- inputName of the input
C++ Type:BoundaryName
Unit:(no unit assumed)
Controllable:No
Description:Name of the input
- pPrescribed pressure [Pa]
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Prescribed pressure [Pa]
Outlet1Phase
This is a single-phase 1-D flow boundary component in which the pressure is specified. This boundary is typically used when the boundary is anticipated to be an outlet.
Usage
This component must be connected to a FlowChannel1Phase. See how to connect a flow boundary component.
The user specifies the following parameters:
"p": the pressure.
The formulation of this boundary condition assumes flow exiting the flow channel at this boundary.
Input Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- (modules/thermal_hydraulics/test/tests/base/simulation/err.no_smp.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure_3d/test.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_enthalpy_1phase/phy.h_rhou_3eqn.i)
- (modules/thermal_hydraulics/test/tests/controls/set_bool_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/misc/restart_1phase/test.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.Hw.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/jac.1phase.i)
- (modules/thermal_hydraulics/test/tests/components/outlet_1phase/phy.solidwall_outlet_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.unequal_area.i)
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/clg.head.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/fin_enhancement.i)
- (modules/thermal_hydraulics/test/tests/components/supersonic_inlet/err.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.T_wall.i)
- (modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/surrogate_power_profile.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/01_flow_channel.i)
- (modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/sub_2phase.i)
- (modules/thermal_hydraulics/test/tests/components/form_loss_from_external_app_1phase/phy.form_loss_1phase.child.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_no_junction.i)
- (modules/thermal_hydraulics/test/tests/problems/pressure_drop/pressure_drop.i)
- (modules/thermal_hydraulics/test/tests/components/outlet_1phase/clg.ctrl_p_3eqn.i)
- (modules/thermal_hydraulics/test/tests/problems/pressure_drop/pressure_drop_with_junction.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/steady.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/clg.densityvelocity_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/phy.velocity_t_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/clg.velocity_t_3eqn.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/test.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_volumetric_1phase/err.base.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/real_component_parameter_value/non_existent_par_name.i)
- (modules/thermal_hydraulics/test/tests/controls/pid_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/deprecated/junction_one_to_one.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_T0_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/clg.ctrl_m_dot_3eqn_rdg.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/junction_with_calorifically_imperfect_gas.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/err.not_a_3d_hs.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/jac.massflowrate_3eqn_water97.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/flow_boundary_flux_1phase/test.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.f_fn.3eqn.i)
- (modules/thermal_hydraulics/test/tests/problems/william_louis/3pipes_open.i)
- (modules/thermal_hydraulics/test/tests/controls/set_component_real_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.shower.i)
- (modules/thermal_hydraulics/test/tests/misc/adapt/single_block.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation_ss.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/phy.densityvelocity_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_pressure_check.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_with_junction.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_transient_3eqn.i)
- (modules/thermal_hydraulics/test/tests/problems/three_pipe_shock/three_pipe_shock.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_end.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.p0T0_3eqn.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
- (modules/thermal_hydraulics/test/tests/components/flow_connection/err.connecting_to_non_existent_component.i)
- (modules/thermal_hydraulics/test/tests/misc/adapt/multiple_blocks.i)
- (modules/thermal_hydraulics/test/tests/controls/delay_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/phy.massflowrate_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_elem_3eqn.child.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_3eqn.child.i)
- (modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.form_loss.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/jac.test.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/clg.ctrl_T_3eqn_rdg.i)
- (modules/thermal_hydraulics/test/tests/controls/set_real_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/outlet_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/controls/set_component_bool_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
- (modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction_junction.i)
- (modules/thermal_hydraulics/test/tests/controls/get_function_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/controls/dependency/test.i)
- (modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.conservation.i)
- (modules/thermal_hydraulics/test/tests/output/vector_velocity/test.i)
- (modules/thermal_hydraulics/test/tests/misc/coupling_mD_flow/thm_non_overlapping.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/steady_state.i)
- (modules/thermal_hydraulics/test/tests/closures/simple_1phase/err.missing_f_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/form_loss_from_function_1phase/phy.form_loss_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/gate_valve_1phase/gate_valve_1phase.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/volume_junction/base.i)
- (modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/sub.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/specific_impulse_1phase/Isp_1ph.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.1phase.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure_3d/steady_state.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/steady_state.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_turbine_1phase/turbine_startup.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
- (modules/thermal_hydraulics/test/tests/components/deprecated/gate_valve.i)
- (modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/constriction_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_fp.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.deadend.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/err.missing_ics.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_steady_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/err.no_phf.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/flow_junction_flux_1phase/flow_junction_flux_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_with_junction.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/err.missing_ics.i)
- (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/recuperated_brayton_cycle.i)
- (modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.test.i)
- (modules/thermal_hydraulics/test/tests/closures/THM_1phase/thm1phase.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.unequal_area.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/junction_with_calorifically_imperfect_gas.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_p0_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/clg.test.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
- (modules/thermal_hydraulics/test/tests/controls/copy_postprocessor_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.not_a_hs.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.shower.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/test.i)
- (modules/thermal_hydraulics/test/tests/controls/error_checking/non_existent_control_data.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_no_junction.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.overspecified.i)
Formulation
This boundary condition uses a ghost cell formulation, where the ghost cell solution is computed from the following quantities:
, the provided exterior pressure,
, the interior density, and
, the interior velocity.
p
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Prescribed pressure [Pa]
(modules/thermal_hydraulics/test/tests/base/simulation/err.no_smp.i)
[GlobalParams]
gravity_vector = '0 0 9.81'
initial_p = 1e5
initial_T = 300
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = water
closures = simple_closures
f = 0
[]
[FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = '1'
A = 1
D_h = 1
n_elems = 2
[]
[jct1]
type = VolumeJunction1Phase
position = '1 0 0'
volume = 1e-3
connections = 'pipe1:out pipe2:in'
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = '1'
A = 1
D_h = 1
n_elems = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 101325
[]
[]
[Executioner]
type = Transient
dt = 0.01
num_steps = 2
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure_3d/test.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
initial_from_file = 'steady_state_out.e'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '16 356 6.5514e3'
[]
[]
[Functions]
[Ts_bc]
type = ParsedFunction
expression = '2*sin(x*pi/2)+2*sin(pi*y) +507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '-1 0 -2.5'
orientation = '1 0 0'
length = 2
n_elems = 2
A = 0.3
D_h = 0.1935483871
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'pipe'
hs = blk
boundary = blk:right
P_hf = 3
Hw = 1000
[]
[blk]
type = HeatStructureFromFile3D
file = box.e
position = '0 0 0'
[]
[right_bnd]
type = HSBoundarySpecifiedTemperature
hs = blk
boundary = blk:bottom
T = Ts_bc
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'initial'
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_enthalpy_1phase/phy.h_rhou_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 101325
initial_T = 300
initial_vel = 0
scaling_factor_1phase = '1.e2 1. 1.e-3'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = IdealGasFluidProperties
gamma = 1.41
molar_mass = 28.9662e-3
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1e-4
D_h = 1.1283791671e-02
f = 0.0
length = 1
n_elems = 100
[]
[inlet]
type = InletStagnationEnthalpyMomentum1Phase
input = 'pipe:in'
H = 296748.357480000
rhou = 41.0009888754850
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 101325
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1.e-2
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
nl_abs_tol = 5e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
start_time = 0.0
end_time = 0.2
[]
(modules/thermal_hydraulics/test/tests/controls/set_bool_value_control/test.i)
# This is testing that the values set by SetBoolValueControl are used.
# The values of function T0_fn are compared to a threshold and the boolean
# result is stored into an aux field via `BooleanValueTestAux`.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[AuxVariables]
[aux]
[]
[]
[AuxKernels]
[aux_kernel]
type = BooleanValueTestAux
variable = aux
value = 1
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[threshold_ctrl]
type = UnitTripControl
condition = 'T > 347.5'
symbol_names = 'T'
symbol_values = 'T_inlet_fn:value'
[]
[set_bool_value]
type = SetBoolValueControl
parameter = AuxKernels/aux_kernel/value
value = 'threshold_ctrl:state'
[]
[]
[Postprocessors]
[aux]
type = ElementAverageValue
variable = aux
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/misc/restart_1phase/test.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[mat1]
type = ThermalFunctionSolidProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Functions]
[Ts_init]
type = ParsedFunction
expression = '2*sin(x*pi)+507'
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 5
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[jct1]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1e-5
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
fp = eos
# geometry
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 5
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[jct2]
type = VolumeJunction1Phase
connections = 'pipe2:out pipe3:in'
position = '2 0 0'
volume = 1e-5
use_scalar_variables = false
[]
[pipe3]
type = FlowChannel1Phase
fp = eos
# geometry
position = '2 0 0'
orientation = '1 0 0'
length = 1
n_elems = 5
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[hs]
type = HeatStructureCylindrical
position = '1 0.01 0'
orientation = '1 0 0'
length = 1
n_elems = 5
names = '0'
n_part_elems = 1
solid_properties = 'mat1'
solid_properties_T_ref = '300'
widths = 0.1
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = Ts_init
[]
[inlet]
type = InletVelocityTemperature1Phase
input = 'pipe1:in'
T = 507
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe3:out'
p = 6e6
[]
[hx3ext]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe3
P_hf = 0.0449254
Hw = 100000
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
automatic_scaling = true
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.Hw.i)
[GlobalParams]
initial_p = 0.1e6
initial_vel = 0
initial_T = 300
scaling_factor_1phase = '1e+0 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 3.14e-2
f = 0.1
[]
[ht_pipe1]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe1
T_wall = 310
Hw = 0
[]
[inlet1]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 996.557482499661660
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 0.1e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.05
num_steps = 20
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 30
[]
[Outputs]
csv = true
[]
[Functions]
[Hw_fn]
type = PiecewiseLinear
x = '0 1'
y = '10 110'
[]
[]
[ControlLogic]
[pipe_Hw_ctrl]
type = TimeFunctionComponentControl
component = ht_pipe1
parameter = Hw
function = Hw_fn
[]
[]
[Postprocessors]
[Hw]
type = RealComponentParameterValuePostprocessor
component = ht_pipe1
parameter = Hw
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/jac.1phase.i)
[Materials]
[mat]
type = ADGenericConstantMaterial
block = 'blk:0'
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1000 100 30'
[]
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T_init]
type = ParsedFunction
expression = '1000*y+300+30*z'
[]
[]
[GlobalParams]
scaling_factor_1phase = '1 1 1e-3'
gravity_vector = '0 0 0'
[]
[Components]
[fch]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
fp = fp
n_elems = 6
length = 1
initial_T = T_init
initial_p = 1.01e5
initial_vel = 0
closures = simple_closures
A = 0.00314159
D_h = 0.2
f = 0.01
[]
[in]
type = InletVelocityTemperature1Phase
input = 'fch:in'
vel = 1
T = 300
[]
[out]
type = Outlet1Phase
input = 'fch:out'
p = 1.01e5
[]
[blk]
type = HeatStructureFromFile3D
file = mesh.e
position = '0 0 0'
initial_T = T_init
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'fch'
hs = blk
boundary = blk:rmin
Hw = 10000
P_hf = 0.1564344650402309
[]
[]
[Postprocessors]
[energy_hs]
type = ADHeatStructureEnergy3D
block = blk:0
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_fch]
type = ElementIntegralVariablePostprocessor
block = fch
variable = rhoEA
execute_on = 'INITIAL TIMESTEP_END'
[]
[total_energy]
type = SumPostprocessor
values = 'energy_fch energy_hs'
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = total_energy
compute_relative_change = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
petsc_options_iname = '-snes_test_err'
petsc_options_value = ' 1e-9'
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.1
num_steps = 1
solve_type = PJFNK
line_search = basic
abort_on_solve_fail = true
nl_abs_tol = 1e-8
[]
[Outputs]
file_base = 'phy.conservation'
csv = true
show = 'energy_change'
execute_on = 'final'
[]
(modules/thermal_hydraulics/test/tests/components/outlet_1phase/phy.solidwall_outlet_3eqn.i)
# This test problem simulates a tube filled with steam that is suddenly opened
# on one end to an environment with a lower pressure.
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.43
cv = 1040.0
q = 2.03e6
p_inf = 0.0
q_prime = -2.3e4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 100
A = 1.0
# IC
initial_T = 400
initial_p = 1e5
initial_vel = 0
f = 0
[]
[left_wall]
type = SolidWall1Phase
input = 'pipe:in'
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 0.95e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-5
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 0.2
dt = 0.01
abort_on_solve_fail = true
automatic_scaling = true
[]
[Outputs]
file_base = 'phy.solidwall_outlet_3eqn'
velocity_as_vector = false
[exodus]
type = Exodus
show = 'p T vel'
[]
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.unequal_area.i)
# Junction between 2 pipes where the second has half the area of the first.
# The momentum density of the second should be twice that of the first.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 1e5
initial_vel_x = 50
initial_vel_y = 0
initial_vel_z = 0
f = 0
fp = eos
scaling_factor_1phase = '1 1e-2 1e-5'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 250
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 1
n_elems = 20
initial_vel = 20
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe1:out pipe2:in'
scaling_factor_rhouV = 1e-4
scaling_factor_rhoEV = 1e-5
position = '1 0 0'
volume = 1e-8
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
A = 0.5
n_elems = 20
initial_vel = 15
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-10
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0
end_time = 3
dt = 0.1
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the outlet side of the junction,
# which has half the area of the inlet side, has twice the momentum density
# that the inlet side does.
[rhouA_pipe1]
type = SideAverageValue
variable = rhouA
boundary = pipe1:out
[]
[rhouA_pipe2]
type = SideAverageValue
variable = rhouA
boundary = pipe2:out
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = rhouA_pipe1
value2 = rhouA_pipe2
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/clg.head.i)
[GlobalParams]
initial_T = 393.15
initial_vel = 0.0372
f = 0
fp = fp
scaling_factor_1phase = '1e-2 1e-2 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[pump_head_fn]
type = PiecewiseLinear
x = '0 0.5'
y = '0 1 '
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 20
T = 393.15
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 0.567
initial_p = 1.318964e+07
[]
[pump]
type = Pump1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
head = 0
volume = 0.567
A_ref = 0.567
initial_p = 1.318964e+07
initial_vel_x = 0.0372
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhoEV = 1e-5
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
n_elems = 10
A = 0.567
initial_p = 1.4072e+07
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1.4072e+07
[]
[]
[ControlLogic]
[pump_head_ctrl]
type = TimeFunctionComponentControl
component = pump
parameter = head
function = pump_head_fn
[]
[]
[Postprocessors]
[pump_head]
type = RealComponentParameterValuePostprocessor
component = pump
parameter = head
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 10
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
[out]
type = CSV
show = 'pump_head'
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/fin_enhancement.i)
