- primary_boundaryThe name of the primary boundary sideset.
C++ Type:BoundaryName
Unit:(no unit assumed)
Controllable:No
Description:The name of the primary boundary sideset.
- primary_subdomainThe name of the primary subdomain.
C++ Type:SubdomainName
Unit:(no unit assumed)
Controllable:No
Description:The name of the primary subdomain.
- secondary_boundaryThe name of the secondary boundary sideset.
C++ Type:BoundaryName
Unit:(no unit assumed)
Controllable:No
Description:The name of the secondary boundary sideset.
- secondary_subdomainThe name of the secondary subdomain.
C++ Type:SubdomainName
Unit:(no unit assumed)
Controllable:No
Description:The name of the secondary subdomain.
ModularGapConductanceConstraint
Computes the residual and Jacobian contributions for the 'Lagrange Multiplier' implementation of the thermal contact problem. For more information, see the detailed description here: http://tinyurl.com/gmmhbe9
The ModularGapConductanceConstraint
class is used specify a heat flux across a gap. The flux is computed by user objects derived from GapFluxModelBase
. Such as
Multiple models can be specified with their contributions getting summed up.
Gap geometry types
Plate, cylindrical, and spherical gap geometries can be specified using the "gap_geometry_type" parameter.
For cylindrical geometries, e.g. gap_geometry_type = cylinder
, the axis of the cylinder can be specified using the "cylinder_axis_point_1" and "cylinder_axis_point_2" parameters. In 2D Cartesian coordinate systems (e.g. Mesh/coord_type=XYZ
), these parameters can be omitted to automatically determine the cylinder axis. This is accomplished by averaging positions over the primary side set, which should yield the center of the cylinder, assuming the side set spans the entire 360 degree rotation around the theoretical axis. The axis is then extended in z-direction.
For spherical geometries the origin of the sphere can be specified using the "sphere_origin" parameter. If the parameter is omitted, the sphere origin is deduced by averaging positions over the primary side set.
If the gap is sliced by a symmetry plane (e.g. only a quarter of a cylinder or an eighth of a sphere are modeled), the positional average over the primary side set will not yield the correct origin or axis and they will need to be supplied manually.
Input Parameters
- aux_lmAuxiliary Lagrange multiplier variable that is utilized together with the Petrov-Galerkin approach.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Auxiliary Lagrange multiplier variable that is utilized together with the Petrov-Galerkin approach.
- compute_lm_residualsTrueWhether to compute Lagrange Multiplier residuals
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to compute Lagrange Multiplier residuals
- compute_primal_residualsTrueWhether to compute residuals for the primal variable.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to compute residuals for the primal variable.
- correct_edge_droppingFalseWhether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.
- debug_meshFalseWhether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true
- displacementsDisplacement variables
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Displacement variables
- ghost_higher_d_neighborsFalseWhether we should ghost higher-dimensional neighbors. This is necessary when we are doing second order mortar with finite volume primal variables, because in order for the method to be second order we must use cell gradients, which couples in the neighbor cells.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether we should ghost higher-dimensional neighbors. This is necessary when we are doing second order mortar with finite volume primal variables, because in order for the method to be second order we must use cell gradients, which couples in the neighbor cells.
- ghost_point_neighborsFalseWhether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.
- interpolate_normalsTrueWhether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp
- minimum_projection_angle40Parameter to control which angle (in degrees) is admissible for the creation of mortar segments. If set to a value close to zero, very oblique projections are allowed, which can result in mortar segments solving physics not meaningfully, and overprojection of primary nodes onto the mortar segment mesh in extreme cases. This parameter is mostly intended for mortar mesh debugging purposes in two dimensions.
Default:40
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Parameter to control which angle (in degrees) is admissible for the creation of mortar segments. If set to a value close to zero, very oblique projections are allowed, which can result in mortar segments solving physics not meaningfully, and overprojection of primary nodes onto the mortar segment mesh in extreme cases. This parameter is mostly intended for mortar mesh debugging purposes in two dimensions.
- periodicFalseWhether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing
- primary_variablePrimal variable on primary surface. If this parameter is not provided then the primary variable will be initialized to the secondary variable
C++ Type:VariableName
Unit:(no unit assumed)
Controllable:No
Description:Primal variable on primary surface. If this parameter is not provided then the primary variable will be initialized to the secondary variable
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- quadratureDEFAULTQuadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.
Default:DEFAULT
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:DEFAULT, FIRST, SECOND, THIRD, FOURTH
Controllable:No
Description:Quadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.
- secondary_variablePrimal variable on secondary surface.
C++ Type:VariableName
Unit:(no unit assumed)
Controllable:No
Description:Primal variable on secondary surface.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- use_petrov_galerkinFalseWhether to use the Petrov-Galerkin approach for the mortar-based constraints. If set to true, we use the standard basis as the test function and dual basis as the shape function for the interpolation of the Lagrange multiplier variable.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether to use the Petrov-Galerkin approach for the mortar-based constraints. If set to true, we use the standard basis as the test function and dual basis as the shape function for the interpolation of the Lagrange multiplier variable.
- variableThe name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- cylinder_axis_point_1Start point for line defining cylindrical axis
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:Start point for line defining cylindrical axis
- cylinder_axis_point_2End point for line defining cylindrical axis
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:End point for line defining cylindrical axis
- gap_geometry_typeAUTOGap calculation type. The geometry type is used to compute gap distances and scale fluxes to ensure energy balance. If AUTO is selected, the gap geometry is automatically set via the mesh coordinate system.
Default:AUTO
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:AUTO, PLATE, CYLINDER, SPHERE
Controllable:No
Description:Gap calculation type. The geometry type is used to compute gap distances and scale fluxes to ensure energy balance. If AUTO is selected, the gap geometry is automatically set via the mesh coordinate system.
