left right'
[]
[outlet_tracer_top]
type = PorousFlowOutflowBC
variable = C
boundary = top
mass_fraction_component = 0
[]
[outlet_tracer_right]
type = PorousFlowOutflowBC
variable = C
boundary = right
mass_fraction_component = 0
[]
[outlet_tracer_left]
type = PorousFlowOutflowBC
variable = C
boundary = left
mass_fraction_component = 0
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
end_time = 17280000
dtmax = 100000
nl_rel_tol = 1e-6
nl_abs_tol = 1e-12
[TimeStepper]
type = IterationAdaptiveDT
dt = 1000
[]
[]
[Postprocessors]
[C]
type = PointValue
variable = C
point = '0 25 0'
[]
[Darcy_x]
type = PointValue
variable = Darcy_vel_x
point = '0 25 0'
[]
[Darcy_y]
type = PointValue
variable = Darcy_vel_y
point = '0 25 0'
[]
[]
[Outputs]
file_base = solute_tracer_transport_2D_${disp}
csv = true
exodus = true
[]
(modules/porous_flow/examples/co2_intercomparison/1Dradial/1Dradial.i)
# Intercomparison problem 3: Radial flow from an injection well
#
# From Pruess et al, Code intercomparison builds confidence in
# numerical simulation models for geologic disposal of CO2, Energy 29 (2004)
#
# A variation with zero salinity can be run by changing the initial condition
# of the AuxVariable xnacl
[Mesh]
type = GeneratedMesh
dim = 1
nx = 500
xmax = 10000
bias_x = 1.01
coord_type = 'RZ'
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 0 0'
[]
[AuxVariables]
[pressure_liquid]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[xnacl]
initial_condition = 0.15
[]
[]
[AuxKernels]
[pressure_liquid]
type = PorousFlowPropertyAux
variable = pressure_liquid
property = pressure
phase = 0
execute_on = 'timestep_end'
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
initial_condition = 12e6
[]
[zi]
initial_condition = 0
scaling = 1e4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 5.099e-5
m = 0.457
sat_lr = 0.0
pc_max = 1e7
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedBicubicFluidProperties
fp = co2sw
[]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedBicubicFluidProperties
fp = water
temperature_min = 273.15
temperature_max = 573.15
fluid_property_output_file = water_fluid_properties.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water_fluid_properties.csv
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.12'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityVG
m = 0.457
phase = 0
s_res = 0.3
sum_s_res = 0.35
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.05
sum_s_res = 0.35
[]
[]
[BCs]
[rightwater]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
variable = pgas
use_mobility = true
PorousFlowDictator = dictator
fluid_phase = 0
multipliers = '0 1e9'
PT_shift = '12e6'
pt_vals = '0 1e9'
mass_fraction_component = 0
use_relperm = true
[]
[rightco2]
type = PorousFlowPiecewiseLinearSink
variable = zi
boundary = 'right'
use_mobility = true
PorousFlowDictator = dictator
fluid_phase = 1
multipliers = '0 1e9'
PT_shift = '12e6'
pt_vals = '0 1e9'
mass_fraction_component = 1
use_relperm = true
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 1
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres bjacobi lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 8.64e8
nl_max_its = 25
l_max_its = 100
dtmax = 5e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
[]
[]
[VectorPostprocessors]
[vars]
type = NodalValueSampler
sort_by = x
variable = 'pgas zi xnacl'
execute_on = 'timestep_end'
outputs = spatial
[]
[auxvars]
type = ElementValueSampler
sort_by = x
variable = 'saturation_gas x1 y0'
execute_on = 'timestep_end'
outputs = spatial
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '25.25 0 0'
variable = pgas
outputs = time
[]
[sgas]
type = PointValue
point = '25.25 0 0'
variable = saturation_gas
outputs = time
[]
[zi]
type = PointValue
point = '25.25 0 0'
variable = zi
outputs = time
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
outputs = time
[]
[x1]
type = PointValue
point = '25.25 0 0'
variable = x1
outputs = time
[]
[y0]
type = PointValue
point = '25.25 0 0'
variable = y0
outputs = time
[]
[xnacl]
type = PointValue
point = '25.25 0 0'
variable = xnacl
outputs = time
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
sync_times = '2.592e6 8.64e6 8.64e7 8.64e8'
[time]
type = CSV
[]
[spatial]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/test/tests/dirackernels/squarepulse1.i)
# Test PorousFlowSquarePulsePointSource DiracKernel
[Mesh]
type = GeneratedMesh
dim = 2
bias_x = 1.1
bias_y = 1.1
ymax = 1
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = pp
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[]
[Postprocessors]
[total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_abs_tol = 1e-14
dt = 200
end_time = 2000
[]
[Outputs]
perf_graph = true