# This test has 2 pipes, each surrounded by a cylindrical HS:
#
# - pipe1: no fin heat transfer enhancement
# - pipe2: fin heat transfer enhancement
diam = 0.01
area = ${fparse 0.25 * pi * diam^2}
length = 1.0
n_elems = 10
t_hs = 0.02
n_elems_radial = 5
rho_inlet = 1359.792245 # @ T = 300 K, p = 1e5 Pa
vel_inlet = 1.0
T_inlet = 300
p_outlet = 1e5
T_initial_hs = 800
mfr_inlet = ${fparse rho_inlet * vel_inlet * area}
htc = 100
# Suppose that there are 20 rectangular, 1-mm-thick fins of height 1 mm over the length
# of the cooled section.
n_fin = 20
h_fin = 0.001
t_fin = 0.001
A_fin_single = ${fparse (2 * h_fin + t_fin ) * length}
A_fin = ${fparse n_fin * A_fin_single}
A_cooled = ${fparse pi * diam * length}
A_total = ${fparse A_fin + A_cooled - n_fin * t_fin * length}
fin_area_fraction = ${fparse A_fin / A_total}
area_increase_factor = ${fparse A_total / A_cooled}
fin_perimeter_area_ratio = ${fparse (2 * length + 2 * t_fin) / (length * t_fin)}
k_fin = 15.0
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[sp_ss316]
type = ThermalSS316Properties
[]
[]
[FunctorMaterials]
[fin_efficiency_fmat]
type = FinEfficiencyFunctorMaterial
fin_height = ${h_fin}
fin_perimeter_area_ratio = ${fparse fin_perimeter_area_ratio}
heat_transfer_coefficient = ${htc}
thermal_conductivity = ${k_fin}
fin_efficiency_name = fin_efficiency
[]
[fin_enhancement_fmat]
type = FinEnhancementFactorFunctorMaterial
fin_efficiency = fin_efficiency
fin_area_fraction = ${fin_area_fraction}
area_increase_factor = ${area_increase_factor}
fin_enhancement_factor_name = fin_enhancement
[]
[]
[Components]
# pipe1
[pipe1_inlet]
type = InletMassFlowRateTemperature1Phase
m_dot = ${mfr_inlet}
T = ${T_inlet}
input = 'pipe1:in'
[]
[pipe1]
type = FlowChannel1Phase
gravity_vector = '0 0 0'
position = '0 0 0'
orientation = '0 0 1'
length = ${length}
n_elems = ${n_elems}
A = ${area}
initial_T = ${T_inlet}
initial_p = ${p_outlet}
initial_vel = ${vel_inlet}
fp = fp
closures = simple_closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[pipe1_outlet]
type = Outlet1Phase
p = ${p_outlet}
input = 'pipe1:out'
[]
[ht1]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe1
hs = hs1
hs_side = inner
Hw = ${htc}
[]
[hs1]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${length}
n_elems = ${n_elems}
inner_radius = ${fparse 0.5 * diam}
names = 'main'
solid_properties = 'sp_ss316'
solid_properties_T_ref = '300'
widths = '${t_hs}'
n_part_elems = '${n_elems_radial}'
initial_T = ${T_initial_hs}
scaling_factor_temperature = 1e-5
[]
# pipe 2
[pipe2_inlet]
type = InletMassFlowRateTemperature1Phase
m_dot = ${mfr_inlet}
T = ${T_inlet}
input = 'pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
gravity_vector = '0 0 0'
position = '0 0.5 0'
orientation = '0 0 1'
length = ${length}
n_elems = ${n_elems}
A = ${area}
initial_T = ${T_inlet}
initial_p = ${p_outlet}
initial_vel = ${vel_inlet}
fp = fp
closures = simple_closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[pipe2_outlet]
type = Outlet1Phase
p = ${p_outlet}
input = 'pipe2:out'
[]
[ht2]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe2
hs = hs2
hs_side = inner
Hw = ${htc}
scale = fin_enhancement
[]
[hs2]
type = HeatStructureCylindrical
position = '0 0.5 0'
orientation = '0 0 1'
length = ${length}
n_elems = ${n_elems}
inner_radius = ${fparse 0.5 * diam}
names = 'main'
solid_properties = 'sp_ss316'
solid_properties_T_ref = '300'
widths = '${t_hs}'
n_part_elems = '${n_elems_radial}'
initial_T = ${T_initial_hs}
scaling_factor_temperature = 1e-5
[]
[]
[Postprocessors]
[pipe1_T_avg]
type = ElementAverageValue
variable = T
block = 'pipe1'
execute_on = 'INITIAL TIMESTEP_END'
[]
[pipe2_T_avg]
type = ElementAverageValue
variable = T
block = 'pipe2'
execute_on = 'INITIAL TIMESTEP_END'
[]
[hs1_T_avg]
type = SideAverageValue
variable = T_solid
boundary = 'hs1:inner'
execute_on = 'INITIAL TIMESTEP_END'
[]
[hs2_T_avg]
type = SideAverageValue
variable = T_solid
boundary = 'hs2:inner'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = 10.0
dt = 1.0
solve_type = NEWTON
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/supersonic_inlet/err.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in]
type = SupersonicInlet
input = 'pipe:in'
vel = 500
T = 300
p = 1e5
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[out]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.T_wall.i)
[GlobalParams]
initial_p = 0.1e6
initial_vel = 0
initial_T = 300
scaling_factor_1phase = '1e+0 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 50
A = 3.14e-2
f = 0.1
[]
[ht_pipe1]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe1
T_wall = 300
Hw = 0
[]
[inlet1]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 996.557482499661660
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 0.1e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.05
num_steps = 20
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 30
[]
[Outputs]
csv = true
[]
[Functions]
[T_wall_fn]
type = PiecewiseLinear
x = '0 1'
y = '310 320'
[]
[]
[ControlLogic]
[pipe_T_wall_ctrl]
type = TimeFunctionComponentControl
component = ht_pipe1
parameter = T_wall
function = T_wall_fn
[]
[]
[Postprocessors]
[T_wall]
type = RealComponentParameterValuePostprocessor
component = ht_pipe1
parameter = T_wall
[]
[]
(modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/surrogate_power_profile.i)
# This takes an exodus file with a power profile and uses that in a heat structure
# of a core channel as power density. This tests the capability of taking a
# rattlesnake generated power profile and using it in RELAP-7.
[GlobalParams]
initial_p = 15.5e6
initial_vel = 0.
initial_T = 559.15
gravity_vector = '0 -9.8 0'
scaling_factor_1phase = '1 1 1e-4'
scaling_factor_temperature = 1e-2
closures = simple_closures
[]
[FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[gap-mat]
type = ThermalFunctionSolidProperties
k = 0.6
cp = 1.
rho = 1.
[]
[clad-mat]
type = ThermalFunctionSolidProperties
k = 21.5
cp = 350.
rho = 6.55e3
[]
[]
[Components]
[CCH1:pipe]
type = FlowChannel1Phase
position = '0.02 0 0'
orientation = '0 1 0'
length = 3.865
n_elems = 20
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = water
[]
[CCH1:solid]
type = HeatStructureCylindrical
position = '0.024748 0 0'
orientation = '0 1 0'
length = 3.865
n_elems = 20
initial_T = 559.15
names = 'fuel gap clad'
widths = '0.004096 0.0001 0.000552'
n_part_elems = '5 1 2'
solid_properties = 'fuel-mat gap-mat clad-mat'
solid_properties_T_ref = '300 300 300'
[]
[CCH1:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = CCH1:pipe
hs = CCH1:solid
hs_side = outer
Hw = 5.33e4
P_hf = 2.9832563838489e-2
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'CCH1:pipe:in'
m_dot = 0.1
T = 559.15
[]
[outlet]
type = Outlet1Phase
input = 'CCH1:pipe:out'
p = 15.5e6
[]
[]
[UserObjects]
[reactor_power_density_uo]
type = SolutionUserObject
mesh = 'power_profile.e'
system_variables = power_density
translation = '0. 0. 0.'
[]
[]
[Functions]
[power_density_fn]
type = SolutionFunction
from_variable = power_density
solution = reactor_power_density_uo
[]
[]
[AuxVariables]
[power_density]
family = MONOMIAL
order = CONSTANT
block = 'CCH1:solid:fuel'
[]
[]
[AuxKernels]
[power_density_aux]
type = FunctionAux
variable = power_density
function = power_density_fn
block = 'CCH1:solid:fuel'
execute_on = 'timestep_begin'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
num_steps = 10
dt = 1e-2
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-9
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/01_flow_channel.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
closures = thm_closures
fp = he
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 1
n_elems = 25
A = 7.2548e-3
D_h = 7.0636e-2
[]
[outlet]
type = Outlet1Phase
input = 'core_chan:out'
p = ${press}
[]
[]
[Postprocessors]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = basic
start_time = 0
end_time = 1000
dt = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/sub_2phase.i)
# This is the 2-phase version of sub.i: it just adds the variable 'kappa'.
# Unfortunately, multi-parameter application of cli_args is not supported for
# sub-app input files, so sub.i cannot be re-used for the test.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[AuxVariables]
[Hw]
family = monomial
order = constant
block = pipe1
[]
[kappa]
family = monomial
order = constant
block = pipe1
[]
[]
[AuxKernels]
[Hw_ak]
type = ADMaterialRealAux
variable = Hw
property = 'Hw'
[]
[kappa_ak]
type = ConstantAux
variable = kappa
value = 0.5
[]
[]
[UserObjects]
[T_uo]
type = LayeredAverage
direction = y
variable = T
num_layers = 10
block = pipe1
[]
[Hw_uo]
type = LayeredAverage
direction = y
variable = Hw
num_layers = 10
block = pipe1
[]
[kappa_uo]
type = LayeredAverage
direction = y
variable = kappa
num_layers = 10
block = pipe1
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 10
A = 1.28584e-01
D_h = 8.18592e-01
f = 0.01
fp = eos
[]
[hxconn]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe1
Hw = 10000
P_hf = 6.28319e-01
initial_T_wall = 300.
var_type = elemental
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 400
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Postprocessors]
[T_wall_avg]
type = ElementAverageValue
variable = T_wall
execute_on = 'INITIAL TIMESTEP_END'
[]
[htc_avg]
type = ElementAverageValue
variable = Hw
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_avg]
type = ElementAverageValue
variable = T
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
dtmin = 1e-7
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-4
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T Hw'
[]
[]
(modules/thermal_hydraulics/test/tests/components/form_loss_from_external_app_1phase/phy.form_loss_1phase.child.i)
[GlobalParams]
initial_p = 1e5
initial_vel = 0.5
initial_T = 300.0
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 2
A = 1
n_elems = 10
f = 0
[]
[form_loss]
type = FormLossFromExternalApp1Phase
flow_channel = pipe
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 680
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.1
abort_on_solve_fail = true
timestep_tolerance = 5e-14
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 5e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 20
start_time = 0.0
end_time = 4.0
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
exodus = true
show = 'K_prime p'
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_no_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
#
# This input file has no junction and is used for comparison to the results with
# a junction.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 2
initial_T = T0
n_elems = 50
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rhoA]
type = PointValue
variable = rhoA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhouA]
type = PointValue
variable = rhouA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhoEA]
type = PointValue
variable = rhoEA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rho]
type = ScalePostprocessor
value = junction_rhoA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ScalePostprocessor
value = junction_rhouA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ScalePostprocessor
value = junction_rhoEA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
show = 'junction_rho junction_rhou junction_rhoE'
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/problems/pressure_drop/pressure_drop.i)
nelem = 100
friction_factor = 1e4
area = 0.176752
mfr_final = 1.0
p_out = 7e6
T_in = 300
ramp_time = 5.0
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = ${T_in}
initial_p = ${p_out}
initial_vel = 0
closures = closures
rdg_slope_reconstruction = full
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[h2]
type = IdealGasFluidProperties
gamma = 1.3066
molar_mass = 2.016e-3
k = 0.437
mu = 3e-5
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[bc_inlet]
type = InletMassFlowRateTemperature1Phase
input = 'ch_1:in'
m_dot = 0 # This value is controlled by 'mfr_ctrl'
T = ${T_in}
[]
[ch_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = ${nelem}
A = ${area}
f = ${friction_factor}
fp = h2
[]
[bc_outlet]
type = Outlet1Phase
input = 'ch_1:out'
p = ${p_out}
[]
[]
[Functions]
[mfr_fn]
type = PiecewiseLinear
x = '0 ${ramp_time}'
y = '0 ${mfr_final}'
[]
[]
[ControlLogic]
[mfr_ctrl]
type = TimeFunctionComponentControl
component = bc_inlet
parameter = m_dot
function = mfr_fn
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[pressure_vpp]
type = ADSampler1DReal
block = 'ch_1'
property = 'p'
sort_by = x
execute_on = 'FINAL'
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 50
dt = 1
steady_state_detection = true
steady_state_start_time = ${ramp_time}
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
[Outputs]
[csv]
type = CSV
create_final_symlink = true
execute_on = 'FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/components/outlet_1phase/clg.ctrl_p_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[outlet_p_fn]
type = PiecewiseLinear
x = '0 1'
y = '1e5 1.001e5'
[]
[]
[ControlLogic]
[set_outlet_value]
type = TimeFunctionComponentControl
component = outlet
parameter = p
function = outlet_p_fn
[]
[]
[Postprocessors]
[outlet_p]
type = RealComponentParameterValuePostprocessor
component = outlet
parameter = p
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/problems/pressure_drop/pressure_drop_with_junction.i)
nelem = 50
friction_factor = 1e4
area = 0.176752
mfr_final = 1.0
p_out = 7e6
T_in = 300
ramp_time = 5.0
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = ${T_in}
initial_p = ${p_out}
initial_vel = 0
closures = closures
rdg_slope_reconstruction = full
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[h2]
type = IdealGasFluidProperties
gamma = 1.3066
molar_mass = 2.016e-3
k = 0.437
mu = 3e-5
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[bc_inlet]
type = InletMassFlowRateTemperature1Phase
input = 'ch_1:in'
m_dot = 0 # This value is controlled by 'mfr_ctrl'
T = ${T_in}
[]
[ch_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = ${nelem}
A = ${area}
f = ${friction_factor}
fp = h2
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'ch_1:out ch_2:in'
[]
[ch_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = ${nelem}
A = ${area}
f = ${friction_factor}
fp = h2
[]
[bc_outlet]
type = Outlet1Phase
input = 'ch_2:out'
p = ${p_out}
[]
[]
[Functions]
[mfr_fn]
type = PiecewiseLinear
x = '0 ${ramp_time}'
y = '0 ${mfr_final}'
[]
[]
[ControlLogic]
[mfr_cntrl]
type = TimeFunctionComponentControl
component = bc_inlet
parameter = m_dot
function = mfr_fn
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[pressure_vpp]
type = ADSampler1DReal
block = 'ch_1 ch_2'
property = 'p'
sort_by = x
execute_on = 'FINAL'
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 50
dt = 1
steady_state_detection = true
steady_state_start_time = ${ramp_time}
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
[Outputs]
[csv]
type = CSV
create_final_symlink = true
execute_on = 'FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/steady.i)
# Tests that a flow channel can run with Steady executioner.
#
# Note that this solve may fail to converge based on initial guess. For example,
# having a guess with velocity set to zero will fail to converge.
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 2
T = 500
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
gravity_vector = '0 0 0'
length = 1.0
n_elems = 50
A = 1.0
initial_T = 300
initial_p = 1e5
initial_vel = 1
f = 10.0
closures = simple_closures
fp = fp
scaling_factor_1phase = '1 1 1e-5'
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 2e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_rel_tol = 1e-7
nl_abs_tol = 1e-7
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/clg.densityvelocity_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 0.1e6
initial_vel = 0
initial_T = 300
scaling_factor_1phase = '1. 1. 1.'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1.907720E-04
f = 0.0
fp = eos
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 996.556340388366266
vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 0.1e6
[]
[]
[Functions]
[inlet_rho_fn]
type = PiecewiseLinear
x = '0 1 '
y = '996 997'
[]
[inlet_vel_fn]
type = PiecewiseLinear
x = '1 2'
y = '1 2'
[]
[]
[ControlLogic]
[inlet_rho_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = rho
function = inlet_rho_fn
[]
[inlet_vel_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = vel
function = inlet_vel_fn
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 20
abort_on_solve_fail = true
solve_type = NEWTON
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Postprocessors]
[rho_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = rho
[]
[vel_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = vel
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/phy.velocity_t_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
f = 0.0
length = 1
n_elems = 100
[]
[inlet]
type = InletVelocityTemperature1Phase
input = 'pipe:in'
vel = 1.0
T = 444.447
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
end_time = 5.5
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
abort_on_solve_fail = true
[]
[Outputs]
file_base = 'phy.velocity_t_3eqn'
[exodus]
type = Exodus
show = 'vel T p'
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/clg.velocity_t_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
f = 0.0
length = 1
n_elems = 100
[]
[inlet]
type = InletVelocityTemperature1Phase
input = 'pipe:in'
vel = 1.0
T = 444.447
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Functions]
[inlet_vel_fn]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.1 1'
[]
[inlet_T_fn]
type = PiecewiseLinear
x = '0 1 2'
y = '300 400 440'
[]
[]
[ControlLogic]
[inlet_vel_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = vel
function = inlet_vel_fn
[]
[inlet_T_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = T
function = inlet_T_fn
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
num_steps = 20
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
abort_on_solve_fail = true
[]
[Postprocessors]
[vel_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = vel
[]
[T_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T
[]
[]
[Outputs]
[out]
type = CSV
[]
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/test.i)
# Test that the initial conditions read from the exodus file are correct
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
closures = simple_closures
initial_from_file = 'steady_state_out.e'
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[mat1]
type = ThermalFunctionSolidProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Functions]
[Ts_bc]
type = ParsedFunction
expression = '2*sin(x*pi)+507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
names = 'wall'
n_part_elems = 1
solid_properties = 'mat1'
solid_properties_T_ref = '300'
inner_radius = 0.01
widths = 0.1
[]
[ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe
hs = hs
hs_side = INNER
Hw = 10000
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = Ts_bc
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
execute_on = 'initial'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_volumetric_1phase/err.base.i)
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[total_power]
type = TotalPower
power = 1
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 1
n_elems = 2
A = 1
f = 0.1
fp = fp
closures = simple_closures
initial_T = 300
initial_p = 1e05
initial_vel = 0
[]
[hs]
type = HeatSourceVolumetric1Phase
flow_channel = fch1
q = 1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = fch1:in
m_dot = 1
T = 300
[]
[outlet]
type = Outlet1Phase
input = fch1:out
p = 1e-5
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
[]
(modules/thermal_hydraulics/test/tests/postprocessors/real_component_parameter_value/non_existent_par_name.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[p_fn]
type = PiecewiseLinear
x = '0 1'
y = '1e5 1.001e5'
[]
[]
[ControlLogic]
[outlet_p_fn]
type = GetFunctionValueControl
function = p_fn
[]
[set_outlet_value]
type = SetComponentRealValueControl
component = outlet
parameter = p
value = outlet_p_fn:value
[]
[]
[Postprocessors]
[outlet_p]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = p
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
(modules/thermal_hydraulics/test/tests/controls/pid_control/test.i)
# This test "measures" the liquid temperature at location (10, 0, 0) on a 15 meters
# long pipe and adjusts the inlet stagnation temperature using a PID controller with
# set point at 340 K. The pipe is filled with water at T = 350 K. The purpose is to
# make sure that the channel fills with colder liquid and levels at the set point
# value. In steady state there should be a flat temperature profile at ~340 K.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 105.e3
T0 = 300.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[ControlLogic]
[T_set_point]
type = GetFunctionValueControl
function = 340
[]
[pid_ctrl]
type = PIDControl
input = T_reading
set_point = T_set_point:value
K_i = 0.05
K_p = 0.2
K_d = 0.1
initial_value = 340
[]
[set_inlet_value]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = pid_ctrl:output
[]
[]
[Postprocessors]
[T_reading]
type = PointValue
point = '10 0 0'
variable = T
execute_on = timestep_begin
[]
[T_inlet]
type = PointValue
point = '0 0 0'
variable = T
execute_on = timestep_begin
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 300.0
[]
[Outputs]
[out]
type = CSV
execute_on = 'final'
[]
[console]
type = Console
max_rows = 1
[]
[]
(modules/thermal_hydraulics/test/tests/components/deprecated/junction_one_to_one.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[valve]
type = JunctionOneToOne
connections = 'pipe1:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_T0_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1.01e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '300 350'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = T0
function = inlet_T0_fn
[]
[]
[Postprocessors]
[inlet_T0]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T0
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/clg.ctrl_m_dot_3eqn_rdg.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_m_dot_fn]
type = PiecewiseLinear
x = '0 1'
y = '0 0.5'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = m_dot
function = inlet_m_dot_fn
[]
[]
[Postprocessors]
[inlet_m_dot]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = m_dot
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/junction_with_calorifically_imperfect_gas.i)