- max_gap1e+06A maximum gap size
Default:1e+06
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:A maximum gap size
- sphere_originOrigin for sphere geometry
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:Origin for sphere geometry
Gap Geometry Parameters
- gap_flux_modelsList of GapFluxModel user objects
C++ Type:std::vector<UserObjectName>
Unit:(no unit assumed)
Controllable:No
Description:List of GapFluxModel user objects
Gap Flux Models Parameters
Input Files
- (modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/closed_gap_pressure_dependent_thermal_contact.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_conduction.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_separate.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_single_material_insulated.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/open_gap_pressure_dependent.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/multi_component_mortar_thermal_conduction.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/closed_gap_prescribed_pressure.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_conduction_function.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_rz_cylinder_mortar.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_sphere3D_mortar.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder_mortar.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_verbose.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_dual_material_insulated.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_dual_material.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/varied_pressure_thermomechanical_mortar.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/fv_modular_gap_heat_transfer_mortar_radiation_conduction.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_sphere_mortar_error.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/transient_joule_heating_constraint.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder_mortar_error.i)
- (modules/combined/test/tests/3d-mortar-projection-tolerancing/test.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_radiation_test.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_single_material.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_3D_mortar.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_sphere_mortar.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/closed_gap_thermomechanical_mortar_contact.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation_conduction.i)
- (modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_offset_single_material_insulated.i)
References
No citations exist within this document.gap_geometry_type
Default:AUTO
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:AUTO, PLATE, CYLINDER, SPHERE
Controllable:No
Description:Gap calculation type. The geometry type is used to compute gap distances and scale fluxes to ensure energy balance. If AUTO is selected, the gap geometry is automatically set via the mesh coordinate system.
cylinder_axis_point_1
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:Start point for line defining cylindrical axis
cylinder_axis_point_2
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:End point for line defining cylindrical axis
sphere_origin
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:Origin for sphere geometry
(modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/closed_gap_pressure_dependent_thermal_contact.i)
## Units in the input file: m-Pa-s-K
# The analytical solution for a steady state thermal contact and a mechanical
# contact pressure of 1Pa, the temperature of the steel block at the interface
# is calcaluated as
#
# T^s_{int} = \frac{T^a_{BC}C_T k_a + T^s_{BC} k_s \left(k_a +C_T \right)}{k_s (k_a + C_T) + k_a C_T}
# T^s_{int} = 460K
#
# with the boundary conditions and thermal conductivity values specified in the
# input file below. Similarly, the temperature of the aluminum block (cold block)
# is calculated as
#
# T^a_{int} = \frac{T^s_{int} C_T + T^a_{BC} k_a}{k_a + C_T}
# T^a_{int} = 276K
#
# The values predicted by the simulation at the interface converge towards these
# temperature values, and are within a few degrees by 240s. A smaller timestep
# than is practical for the regression test application further reduces the difference
# between the analytical solution and the simulation result.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1
xmax = 2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 525.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'left_block'
[]
[aluminum]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity
density_name = steel_density
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity
density_name = aluminum_density
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[displacement_left_block]
type = ADDirichletBC
variable = disp_x
value = 1.8e-11
boundary = 'moving_block_left'
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 250
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeLinearElasticStress
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity'
prop_values = '8e3 16.2 0.5' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeLinearElasticStress
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity'
prop_values = ' 2.7e3 210 0.9'
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = 1.0
secondary_hardness = 1.0
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_pt_interface_temperature]
type = NodalVariableValue
nodeid = 245
variable = temperature
[]
[aluminum_pt_interface_temperature]
type = NodalVariableValue
nodeid = 657
variable = temperature
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
# mortar contact solver options
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = ' lu superlu_dist'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_max_its = 20
l_max_its = 50
dt = 60
end_time = 240
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_conduction.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 10.0
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = conduction
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_separate.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[lm_conduction]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 0.02
use_displaced_mesh = true
[]
[]
[Constraints]
[ced_radiation]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = 'radiation'
[]
[ced_conduction]
type = ModularGapConductanceConstraint
variable = lm_conduction
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = 'conduction'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_single_material_insulated.i)
## Units in the input file: m-Pa-s-K-V
# In this steady-state, symmetric simulation, the temperature at the interface between
# the two blocks of aluminum can be calculated through Fourier's law (see the documentation
# page for ADInterfaceJouleHeatingConstraint for the relevant formulas).
#
# With the prescribed 0.0 V (left) and 0.3V (right) potential boundary conditions, the
# electric potential drop is 9.25e6 [V * S / m^2]. From this current-density-like LM variable,
# the volumetric heat source at the interface is calculated as
# q = 1.15625e6 [W/m^3}
# Because of the 2D nature of this problem, the volumetric heat source is equal to
# the negative of the heat flux at the interface.
#
# Finally, the temperature at the interface is computed as a function of the block width,
# thermal conductivity, and specified temperature boundary condition (300K on both the
# left and right edges):
# T_{interface} = 850.5952K
# which matches the simulation result to the 6 decimal places shown.
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = aluminum_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = aluminum_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = aluminum_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[aluminum_interface_potential]
type = AverageNodalVariableValue
variable = potential
block = interface_secondary_subdomain
[]
[interface_electrical_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 2e-10
nl_rel_tol = 1e-6
nl_max_its = 50
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/open_gap_pressure_dependent.i)
## Units in the input file: m-Pa-s-K
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1.0001
xmax = 2.0001
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 525.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'left_block'
[]
[aluminum]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[pressure_left_block]
type = ADPressure
variable = disp_x
boundary = 'moving_block_left'
component = 0
function = 1*t
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 250
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeLinearElasticStress
block = 'left_block'
[]
[steel_density]
type = ADGenericConstantMaterial
prop_names = 'steel_density'
prop_values = 8e3 #in kg/m^3, stainless steel 304
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_thermal_conductivity steel_heat_capacity steel_emissivity'
prop_values = '16.2 0.5 0.6' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeLinearElasticStress
block = 'right_block'
[]
[aluminum_density]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density'
prop_values = 2.7e3 #in kg/m^3, stainless steel 304
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_thermal_conductivity aluminum_heat_capacity aluminum_emissivity'
prop_values = '210 0.9 0.25'
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
primary_hardness = 1.0
secondary_hardness = 1.0
boundary = moving_block_right
contact_pressure = interface_normal_lm
[]
[]
[Postprocessors]
[steel_pt_interface_temperature]
type = NodalVariableValue
nodeid = 245
variable = temperature
[]
[aluminum_pt_interface_temperature]
type = NodalVariableValue
nodeid = 657
variable = temperature
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[steel_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 199
[]
[aluminum_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 560
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/multi_component_mortar_thermal_conduction.i)
## Units in the input file: m-Pa-s-K
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1.
xmax = 2.