file_base = squarepulse1
csv = true
execute_on = 'initial timestep_end'
[con]
output_linear = true
type = Console
[]
[]
[ICs]
[PressureIC]
variable = pp
type = ConstantIC
value = 20e6
[]
[]
[DiracKernels]
[sink1]
type = PorousFlowSquarePulsePointSource
start_time = 100
end_time = 300
point = '0.5 0.5 0'
mass_flux = -0.1
variable = pp
[]
[sink]
type = PorousFlowSquarePulsePointSource
start_time = 600
end_time = 1400
point = '0.5 0.5 0'
mass_flux = -0.1
variable = pp
[]
[source]
point = '0.5 0.5 0'
start_time = 1500
mass_flux = 0.2
end_time = 2000
variable = pp
type = PorousFlowSquarePulsePointSource
[]
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
# Injection of supercritical CO2 into a single brine saturated cell. The CO2 initially fully
# dissolves into the brine, increasing its density slightly. After a few time steps,
# the brine is saturated with CO2, and subsequently a supercritical gas phase of CO2 saturated
# with a small amount of H2O is formed. Salt is included as a nonlinear variable.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 30
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
[]
[xnacl]
initial_condition = 0.1
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
variable = z
point = '0.5 0.5 0'
mass_flux = 2
[]
[]
[BCs]
[left]
type = DirichletBC
value = 20e6
variable = pgas
boundary = left
[]
[right]
type = DirichletBC
value = 20e6
variable = pgas
boundary = right
[]
[]
[AuxVariables]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = 'initial timestep_end'
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = 'initial timestep_end'
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'initial timestep_end'
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = 'initial timestep_end'
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = 'initial timestep_end'
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = 'initial timestep_end'
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = 'initial timestep_end'
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
variable = xnacl
fluid_component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 10
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
execute_on = 'initial timestep_end'
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
execute_on = 'initial timestep_end'
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
execute_on = 'initial timestep_end'
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
execute_on = 'initial timestep_end'
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
execute_on = 'initial timestep_end'
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
execute_on = 'initial timestep_end'
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
execute_on = 'initial timestep_end'
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
execute_on = 'initial timestep_end'
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
execute_on = 'initial timestep_end'
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
execute_on = 'initial timestep_end'
[]
[xnacl]
type = ElementIntegralVariablePostprocessor
variable = xnacl
execute_on = 'initial timestep_end'
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x2mass]
type = PorousFlowFluidMass
fluid_component = 2
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
file_base = brineco2_2
execute_on = 'initial timestep_end'
perf_graph = true
[]
(modules/porous_flow/test/tests/recover/theis.i)
# Tests that PorousFlow can successfully recover using a checkpoint file.
# This test contains stateful material properties, adaptivity and integrated
# boundary conditions with nodal-sized materials.
#
# This test file is run three times:
# 1) The full input file is run to completion
# 2) The input file is run for half the time and checkpointing is included
# 3) The input file is run in recovery using the checkpoint data
#
# The final output of test 3 is compared to the final output of test 1 to verify
# that recovery was successful.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 100
bias_x = 1.05
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Adaptivity]
marker = marker
max_h_level = 4
[Indicators]
[front]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = front
refine = 0.8
coarsen = 0.2
[]
[]
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[aquifer]
type = PorousFlowPiecewiseLinearSink
variable = pgas
boundary = right
pt_vals = '0 1e8'
multipliers = '0 1e8'
flux_function = 1e-6
PT_shift = 20e6
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 2e2
dt = 50
[]
[VectorPostprocessors]
[line]
type = NodalValueSampler
sort_by = x
variable = 'pgas zi'
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
csv = true
[]