# This input file tests compatibility of JunctionParallelChannels1Phase and CaloricallyImperfectGas.
# Loss coefficient is applied in first junction.
# Expected pressure drop from form loss ~0.5*K*rho_in*vel_in^2=0.5*100*3.219603*1 = 160.9 Pa
# Pressure drop from averall flow area change ~ 21.9 Pa
# Expected pressure drop ~ 182.8 Pa
T_in = 523.0
vel = 1
p_out = 7e6
[GlobalParams]
initial_p = ${p_out}
initial_vel = ${vel}
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 3
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = '1e2'
scaling_factor_rhowV = '1e-2'
scaling_factor_rhoEV = '1e-5'
[]
[Functions]
[e_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '783.9 2742.3 2958.6 3489.2 4012.7 4533.3 5053.8 5574 6095.1 7140.2 8192.9 9256.3 10333.6 12543.9 14836.6 17216.3 19688.4 22273.7 25018.3 28042.3 31544.2 35818.1 41256.5 100756.5'
scale_factor = 1e3
[]
[mu_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '85.42 85.42 89.53 99.44 108.9 117.98 126.73 135.2 143.43 159.25 174.36 188.9 202.96 229.88 255.5 280.05 303.67 326.45 344.97 366.49 387.87 409.48 431.86 431.86'
scale_factor = 1e-7
[]
[k_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '186.82 186.82 194.11 212.69 231.55 250.38 268.95 287.19 305.11 340.24 374.92 409.66 444.75 511.13 583.42 656.44 733.32 826.53 961.15 1180.38 1546.31 2135.49 3028.08 3028.08'
scale_factor = 1e-3
[]
[]
[FluidProperties]
[fp]
type = CaloricallyImperfectGas
molar_mass = 0.002
e = e_fn
k = k_fn
mu = mu_fn
min_temperature = 100
max_temperature = 5000
out_of_bound_error = false
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletVelocityTemperature1Phase
input = 'inlet:in'
vel = ${vel}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 3
[]
[inlet_plenum]
type = JunctionParallelChannels1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = ${vel}
K = 100
connections = 'inlet:out channel1:in channel2:in'
volume = 1
use_scalar_variables = false
[]
[channel1]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 4
D_h = 1
[]
[channel2]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 1
D_h = 1
[]
[outlet_plenum]
type = JunctionParallelChannels1Phase
position = '0 0 0'
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = ${vel}
connections = 'channel1:out channel2:out outlet:in'
volume = 1
use_scalar_variables = false
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 1
[]
[outlet_bc]
type = Outlet1Phase
p = ${p_out}
input = 'outlet:out'
[]
[]
[Postprocessors]
[p_in]
type = SideAverageValue
variable = p
boundary = inlet:in
[]
[p_out]
type = SideAverageValue
variable = p
boundary = outlet:out
[]
[Delta_p]
type = DifferencePostprocessor
value1 = p_out
value2 = p_in
[]
[inlet_in_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet_bc'
equation = mass
[]
[inlet_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'inlet:out'
connection_index = 0
junction = inlet_plenum
equation = mass
[]
[channel1_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:in'
connection_index = 1
junction = inlet_plenum
equation = mass
[]
[channel1_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:out'
connection_index = 0
junction = outlet_plenum
equation = mass
[]
[channel2_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:in'
connection_index = 2
junction = inlet_plenum
equation = mass
[]
[channel2_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:out'
connection_index = 1
junction = outlet_plenum
equation = mass
[]
[outlet_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'outlet:in'
connection_index = 2
junction = outlet_plenum
equation = mass
[]
[outlet_out_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet_bc'
equation = mass
[]
[net_mass_flow_rate_domain]
type = LinearCombinationPostprocessor
pp_names = 'inlet_in_m_dot outlet_out_m_dot'
pp_coefs = '1 -1'
[]
[net_mass_flow_rate_volume_junction]
type = LinearCombinationPostprocessor
pp_names = 'inlet_out_m_dot channel1_in_m_dot channel2_in_m_dot'
pp_coefs = '1 -1 -1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 8
iteration_window = 2
[]
timestep_tolerance = 1e-6
abort_on_solve_fail = true
line_search = basic
nl_rel_tol = 1e-8
nl_abs_tol = 2e-8
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'net_mass_flow_rate_domain net_mass_flow_rate_volume_junction Delta_p'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/err.not_a_3d_hs.i)
[GlobalParams]
scaling_factor_1phase = '1 1 1e-3'
[]
[SolidProperties]
[mat]
type = ThermalFunctionSolidProperties
rho = 1000
cp = 100
k = 30
[]
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T_init]
type = ParsedFunction
expression = '1000*y+300+30*z'
[]
[]
[Components]
[fch]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
fp = fp
n_elems = 6
length = 1
initial_T = 300
initial_p = 1.01e5
initial_vel = 1
closures = simple_closures
A = 0.00314159
D_h = 0.2
f = 0.01
[]
[in]
type = InletVelocityTemperature1Phase
input = 'fch:in'
vel = 1
T = 300
[]
[out]
type = Outlet1Phase
input = 'fch:out'
p = 1.01e5
[]
[blk]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
widths = 0.1
inner_radius = 0.1
length = 1
n_elems = 6
n_part_elems = 1
initial_T = T_init
solid_properties = 'mat'
solid_properties_T_ref = '300'
names = blk
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'fch'
hs = blk
boundary = blk:inner
Hw = 10000
P_hf = 0.156434465
[]
[]
[Postprocessors]
[energy_hs]
type = HeatStructureEnergy3D
block = blk:0
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_fch]
type = ElementIntegralVariablePostprocessor
block = fch
variable = rhoEA
execute_on = 'INITIAL TIMESTEP_END'
[]
[total_energy]
type = SumPostprocessor
values = 'energy_fch energy_hs'
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = total_energy
compute_relative_change = false
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1
solve_type = PJFNK
line_search = basic
num_steps = 1000
steady_state_detection = true
steady_state_tolerance = 1e-08
nl_abs_tol = 1e-8
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/jac.massflowrate_3eqn_water97.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = Water97FluidProperties
T_initial_guess = 444.447
p_initial_guess = 7e6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.1
length = 1
n_elems = 4
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.18
T = 444.447
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
num_steps = 30
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 100
abort_on_solve_fail = true
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/postprocessors/flow_boundary_flux_1phase/test.i)
T_in = 300
p_out = 1e5
[GlobalParams]
initial_p = ${p_out}
initial_T = ${T_in}
initial_vel = 0
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 50
f = 0
scaling_factor_1phase = '1 1e-2 1e-4'
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'channel:in'
m_dot = 0.1
T = ${T_in}
[]
[channel]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 3
[]
[outlet]
type = Outlet1Phase
p = ${p_out}
input = 'channel:out'
[]
[]
[Postprocessors]
[m_dot_in]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet'
equation = mass
[]
[m_dot_out]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet'
equation = mass
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
num_steps = 10
dt = 0.1
solve_type = NEWTON
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
[out]
type = CSV
show = 'm_dot_in m_dot_out'
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.f_fn.3eqn.i)
# Tests that friction factor can be provided for 1-phase flow
f = 5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 558
initial_p = 7.0e6
initial_vel = 0
scaling_factor_1phase = '1e0 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[f_func]
type = ConstantFunction
value = ${f}
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1.907720E-04
D_h = 1.698566E-02
f = f_func
fp = eos
[]
[ht_pipe]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe
T_wall = 559
P_hf = 0.0489623493599167
Hw = 50000
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 741.707129779398883
vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7.0e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-2
l_max_its = 30
[]
[Postprocessors]
[f]
type = ADElementIntegralMaterialProperty
mat_prop = f_D
block = pipe
[]
[]
[Outputs]
csv = true
show = 'f'
execute_on = 'timestep_end'
[]
(modules/thermal_hydraulics/test/tests/problems/william_louis/3pipes_open.i)
# Junction of 3 pipes:
#
# 1 3
# -----*-----
# | 2
#
# The left end of Pipe 1 is a high-pressure region, and the rest of the system
# is at a low pressure.
#
# Pipe 1 is closed, while Pipes 2 and 3 are open.
end_time = 0.07
D_pipe = 0.01
A_pipe = ${fparse 0.25 * pi * D_pipe^2}
length_pipe1_HP = 0.53
length_pipe1_LP = 3.10
length_pipe2 = 2.595
length_pipe3 = 1.725
x_junction = ${fparse length_pipe1_HP + length_pipe1_LP}
# Numbers of elements correspond to dx ~ 1/3 cm
n_elems_pipe1_HP = 159
n_elems_pipe1_LP = 930
n_elems_pipe2 = 779
n_elems_pipe3 = 518
S_junction = ${fparse 3 * A_pipe}
r_junction = ${fparse sqrt(S_junction / (4 * pi))}
V_junction = ${fparse 4/3 * pi * r_junction^3}
p_low = 1e5
p_high = 1.15e5
T_low = 283.5690633 # at p = 1e5 Pa, rho = 1.23 kg/m^3
T_high = 283.5690633 # at p = 1.15e5 Pa, rho = 1.4145 kg/m^3
cfl = 0.95
[GlobalParams]
# common FlowChannel1Phase parameters
A = ${A_pipe}
initial_vel = 0
fp = fp_air
closures = closures
f = 0
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp_air]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.029
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[initial_T_pipe1_fn]
type = PiecewiseConstant
axis = x
x = '0 ${length_pipe1_HP}'
y = '${T_high} ${T_low}'
[]
[initial_p_pipe1_fn]
type = PiecewiseConstant
axis = x
x = '0 ${length_pipe1_HP}'
y = '${p_high} ${p_low}'
[]
[]
[Components]
[pipe1_wall]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = '${length_pipe1_HP} ${length_pipe1_LP}'
n_elems = '${n_elems_pipe1_HP} ${n_elems_pipe1_LP}'
initial_p = initial_p_pipe1_fn
initial_T = initial_T_pipe1_fn
[]
[junction]
type = VolumeJunction1Phase
position = '${x_junction} 0 0'
connections = 'pipe1:out pipe2:in pipe3:in'
initial_p = ${p_low}
initial_T = ${T_low}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
volume = ${V_junction}
scaling_factor_rhoEV = 1e-5
apply_velocity_scaling = true
[]
[pipe2]
type = FlowChannel1Phase
position = '${x_junction} 0 0'
orientation = '0 -1 0'
length = ${length_pipe2}
n_elems = ${n_elems_pipe2}
initial_p = ${p_low}
initial_T = ${T_low}
[]
[pipe2_outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = ${p_low}
[]
[pipe3]
type = FlowChannel1Phase
position = '${x_junction} 0 0'
orientation = '1 0 0'
length = ${length_pipe3}
n_elems = ${n_elems_pipe3}
initial_p = ${p_low}
initial_T = ${T_low}
[]
[pipe3_outlet]
type = Outlet1Phase
input = 'pipe3:out'
p = ${p_low}
[]
[]
[Postprocessors]
[cfl_dt]
type = ADCFLTimeStepSize
CFL = ${cfl}
c_names = 'c'
vel_names = 'vel'
[]
[p_pipe1_048]
type = PointValue
variable = p
point = '${fparse x_junction - 0.48} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_pipe2_052]
type = PointValue
variable = p
point = '${fparse x_junction} -0.52 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_pipe3_048]
type = PointValue
variable = p
point = '${fparse x_junction + 0.48} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = ${end_time}
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 1
[]
[TimeStepper]
type = PostprocessorDT
postprocessor = cfl_dt
[]
abort_on_solve_fail = true
solve_type = LINEAR
[]
[Times]
[output_times]
type = TimeIntervalTimes
time_interval = 7e-4
[]
[]
[Outputs]
file_base = '3pipes_open'
[csv]
type = CSV
show = 'p_pipe1_048 p_pipe2_052 p_pipe3_048'
sync_only = true
sync_times_object = output_times
[]
[console]
type = Console
execute_postprocessors_on = 'NONE'
[]
[]
(modules/thermal_hydraulics/test/tests/controls/set_component_real_value_control/test.i)
# This is testing that the values set by SetComponentRealValueControl are used.
# Function T0_fn prescribes values for T0 at inlet. We output the function
# values via a postprocessor `T_fn` and the inlet values via another
# postprocessor `T_ctrl`. Those two values have to be equal.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[set_inlet_value]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = T_inlet_fn:value
[]
[]
[Postprocessors]
[T_fn]
type = FunctionValuePostprocessor
function = T0_fn
[]
[T_ctrl]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T0
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.shower.i)
# This problem models a "shower": water from two pipes, one hot and one cold,
# mixes together to produce a temperature between the two.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 1e5
initial_vel = 1
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
# global parameters for pipes
fp = eos
orientation = '1 0 0'
length = 1
n_elems = 20
f = 0
scaling_factor_1phase = '1 1 1e-6'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_hot]
type = InletDensityVelocity1Phase
input = 'pipe_hot:in'
# rho @ (p = 1e5, T = 310 K)
rho = 1315.9279785683
vel = 1
[]
[inlet_cold]
type = InletDensityVelocity1Phase
input = 'pipe_cold:in'
# rho @ (p = 1e5, T = 280 K)
rho = 1456.9202619863
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe_warm:out'
p = 1e5
[]
[pipe_hot]
type = FlowChannel1Phase
position = '0 1 0'
A = 1
[]
[pipe_cold]
type = FlowChannel1Phase
position = '0 0 0'
A = 1
[]
[pipe_warm]
type = FlowChannel1Phase
position = '1 0.5 0'
A = 2
initial_vel = 0.5
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe_cold:out pipe_hot:out pipe_warm:in'
position = '1 0.5 0'
volume = 1e-8
use_scalar_variables = false
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-5
nl_max_its = 10
l_tol = 1e-2
l_max_its = 10
start_time = 0
end_time = 5
dt = 0.05
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the energy flux on
# the warm side of the junction is equal to the sum of the energy
# fluxes of the hot and cold inlets to the junction.
[energy_flux_hot]
type = EnergyFluxIntegral
boundary = pipe_hot:out
arhouA = rhouA
H = H
[]
[energy_flux_cold]
type = EnergyFluxIntegral
boundary = pipe_cold:out
arhouA = rhouA
H = H
[]
[energy_flux_warm]
type = EnergyFluxIntegral
boundary = pipe_warm:in
arhouA = rhouA
H = H
[]
[energy_flux_inlet_sum]
type = SumPostprocessor
values = 'energy_flux_hot energy_flux_cold'
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = energy_flux_warm
value2 = energy_flux_inlet_sum
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
sync_only = true
sync_times = '3 4 5'
[]
[]
(modules/thermal_hydraulics/test/tests/misc/adapt/single_block.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 20
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.