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
patch_update_strategy = iteration
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 525.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'left_block'
[]
[aluminum]
strain = SMALL
add_variables = false
use_automatic_differentiation = true
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity
density_name = steel_density
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity
density_name = aluminum_density
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[displacement_left_block]
type = ADFunctionDirichletBC
variable = disp_x
function = 'if(t<61, 2.0e-7, -2.0e-8*(t-60))'
boundary = 'moving_block_left'
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 250
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'radiation closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeLinearElasticStress
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity'
prop_values = ' 8e3 16.2 0.5' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeLinearElasticStress
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity'
prop_values = ' 2.7e3 210 0.9'
block = 'right_block'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
secondary_emissivity = 0.25
primary_emissivity = 0.6
temperature = temperature
boundary = moving_block_right
[]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = 1.0
secondary_hardness = 1.0
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_pt_interface_temperature]
type = NodalVariableValue
nodeid = 245
variable = temperature
[]
[aluminum_pt_interface_temperature]
type = NodalVariableValue
nodeid = 657
variable = temperature
[]
[aluminum_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 560
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
# mortar contact solver options
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = ' lu superlu_dist'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_max_its = 20
l_max_its = 50
dt = 60
end_time = 120
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/closed_gap_prescribed_pressure.i)
## Units in the input file: m-Pa-s-K
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1
xmax = 2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Variables]
[temperature]
initial_condition = 525.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 100.0
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 250
boundary = 'fixed_block_right'
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
[]
[]
[Materials]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_hardness'
prop_values = '8e3 16.2 129' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 15' #for 99% pure Al
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_primary_subdomain
[]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
nl_rel_tol = 1e-14
nl_max_its = 20
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_conduction_function.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[AuxVariables]
[dummy]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[]
[]
[Functions]
[function]
type = ParsedFunction
expression = 'if(t > 100.0, 0.0, t)'
[]
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 10.0
gap_conductivity_function_variable = dummy
gap_conductivity_function = function
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = conduction
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_rz_cylinder_mortar.i)
rpv_core_gap_size = 0.2
core_outer_radius = 2
rpv_inner_radius = '${fparse 2 + rpv_core_gap_size}'
rpv_outer_radius = '${fparse 2.5 + rpv_core_gap_size}'
rpv_width = '${fparse rpv_outer_radius - rpv_inner_radius}'
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[gmg]
type = CartesianMeshGenerator
dim = 2
dx = '${core_outer_radius} ${rpv_core_gap_size} ${rpv_width}'
ix = '400 1 100'
dy = 1
iy = '5'
[]
[set_block_id1]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0 0 0'
top_right = '${core_outer_radius} 1 0'
block_id = 1
location = INSIDE
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = set_block_id1
primary_block = 1
paired_block = 0
new_boundary = 'core_outer'
[]
[set_block_id3]
type = SubdomainBoundingBoxGenerator
input = rename_core_bdy
bottom_left = '${rpv_inner_radius} 0 0'
top_right = '${rpv_outer_radius} 1 0'
block_id = 3
location = INSIDE
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = set_block_id3
primary_block = 3
paired_block = 0
new_boundary = 'rpv_inner'
[]
# comment out for test without gap
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 0
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'rpv_inner'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = 2d_mesh
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'core_outer'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
coord_type = RZ
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'right' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = Tsolid
boundary = 'rpv_inner'
primary_emissivity = 0.8
secondary_emissivity = 0.8
[]
[conduction]
type = GapFluxModelConduction
temperature = Tsolid
boundary = 'rpv_inner'
gap_conductivity = 0.1
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = Tsolid
primary_boundary = 'core_outer'
primary_subdomain = 10000
secondary_boundary = 'rpv_inner'
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
gap_geometry_type = 'CYLINDER'
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'right' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
expression = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[flux_from_core] # converges to ptot as the mesh is refined
type = SideDiffusiveFluxIntegral
variable = Tsolid
boundary = core_outer
diffusivity = thermal_conductivity
[]
[flux_into_rpv] # converges to rpv_convective_out as the mesh is refined
type = SideDiffusiveFluxIntegral
variable = Tsolid
boundary = rpv_inner
diffusivity = thermal_conductivity
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = 'rpv_inner core_outer'
variable = Tsolid
[]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -mat_mffd_err -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = ' lu superlu_dist 1e-5 NONZERO '
'1e-15'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_sphere3D_mortar.i)
sphere_outer_htc = 10 # W/m^2/K
sphere_outer_Tinf = 300 # K
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Mesh]
[file]
type = FileMeshGenerator
file = sphere3D.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Functions]
[temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[]
[]
[Variables]
[temp]
initial_condition = 500
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[AuxVariables]
# [gap_conductance]
# order = CONSTANT
# family = MONOMIAL
# []
[power_density]
block = 'fuel'
initial_condition = 50e3
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temp
block = '1 2'
[]
[heat_source]
type = CoupledForce
variable = temp
block = 'fuel'
v = power_density
[]
[]
# [AuxKernels]
# [gap_cond]
# type = MaterialRealAux
# property = gap_conductance
# variable = gap_conductance
# boundary = 2
# []
# []
[Materials]
[heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 34.6
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 2
primary_emissivity = 0.0
secondary_emissivity = 0.0
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 2
gap_conductivity = 5.0
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 3
primary_subdomain = 10000
secondary_boundary = 2
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
gap_geometry_type = SPHERE
sphere_origin = '0 0 0'
