ComputeDynamicFrictionalForceLMMechanicalContact

Computes the tangential frictional forces for dynamic simulations

When the mortar mechanical contact constraints are used in dynamic simulations, the normal contact constraints need to be stabilized by ensuring that normal gap derivatives are included in the definition. This is a way of guaranteeing the 'persistency' condition, i.e. not only do we enforce the constraints instantaneously, but also that it will remain in contact. This approximate contact constraint stabilization is performed in ComputeDynamicWeightedGapLMMechanicalContact, from which this object inherits. Therefore ComputeDynamicFrictionalForceLMMechanicalContact is used as the base frictional mortar contact class to implement friction models that in a dynamic setting.

The capture_tolerance is an optional contact parameter used in dynamic contact constraints to determine when to impose the persistency condition for normal contact. For relevant, general equations, see (Tal and Hager, 2018).

Input Parameters

  • disp_xThe x displacement variable

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The x displacement variable

  • disp_yThe y displacement variable

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The y displacement variable

  • friction_lmThe frictional Lagrange's multiplier

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The frictional Lagrange's multiplier

  • newmark_betaBeta parameter for the Newmark time integrator

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Beta parameter for the Newmark time integrator

  • newmark_gammaGamma parameter for the Newmark time integrator

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Gamma parameter for the Newmark time integrator

  • primary_boundaryThe name of the primary boundary sideset.

    C++ Type:BoundaryName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the primary boundary sideset.

  • primary_subdomainThe name of the primary subdomain.

    C++ Type:SubdomainName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the primary subdomain.

  • secondary_boundaryThe name of the secondary boundary sideset.

    C++ Type:BoundaryName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the secondary boundary sideset.

  • secondary_subdomainThe name of the secondary subdomain.

    C++ Type:SubdomainName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the secondary subdomain.

Required Parameters

  • aux_lmAuxiliary Lagrange multiplier variable that is utilized together with the Petrov-Galerkin approach.

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Auxiliary Lagrange multiplier variable that is utilized together with the Petrov-Galerkin approach.

  • c1e+06Parameter for balancing the size of the gap and contact pressure

    Default:1e+06

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Parameter for balancing the size of the gap and contact pressure

  • c_t1Numerical parameter for tangential constraints

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Numerical parameter for tangential constraints

  • capture_tolerance1e-05Parameter describing a gap threshold for the application of the persistency constraint in dynamic simulations.

    Default:1e-05

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Parameter describing a gap threshold for the application of the persistency constraint in dynamic simulations.

  • compute_lm_residualsTrueWhether to compute Lagrange Multiplier residuals

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to compute Lagrange Multiplier residuals

  • compute_primal_residualsTrueWhether to compute residuals for the primal variable.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to compute residuals for the primal variable.

  • correct_edge_droppingFalseWhether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.

  • debug_meshFalseWhether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true

  • disp_zThe z displacement variable

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The z displacement variable

  • epsilon1e-07Minimum value of contact pressure that will trigger frictional enforcement

    Default:1e-07

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Minimum value of contact pressure that will trigger frictional enforcement

  • friction_lm_dirThe frictional Lagrange's multiplier for an addtional direction.

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The frictional Lagrange's multiplier for an addtional direction.

  • function_frictionCoupled function to evaluate friction with values from contact pressure and relative tangential velocities (from the previous step).

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:Coupled function to evaluate friction with values from contact pressure and relative tangential velocities (from the previous step).

  • ghost_higher_d_neighborsFalseWhether we should ghost higher-dimensional neighbors. This is necessary when we are doing second order mortar with finite volume primal variables, because in order for the method to be second order we must use cell gradients, which couples in the neighbor cells.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether we should ghost higher-dimensional neighbors. This is necessary when we are doing second order mortar with finite volume primal variables, because in order for the method to be second order we must use cell gradients, which couples in the neighbor cells.

  • ghost_point_neighborsFalseWhether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.

  • interpolate_normalsFalseWhether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp

  • minimum_projection_angle40Parameter to control which angle (in degrees) is admissible for the creation of mortar segments. If set to a value close to zero, very oblique projections are allowed, which can result in mortar segments solving physics not meaningfully, and overprojection of primary nodes onto the mortar segment mesh in extreme cases. This parameter is mostly intended for mortar mesh debugging purposes in two dimensions.

    Default:40

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Parameter to control which angle (in degrees) is admissible for the creation of mortar segments. If set to a value close to zero, very oblique projections are allowed, which can result in mortar segments solving physics not meaningfully, and overprojection of primary nodes onto the mortar segment mesh in extreme cases. This parameter is mostly intended for mortar mesh debugging purposes in two dimensions.

  • muThe friction coefficient for the Coulomb friction law

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The friction coefficient for the Coulomb friction law

  • normalize_cFalseWhether to normalize c by weighting function norm. When unnormalized the value of c effectively depends on element size since in the constraint we compare nodal Lagrange Multiplier values to integrated gap values (LM nodal value is independent of element size, where integrated values are dependent on element size).

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to normalize c by weighting function norm. When unnormalized the value of c effectively depends on element size since in the constraint we compare nodal Lagrange Multiplier values to integrated gap values (LM nodal value is independent of element size, where integrated values are dependent on element size).

  • periodicFalseWhether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • quadratureDEFAULTQuadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.

    Default:DEFAULT

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:DEFAULT, FIRST, SECOND, THIRD, FOURTH

    Controllable:No

    Description:Quadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

  • use_petrov_galerkinFalseWhether to use the Petrov-Galerkin approach for the mortar-based constraints. If set to true, we use the standard basis as the test function and dual basis as the shape function for the interpolation of the Lagrange multiplier variable.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to use the Petrov-Galerkin approach for the mortar-based constraints. If set to true, we use the standard basis as the test function and dual basis as the shape function for the interpolation of the Lagrange multiplier variable.

  • variableThe name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example

  • wear_depthThe name of the mortar auxiliary variable that is used to modify the weighted gap definition

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the mortar auxiliary variable that is used to modify the weighted gap definition

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

Input Files

References

  1. Yuval Tal and Bradford H Hager. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces. Computational Mechanics, 61(6):699–716, 2018.[BibTeX]