fp = eos
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 996.561962436227759
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Outputs]
exodus = true
show = 'rhoA rhouA rhoEA'
[console]
type = Console
print_mesh_changed_info = true
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0.0
dt = 1e-5
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[Adaptivity]
initial_adaptivity = 0 # There seems to be a bug with non-zero initial adaptivity
refine_fraction = 0.60
coarsen_fraction = 0.30
max_h_level = 4
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation_ss.i)
# Testing energy conservation at steady state
P_hf = ${fparse 0.6 * sin (pi/24)}
[GlobalParams]
scaling_factor_1phase = '1 1 1e-3'
gravity_vector = '0 0 0'
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
block = 'blk:0'
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1000 10 30'
[]
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in1]
type = InletVelocityTemperature1Phase
input = 'fch1:in'
vel = 1
T = 300
[]
[fch1]
type = FlowChannel1Phase
position = '0.15 0 0'
orientation = '0 0 1'
fp = fp
n_elems = 10
length = 1
initial_T = 300
initial_p = 1.01e5
initial_vel = 1
closures = simple_closures
A = 0.00314159
f = 0.0
[]
[out1]
type = Outlet1Phase
input = 'fch1:out'
p = 1.01e5
[]
[in2]
type = InletVelocityTemperature1Phase
input = 'fch2:in'
vel = 1
T = 350
[]
[fch2]
type = FlowChannel1Phase
position = '0 0.15 0'
orientation = '0 0 1'
fp = fp
n_elems = 10
length = 1
initial_T = 350
initial_p = 1.01e5
initial_vel = 1
closures = simple_closures
A = 0.00314159
f = 0
[]
[out2]
type = Outlet1Phase
input = 'fch2:out'
p = 1.01e5
[]
[blk]
type = HeatStructureFromFile3D
file = mesh.e
position = '0 0 0'
initial_T = 325
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'fch1 fch2'
hs = blk
boundary = blk:rmin
Hw = 10000
P_hf = ${P_hf}
[]
[]
[Postprocessors]
[E_in1]
type = ADFlowBoundaryFlux1Phase
boundary = in1
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out1]
type = ADFlowBoundaryFlux1Phase
boundary = out1
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe1]
type = ADHeatRateConvection1Phase
block = fch1
T_wall = T_wall
T = T
Hw = Hw
P_hf = ${P_hf}
execute_on = 'initial timestep_end'
[]
[E_diff1]
type = DifferencePostprocessor
value1 = E_in1
value2 = E_out1
execute_on = 'initial timestep_end'
[]
[E_conservation1]
type = SumPostprocessor
values = 'E_diff1 hf_pipe1'
[]
[E_in2]
type = ADFlowBoundaryFlux1Phase
boundary = in2
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out2]
type = ADFlowBoundaryFlux1Phase
boundary = out2
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe2]
type = ADHeatRateConvection1Phase
block = fch2
T_wall = T_wall
T = T
Hw = Hw
P_hf = ${P_hf}
execute_on = 'initial timestep_end'
[]
[E_diff2]
type = DifferencePostprocessor
value1 = E_in2
value2 = E_out2
execute_on = 'initial timestep_end'
[]
[E_conservation2]
type = SumPostprocessor
values = 'E_diff2 hf_pipe2'
[]
[E_conservation_hs]
type = SumPostprocessor
values = 'hf_pipe1 hf_pipe2'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 5
end_time = 100
solve_type = NEWTON
line_search = basic
abort_on_solve_fail = true
nl_abs_tol = 1e-8
[]
[Outputs]
file_base = 'phy.conservation_ss'
[csv]
type = CSV
show = 'E_conservation1 E_conservation2 E_conservation_hs'
execute_on = 'FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/phy.densityvelocity_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 510
initial_p = 7e6
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 3.1415926536e-06
D_h = 2.0000000000e-03
f = 0.1
length = 1
n_elems = 10
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 805
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-1
start_time = 0.0
num_steps = 50
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
nl_max_its = 5
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'final'
velocity_as_vector = false
show = 'rho vel'
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_pressure_check.i)
# This test checks that the expected pressure rise due to the user supplied
# pump head matches the actual pressure rise across the pump.
# The orientation of flow channels in this test have no components in the z-direction
# due to the expected_pressure_rise_fcn not accounting for hydrostatic pressure.
head = 95.
dt = 0.1
g = 9.81
volume = 0.567
[GlobalParams]
initial_T = 393.15
initial_vel = 0.0372
A = 0.567
f = 0
fp = fp
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[expected_pressure_rise_fcn]
type = ParsedFunction
expression = 'rhoV * g * head / volume'
symbol_names = 'rhoV g head volume'
symbol_values = 'pump_rhoV ${g} ${head} ${volume}'
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 20
T = 393.15
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
initial_p = 1.318964e+07
n_elems = 10
[]
[pump]
type = Pump1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
initial_p = 1.318964e+07
scaling_factor_rhoEV = 1e-5
head = ${head}
volume = ${volume}
A_ref = 0.567
initial_vel_x = 1
initial_vel_y = 1
initial_vel_z = 0
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '0 2 0'
length = 0.96
initial_p = 1.4072E+07
n_elems = 10
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1.4072E+07
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
start_time = 0
dt = ${dt}
num_steps = 4
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[pump_rhoV]
type = ElementAverageValue
variable = rhoV
block = 'pump'
execute_on = 'initial timestep_end'
[]
[expected_pressure_rise]
type = FunctionValuePostprocessor
function = expected_pressure_rise_fcn
indirect_dependencies = 'pump_rhoV'
execute_on = 'initial timestep_end'
[]
[p_inlet]
type = SideAverageValue
variable = p
boundary = 'pipe1:out'
execute_on = 'initial timestep_end'
[]
[p_outlet]
type = SideAverageValue
variable = p
boundary = 'pipe2:in'
execute_on = 'initial timestep_end'
[]
[actual_pressure_rise]
type = DifferencePostprocessor
value1 = p_outlet
value2 = p_inlet
execute_on = 'timestep_end'
[]
[pressure_rise_diff]
type = RelativeDifferencePostprocessor
value1 = actual_pressure_rise
value2 = expected_pressure_rise
execute_on = 'timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'pressure_rise_diff'
[]
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_with_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
initial_T = T0
n_elems = 25
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
volume = 1.0
initial_T = T0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
initial_T = T0
n_elems = 24
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rho]
type = ElementAverageValue
variable = rhoV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ElementAverageValue
variable = rhouV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ElementAverageValue
variable = rhoEV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_transient_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 101325
initial_T = 300
initial_vel = 0
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
f = 0.0
length = 1
n_elems = 10
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 102041.128
T0 = 300.615
reversible = false
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 101325
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-4
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-7
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/problems/three_pipe_shock/three_pipe_shock.i)
# Test 8 from the following reference:
#
# F. Daude, P. Galon. A Finite-Volume approach for compressible single- and
# two-phase flows in flexible pipelines with fluid-structure interaction.
# Journal of Computational Physics 362 (2018) 375-408.
L1 = 10
L2 = 3
L3 = 5
xJ = ${L1}
x_p1 = ${fparse xJ - 1.05}
x_p2 = ${fparse xJ + 0.15}
x_p3 = ${fparse xJ + 0.95}
N1 = 1000
N2 = 300
N3 = 500
D1 = 0.35682482
D2 = 0.19544100
D3 = 0.35682482
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
AJ = ${fparse A1 + A2 + A3}
RJ = ${fparse sqrt(AJ / (4 * pi))} # A = 4 pi R^2
VJ = ${fparse 4/3 * pi * RJ^3}
y2 = 1
y3 = -1
gamma = 2.23
p_inf = 1e9 # denoted by "pi" in reference
q = 0
cv = 2500 # arbitrary value; not given in reference
CFL = 0.8
t_end = 0.01
p_out = 80e5
initial_p = ${p_out}
initial_T = 327.1864956 # reference has rho = 1001.89 kg/m^3
initial_vel1 = 1
initial_vel2 = 0.769
initial_vel3 = 0.769
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = ${initial_T}
initial_p = ${initial_p}
fp = fp
closures = closures
f = 0
rdg_slope_reconstruction = none
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = ${gamma}
p_inf = ${p_inf}
q = ${q}
cv = ${cv}
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = ${L1}
n_elems = ${N1}
A = ${A1}
initial_vel = ${initial_vel1}
[]
[pipe2]
type = FlowChannel1Phase
position = '${xJ} ${y2} 0'
orientation = '1 0 0'
length = ${L2}
n_elems = ${N2}
A = ${A2}
initial_vel = ${initial_vel2}
[]
[pipe3]
type = FlowChannel1Phase
position = '${xJ} ${y3} 0'
orientation = '1 0 0'
length = ${L3}
n_elems = ${N3}
A = ${A3}
initial_vel = ${initial_vel3}
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in pipe3:in'
position = '${xJ} 0 0'
volume = ${VJ}
initial_vel_x = ${initial_vel2} # ?
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoEV = 1e-5
apply_velocity_scaling = true
[]
[outlet1]
type = Outlet1Phase
input = 'pipe1:in'
p = ${p_out}
[]
[outlet2]
type = Outlet1Phase
input = 'pipe2:out'
p = ${p_out}
[]
[wall3]
type = SolidWall1Phase
input = 'pipe3:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Postprocessors]
[dt_cfl]
type = ADCFLTimeStepSize
CFL = ${CFL}
vel_names = 'vel'
c_names = 'c'
[]
[p1]
type = PointValue
variable = p
point = '${x_p1} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p2]
type = PointValue
variable = p
point = '${x_p2} ${y2} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p3]
type = PointValue
variable = p
point = '${x_p3} ${y3} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = ${t_end}
[TimeStepper]
type = PostprocessorDT
postprocessor = dt_cfl
[]
[TimeIntegrator]
type = ActuallyExplicitEuler
[]
solve_type = LINEAR
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
l_tol = 1e-4
l_max_its = 10
[]
[Times]
[output_times]
type = TimeIntervalTimes
time_interval = 1e-4
[]
[]
[Outputs]
file_base = 'three_pipe_shock'
[csv]
type = CSV
show = 'p1 p2 p3'
sync_only = true
sync_times_object = output_times
[]
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_end.i)
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1. 1e-4'
closures = simple_closures
[]
[FluidProperties]
[barotropic]
type = LinearFluidProperties
p_0 = 1.e5 # Pa
rho_0 = 1.e3 # kg/m^3
a2 = 1.e7 # m^2/s^2
beta = .46e-3 # K^{-1}
cv = 4.18e3 # J/kg-K, could be a global parameter?
e_0 = 1.254e6 # J/kg
T_0 = 300 # K
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = barotropic
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:asdf' # this is an error we are checking for
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 9.5e4
[]
[]
[Preconditioning]
[FDP_PJFNK]
type = FDP
full = true
petsc_options_iname = '-mat_fd_coloring_err'
petsc_options_value = '1.e-10'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.p0T0_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e6
initial_T = 453.1
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = eos
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e6
T0 = 453.1
reversible = false
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 0.5e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1.e-2
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
start_time = 0.0
end_time = 0.6
[]
[Outputs]
file_base = 'phy.p0T0_3eqn'
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
tot_power = 2000 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
closures = thm_closures
fp = he
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = '${A_core}'
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[outlet]
type = Outlet1Phase
input = 'core_chan:out'
p = ${press}
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
[]
end_time = 5000
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/flow_connection/err.connecting_to_non_existent_component.i)
# Tests that we report an error if users try to connect to a non-existent component
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = water
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 2
A = 1e-4
f = 0
[]
[inlet_1p]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 1
T = 300
[]
[outlet_1p]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Executioner]
type = Transient
dt = 0.01
[]
(modules/thermal_hydraulics/test/tests/misc/adapt/multiple_blocks.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
[]
[pipe2]
type = FlowChannel1Phase
fp = eos
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
volume = 1e-5
position = '1 0 0'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
use_scalar_variables = false
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# (p0, T0) for p = 1e5, T = 300, vel = 1
p0 = 1.0049827846e+05
T0 = 300.0000099
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[prec]
type = SMP
full = true
petsc_options = '-pc_factor_shift_nonzero'
petsc_options_iname = '-mat_fd_coloring_err'
petsc_options_value = '1.e-10'
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-4
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 0
nl_abs_tol = 1e-5
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Adaptivity]
initial_adaptivity = 0
refine_fraction = 0.60
coarsen_fraction = 0.10
max_h_level = 3
[]
automatic_scaling = true
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/controls/delay_control/test.i)
[GlobalParams]
initial_p = 100.e3
initial_vel = 0
initial_T = 300.
closures = simple_closures
[]
[Functions]
[p0_fn]
type = PiecewiseLinear
x = '0 0.2 0.4 0.6 0.8'
y = '1e5 1.002e5 1.002e5 1.001e5 1.001e5'
[]
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 5
A = 0.01
D_h = 0.1
f = 0
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 300.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[ControlLogic]
[p0_fn_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = p0
function = p0_fn
[]
[delay_ctrl]
type = DelayControl
input = p0_inlet
tau = 0.3
initial_value = 1e5
[]
[]
[Postprocessors]
[p0_inlet_delayed]
type = RealControlDataValuePostprocessor
control_data_name = delay_ctrl:value
execute_on = 'initial timestep_end'
[]
[p0_inlet]
type = FunctionValuePostprocessor
function = p0_fn
execute_on = 'initial timestep_begin'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
start_time = 0.0
end_time = 1.0
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/phy.massflowrate_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.1
length = 1
n_elems = 20
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.18
T = 444.447
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
num_steps = 30
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 100
abort_on_solve_fail = true
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
file_base = 'phy.massflowrate_3eqn'
[exodus]
type = Exodus
show = 'rhouA T p'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_elem_3eqn.child.i)
# This is a part of phy.T_wall_transfer_elem_3eqn test. See the master file for details.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hxconn]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe1
Hw = 3000
P_hf = 6.2831853072e-01
initial_T_wall = 300.
var_type = elemental
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.5
dtmin = 1e-7
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-4
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
end_time = 5
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_3eqn.child.i)
# This is a part of phy.T_wall_transfer_3eqn test. See the master file for details.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hxconn]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe1
Hw = 3000
P_hf = 6.2831853072e-01
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.5
dtmin = 1e-7
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-4
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
end_time = 5
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall'
[]
[]
(modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction.i)
# This test features air flowing through a channel whose cross-sectional area
# shrinks to half its value in the right half. Assuming incompressible flow
# conditions, such as having a low Mach number, the velocity should approximately
# double from inlet to outlet.
p_outlet = 1e5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = ${p_outlet}
initial_vel = initial_vel_fn
fp = fp
closures = simple_closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[A_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 0.5'
[]
[initial_vel_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 2'
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 1.16263315948279 # rho @ (p = 1e5 Pa, T = 300 K)
vel = 1
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 100
A = A_fn
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = ${p_outlet}
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = 10
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.2
[]
steady_state_detection = true
solve_type = PJFNK
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
[]
[Outputs]
exodus = true
velocity_as_vector = false
show = 'A rho vel p'
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.form_loss.i)
# This test measures the pressure drop across the volume junction with K=1.
A = 0.1
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
initial_T = 300
initial_p = 1e5
initial_vel = 1
n_elems = 20
length = 1
f = 0
fp = fp
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
q = 0
q_prime = 0
p_inf = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[K_fn]
type = TimeRampFunction
initial_value = 0
initial_time = 2
ramp_duration = 5
final_value = 1
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
A = ${A}
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
A = ${A}
initial_p = 1e5
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 0.005
initial_p = 1e5
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
use_scalar_variables = false
[]
[pipe1_in]
type = InletVelocityTemperature1Phase
input = 'pipe1:in'
vel = 1
T = 300
[]
[pipe2_out]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[ControlLogic]
active = ''
[K_crtl]
type = TimeFunctionComponentControl
component = junction
parameter = K
function = K_fn
[]
[]
[Postprocessors]
[pJ_in]
type = SideAverageValue
variable = p
boundary = pipe1:out
[]
[pJ_out]
type = SideAverageValue
variable = p
boundary = pipe2:in
[]
[dpJ]
type = DifferencePostprocessor
value1 = pJ_in
value2 = pJ_out
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
end_time = 20
dt = 0.5
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 0
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
csv = true
execute_on = 'final'
show = 'dpJ'
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/jac.test.i)
# Pump data used in this test comes from the LOFT Systems Tests, described in NUREG/CR-0247
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 1
closures = simple_closures
fp = fp
f = 0
scaling_factor_1phase = '1e-2 1e-2 1e-5'
scaling_factor_rhoEV = 1e-5
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in]
type = InletStagnationPressureTemperature1Phase
input = fch1:in
p0 = 1.1e5
T0 = 300
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'fch1:out fch2:in'
position = '1 0 0'
volume = 0.3
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
use_scalar_variables = false
[]
[fch2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1.5
[]
[out]
type = Outlet1Phase
input = fch2:out
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
num_steps = 1
abort_on_solve_fail = true
dt = 0.1
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-9'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/clg.ctrl_T_3eqn_rdg.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_T_fn]
type = PiecewiseLinear
x = '0 1'
y = '300 350'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = T
function = inlet_T_fn
[]
[]
[Postprocessors]
[inlet_T]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/controls/set_real_value_control/test.i)
# This is testing that the values set by SetRealValueControl are used.
# The values of function T0_fn are set into an aux-field `aux`. Then,
# we compute the average value of this field in a postprocessor. It
# should be equal to the value of T0_fn.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[AuxVariables]
[aux]
[]
[]
[AuxKernels]
[aux_kernel]
type = ConstantAux
variable = aux
value = 350
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[set_inlet_value]
type = SetRealValueControl
parameter = AuxKernels/aux_kernel/value
value = T_inlet_fn:value
[]
[]
[Postprocessors]
[aux]
type = ElementAverageValue
variable = aux
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/outlet_1phase/jacobian.i)
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 2
gravity_vector = '9.81 0 0'
scaling_factor_1phase = '1. 1. 1'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1e-4
D_h = 1.12837916709551
f = 0.1
length = 1
n_elems = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-2
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
nl_max_its = 5
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-snes_type -snes_test_err'
petsc_options_value = 'test 1e-11'
[]
(modules/thermal_hydraulics/test/tests/controls/set_component_bool_value_control/test.i)
# This is testing that the values set by SetComponentBoolValueControl are used.
# The `trip_ctrl` component produces a boolean value that is set in the
# `turbine` component to switch it on/off.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'fch1:in'
p0 = 100.e3
T0 = 350.