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = temp
boundary = '4' # outer RPV
coefficient = ${sphere_outer_htc}
T_infinity = ${sphere_outer_Tinf}
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-7
[]
[Outputs]
exodus = true
csv = true
[Console]
type = Console
[]
[]
[Postprocessors]
[temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[]
[temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[]
[flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[]
[flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = 'fuel'
[]
[sphere_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = temp
boundary = '4' # outer RVP
T_fluid = ${sphere_outer_Tinf}
htc = ${sphere_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
expression = '(sphere_convective_out - ptot) / ptot'
pp_names = 'sphere_convective_out ptot'
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '2 3'
variable = temp
[]
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = '10001'
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = '10000'
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 1000
specific_heat = 1
[]
[right]
type = HeatConductionMaterial
block = 2
thermal_conductivity = 500
specific_heat = 1
[]
[]
[Kernels]
[hc]
type = HeatConduction
variable = temp
use_displaced_mesh = false
block = '1 2'
[]
[]
[UserObjects]
[simple]
type = GapFluxModelSimple
k = 100
temperature = temp
boundary = 100
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = simple
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-11
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder_mortar.i)
rpv_core_gap_size = 0.15
core_outer_radius = 2
rpv_inner_radius = '${fparse 2 + rpv_core_gap_size}'
rpv_outer_radius = '${fparse 2.5 + rpv_core_gap_size}'
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[core_gap_rpv]
type = ConcentricCircleMeshGenerator
num_sectors = 10
radii = '${core_outer_radius} ${rpv_inner_radius} ${rpv_outer_radius}'
rings = '2 1 2'
has_outer_square = false
preserve_volumes = true
portion = full
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = core_gap_rpv
primary_block = 1
paired_block = 2
new_boundary = 'core_outer'
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = rename_core_bdy
primary_block = 3
paired_block = 2
new_boundary = 'rpv_inner'
[]
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 2
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'rpv_inner'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = 2d_mesh
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'core_outer'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'outer' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = Tsolid
boundary = 'rpv_inner'
primary_emissivity = 0.8
secondary_emissivity = 0.8
[]
[conduction]
type = GapFluxModelConduction
temperature = Tsolid
boundary = 'rpv_inner'
gap_conductivity = 0.1
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = Tsolid
primary_boundary = 'core_outer'
primary_subdomain = 10000
secondary_boundary = 'rpv_inner'
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
gap_geometry_type = 'CYLINDER'
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'outer' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
expression = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = 'rpv_inner core_outer'
variable = 'Tsolid'
[]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu superlu_dist 1e-5 NONZERO 1e-15'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_verbose.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 0.02
use_displaced_mesh = true
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
correct_edge_dropping = true
gap_flux_models = 'radiation conduction'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
csv = true
[exodus]
type = Exodus
show = 'temp'
[]
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[]
[Materials]
[./left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 1000
specific_heat = 1
[../]
[./right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 500
specific_heat = 1
[../]
[]
[Kernels]
[./hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[../]
[./hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[../]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[simple]
type = GapFluxModelSimple
k = 100
temperature = temp
boundary = 100
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = simple
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[../]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
[]
[Outputs]
exodus = true
show = 'temp disp_x disp_y'
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_dual_material_insulated.i)
## Units in the input file: m-Pa-s-K-V
# Using the steady-state Fourier's law, the temperature at the interface in each block,
# in the case where thermal contact between the two blocks at the interface is not
# considered, (steel block on left, aluminum on right) is calculated as:
#
# T_{interface - steel} = 816.849K
# T_{interface - aluminum} = 339.871K
# which matches the simulation results to the 6 decimal places shown.
# As expected, the heat flux resulting from the volumetric Joule heating source is
# equivalent on both sides of the interface.
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[electric_steel]
type = ADMatDiffusion
variable = potential
diffusivity = steel_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = steel_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_electrical_conductivity steel_hardness'
prop_values = '8e3 16.2 500.0 1.39e6 1.0' ## for stainless steel 304
block = 'left_block interface_secondary_subdomain'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_primary_subdomain
[]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[interface_electrical_flux]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
nl_max_its = 100
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_dual_material.i)
## Units in the input file: m-Pa-s-K-V
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[electric_steel]
type = ADMatDiffusion
variable = potential
diffusivity = steel_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_temperature'
[]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = steel_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_electrical_conductivity steel_hardness'
prop_values = '8e3 16.2 500.0 1.39e6 1.0' ## for stainless steel 304
block = 'left_block interface_secondary_subdomain'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_temperature]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_primary_subdomain
[]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[interface_electrical_flux]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
nl_max_its = 100
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/varied_pressure_thermomechanical_mortar.i)
## Units in the input file: m-Pa-s-K
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
xmax = 0.25
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 13
xmin = 0.25
xmax = 0.5
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
patch_update_strategy = iteration
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 300.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = FINITE
add_variables = false
use_automatic_differentiation = true
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy stress_yy'
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'left_block'
[]
[aluminum]
strain = FINITE
add_variables = false
use_automatic_differentiation = true
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy stress_yy'