[]
[fch1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[turbine]
type = SimpleTurbine1Phase
position = '1 0 0'
connections = 'fch1:out fch2:in'
volume = 1
on = false
power = 1
use_scalar_variables = false
[]
[fch2]
type = FlowChannel1Phase
fp = fp
position = '1 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[outlet]
type = Outlet1Phase
input = 'fch2:out'
p = 100.0e3
[]
[]
[Functions]
[trip_fn]
type = PiecewiseLinear
xy_data = '
0 1
1 2'
[]
[]
[ControlLogic]
[trip_ctrl]
type = UnitTripControl
condition = 'val > 1.5'
symbol_names = 'val'
symbol_values = 'trip_fn'
[]
[set_comp_value]
type = SetComponentBoolValueControl
component = turbine
parameter = on
value = trip_ctrl:state
[]
[]
[Postprocessors]
[on_ctrl]
type = BoolComponentParameterValuePostprocessor
component = turbine
parameter = on
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = NEWTON
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-5
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
[]
[Outputs]
[out]
type = CSV
show = 'on_ctrl'
[]
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
# This input file is used to demonstrate a simple open-air Brayton cycle using
# a compressor, turbine, shaft, motor, and generator.
# The flow length is divided into 5 segments as illustrated below, where
# - "(I)" denotes the inlet
# - "(C)" denotes the compressor
# - "(T)" denotes the turbine
# - "(O)" denotes the outlet
# - "*" denotes a fictitious junction
#
# Heated section
# (I)-----(C)-----*--------------*-----(T)-----(O)
# 1 2 3 4 5
#
# Initially the fluid is at rest at ambient conditions, the shaft speed is zero,
# and no heat transfer occurs with the system.
# The transient is controlled as follows:
# * 0 - 100 s: motor ramps up torque linearly from zero
# * 100 - 200 s: motor ramps down torque linearly to zero, HTC ramps up linearly from zero.
# * 200 - 300 s: (no changes; should approach steady condition)
I_motor = 1.0
motor_torque_max = 400.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 100.0
motor_ramp_down_duration = 100.0
post_motor_time = 100.0
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
L1 = 10.0
L2 = ${L1}
L3 = ${L1}
L4 = ${L1}
L5 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${fparse x3 + L3}
x5 = ${fparse x4 + L4}
x2_minus = ${fparse x2 - 0.001}
x2_plus = ${fparse x2 + 0.001}
x5_minus = ${fparse x5 - 0.001}
x5_plus = ${fparse x5 + 0.001}
n_elems1 = 10
n_elems2 = ${n_elems1}
n_elems3 = ${n_elems1}
n_elems4 = ${n_elems1}
n_elems5 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_hot = 1000
T_ambient = 300
p_ambient = 1e5
[GlobalParams]
orientation = '1 0 0'
gravity_vector = '0 0 0'
initial_p = ${p_ambient}
initial_T = ${T_ambient}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = fp_air
closures = closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
rdg_slope_reconstruction = none
[]
[Functions]
[motor_torque_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 ${motor_torque_max} 0'
[]
[motor_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'motor_torque shaft:omega'
[]
[generator_torque_fn]
type = ParsedFunction
expression = 'slope * t'
symbol_names = 'slope'
symbol_values = '${generator_torque_per_shaft_speed}'
[]
[generator_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'generator_torque shaft:omega'
[]
[htc_wall_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 0 1e3'
[]
[]
[FluidProperties]
[fp_air]
type = IdealGasFluidProperties
emit_on_nan = none
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[shaft]
type = Shaft
connected_components = 'motor compressor turbine generator'
initial_speed = ${speed_initial}
[]
[motor]
type = ShaftConnectedMotor
inertia = ${I_motor}
torque = 0 # controlled
[]
[generator]
type = ShaftConnectedMotor
inertia = ${I_generator}
torque = generator_torque_fn
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = ${p_ambient}
T0 = ${T_ambient}
[]
[pipe1]
type = FlowChannel1Phase
position = '${x1} 0 0'
length = ${L1}
n_elems = ${n_elems1}
A = ${A1}
[]
[compressor]
type = ShaftConnectedCompressor1Phase
position = '${x2} 0 0'
inlet = 'pipe1:out'
outlet = 'pipe2:in'
A_ref = ${A_ref_comp}
volume = ${V_comp}
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_comp}
inertia_coeff = '${I_comp} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '${x2} 0 0'
length = ${L2}
n_elems = ${n_elems2}
A = ${A2}
[]
[junction2_3]
type = JunctionOneToOne1Phase
connections = 'pipe2:out pipe3:in'
[]
[pipe3]
type = FlowChannel1Phase
position = '${x3} 0 0'
length = ${L3}
n_elems = ${n_elems3}
A = ${A3}
[]
[junction3_4]
type = JunctionOneToOne1Phase
connections = 'pipe3:out pipe4:in'
[]
[pipe4]
type = FlowChannel1Phase
position = '${x4} 0 0'
length = ${L4}
n_elems = ${n_elems4}
A = ${A4}
[]
[turbine]
type = ShaftConnectedCompressor1Phase
position = '${x5} 0 0'
inlet = 'pipe4:out'
outlet = 'pipe5:in'
A_ref = ${A_ref_turb}
volume = ${V_turb}
treat_as_turbine = true
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_turb}
inertia_coeff = '${I_turb} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
[pipe5]
type = FlowChannel1Phase
position = '${x5} 0 0'
length = ${L5}
n_elems = ${n_elems5}
A = ${A5}
[]
[outlet]
type = Outlet1Phase
input = 'pipe5:out'
p = ${p_ambient}
[]
[heating]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe3
T_wall = ${T_hot}
Hw = htc_wall_fn
[]
[]
[ControlLogic]
[motor_ctrl]
type = TimeFunctionComponentControl
component = motor
parameter = torque
function = motor_torque_fn
[]
[]
[Postprocessors]
[heating_rate]
type = ADHeatRateConvection1Phase
block = 'pipe3'
T = T
T_wall = T_wall
Hw = Hw
P_hf = P_hf
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_torque]
type = RealComponentParameterValuePostprocessor
component = motor
parameter = torque
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_power]
type = FunctionValuePostprocessor
function = motor_power_fn
execute_on = 'INITIAL TIMESTEP_END'
indirect_dependencies = 'motor_torque shaft:omega'
[]
[generator_torque]
type = ShaftConnectedComponentPostprocessor
quantity = torque
shaft_connected_component_uo = generator:shaftconnected_uo
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_power]
type = FunctionValuePostprocessor
function = generator_power_fn
execute_on = 'INITIAL TIMESTEP_END'
indirect_dependencies = 'generator_torque shaft:omega'
[]
[shaft_speed]
type = ScalarVariable
variable = 'shaft:omega'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_comp]
type = PointValue
variable = p
point = '${x2_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_comp]
type = PointValue
variable = p
point = '${x2_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_comp]
type = ParsedPostprocessor
pp_names = 'p_in_comp p_out_comp'
expression = 'p_out_comp / p_in_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_turb]
type = PointValue
variable = p
point = '${x5_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_turb]
type = PointValue
variable = p
point = '${x5_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_turb]
type = ParsedPostprocessor
pp_names = 'p_in_turb p_out_turb'
expression = 'p_in_turb / p_out_turb'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_comp]
type = ADFlowJunctionFlux1Phase
boundary = pipe1:out
connection_index = 0
equation = mass
junction = compressor
[]
[mfr_turb]
type = ADFlowJunctionFlux1Phase
boundary = pipe4:out
connection_index = 0
equation = mass
junction = turbine
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = ${t3}
dt = 0.1
abort_on_solve_fail = true
solve_type = NEWTON
nl_rel_tol = 1e-50
nl_abs_tol = 1e-11
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
[Outputs]
[csv]
type = CSV
file_base = 'open_brayton_cycle'
execute_vector_postprocessors_on = 'INITIAL'
[]
[console]
type = Console
show = 'shaft_speed p_ratio_comp p_ratio_turb compressor:pressure_ratio turbine:pressure_ratio'
[]
[]
[Functions]
# compressor pressure ratio
[rp_comp1]
type = PiecewiseLinear
data_file = 'rp_comp1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp2]
type = PiecewiseLinear
data_file = 'rp_comp2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp3]
type = PiecewiseLinear
data_file = 'rp_comp3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp4]
type = PiecewiseLinear
data_file = 'rp_comp4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp5]
type = PiecewiseLinear
data_file = 'rp_comp5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# compressor efficiency
[eff_comp1]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp2]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp3]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp4]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp5]
type = ConstantFunction
value = ${eff_comp}
[]
# turbine pressure ratio
[rp_turb0]
type = ConstantFunction
value = 1
[]
[rp_turb1]
type = PiecewiseLinear
data_file = 'rp_turb1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb2]
type = PiecewiseLinear
data_file = 'rp_turb2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb3]
type = PiecewiseLinear
data_file = 'rp_turb3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb4]
type = PiecewiseLinear
data_file = 'rp_turb4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb5]
type = PiecewiseLinear
data_file = 'rp_turb5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# turbine efficiency
[eff_turb1]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb2]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb3]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb4]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb5]
type = ConstantFunction
value = ${eff_turb}
[]
[]
(modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction_junction.i)
# This test features air flowing through a channel whose cross-sectional area
# shrinks to half its value in the right half. Assuming incompressible flow
# conditions, such as having a low Mach number, the velocity should approximately
# double from inlet to outlet. In this version of the test, the area discontinuity
# is achieved by connecting two flow channels with a junction.
p_outlet = 1e5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = ${p_outlet}
fp = fp
closures = simple_closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 1.16263315948279 # rho @ (p = 1e5 Pa, T = 300 K)
vel = 1
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1
initial_vel = 1
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'pipe1:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 0.5
initial_vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = ${p_outlet}
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = 10
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.2
[]
steady_state_detection = true
solve_type = PJFNK
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
[]
[Outputs]
exodus = true
velocity_as_vector = false
show = 'A rho vel p'
[]
(modules/thermal_hydraulics/test/tests/controls/get_function_value_control/test.i)
# This is testing that the values obtained by GetFunctionValueControl are used.
# Function T0_fn prescribes values for T_inlet_fn control. We output the function
# values via a postprocessor `T_fn` and the control data values via another
# postprocessor `T_ctrl`. Those two values have to be equal.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[]
[Postprocessors]
[T_fn]
type = FunctionValuePostprocessor
function = T0_fn
[]
[T_ctrl]
type = RealControlDataValuePostprocessor
control_data_name = T_inlet_fn:value
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/controls/dependency/test.i)
# This is testing that controls are executed in the correct order
#
# If controls are executed in the right order, then T_inlet_ctrl
# reads the value of temperature (T = 345 K) from a function. Then
# this value is set into the BC and then is it sampled by a
# postprocessor whose value is then written into a CSV file.
#
# If controls were executed in the wrong order, we would sample the
# stagnation temperature function at time t = 0, which would give
# T = 360 K back, and we would see this value in the CSV file instead.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 355.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Functions]
# Stagnation temperature in time
[T0_fn]
type = PiecewiseLinear
x = '0 1e-5'
y = '360 345'
[]
[]
[ControlLogic]
[set_inlet_value_ctrl]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = T_inlet_ctrl:value
[]
[T_inlet_ctrl]
type = GetFunctionValueControl
function = T0_fn
[]
[]
[Postprocessors]
[T_ctrl]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T0
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-5
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.conservation.i)
[GlobalParams]
initial_p = 1e6
initial_T = 517
initial_vel = 4.3
initial_vel_x = 4.3
initial_vel_y = 0
initial_vel_z = 0
fp = fp
closures = simple_closures
f = 0
rdg_slope_reconstruction = minmod
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.01
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 517
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[turbine]
type = SimpleTurbine1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1
A_ref = 1.0
K = 0
on = true
power = 1000
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1. 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e6
[]
[]
[Postprocessors]
[mass_in]
type = ADFlowBoundaryFlux1Phase
equation = mass
boundary = inlet
[]
[mass_out]
type = ADFlowBoundaryFlux1Phase
equation = mass
boundary = outlet
[]
[mass_diff]
type = LinearCombinationPostprocessor
pp_coefs = '1 -1'
pp_names = 'mass_in mass_out'
[]
[p_in]
type = SideAverageValue
boundary = pipe1:in
variable = p
[]
[vel_in]
type = SideAverageValue
boundary = pipe1:in
variable = vel_x
[]
[momentum_in]
type = ADFlowBoundaryFlux1Phase
equation = momentum
boundary = inlet
[]
[momentum_out]
type = ADFlowBoundaryFlux1Phase
equation = momentum
boundary = outlet
[]
[dP]
type = ParsedPostprocessor
pp_names = 'p_in W_dot'
expression = 'p_in * (1 - (1-W_dot/(10*2910.06*517))^(1.4/0.4))'
[]
[momentum_diff]
type = LinearCombinationPostprocessor
pp_coefs = '1 -1 -1'
pp_names = 'momentum_in momentum_out dP' # momentum source = -dP * A and A=1
[]
[energy_in]
type = ADFlowBoundaryFlux1Phase
equation = energy
boundary = inlet
[]
[energy_out]
type = ADFlowBoundaryFlux1Phase
equation = energy
boundary = outlet
[]
[W_dot]
type = ElementAverageValue
variable = W_dot
block = 'turbine'
[]
[energy_diff]
type = LinearCombinationPostprocessor
pp_coefs = '1 -1 -1'
pp_names = 'energy_in energy_out W_dot'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 10
dt = 0.5
abort_on_solve_fail = true
solve_type = 'newton'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 0
nl_abs_tol = 2e-6
nl_max_its = 10
l_tol = 1e-3
# automatic_scaling = true
# compute_scaling_once = false
# off_diagonals_in_auto_scaling = true
[]
[Outputs]
[csv]
type = CSV
show = 'mass_diff energy_diff momentum_diff'
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/test/tests/output/vector_velocity/test.i)
[GlobalParams]
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
initial_p = 1e5
initial_T = 300
f = 0.1
closures = simple_closures
fp = fp
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'fch1:in'
m_dot = 1
T = 300
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 1 1'
length = 1.73205
n_elems = 5
A = 1
[]
[junction]
type = VolumeJunction1Phase
position = '1 1 1'
connections = 'fch1:out fch2:out'
volume = 0.1
use_scalar_variables = false
[]
[fch2]
type = FlowChannel1Phase
position = '2 2 2'
orientation = '-1 -1 -1'
length = 1.73205
n_elems = 5
A = 2
[]
[outlet]
type = Outlet1Phase
input = 'fch2:in'
p = 1e5
[]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 50
solve_type = NEWTON
line_search = basic
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-6
l_tol = 1e-03
automatic_scaling = true
[]
[Outputs]
print_linear_converged_reason = false
print_nonlinear_converged_reason = false
print_linear_residuals = false
[out]
type = Exodus
sync_only = false
sync_times = '0 5 10 15 20 25'
show = 'vel_x vel_y vel_z'
[]
[]
(modules/thermal_hydraulics/test/tests/misc/coupling_mD_flow/thm_non_overlapping.i)
T_in = 523.0
mdot = 10
pout = 7e6
[GlobalParams]
initial_p = ${pout}
initial_vel = 1
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 5
scaling_factor_1phase = '1 1e-2 1e-5'
f = 1
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.66
molar_mass = 0.004
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletMassFlowRateTemperature1Phase
input = 'inlet:in'
m_dot = ${mdot}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 1
[]
[inlet_plenum]
type = VolumeJunction1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 1
connections = 'inlet:out bypass:in core_top:in'
volume = 1
use_scalar_variables = false
[]
[bypass]
type = FlowChannel1Phase
fp = fp
position = '2 0 10'
orientation = '0 0 -1'
length = 10
A = 0.01
[]
[core_top]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 0.1
A = 9
[]
[core_top_bc]
type = Outlet1Phase
p = ${pout}
input = 'core_top:out'
[]
[core_bottom_bc]
type = InletMassFlowRateTemperature1Phase
input = 'core_bottom:in'
m_dot = ${mdot}
T = ${T_in}
[]
[core_bottom]
type = FlowChannel1Phase
fp = fp
position = '0 0 0.1'
orientation = '0 0 -1'
length = 0.1
A = 9
[]
[outlet_plenum]
type = VolumeJunction1Phase
position = '0 0 0'
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 1
connections = 'bypass:out core_bottom:out outlet:in'
volume = 1
use_scalar_variables = false
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 1
[]
[outlet_bc]
type = Outlet1Phase
p = ${pout}
input = 'outlet:out'
[]
[]
[ControlLogic]
[set_core_inlet_pressure]
type = SetComponentRealValueControl
component = core_top_bc
parameter = p
value = core_inlet_pressure
[]
[set_core_outlet_mdot]
type = SetComponentRealValueControl
component = core_bottom_bc
parameter = m_dot
value = core_outlet_mdot
[]
[set_core_outlet_temperature]
type = SetComponentRealValueControl
component = core_bottom_bc
parameter = T
value = core_outlet_temperature
[]
[]
[Postprocessors]
[core_inlet_pressure]
type = Receiver
default = ${pout}
[]
[core_outlet_mdot]
type = Receiver
default = ${mdot}
[]
[core_outlet_temperature]
type = Receiver
default = ${T_in}
[]
[core_outlet_pressure]
type = SideAverageValue
variable = p
boundary = 'core_bottom:in'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[core_inlet_mdot]
type = SideAverageValue
variable = rhouA
boundary = 'core_top:out'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[core_inlet_temperature]
type = SideAverageValue
variable = T
boundary = 'core_top:out'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[bypass_inlet_pressure]
type = SideAverageValue
variable = p
boundary = 'bypass:in'
[]
[bypass_outlet_pressure]
type = SideAverageValue
variable = p
boundary = 'bypass:out'
[]
[bypass_pressure_drop]
type = DifferencePostprocessor
value1 = bypass_inlet_pressure
value2 = bypass_outlet_pressure
[]
[bypass_mdot]
type = SideAverageValue
variable = rhouA
boundary = 'bypass:out'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[inlet_mdot]
type = SideAverageValue
variable = rhouA
boundary = 'inlet:in'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[outlet_mdot]
type = SideAverageValue
variable = rhouA
boundary = 'outlet:out'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
timestep_tolerance = 1e-6
start_time = 0
end_time = 100
dt = 0.01
line_search = l2
nl_rel_tol = 1e-6
nl_abs_tol = 1e-4
nl_max_its = 25
l_tol = 1e-3
l_max_its = 20
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/steady_state.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
initial_T = 500
initial_p = 6.e6
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[mat1]
type = ThermalFunctionSolidProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Functions]
[Ts_init]
type = ParsedFunction
expression = '2*sin(x*pi)+507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
names = 'wall'
n_part_elems = 1
solid_properties = 'mat1'
solid_properties_T_ref = '300'
inner_radius = 0.01
widths = 0.1
initial_T = Ts_init
[]
[ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe
hs = hs
hs_side = INNER
Hw = 10000
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = Ts_init
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
execute_on = 'initial final'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/closures/simple_1phase/err.missing_f_1phase.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_vel = 0
initial_p = 1e5
initial_T = 300
closures = simple_closures
[]
[FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = water
position = '0 0 0'
orientation = '1 0 0'
A = 1.