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity
density_name = steel_density
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity
density_name = aluminum_density
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[pressure_left_block]
type = ADPressure
variable = disp_x
component = 0
boundary = 'moving_block_left'
function = '1e4*t*y'
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeFiniteStrainElasticStress
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_hardness'
prop_values = ' 8e3 16.2 0.5 129' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeFiniteStrainElasticStress
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_hardness'
prop_values = ' 2.7e3 210 0.9 15' #for 99% pure Al
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[contact_pressure_max]
type = NodalExtremeValue
variable = interface_normal_lm
block = interface_secondary_subdomain
value_type = max
[]
[contact_pressure_average]
type = AverageNodalVariableValue
variable = interface_normal_lm
block = interface_secondary_subdomain
[]
[contact_pressure_min]
type = NodalExtremeValue
variable = interface_normal_lm
block = interface_secondary_subdomain
value_type = min
[]
[interface_temperature_max]
type = NodalExtremeValue
variable = temperature
block = interface_secondary_subdomain
value_type = max
[]
[interface_temperature_average]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_temperature_min]
type = NodalExtremeValue
variable = temperature
block = interface_secondary_subdomain
value_type = min
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
# mortar contact solver options
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = ' lu superlu_dist'
snesmf_reuse_base = false
nl_rel_tol = 1e-7
nl_max_its = 20
l_max_its = 50
dt = 0.125
end_time = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/fv_modular_gap_heat_transfer_mortar_radiation_conduction.i)
[Mesh]
inactive = 'translate'
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
[translate]
type = TransformGenerator
transform = translate
input = primary
vector_value = '1 0 0'
[]
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
type = MooseVariableFVReal
block = '1 2'
[]
[lm]
order = CONSTANT
family = MONOMIAL
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADGenericFunctorMaterial
block = 1
prop_names = 'thermal_conductivity'
prop_values = '0.01'
[]
[right]
type = ADGenericFunctorMaterial
block = 2
prop_names = 'thermal_conductivity'
prop_values = '0.005'
[]
[]
[FVKernels]
[hc]
type = FVDiffusion
variable = temp
block = '1 2'
coeff = 'thermal_conductivity'
[]
[]
[UserObjects]
[radiation]
type = FunctorGapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
[]
[conduction]
type = FunctorGapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 0.02
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
ghost_higher_d_neighbors = true
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = FVDirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_sphere_mortar_error.i)
sphere_outer_htc = 10 # W/m^2/K
sphere_outer_Tinf = 300 # K
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Problem]
coord_type = RZ
kernel_coverage_check = false
material_coverage_check = false
[]
[Mesh]
[file]
type = FileMeshGenerator
file = cyl2D.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Functions]
[temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[]
[]
[Variables]
[temp]
initial_condition = 500
[]
[lm]
order = SECOND
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[AuxVariables]
[power_density]
block = 'fuel'
initial_condition = 50e3
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temp
block = '1 2'
[]
[heat_source]
type = CoupledForce
variable = temp
block = 'fuel'
v = power_density
[]
[]
[Materials]
[heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 34.6
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 2
primary_emissivity = 0.0
secondary_emissivity = 0.0
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 2
gap_conductivity = 5.0
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 3
primary_subdomain = 10000
secondary_boundary = 2
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
gap_geometry_type = SPHERE
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = temp
boundary = '4' # outer RPV
coefficient = ${sphere_outer_htc}
T_infinity = ${sphere_outer_Tinf}
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-7
[]
[Outputs]
exodus = true
csv = true
[Console]
type = Console
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '2 3'
variable = temp
[]
[]
[Postprocessors]
[temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[]
[temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[]
[flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[]
[flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = 'fuel'
[]
[sphere_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = temp
boundary = '4' # outer RVP
T_fluid = ${sphere_outer_Tinf}
htc = ${sphere_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
expression = '(sphere_convective_out - ptot) / ptot'
pp_names = 'sphere_convective_out ptot'
[]
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/transient_joule_heating_constraint.i)
## Units in the input file: m-Pa-s-K-V
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity #use parsed material property
density_name = steel_density
extra_vector_tags = 'ref'
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity #use parsed material property
density_name = aluminum_density
extra_vector_tags = 'ref'
block = 'right_block'
[]
[electric_steel]
type = ADMatDiffusion
variable = potential
diffusivity = steel_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_temperature'
[]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = steel_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_electrical_conductivity steel_hardness'
prop_values = '8e3 16.2 500.0 1.39e6 1.0' ## for stainless steel 304
block = 'left_block interface_secondary_subdomain'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_temperature]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_primary_subdomain
[]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[interface_electrical_flux]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-4
nl_max_its = 100
nl_forced_its = 1
dt = 1200.0
dtmin = 1200.0
num_steps = 8
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_cylinder_mortar_error.i)
rpv_core_gap_size = 0.15
core_outer_radius = 2
rpv_inner_radius = ${fparse 2 + rpv_core_gap_size}
rpv_outer_radius = ${fparse 2.5 + rpv_core_gap_size}
rpv_outer_htc = 10 # W/m^2/K
rpv_outer_Tinf = 300 # K
core_blocks = '1'
rpv_blocks = '3'
[Mesh]
[core_gap_rpv]
type = ConcentricCircleMeshGenerator
num_sectors = 10
radii = '${core_outer_radius} ${rpv_inner_radius} ${rpv_outer_radius}'
rings = '2 1 2'
has_outer_square = false
preserve_volumes = true
portion = full
[]
[rename_core_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = core_gap_rpv
primary_block = 1
paired_block = 2
new_boundary = 'core_outer'
[]
[rename_inner_rpv_bdy]
type = SideSetsBetweenSubdomainsGenerator
input = rename_core_bdy
primary_block = 3
paired_block = 2
new_boundary = 'rpv_inner'
[]
[2d_mesh]
type = BlockDeletionGenerator
input = rename_inner_rpv_bdy
block = 2
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'rpv_inner'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = 2d_mesh
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = 'core_outer'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Variables]
[Tsolid]
initial_condition = 500
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Kernels]
[heat_source]
type = CoupledForce
variable = Tsolid
block = '${core_blocks}'
v = power_density
[]
[heat_conduction]
type = HeatConduction
variable = Tsolid
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = Tsolid
boundary = 'outer' # outer RPV
coefficient = ${rpv_outer_htc}
T_infinity = ${rpv_outer_Tinf}
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = Tsolid
boundary = 'rpv_inner'
primary_emissivity = 0.8
secondary_emissivity = 0.8
[]
[conduction]
type = GapFluxModelConduction
temperature = Tsolid
boundary = 'rpv_inner'
gap_conductivity = 0.1
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = Tsolid
primary_boundary = 'core_outer'
primary_subdomain = 10000
secondary_boundary = 'rpv_inner'
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
gap_geometry_type = 'CYLINDER'
cylinder_axis_point_2 = '0 0 5'
[]
[]
[AuxVariables]
[power_density]
block = '${core_blocks}'
initial_condition = 50e3
[]
[]
[Materials]
[simple_mat]
type = HeatConductionMaterial
thermal_conductivity = 34.6 # W/m/K
[]
[]
[Postprocessors]
[Tcore_avg]
type = ElementAverageValue
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${core_blocks}'
[]
[Tcore_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${core_blocks}'
[]
[Trpv_avg]
type = ElementAverageValue
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_max]
type = ElementExtremeValue
value_type = max
variable = Tsolid
block = '${rpv_blocks}'
[]
[Trpv_min]
type = ElementExtremeValue
value_type = min
variable = Tsolid
block = '${rpv_blocks}'
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = '${core_blocks}'
[]
[rpv_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = Tsolid
boundary = 'outer' # outer RVP
T_fluid = ${rpv_outer_Tinf}
htc = ${rpv_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
expression = '(rpv_convective_out - ptot) / ptot'
pp_names = 'rpv_convective_out ptot'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = 'rpv_inner core_outer'
variable = 'Tsolid'
[]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -mat_mffd_err -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = ' lu superlu_dist 1e-5 NONZERO '
'1e-15'
snesmf_reuse_base = false
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
l_max_its = 100
line_search = none
[]
[Outputs]
exodus = false
csv = true
[]
(modules/combined/test/tests/3d-mortar-projection-tolerancing/test.i)
stress_free_temperature = 300
thermal_expansion_coeff = 6.66e-6
[Problem]
type = FEProblem
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
temperature = T_K
[]
[Mesh]
patch_update_strategy = iteration
use_displaced_mesh = true
patch_size = 40
[ori]
type = FileMeshGenerator
file = 'test.msh'
[]
[]
[Variables]
[disp_x]
block = 'pellet_inner pellet_outer'
[]
[disp_y]
block = 'pellet_inner pellet_outer'
[]
[disp_z]
block = 'pellet_inner pellet_outer'
[]
[T_K]
[InitialCondition]
type = ConstantIC
value = 300.0
[]
[]
[lm_pellet]
block = 'pellet_secondary_subdomain'
[]
[]
[Kernels]
[solid_x]
type = ADStressDivergenceTensors
variable = disp_x
component = 0
block = 'pellet_inner pellet_outer'
use_displaced_mesh = false
[]
[solid_y]
type = ADStressDivergenceTensors
variable = disp_y
component = 1
block = 'pellet_inner pellet_outer'
use_displaced_mesh = false
[]
[solid_z]
type = ADStressDivergenceTensors
variable = disp_z
component = 2
block = 'pellet_inner pellet_outer'
use_displaced_mesh = false
[]
[timeder]
type = ADHeatConductionTimeDerivative
variable = 'T_K'
density_name = density
specific_heat = specific_heat
block = 'pellet_inner pellet_outer'
use_displaced_mesh = true
[]
[diff]
type = ADHeatConduction
variable = 'T_K'
thermal_conductivity = thermal_conductivity
block = 'pellet_inner pellet_outer'
use_displaced_mesh = true
[]
[heatsource]
type = ADMatHeatSource
variable = 'T_K'
material_property = radial_source
block = 'pellet_inner pellet_outer'
use_displaced_mesh = true
[]
[]
[Debug]
show_var_residual_norms = TRUE
[]
[BCs]
[mirror_z]
type = ADDirichletBC
variable = disp_z
boundary = 'mirror_innerp mirror_outerp'
value = 0
[]
[mirror_x]
type = ADDirichletBC
variable = disp_x
boundary = 'mirror_innerp mirror_outerp'
value = 0
[]
[mirror_y]
type = ADDirichletBC
variable = disp_y
boundary = 'mirror_innerp mirror_outerp'
value = 0
[]
[]
[Materials]
[pellet_properties]
type = ADGenericConstantMaterial
prop_names = 'density thermal_conductivity specific_heat'
prop_values = '3.3112e3 34 1.2217e3'
block = 'pellet_inner pellet_outer'
[]
[pulse_shape_linear]
type = ADGenericFunctionMaterial
prop_values = '5e10*max(11455*(t)/7,1e-9)'
prop_names = 'radial_source'
output_properties = 'radial_source'
block = 'pellet_inner pellet_outer'
use_displaced_mesh = false
[]
[strain]
type = ADComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = eigenstrain #nameS!
block = 'pellet_inner pellet_outer'
[]
[thermal_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = ${stress_free_temperature}
thermal_expansion_coeff = ${thermal_expansion_coeff}
eigenstrain_name = eigenstrain
block = 'pellet_inner pellet_outer'
[]
[elasticity]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 3.306e11
poissons_ratio = 0.329
[]
[stress]
type = ADComputeLinearElasticStress
block = 'pellet_inner pellet_outer'
[]
[]
[Contact]
[pellet]
primary = void_pellet_0
secondary = void_pellet_1
model = frictionless
formulation = mortar
c_normal = 1e6
correct_edge_dropping = true
[]
[]
[UserObjects]
[conduction]
type = GapFluxModelConduction
temperature = T_K
boundary = 'void_pellet_0 void_pellet_1'
gap_conductivity = 0.4
use_displaced_mesh = true
[]
[rad_pellet]
type = GapFluxModelRadiation
temperature = T_K
boundary = void_pellet_0
primary_emissivity = 0.37
secondary_emissivity = 0.37
use_displaced_mesh = true
[]
[]
[Constraints]
[gap_pellet]
type = ModularGapConductanceConstraint
variable = lm_pellet
secondary_variable = T_K
primary_boundary = 'void_pellet_0'
primary_subdomain = pellet_primary_subdomain
secondary_boundary = 'void_pellet_1'
secondary_subdomain = pellet_secondary_subdomain
gap_flux_models = 'conduction rad_pellet' #closed_pellet
gap_geometry_type = 'CYLINDER'
cylinder_axis_point_1 = '0 0 0'
cylinder_axis_point_2 = '0 0 1'
use_displaced_mesh = true
quadrature = SECOND
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -pc_factor_shift_type'
petsc_options_value = 'lu superlu_dist NONZERO'
automatic_scaling = true
line_search = none
ignore_variables_for_autoscaling = 'pellet_normal_lm'
compute_scaling_once = true
scaling_group_variables = 'disp_x disp_y disp_z; T_K'
nl_rel_tol = 1e-50
nl_abs_tol = 1e-8
nl_max_its = 20
dtmin = 1e-3
dt = 1e-3
start_time = 0e-3
end_time = 1
[]
[Outputs]
[exodus]
type = Exodus
file_base = constMat
[]
print_linear_residuals = false
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_radiation_test.i)
#
# This test replicates the legacy heat transfter test
# gap_heat_transfer_radiation/gap_heat_transfer_radiation_test.i
# The flux post processors give 3.753945e+01
#
[Mesh]
[file]
type = FileMeshGenerator
file = gap_heat_transfer_radiation_test.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = '200'
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = '300'
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Functions]
[temp]
type = PiecewiseLinear
x = '0 1'
y = '200 200'
[]
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
scaling = 1e-8
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
scaling = 1e-1