length = 1
n_elems = 10
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 10
T0 = 10
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 10
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
(modules/thermal_hydraulics/test/tests/components/form_loss_from_function_1phase/phy.form_loss_1phase.i)
# Tests the form loss kernel for 1-phase flow.
#
# This test uses the following parameters and boundary data:
# Inlet: (rho = 996.5563397 kg/m^3, vel = 0.5 m/s)
# Outlet: p_out = 100 kPa
# Length: L = 2 m
# Form loss coefficient: K = 0.5, => K_prime = 0.25 m^-1 (uniform along length)
#
# The inlet pressure is
#
# p_in = p_out + dp ,
#
# where dp is given by the definition of the form loss coefficient:
#
# dp = K * 0.5 * rho * u^2
# = 0.5 * 0.5 * 996.5563397 * 0.5^2
# = 62.28477123125 Pa
#
# This value is output to CSV.
p_out = 100e3
[GlobalParams]
initial_p = ${p_out}
initial_vel = 0.5
initial_T = 300.0
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 2
A = 1
n_elems = 5
f = 0
[]
[form_loss]
type = FormLossFromFunction1Phase
flow_channel = pipe
K_prime = 0.25
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 996.5563397
vel = 0.5
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = ${p_out}
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 5e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 20
start_time = 0.0
num_steps = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
# this is not the right value, should be the value from the inlet ghost cell
[p_in]
type = SideAverageValue
boundary = inlet
variable = p
execute_on = TIMESTEP_END
[]
[p_out]
type = FunctionValuePostprocessor
function = ${p_out}
execute_on = TIMESTEP_END
[]
[dp]
type = DifferencePostprocessor
value1 = p_in
value2 = p_out
execute_on = TIMESTEP_END
[]
[]
[Outputs]
[out]
type = CSV
show = 'dp'
execute_postprocessors_on = final
[]
[]
(modules/thermal_hydraulics/test/tests/components/gate_valve_1phase/gate_valve_1phase.i)
# This input file is used to test the gate valve component.
# This problem consists of a T junction of 3 pipes. The inlet pipe is one of the
# 2 pipes of the "top" of the T. The other 2 pipes each have a gate valve.
# Initially, one of the 2 outlet pipes has an open valve and the other has a
# closed valve. Later in the transient, the valves gradually open/close to switch
# the outlet flow direction.
p = 1.0e5
T = 300.0
rho = 1.161430436 # @ 1e5 Pa, 300 K
D = 0.1
A = ${fparse pi * D^2 / 4.0}
V_junction = ${fparse pi * D^3 / 4.0}
vel_in = 2.0
m_dot = ${fparse rho * vel_in * A}
t_begin = 0.3
delta_t_open = 0.1
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = ${T}
initial_p = ${p}
initial_vel = 0
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[pipe3_open_fn]
type = TimeRampFunction
initial_value = 1
final_value = 0
initial_time = ${t_begin}
ramp_duration = ${delta_t_open}
[]
[pipe2_open_fn]
type = ParsedFunction
expression = '1 - pipe3_phi'
symbol_names = 'pipe3_phi'
symbol_values = 'pipe3_open_fn'
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = ${m_dot}
T = ${T}
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 50
A = ${A}
[]
[volume_junction]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'pipe1:out pipe2A:in pipe3A:in'
volume = ${V_junction}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
use_scalar_variables = false
[]
[pipe2A]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '0 1 0'
length = 0.5
n_elems = 25
A = ${A}
[]
[pipe2_valve]
type = GateValve1Phase
connections = 'pipe2A:out pipe2B:in'
open_area_fraction = 0 # (controlled via 'pipe2_valve_control')
[]
[pipe2B]
type = FlowChannel1Phase
position = '1 0.5 0'
orientation = '0 1 0'
length = 0.5
n_elems = 25
A = ${A}
[]
[pipe2_outlet]
type = Outlet1Phase
input = 'pipe2B:out'
p = ${p}
[]
[pipe3A]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 25
A = ${A}
[]
[pipe3_valve]
type = GateValve1Phase
connections = 'pipe3A:out pipe3B:in'
open_area_fraction = 0 # (controlled via 'pipe3_valve_control')
[]
[pipe3B]
type = FlowChannel1Phase
position = '1.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 25
A = ${A}
[]
[pipe3_outlet]
type = Outlet1Phase
input = 'pipe3B:out'
p = ${p}
[]
[]
[ControlLogic]
[pipe2_valve_control]
type = TimeFunctionComponentControl
component = pipe2_valve
parameter = open_area_fraction
function = pipe2_open_fn
[]
[pipe3_valve_control]
type = TimeFunctionComponentControl
component = pipe3_valve
parameter = open_area_fraction
function = pipe3_open_fn
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
[Outputs]
exodus = true
show = 'p T vel'
velocity_as_vector = false
print_linear_residuals = false
[console]
type = Console
max_rows = 1
[]
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/volume_junction/base.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
volume = 1
position = '1 0 0'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-4
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
fp = fp
# geometry
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 0
nl_abs_tol = 1e-10
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/sub.i)
# This is a part of T_wall_action test. See the master file for details.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[AuxVariables]
[Hw]
family = monomial
order = constant
block = pipe1
[]
[]
[AuxKernels]
[Hw_ak]
type = ADMaterialRealAux
variable = Hw
property = 'Hw'
[]
[]
[UserObjects]
[T_uo]
type = LayeredAverage
direction = y
variable = T
num_layers = 10
block = pipe1
[]
[Hw_uo]
type = LayeredAverage
direction = y
variable = Hw
num_layers = 10
block = pipe1
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 10
A = 1.28584e-01
D_h = 8.18592e-01
f = 0.01
fp = eos
[]
[hxconn]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe1
Hw = 10000
P_hf = 6.28319e-01
initial_T_wall = 300.
var_type = elemental
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 400
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Postprocessors]
[T_wall_avg]
type = ElementAverageValue
variable = T_wall
execute_on = 'INITIAL TIMESTEP_END'
[]
[htc_avg]
type = ElementAverageValue
variable = Hw
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_avg]
type = ElementAverageValue
variable = T
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
dtmin = 1e-7
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-4
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T Hw'
[]
[]
(modules/thermal_hydraulics/test/tests/postprocessors/specific_impulse_1phase/Isp_1ph.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 6e6
initial_T = 600
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = IdealGasFluidProperties
gamma = 1.3066
molar_mass = 2.016e-3
k = 0.437
mu = 3e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 0.1
f = 0.
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
m_dot = 0.1
T = 800
input = 'pipe1:in'
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 6e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.4
optimal_iterations = 6
iteration_window = 2
[]
start_time = 0.0
end_time = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Postprocessors]
# hand calcs show that Isp should start at 274.3 at 600 K
# and rise to 316.7 at 800 K.
[Isp]
type = ADSpecificImpulse1Phase
p_exit = 1e6
fp = eos
boundary = outlet
[]
[Isp_inst]
type = ADSpecificImpulse1Phase
p_exit = 1e6
fp = eos
cumulative = false
boundary = outlet
[]
[outletT]
type = SideAverageValue
variable = T
boundary = pipe1:out
[]
[]
[Outputs]
[out]
type = CSV
show = 'Isp Isp_inst'
execute_on = 'INITIAL FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.1phase.i)
[GlobalParams]
initial_p = 1e5
initial_vel = 0
initial_T = 300
closures = simple_closures
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0.1 0'
orientation = '0 0 1'
length = 4
n_elems = 2
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = 4
n_elems = 2
names = 'fuel'
widths = '0.1'
n_part_elems = '1'
solid_properties = 'fuel-mat'
solid_properties_T_ref = '300'
initial_T = 300
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe
P_hf = 0.029832559676
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1.e-5
solve_type = 'NEWTON'
num_steps = 1
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure_3d/steady_state.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
initial_T = 500
initial_p = 6.e6
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '16 356 6.5514e3'
[]
[]
[Functions]
[Ts_init]
type = ParsedFunction
expression = '2*sin(x*pi/2)+2*sin(pi*y) +507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '-1 0 -2.5'
orientation = '1 0 0'
length = 2
n_elems = 2
A = 0.3
D_h = 0.1935483871
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'pipe'
hs = blk
boundary = blk:right
P_hf = 3
Hw = 1000
[]
[blk]
type = HeatStructureFromFile3D
file = box.e
position = '0 0 0'
initial_T = Ts_init
[]
[right_bnd]
type = HSBoundarySpecifiedTemperature
hs = blk
boundary = blk:bottom
T = Ts_init
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
execute_on = 'initial final'
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/steady_state.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
initial_T = 500
initial_p = 6.e6
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'initial final'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_turbine_1phase/turbine_startup.i)
# This test tests that the turbine can startup from rest and reach full power.
# The mass flow rate for the inlet component is ramped up over 10s. The dyno
# component and pid_ctrl controler are used to maintain the turbine's rated shaft
# speed. The turbine should supply ~1e6 W of power to the shaft by the end of the test.
omega_rated = 450
mdot = 5.0
T_in = 1000.0
p_out = 1e6
[GlobalParams]
f = 1
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
n_elems = 20
initial_T = ${T_in}
initial_p = ${p_out}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
[]
[FluidProperties]
[eos]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[ch_in]
type = FlowChannel1Phase
position = '-1 0 0'
orientation = '1 0 0'
length = 1
A = 0.1
D_h = 1
fp = eos
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'ch_in:in'
m_dot = 0
T = ${T_in}
[]
[turbine]
type = ShaftConnectedTurbine1Phase
inlet = 'ch_in:out'
outlet = 'ch_out:in'
position = '0 0 0'
scaling_factor_rhoEV = 1e-5
A_ref = 0.1
volume = 0.0002
inertia_coeff = '1 1 1 1'
inertia_const = 1.61397
speed_cr_I = 1e12
speed_cr_fr = 0
tau_fr_coeff = '0 0 0 0'
tau_fr_const = 0
omega_rated = ${omega_rated}
D_wheel = 0.4
head_coefficient = head
power_coefficient = power
use_scalar_variables = false
[]
[ch_out]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 0.1
D_h = 1
fp = eos
[]
[outlet]
type = Outlet1Phase
input = 'ch_out:out'
p = ${p_out}
[]
[dyno]
type = ShaftConnectedMotor
inertia = 10
torque = -450
[]
[shaft]
type = Shaft
connected_components = 'turbine dyno'
initial_speed = ${omega_rated}
[]
[]
[Functions]
[head]
type = PiecewiseLinear
x = '0 7e-3 1e-2'
y = '0 15 20'
[]
[power]
type = PiecewiseLinear
x = '0 6e-3 1e-2'
y = '0 0.05 0.18'
[]
[mfr_fn]
type = PiecewiseLinear
x = '0 10'
y = '1e-6 ${mdot}'
[]
[dts]
type = PiecewiseConstant
y = '5e-3 1e-2 5e-2 5e-1'
x = '0 0.5 1 10'
[]
[]
[ControlLogic]
[mfr_cntrl]
type = TimeFunctionComponentControl
component = inlet
parameter = m_dot
function = mfr_fn
[]
[speed_set_point]
type = GetFunctionValueControl
function = ${omega_rated}
[]
[pid_ctrl]
type = PIDControl
input = omega
set_point = speed_set_point:value
K_i = 2
K_p = 5
K_d = 5
initial_value = -450
[]
[set_torque_value]
type = SetComponentRealValueControl
component = dyno
parameter = torque
value = pid_ctrl:output
[]
[]
[Postprocessors]
[omega]
type = ScalarVariable
variable = shaft:omega
execute_on = 'initial timestep_end'
[]
[flow_coefficient]
type = ElementAverageValue
variable = flow_coeff
block = 'turbine'
execute_on = 'initial timestep_end'
[]
[delta_p]
type = ElementAverageValue
variable = delta_p
block = 'turbine'
execute_on = 'initial timestep_end'
[]
[power]
type = ElementAverageValue
variable = power
block = 'turbine'
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
start_time = 0
[TimeStepper]
type = FunctionDT
function = dts
[]
end_time = 20
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-4
nl_max_its = 30
l_tol = 1e-4
l_max_its = 20
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
[console]
type = Console
max_rows = 1
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
10 ${m_dot_sec_in}'
[]
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[none_closures]
type = Closures1PhaseNone
[]
[]
[Materials]
[Re_mat]
type = ADReynoldsNumberMaterial
Re = Re
rho = rho
vel = vel
D_h = D_h
mu = mu
block = hx/pri
[]
[f_mat]
type = ADParsedMaterial
property_name = f_D
constant_names = 'a b c'
constant_expressions = '1 0.1 -0.5'
material_property_names = 'Re'
expression = 'a + b * Re^c'
block = hx/pri
[]
[Pr_mat]
type = ADPrandtlNumberMaterial
Pr = Pr
cp = cp
mu = mu
k = k
block = hx/pri
[]
[Nu_mat]
type = ADParsedMaterial
property_name = 'Nu'
constant_names = 'a b c'
constant_expressions = '0.03 0.9 0.5'
material_property_names = 'Re Pr'
expression = 'a * Re ^b * Pr^c'
block = hx/pri
[]
[Hw_mat]
type = ADConvectiveHeatTransferCoefficientMaterial
D_h = D_h
k = k
Nu = Nu
Hw = Hw
block = hx/pri
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = ${A_core}
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 1 0'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionParallelChannels1Phase
position = '1 0 1.75'
connections = 'down_pipe_1:out hx/pri:in'
volume = 1e-5
use_scalar_variables = false
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
roughness = 1e-5
A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
D_h = ${hx_dia_inner}
closures = none_closures
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
P_hf = '${fparse pi * hx_dia_inner}'
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
solid_properties = 'steel'
solid_properties_T_ref = '300'
names = '0'
inner_radius = '${fparse hx_dia_inner / 2.}'
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = '${fparse 2 * pi * hx_radius_wall}'
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 0.25'
orientation = '0 0 1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
fp = water
initial_T = 300
[]
[]
[jct7]
type = JunctionParallelChannels1Phase
position = '1 0 0.5'
connections = 'hx/pri:out down_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct9]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:in'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:out'
p = 1e5
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0.0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[m_dot_sec]
type = ADFlowBoundaryFlux1Phase
boundary = inlet_sec
equation = mass
[]
[Hw_hx_pri]
type = ADElementAverageMaterialProperty
mat_prop = Hw
block = hx/pri
[]
[fD_hx_pri]
type = ADElementAverageMaterialProperty
mat_prop = f_D
block = hx/pri
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/deprecated/gate_valve.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[valve]
type = GateValve
connections = 'pipe1:out pipe2:in'
open_area_fraction = 1
[]
[pipe2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/constriction_1phase.i)
# This test is used to test the JunctionOneToOne1Phase1Phase component with unequal areas
# at the junction. The downstream flow channel has an area half that of the
# upstream pipe, so there should be a pressure increase just upstream of the
# junction due to the partial wall. The velocity should increase through the
# junction (approximately by a factor of 2, but there are compressibility effects).
[GlobalParams]
gravity_vector = '0 0 0'
fp = fp
closures = simple_closures
f = 0
initial_T = 300
initial_p = 1e5
initial_vel = 1
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_boundary]
type = InletDensityVelocity1Phase
input = 'left_channel:in'
rho = 466.6666667
vel = 1
[]
[left_channel]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1.0
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'left_channel:out right_channel:in'
[]
[right_channel]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 0.5
[]
[right_boundary]
type = Outlet1Phase
input = 'right_channel:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.01
num_steps = 10
abort_on_solve_fail = true
solve_type = NEWTON
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 60
l_tol = 1e-4
[]
[Outputs]
exodus = true
show = 'p T vel'
execute_on = 'initial timestep_end'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_fp.i)
[GlobalParams]
closures = simple_closures
initial_p = 1e5
initial_T = 300
initial_vel = 0
[]
[FluidProperties]
[fp_2phase]
type = StiffenedGasTwoPhaseFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
fp = fp_2phase # this is wrong
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 9.5e4
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 1
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.deadend.i)