[]
[]
[Kernels]
[heat]
type = HeatConduction
variable = temp
block = '1 2'
[]
[]
[BCs]
[temp_far_left]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[]
[temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[]
[]
[UserObjects]
[radiative]
type = GapFluxModelRadiative
secondary_emissivity = 0.5
primary_emissivity = 0.5
temperature = temp
boundary = 3
[]
[simple]
type = GapFluxModelSimple
k = 0.09187557
temperature = temp
boundary = 3
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 3
primary_subdomain = 300
secondary_boundary = 2
secondary_subdomain = 200
gap_flux_models = 'simple radiative'
[]
[]
[Materials]
[heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 10000000.0
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1.0
[]
[Postprocessors]
[temp_left]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[]
[temp_right]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[]
[flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[]
[flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[]
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_single_material.i)
## Units in the input file: m-Pa-s-K-V
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmax = 0.1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 10
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_temperature'
[]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = aluminum_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_temperature]
type = GapFluxModelPressureDependentConduction
primary_conductivity = aluminum_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = aluminum_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = aluminum_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = aluminum_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[aluminum_interface_temperature]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[aluminum_interface_potential]
type = AverageNodalVariableValue
variable = potential
block = interface_secondary_subdomain
[]
[interface_electrical_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
nl_max_its = 50
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_3D_mortar.i)
outer_htc = 10 # W/m^2/K
outer_Tinf = 300 # K
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Mesh]
[left_block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 6
nz = 6
xmin = -1
xmax = -0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
elem_type = HEX27
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'left_bottom left_back left_right left_front left_left left_top'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 8
nz = 8
xmin = 0.5
xmax = 1
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
elem_type = HEX27
[]
[right_block_sidesets]
type = RenameBoundaryGenerator
input = right_block
old_boundary = '0 1 2 3 4 5'
# new_boundary = 'right_bottom right_back right_right right_front right_left right_top'
new_boundary = '100 101 102 103 104 105'
[]
[right_block_sidesets_rename]
type = RenameBoundaryGenerator
input = right_block_sidesets
old_boundary = '100 101 102 103 104 105'
new_boundary = 'right_bottom right_back right_right right_front right_left right_top'
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block_sidesets_rename
subdomain_id = 2
[]
[combined_mesh]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_id'
[]
[left_lower]
type = LowerDBlockFromSidesetGenerator
input = combined_mesh
sidesets = 'left_right'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[right_lower]
type = LowerDBlockFromSidesetGenerator
input = left_lower
sidesets = 'right_left'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Functions]
[temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[]
[]
[Variables]
[temp]
initial_condition = 500
[]
[lm]
order = SECOND
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[AuxVariables]
[power_density]
block = 1
initial_condition = 50e3
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temp
block = '1 2'
[]
[heat_source]
type = CoupledForce
variable = temp
block = '1'
v = power_density
[]
[]
[Materials]
[heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 34.6
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 'left_right'
primary_emissivity = 0.0
secondary_emissivity = 0.0
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 'left_right'
gap_conductivity = 5.0
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 'right_left'
primary_subdomain = 'primary_lower'
secondary_boundary = 'left_right'
secondary_subdomain = 'secondary_lower'
gap_flux_models = 'radiation conduction'
gap_geometry_type = PLATE
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = temp
boundary = 'right_right' # outer RPV
coefficient = ${outer_htc}
T_infinity = ${outer_Tinf}
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-8
[]
[Outputs]
exodus = true
csv = true
[Console]
type = Console
[]
[]
[Postprocessors]
[temp_left]
type = SideAverageValue
boundary = 'left_right'
variable = temp
[]
[temp_right]
type = SideAverageValue
boundary = 'right_left'
variable = temp
[]
[flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 'left_right'
diffusivity = thermal_conductivity
[]
[flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 'right_left'
diffusivity = thermal_conductivity
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = 1
[]
[convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = temp
boundary = 'right_right' # outer RVP
T_fluid = ${outer_Tinf}
htc = ${outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
expression = '(convective_out - ptot) / ptot'
pp_names = 'convective_out ptot'
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = 'left_right right_left'
variable = temp
[]
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/large_gap_heat_transfer_test_sphere_mortar.i)
sphere_outer_htc = 10 # W/m^2/K
sphere_outer_Tinf = 300 # K
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Problem]
coord_type = RZ
kernel_coverage_check = false
material_coverage_check = false
[]
[Mesh]
[file]
type = FileMeshGenerator
file = cyl2D.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Functions]
[temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[]
[]
[Variables]
[temp]
initial_condition = 500
[]
[lm]
order = SECOND
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[AuxVariables]
[power_density]
block = 'fuel'
initial_condition = 50e3
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temp
block = '1 2'
[]
[heat_source]
type = CoupledForce
variable = temp
block = 'fuel'
v = power_density
[]
[]
[Materials]
[heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 34.6
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 2
primary_emissivity = 0.0
secondary_emissivity = 0.0
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 2
gap_conductivity = 5.0
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 3
primary_subdomain = 10000
secondary_boundary = 2
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
gap_geometry_type = SPHERE
sphere_origin = '0 0 0'
[]
[]
[BCs]
[RPV_out_BC] # k \nabla T = h (T- T_inf) at RPV outer boundary
type = ConvectiveFluxFunction # (Robin BC)
variable = temp
boundary = '4' # outer RPV
coefficient = ${sphere_outer_htc}
T_infinity = ${sphere_outer_Tinf}
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-7
[]
[Outputs]
exodus = true
csv = true
[Console]
type = Console
[]
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '2 3'
variable = temp
[]
[]
[Postprocessors]
[temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[]
[temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[]
[flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[]
[flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[]
[ptot]
type = ElementIntegralVariablePostprocessor
variable = power_density
block = 'fuel'
[]
[sphere_convective_out]
type = ConvectiveHeatTransferSideIntegral
T_solid = temp
boundary = '4' # outer RVP
T_fluid = ${sphere_outer_Tinf}
htc = ${sphere_outer_htc}
[]
[heat_balance] # should be equal to 0 upon convergence
type = ParsedPostprocessor
expression = '(sphere_convective_out - ptot) / ptot'
pp_names = 'sphere_convective_out ptot'
[]
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = radiation
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/closed_gap_thermomechanical_mortar_contact.i)
## Units in the input file: m-Pa-s-K
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmax = 1
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 10
xmin = 1
xmax = 2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
patch_update_strategy = iteration
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 300.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = FINITE
add_variables = false
use_automatic_differentiation = true
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy stress_yy'
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
eigenstrain_names = steel_thermal_expansion
block = 'left_block'
[]
[aluminum]
strain = FINITE
add_variables = false
use_automatic_differentiation = true
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy stress_yy'
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
eigenstrain_names = aluminum_thermal_expansion
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity
density_name = steel_density
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity
density_name = aluminum_density
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[displacement_left_block]
type = ADFunctionDirichletBC
variable = disp_x
function = '2.0e-7*t'
boundary = 'moving_block_left'
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeFiniteStrainElasticStress
block = 'left_block'
[]
[steel_thermal_expansion]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 17.3e-6 # stainless steel 304
stress_free_temperature = 300.0
temperature = temperature
eigenstrain_name = 'steel_thermal_expansion'
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_hardness'
prop_values = ' 8e3 16.2 0.5 129' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeFiniteStrainElasticStress
block = 'right_block'
[]
[aluminum_thermal_expansion]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 24.0e-6 # aluminum
stress_free_temperature = 300.0
temperature = temperature
eigenstrain_name = 'aluminum_thermal_expansion'
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_hardness'
prop_values = ' 2.7e3 210 0.9 15' #for 99% pure Al
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[steel_pt_interface_temperature]
type = NodalVariableValue
nodeid = 245
variable = temperature
[]
[aluminum_pt_interface_temperature]
type = NodalVariableValue
nodeid = 657
variable = temperature
[]
[steel_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 199
[]
[aluminum_element_interface_stress]
type = ElementalVariableValue
variable = vonmises_stress
elementid = 560
[]
[interface_heat_flux_steel]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = steel_thermal_conductivity
[]
[interface_heat_flux_aluminum]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
# mortar contact solver options
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = ' lu superlu_dist'
snesmf_reuse_base = false
nl_rel_tol = 1e-8
nl_max_its = 20
l_max_its = 50
dt = 2
end_time = 10
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation_conduction.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 0.02
use_displaced_mesh = true
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_transfer/test/tests/interface_heating_mortar/constraint_joule_heating_offset_single_material_insulated.i)
## Units in the input file: m-Pa-s-K-V
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
xmax = 0.1
ymin = 0.1
ymax = 0.35
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
xmin = 0.1
xmax = 0.2
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
[interface_secondary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'fixed_block_left'
new_block_id = 3
new_block_name = 'interface_secondary_subdomain'
input = block_rename
[]
[interface_primary_subdomain]
type = LowerDBlockFromSidesetGenerator
sidesets = 'moving_block_right'
new_block_id = 4
new_block_name = 'interface_primary_subdomain'
input = interface_secondary_subdomain
[]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Variables]
[temperature]
initial_condition = 300.0
[]
[potential]
[]
[potential_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[AuxVariables]
[interface_normal_lm]
order = FIRST
family = LAGRANGE
block = 'interface_secondary_subdomain'
initial_condition = 1.0
[]
[]
[Kernels]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[electric_aluminum]
type = ADMatDiffusion
variable = potential
diffusivity = aluminum_electrical_conductivity
extra_vector_tags = 'ref'
block = 'left_block right_block'
[]
[]
[BCs]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'fixed_block_right'
[]
[electric_left]
type = ADDirichletBC
variable = potential
value = 0.0
boundary = moving_block_left
[]
[electric_right]
type = ADDirichletBC
variable = potential
value = 3.0e-1
boundary = fixed_block_right
[]
[]
[Constraints]
[electrical_contact]
type = ModularGapConductanceConstraint
variable = potential_interface_lm
secondary_variable = potential
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed_electric'
correct_edge_dropping = true
[]
[interface_heating]
type = ADInterfaceJouleHeatingConstraint
potential_lagrange_multiplier = potential_interface_lm
secondary_variable = temperature
primary_electrical_conductivity = aluminum_electrical_conductivity
secondary_electrical_conductivity = aluminum_electrical_conductivity
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
[]
[]
[Materials]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_electrical_conductivity aluminum_hardness'
prop_values = ' 2.7e3 210 900.0 3.7e7 1.0' #for 99% pure Al
block = 'left_block right_block interface_secondary_subdomain'
[]
[]
[UserObjects]
[closed_electric]
type = GapFluxModelPressureDependentConduction
primary_conductivity = aluminum_electrical_conductivity
secondary_conductivity = aluminum_electrical_conductivity
temperature = potential
contact_pressure = interface_normal_lm
primary_hardness = aluminum_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[interface_heat_flux_large_block]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = fixed_block_left
diffusivity = aluminum_thermal_conductivity
[]
[interface_heat_flux_small_block]
type = ADSideDiffusiveFluxAverage
variable = temperature
boundary = moving_block_right
diffusivity = aluminum_thermal_conductivity
[]
[interface_electrical_flux_large_block]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = fixed_block_left
diffusivity = aluminum_electrical_conductivity
[]
[interface_electrical_flux_small_block]
type = ADSideDiffusiveFluxAverage
variable = potential
boundary = moving_block_right
diffusivity = aluminum_electrical_conductivity
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
nl_abs_tol = 2e-10
nl_rel_tol = 1e-6
nl_max_its = 50
nl_forced_its = 1
[]
[Outputs]
csv = true
perf_graph = true
[]