# Junction between 3 pipes, 1 of which goes to a dead-end. In the steady-state,
# no flow should go into the dead-end pipe.
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-5'
initial_T = 250
initial_p = 1e5
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
closures = simple_closures
[]
[AuxVariables]
[p0]
block = 'inlet_pipe outlet_pipe deadend_pipe'
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[p0_kernel]
type = StagnationPressureAux
variable = p0
fp = eos
e = e
v = v
vel = vel
[]
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
q = 0
q_prime = 0
p_inf = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = ParsedFunction
expression = 'if (x < 1, 300 + 50 * sin(2*pi*x + 1.5*pi), 250)'
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'inlet_pipe:in'
rho = 1.37931034483
vel = 1
[]
[inlet_pipe]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 1
f = 0
initial_T = T0
initial_p = 1e5
initial_vel = 1
n_elems = 20
[]
[junction1]
type = VolumeJunction1Phase
connections = 'inlet_pipe:out deadend_pipe:in outlet_pipe:in'
position = '1 0 0'
volume = 1e-8
use_scalar_variables = false
[]
[outlet_pipe]
type = FlowChannel1Phase
fp = eos
position = '1 0 0'
orientation = '1 0 0'
length = 1
A = 1
f = 0
initial_T = 250
initial_p = 1e5
initial_vel = 1
n_elems = 20
[]
[outlet]
type = Outlet1Phase
input = 'outlet_pipe:out'
p = 1e5
[]
[deadend_pipe]
type = FlowChannel1Phase
fp = eos
position = '1 0 0'
orientation = '0 1 0'
length = 1
A = 1
f = 0
initial_T = 250
initial_p = 1e5
initial_vel = 0
n_elems = 20
[]
[deadend]
type = SolidWall1Phase
input = 'deadend_pipe:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-6
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0
end_time = 5
dt = 0.1
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used for testing that the stagnation pressure in
# the dead-end pipe is equal to the inlet stagnation pressure.
[p0_inlet]
type = SideAverageValue
variable = p0
boundary = inlet_pipe:in
[]
[p0_deadend]
type = SideAverageValue
variable = p0
boundary = deadend_pipe:out
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = p0_deadend
value2 = p0_inlet
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
sync_only = true
sync_times = '1 2 3 4 5'
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/err.missing_ics.i)
[GlobalParams]
gravity_vector = '0 0 0'
A = 1e-4
f = 0
fp = fp
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
volume = 0.1
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
10 ${m_dot_sec_in}'
[]
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = ${A_core}
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 1 0'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionParallelChannels1Phase
position = '1 0 1.75'
connections = 'down_pipe_1:out hx/pri:in'
volume = 1e-5
use_scalar_variables = false
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
roughness = 1e-5
A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
D_h = ${hx_dia_inner}
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
P_hf = '${fparse pi * hx_dia_inner}'
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
solid_properties = 'steel'
solid_properties_T_ref = '300'
names = '0'
inner_radius = '${fparse hx_dia_inner / 2.}'
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = '${fparse 2 * pi * hx_radius_wall}'
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 0.25'
orientation = '0 0 1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
fp = water
initial_T = 300
[]
[]
[jct7]
type = JunctionParallelChannels1Phase
position = '1 0 0.5'
connections = 'hx/pri:out down_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct9]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:in'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:out'
p = 1e5
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0.0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[m_dot_sec]
type = ADFlowBoundaryFlux1Phase
boundary = inlet_sec
equation = mass
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 0
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_steady_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 101325
initial_T = 300
initial_vel = 34.84507
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
f = 0.0
length = 1
n_elems = 10
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 102041.128
T0 = 300.615
reversible = false
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 101325
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-4
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/err.no_phf.i)
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[mat]
type = ThermalFunctionSolidProperties
k = 1
cp = 2
rho = 3
[]
[]
[Components]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 2
A = 1
closures = simple_closures
fp = fp
f = 0.01
initial_p = 1e5
initial_T = 300
initial_vel = 0
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
names = 'blk'
widths = '0.1'
n_part_elems = '1'
solid_properties = 'mat'
solid_properties_T_ref = '300'
initial_T = 300
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = START
flow_channel = fch1
Hw = 0
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'fch1:in'
m_dot = 1
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'fch1:out'
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 1
[]
(modules/thermal_hydraulics/test/tests/postprocessors/flow_junction_flux_1phase/flow_junction_flux_1phase.i)
# This input file tests mass conservation at steady-state by looking at the
# net mass flux into the domain.
T_in = 523.0
m_dot = 100
p_out = 7e6
[GlobalParams]
initial_p = ${p_out}
initial_vel = 1
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 3
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletMassFlowRateTemperature1Phase
input = 'inlet:in'
m_dot = ${m_dot}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 3
[]
[inlet_plenum]
type = VolumeJunction1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 1
connections = 'inlet:out channel1:in channel2:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
use_scalar_variables = false
[]
[channel1]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 4
D_h = 1
[]
[K_bypass]
type = FormLossFromFunction1Phase
K_prime = 500
flow_channel = channel1
[]
[channel2]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 1
D_h = 1
[]
[outlet_plenum]
type = VolumeJunction1Phase
position = '0 0 0'
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 1
connections = 'channel1:out channel2:out outlet:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
use_scalar_variables = false
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 1
[]
[outlet_bc]
type = Outlet1Phase
p = ${p_out}
input = 'outlet:out'
[]
[]
[Postprocessors]
[inlet_in_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet_bc'
equation = mass
[]
[inlet_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'inlet:out'
connection_index = 0
junction = inlet_plenum
equation = mass
[]
[channel1_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:in'
connection_index = 1
junction = inlet_plenum
equation = mass
[]
[channel1_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:out'
connection_index = 0
junction = outlet_plenum
equation = mass
[]
[channel2_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:in'
connection_index = 2
junction = inlet_plenum
equation = mass
[]
[channel2_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:out'
connection_index = 1
junction = outlet_plenum
equation = mass
[]
[outlet_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'outlet:in'
connection_index = 2
junction = outlet_plenum
equation = mass
[]
[outlet_out_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet_bc'
equation = mass
[]
[net_mass_flow_rate_domain]
type = LinearCombinationPostprocessor
pp_names = 'inlet_in_m_dot outlet_out_m_dot'
pp_coefs = '1 -1'
[]
[net_mass_flow_rate_volume_junction]
type = LinearCombinationPostprocessor
pp_names = 'inlet_out_m_dot channel1_in_m_dot channel2_in_m_dot'
pp_coefs = '1 -1 -1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 10000
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 8
iteration_window = 2
[]
timestep_tolerance = 1e-6
abort_on_solve_fail = true
line_search = none
nl_rel_tol = 1e-8
nl_abs_tol = 2e-8
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'net_mass_flow_rate_domain net_mass_flow_rate_volume_junction'
[]
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_with_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
initial_T = T0
n_elems = 25
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
# NOTE: volume parameters are added via command-line arguments by tests file.
position = '1.02 0 0'
initial_T = T0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
initial_T = T0
n_elems = 24
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rho]
type = ElementAverageValue
variable = rhoV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ElementAverageValue
variable = rhouV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ElementAverageValue
variable = rhoEV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/err.missing_ics.i)
[GlobalParams]
gravity_vector = '0 0 0'
A = 1e-4
f = 0
fp = fp
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
volume = 0.1
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/recuperated_brayton_cycle.i)
# This input file models an open, recuperated Brayton cycle with a PID
# controlled start up using a coupled motor.
#
# Heat is supplied to the system by a volumetric heat source, and a second heat
# source is used to model a recuperator. The recuperator transfers heat from the
# turbine exhaust gas to the compressor outlet gas.
#
# Initially the fluid and heat structures are at rest at ambient conditions,
# and the shaft speed is zero.
# The transient is controlled as follows:
# * 0 - 2000 s: Motor increases shaft speed to approx. 85,000 RPM by PID control
# * 1000 - 8600 s: Power in main heat source increases from 0 - 104 kW
# * 2000 - 200000 s: Torque supplied by turbine increases to steady state level
# as working fluid temperature increases. Torque supplied by
# the motor is ramped down to 0 N-m transitioning shaft control
# to the turbine at its rated speed of 96,000 RPM.
I_motor = 1.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 3605
motor_ramp_down_duration = 1800
post_motor_time = 2160000
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
D6 = ${D1}
D7 = ${D1}
D8 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
A6 = ${fparse 0.25 * pi * D6^2}
A7 = ${fparse 0.25 * pi * D7^2}
A8 = ${fparse 0.25 * pi * D8^2}
recuperator_width = 0.15
L1 = 5.0
L2 = ${L1}
L3 = ${fparse 2 * L1}
L4 = ${fparse 2 * L1}
L5 = ${L1}
L6 = ${L1}
L7 = ${fparse L1 + recuperator_width}
L8 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${x3}
x5 = ${fparse x4 - L4}
x6 = ${x5}
x7 = ${fparse x6 + L6}
x8 = ${fparse x7 + L7}
y1 = 0
y2 = ${y1}
y3 = ${y2}
y4 = ${fparse y3 - L3}
y5 = ${y4}
y6 = ${fparse y5 + L5}
y7 = ${y6}
y8 = ${y7}
x1_out = ${fparse x1 + L1 - 0.001}
x2_in = ${fparse x2 + 0.001}
y5_in = ${fparse y5 + 0.001}
x6_out = ${fparse x6 + L6 - 0.001}
x7_in = ${fparse x7 + 0.001}
y8_in = ${fparse y8 + 0.001}
y8_out = ${fparse y8 + L8 - 0.001}
hot_leg_in = ${y8_in}
hot_leg_out = ${y8_out}
cold_leg_in = ${fparse y3 - 0.001}
cold_leg_out = ${fparse y3 - (L3/2) - 0.001}
n_elems1 = 5
n_elems2 = ${n_elems1}
n_elems3 = ${fparse 2 * n_elems1}
n_elems4 = ${fparse 2 * n_elems1}
n_elems5 = ${n_elems1}
n_elems6 = ${n_elems1}
n_elems7 = ${n_elems1}
n_elems8 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_ambient = 300
p_ambient = 1e5
hs_power = 105750
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = ${p_ambient}
initial_T = ${T_ambient}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = fp_air
closures = closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-5
scaling_factor_temperature = 1e-2
rdg_slope_reconstruction = none
[]
[FluidProperties]
[fp_air]
type = IdealGasFluidProperties
emit_on_nan = none
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
##########################
# Motor
##########################
# Functions for control logic that determines when to shut off the PID system
[is_tripped_fn]
type = ParsedFunction
symbol_names = 'motor_torque turbine_torque'
symbol_values = 'motor_torque turbine_torque'
expression = 'turbine_torque > motor_torque'
[]
[PID_tripped_constant_value]
type = ConstantFunction
value = 1
[]
[PID_tripped_status_fn]
type = ParsedFunction
symbol_values = 'PID_trip_status'
symbol_names = 'PID_trip_status'
expression = 'PID_trip_status'
[]
[time_fn]
type = ParsedFunction
expression = t
[]
# Shutdown function which ramps down the motor once told by the control logic
[motor_torque_fn_shutdown]
type = ParsedFunction
symbol_values = 'PID_trip_status time_trip'
symbol_names = 'PID_trip_status time_trip'
expression = 'if(PID_trip_status = 1, max(2.4 - (2.4 * ((t - time_trip) / 35000)),0.0), 1)'
[]
# Generates motor power curve
[motor_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'motor_torque shaft:omega'
[]
##########################
# Generator
##########################
# Generates generator torque curve
[generator_torque_fn]
type = ParsedFunction
expression = 'slope * t'
symbol_names = 'slope'
symbol_values = '${generator_torque_per_shaft_speed}'
[]
# Generates generator power curve
[generator_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'generator_torque shaft:omega'
[]
##########################
# Reactor
##########################
# Ramps up reactor power when activated by control logic
[power_fn]
type = PiecewiseLinear
x = '0 1000 8600'
y = '0 0 ${hs_power}'
[]
##########################
# Compressor
##########################
# compressor pressure ratios
[rp_comp1]
type = PiecewiseLinear
data_file = 'rp_comp1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp2]
type = PiecewiseLinear
data_file = 'rp_comp2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp3]
type = PiecewiseLinear
data_file = 'rp_comp3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp4]
type = PiecewiseLinear
data_file = 'rp_comp4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp5]
type = PiecewiseLinear
data_file = 'rp_comp5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# compressor efficiencies
[eff_comp1]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp2]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp3]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp4]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp5]
type = ConstantFunction
value = ${eff_comp}
[]
##########################
# Turbine
##########################
# turbine pressure ratios
[rp_turb0]
type = ConstantFunction
value = 1
[]
[rp_turb1]
type = PiecewiseLinear
data_file = 'rp_turb1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb2]
type = PiecewiseLinear
data_file = 'rp_turb2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb3]
type = PiecewiseLinear
data_file = 'rp_turb3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb4]
type = PiecewiseLinear
data_file = 'rp_turb4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb5]
type = PiecewiseLinear
data_file = 'rp_turb5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# turbine efficiency
[eff_turb1]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb2]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb3]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb4]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb5]
type = ConstantFunction
value = ${eff_turb}
[]
[]
[Components]
# system inlet pulling air from the open atmosphere
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = ${p_ambient}
T0 = ${T_ambient}
[]
# Inlet pipe
[pipe1]
type = FlowChannel1Phase
position = '${x1} ${y1} 0'
orientation = '1 0 0'
length = ${L1}
n_elems = ${n_elems1}
A = ${A1}
[]
# Compressor as defined in MAGNET PCU document (Guillen 2020)
[compressor]
type = ShaftConnectedCompressor1Phase
position = '${x2} ${y2} 0'
inlet = 'pipe1:out'
outlet = 'pipe2:in'
A_ref = ${A_ref_comp}
volume = ${V_comp}
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
# Determines which compression ratio curve and efficiency curve to use depending on ratio of speed/rated_speed
speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_comp}
inertia_coeff = '${I_comp} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
# Outlet pipe from the compressor
[pipe2]
type = FlowChannel1Phase
position = '${x2} ${y2} 0'
orientation = '1 0 0'
length = ${L2}
n_elems = ${n_elems2}
A = ${A2}
[]
# 90 degree connection between pipe 2 and 3
[junction2_cold_leg]
type = VolumeJunction1Phase
connections = 'pipe2:out cold_leg:in'
position = '${x3} ${y3} 0'
volume = ${fparse A2*0.1}
use_scalar_variables = false
[]
# Cold leg of the recuperator
[cold_leg]
type = FlowChannel1Phase
position = '${x3} ${y3} 0'
orientation = '0 -1 0'
length = ${fparse L3/2}
n_elems = ${fparse n_elems3/2}
A = ${A3}
[]
# Recuperator which transfers heat from exhaust gas to reactor inlet gas to improve thermal efficency
[recuperator]
type = HeatStructureCylindrical
orientation = '0 -1 0'
position = '${x3} ${y3} 0'
length = ${fparse L3/2}
widths = ${recuperator_width}
n_elems = ${fparse n_elems3/2}
n_part_elems = 2
names = recuperator
solid_properties = steel
solid_properties_T_ref = '300'
inner_radius = ${D1}
[]
# heat transfer from recuperator to cold leg
[heat_transfer_cold_leg]
type = HeatTransferFromHeatStructure1Phase
flow_channel = cold_leg
hs = recuperator
hs_side = OUTER
Hw = 10000
[]
# heat transfer from hot leg to recuperator
[heat_transfer_hot_leg]
type = HeatTransferFromHeatStructure1Phase
flow_channel = hot_leg
hs = recuperator
hs_side = INNER
Hw = 10000
[]
[junction_cold_leg_3]
type = JunctionOneToOne1Phase
connections = 'cold_leg:out pipe3:in'
[]
[pipe3]
type = FlowChannel1Phase
position = '${x3} ${fparse y3 - (L3/2)} 0'
orientation = '0 -1 0'
length = ${fparse L3/2}
n_elems = ${fparse n_elems3/2}
A = ${A3}
[]
# 90 degree connection between pipe 3 and 4
[junction3_4]
type = VolumeJunction1Phase
connections = 'pipe3:out pipe4:in'
position = '${x4} ${y4} 0'
volume = ${fparse A3*0.1}
use_scalar_variables = false
[]
# Pipe through the "reactor core"
[pipe4]
type = FlowChannel1Phase
position = '${x4} ${y4} 0'
orientation = '-1 0 0'
length = ${L4}
n_elems = ${n_elems4}
A = ${A4}
[]
# "Reactor Core" and it's associated heat transfer to pipe 4
[reactor]
type = HeatStructureCylindrical
orientation = '-1 0 0'
position = '${x4} ${y4} 0'
length = ${L4}
widths = 0.15
n_elems = ${n_elems4}
n_part_elems = 2
names = core
solid_properties = steel
solid_properties_T_ref = '300'
[]
[total_power]
type = TotalPower
power = 0
[]
[heat_generation]
type = HeatSourceFromTotalPower
power = total_power
hs = reactor
regions = core
[]
[heat_transfer]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe4
hs = reactor
hs_side = OUTER
Hw = 10000
[]
# 90 degree connection between pipe 4 and 5
[junction4_5]
type = VolumeJunction1Phase
connections = 'pipe4:out pipe5:in'
position = '${x5} ${y5} 0'
volume = ${fparse A4*0.1}
use_scalar_variables = false
[]
# Pipe carrying hot gas back to the PCU
[pipe5]
type = FlowChannel1Phase
position = '${x5} ${y5} 0'
orientation = '0 1 0'
length = ${L5}
n_elems = ${n_elems5}
A = ${A5}
[]
# 90 degree connection between pipe 5 and 6
[junction5_6]
type = VolumeJunction1Phase
connections = 'pipe5:out pipe6:in'
position = '${x6} ${y6} 0'
volume = ${fparse A5*0.1}
use_scalar_variables = false
[]
# Inlet pipe to the turbine
[pipe6]
type = FlowChannel1Phase
position = '${x6} ${y6} 0'
orientation = '1 0 0'
length = ${L6}
n_elems = ${n_elems6}
A = ${A6}
[]
# Turbine as defined in MAGNET PCU document (Guillen 2020) and (Wright 2006)
[turbine]
type = ShaftConnectedCompressor1Phase
position = '${x7} ${y7} 0'
inlet = 'pipe6:out'
outlet = 'pipe7:in'
A_ref = ${A_ref_turb}
volume = ${V_turb}
# A turbine is treated as an "inverse" compressor, this value determines if component is to be treated as turbine or compressor
# If treat_as_turbine is omitted, code automatically assumes it is a compressor
treat_as_turbine = true
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
# Determines which compression ratio curve and efficiency curve to use depending on ratio of speed/rated_speed
speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_turb}
inertia_coeff = '${I_turb} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
# Outlet pipe from turbine
[pipe7]
type = FlowChannel1Phase
position = '${x7} ${y7} 0'
orientation = '1 0 0'
length = ${L7}
n_elems = ${n_elems7}
A = ${A7}
[]
# 90 degree connection between pipe 7 and 8
[junction7_hot_leg]
type = VolumeJunction1Phase
connections = 'pipe7:out hot_leg:in'
position = '${x8} ${y8} 0'
volume = ${fparse A7*0.1}
use_scalar_variables = false
[]
# Hot leg of the recuperator
[hot_leg]
type = FlowChannel1Phase
position = '${x8} ${y8} 0'
orientation = '0 1 0'
length = ${L8}
n_elems = ${n_elems8}
A = ${A8}
[]
# System outlet dumping exhaust gas to the atmosphere
[outlet]
type = Outlet1Phase
input = 'hot_leg:out'
p = ${p_ambient}
[]
# Roatating shaft connecting motor, compressor, turbine, and generator
[shaft]
type = Shaft
connected_components = 'motor compressor turbine generator'
initial_speed = ${speed_initial}
[]
# 3-Phase electircal motor used for system start-up, controlled by PID
[motor]
type = ShaftConnectedMotor
inertia = ${I_motor}
torque = 0 # controlled
[]
# Electric generator supplying power to the grid
[generator]
type = ShaftConnectedMotor
inertia = ${I_generator}
torque = generator_torque_fn
[]
[]
# Control logics which govern startup of the motor, startup of the "reactor core", and shutdown of the motor
[ControlLogic]
# Sets desired shaft speed to be reached by motor NOTE: SHOULD BE SET LOWER THAN RATED TURBINE RPM
[set_point]
type = GetFunctionValueControl
function = ${fparse speed_rated_rpm - 9000}
[]
# PID with gains determined by iterative process NOTE: Gain values are system specific
[initial_motor_PID]
type = PIDControl
set_point = set_point:value
input = shaft_RPM
initial_value = 0
K_p = 0.0011
K_i = 0.00000004
K_d = 0
[]
# Determines when the PID system should be running and when it should begin the shutdown cycle. If needed: PID output, else: shutdown function
[logic]
type = ParsedFunctionControl
function = 'if(motor+0.5 > turb, PID, shutdown_fn)'
symbol_names = 'motor turb PID shutdown_fn'
symbol_values = 'motor_torque turbine_torque initial_motor_PID:output motor_torque_fn_shutdown'
[]
# Takes the output generated in [logic] and applies it to the motor torque
[motor_PID]
type = SetComponentRealValueControl
component = motor
parameter = torque
value = logic:value
[]
# Determines when to turn on heat source
[power_logic]
type = ParsedFunctionControl
function = 'power_fn'
symbol_names = 'power_fn'
symbol_values = 'power_fn'
[]
# Applies heat source to the total_power block
[power_applied]
type = SetComponentRealValueControl
component = total_power
parameter = power
value = power_logic:value
[]
[]
[Controls]
# Enables set_PID_tripped
[PID_trip_status]
type = ConditionalFunctionEnableControl
conditional_function = is_tripped_fn
enable_objects = 'AuxScalarKernels::PID_trip_status_aux'
execute_on = 'TIMESTEP_END'
[]
# Enables set_time_PID
[time_PID]
type = ConditionalFunctionEnableControl
conditional_function = PID_tripped_status_fn
disable_objects = 'AuxScalarKernels::time_trip_aux'
execute_on = 'TIMESTEP_END'
[]
[]
[AuxVariables]
# Creates a variable that will later be set to the time when tau_turbine > tau_motor
[time_trip]
order = FIRST
family = SCALAR
[]
# Creates variable which indicates if tau_turbine > tau_motor....... If tau_motor > tau_turbine, 0, else 1
[PID_trip_status]
order = FIRST
family = SCALAR
initial_condition = 0
[]
[]
[AuxScalarKernels]
# Creates variable from time_fn which indicates when tau_turbine > tau_motor
[time_trip_aux]
type = FunctionScalarAux
function = time_fn
variable = time_trip
execute_on = 'TIMESTEP_END'
[]
# Overwrites variable PID_trip_status to the value from PID_tripped_constant_value (changes 0 to 1)
[PID_trip_status_aux]
type = FunctionScalarAux
function = PID_tripped_constant_value
variable = PID_trip_status
execute_on = 'TIMESTEP_END'
enable = false
[]
[]
[Postprocessors]
# Indicates when tau_turbine > tau_motor
[trip_time]
type = ScalarVariable
variable = time_trip
execute_on = 'TIMESTEP_END'
[]
##########################
# Motor
##########################
[motor_torque]
type = RealComponentParameterValuePostprocessor
component = motor
parameter = torque
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_power]
type = FunctionValuePostprocessor
function = motor_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# generator
##########################
[generator_torque]
type = ShaftConnectedComponentPostprocessor
quantity = torque
shaft_connected_component_uo = generator:shaftconnected_uo
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_power]
type = FunctionValuePostprocessor
function = generator_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# Shaft
##########################
# Speed in rad/s
[shaft_speed]
type = ScalarVariable
variable = 'shaft:omega'
execute_on = 'INITIAL TIMESTEP_END'
[]
# speed in RPM
[shaft_RPM]
type = ParsedPostprocessor
pp_names = 'shaft_speed'
expression = '(shaft_speed * 60) /( 2 * ${fparse pi})'
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# Compressor
##########################
[comp_dissipation_torque]
type = ElementAverageValue
variable = dissipation_torque
block = 'compressor'
execute_on = 'INITIAL TIMESTEP_END'
[]
[comp_isentropic_torque]
type = ElementAverageValue
variable = isentropic_torque
block = 'compressor'
execute_on = 'INITIAL TIMESTEP_END'
[]
[comp_friction_torque]
type = ElementAverageValue
variable = friction_torque
block = 'compressor'
execute_on = 'INITIAL TIMESTEP_END'
[]
[compressor_torque]
type = ParsedPostprocessor
pp_names = 'comp_dissipation_torque comp_isentropic_torque comp_friction_torque'
expression = 'comp_dissipation_torque + comp_isentropic_torque + comp_friction_torque'
[]
[p_in_comp]
type = PointValue
variable = p
point = '${x1_out} ${y1} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_comp]
type = PointValue
variable = p
point = '${x2_in} ${y2} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_comp]
type = ParsedPostprocessor
pp_names = 'p_in_comp p_out_comp'
expression = 'p_out_comp / p_in_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_in_comp]
type = PointValue
variable = T
point = '${x1_out} ${y1} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_out_comp]
type = PointValue
variable = T
point = '${x2_in} ${y2} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_ratio_comp]
type = ParsedPostprocessor
pp_names = 'T_in_comp T_out_comp'
expression = '(T_out_comp - T_in_comp) / T_out_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_comp]
type = ADFlowJunctionFlux1Phase
boundary = pipe1:out
connection_index = 0
equation = mass
junction = compressor
[]
##########################
# turbine
##########################
[turb_dissipation_torque]
type = ElementAverageValue
variable = dissipation_torque
block = 'turbine'
execute_on = 'INITIAL TIMESTEP_END'
[]
[turb_isentropic_torque]
type = ElementAverageValue
variable = isentropic_torque
block = 'turbine'
execute_on = 'INITIAL TIMESTEP_END'
[]
[turb_friction_torque]
type = ElementAverageValue
variable = friction_torque
block = 'turbine'
execute_on = 'INITIAL TIMESTEP_END'
[]
[turbine_torque]
type = ParsedPostprocessor
pp_names = 'turb_dissipation_torque turb_isentropic_torque turb_friction_torque'
expression = 'turb_dissipation_torque + turb_isentropic_torque + turb_friction_torque'
[]
[p_in_turb]
type = PointValue
variable = p
point = '${x6_out} ${y6} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_turb]
type = PointValue
variable = p
point = '${x7_in} ${y7} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_turb]
type = ParsedPostprocessor
pp_names = 'p_in_turb p_out_turb'
expression = 'p_in_turb / p_out_turb'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_in_turb]
type = PointValue
variable = T
point = '${x6_out} ${y6} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_out_turb]
type = PointValue
variable = T
point = '${x7_in} ${y7} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_turb]
type = ADFlowJunctionFlux1Phase
boundary = pipe6:out
connection_index = 0
equation = mass
junction = turbine
[]
##########################
# Recuperator
##########################
[cold_leg_in]
type = PointValue
variable = T
point = '${x3} ${cold_leg_in} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[cold_leg_out]
type = PointValue
variable = T
point = '${x3} ${cold_leg_out} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[hot_leg_in]
type = PointValue
variable = T
point = '${x8} ${hot_leg_in} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[hot_leg_out]
type = PointValue
variable = T
point = '${x8} ${hot_leg_out} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# Reactor
##########################
[reactor_inlet]
type = PointValue
variable = T
point = '${x4} ${y4} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[reactor_outlet]
type = PointValue
variable = T
point = '${x5} ${y5_in} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = ${t3}
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.1
cutback_factor = 0.9
[]
dtmin = 1e-5
dtmax = 1000
steady_state_detection = true
steady_state_start_time = 200000
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[e]
type = Exodus
file_base = 'recuperated_brayton_cycle_out'
[]
[csv]
type = CSV
file_base = 'recuperated_brayton_cycle'
execute_vector_postprocessors_on = 'INITIAL'
[]
[console]
type = Console
show = 'shaft_speed p_ratio_comp p_ratio_turb pressure_ratio pressure_ratio'
[]
[]
(modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.test.i)
[GlobalParams]
initial_p = 1e6
initial_T = 517
initial_vel = 1.0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
fp = fp
closures = simple_closures
f = 0
gravity_vector = '0 0 0'
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.01
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 517
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[turbine]
type = SimpleTurbine1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1
on = true
power = 1000
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1. 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
dt = 1
num_steps = 10
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-5
nl_max_its = 5
l_tol = 1e-4
[]
[Outputs]
exodus = true
show = 'p T vel'
velocity_as_vector = false
time_step_interval = 5
[]
(modules/thermal_hydraulics/test/tests/closures/THM_1phase/thm1phase.i)
D = 0.1
A = '${fparse (1./4.)*pi*D^2}'
P_hf = '${fparse pi*D}'
D_h = '${fparse 4*A/P_hf}'
mdot = 0.04
file_base = 'db_churchill'
[GlobalParams]
gravity_vector = '0 0 0'
initial_vel = 0.003
initial_p = 1e5
initial_T = 300
D_h = ${D_h}
A = ${A}
P_hf = ${P_hf}
m_dot = ${mdot}
closures = thm
execute_on = 'initial timestep_begin'
[]
[FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.56361
mu = 8.84e-05
[]
[]
[Closures]
[thm]
type = Closures1PhaseTHM
wall_htc_closure = dittus_boelter
wall_ff_closure = churchill
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = water
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
[]
#--------------Pipe BCs-------------#
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[ht]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = 'pipe'
T_wall = 500
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1e-5
[]
[Postprocessors]
[Hw]
type = ADElementAverageMaterialProperty
mat_prop = Hw
[]
[f]
type = ADElementAverageMaterialProperty
mat_prop = f_D
block = pipe
[]
[]
[Outputs]
csv = true
file_base = ${file_base}
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.unequal_area.i)
# Junction between 2 pipes where the second has half the area of the first.
# The momentum density of the second should be twice that of the first.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 250
initial_p = 1e5
initial_vel = 1
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
f = 0
fp = eos
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 1.37931034483
vel = 1
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 1
n_elems = 20
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1e-8
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
A = 0.5
n_elems = 20
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-10
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0
end_time = 3
dt = 0.1
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the outlet side of the junction,
# which has half the area of the inlet side, has twice the momentum density
# that the inlet side does.
[rhouA_pipe1]
type = SideAverageValue
variable = rhouA
boundary = pipe1:out
[]
[rhouA_pipe2]
type = SideAverageValue
variable = rhouA
boundary = pipe2:out
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = rhouA_pipe1
value2 = rhouA_pipe2
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/junction_with_calorifically_imperfect_gas.i)
# This input file tests compatibility of VolumeJunction1Phase and CaloricallyImperfectGas.
# Loss coefficient is applied in first junction.
# Expected pressure drop ~0.5*K*rho_in*vel_in^2=0.5*100*3.219603*1 = 160.9 Pa
T_in = 523.0
vel = 1
p_out = 7e6
[GlobalParams]
initial_p = ${p_out}
initial_vel = ${vel}
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 3
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = '1e2'
scaling_factor_rhowV = '1e-2'
scaling_factor_rhoEV = '1e-5'
[]
[Functions]
[e_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '783.9 2742.3 2958.6 3489.2 4012.7 4533.3 5053.8 5574 6095.1 7140.2 8192.9 9256.3 10333.6 12543.9 14836.6 17216.3 19688.4 22273.7 25018.3 28042.3 31544.2 35818.1 41256.5 100756.5'
scale_factor = 1e3
[]
[mu_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '85.42 85.42 89.53 99.44 108.9 117.98 126.73 135.2 143.43 159.25 174.36 188.9 202.96 229.88 255.5 280.05 303.67 326.45 344.97 366.49 387.87 409.48 431.86 431.86'
scale_factor = 1e-7
[]
[k_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '186.82 186.82 194.11 212.69 231.55 250.38 268.95 287.19 305.11 340.24 374.92 409.66 444.75 511.13 583.42 656.44 733.32 826.53 961.15 1180.38 1546.31 2135.49 3028.08 3028.08'
scale_factor = 1e-3
[]
[]
[FluidProperties]
[fp]
type = CaloricallyImperfectGas
molar_mass = 0.002
e = e_fn
k = k_fn
mu = mu_fn
min_temperature = 100
max_temperature = 5000
out_of_bound_error = false
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletVelocityTemperature1Phase
input = 'inlet:in'
vel = ${vel}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 5
[]
[inlet_plenum]
type = VolumeJunction1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = ${vel}
K = 100
connections = 'inlet:out channel1:in channel2:in'
volume = 1
use_scalar_variables = false
[]
[channel1]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 4
D_h = 1
[]
[channel2]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 1
D_h = 1
[]
[outlet_plenum]
type = VolumeJunction1Phase
position = '0 0 0'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = ${vel}
connections = 'channel1:out channel2:out outlet:in'
volume = 1
use_scalar_variables = false
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 5
[]
[outlet_bc]
type = Outlet1Phase
p = ${p_out}
input = 'outlet:out'
[]
[]
[Postprocessors]
[p_in]
type = SideAverageValue
variable = p
boundary = inlet:in
[]
[p_out]
type = SideAverageValue
variable = p
boundary = outlet:out
[]
[Delta_p]
type = DifferencePostprocessor
value1 = p_out
value2 = p_in
[]
[inlet_in_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet_bc'
equation = mass
[]
[inlet_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'inlet:out'
connection_index = 0
junction = inlet_plenum
equation = mass
[]
[channel1_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:in'
connection_index = 1
junction = inlet_plenum
equation = mass
[]
[channel1_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:out'
connection_index = 0
junction = outlet_plenum
equation = mass
[]
[channel2_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:in'
connection_index = 2
junction = inlet_plenum
equation = mass
[]
[channel2_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:out'
connection_index = 1
junction = outlet_plenum
equation = mass
[]
[outlet_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'outlet:in'
connection_index = 2
junction = outlet_plenum
equation = mass
[]
[outlet_out_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet_bc'
equation = mass
[]
[net_mass_flow_rate_domain]
type = LinearCombinationPostprocessor
pp_names = 'inlet_in_m_dot outlet_out_m_dot'
pp_coefs = '1 -1'
[]
[net_mass_flow_rate_volume_junction]
type = LinearCombinationPostprocessor
pp_names = 'inlet_out_m_dot channel1_in_m_dot channel2_in_m_dot'
pp_coefs = '1 -1 -1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 8
iteration_window = 2
[]
timestep_tolerance = 1e-6
abort_on_solve_fail = true
line_search = basic
nl_rel_tol = 1e-8
nl_abs_tol = 4e-8
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'net_mass_flow_rate_domain net_mass_flow_rate_volume_junction Delta_p'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_p0_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_p0_fn]
type = PiecewiseLinear
x = '0 1'
y = '1e5 1.001e5'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = p0
function = inlet_p0_fn
[]
[]
[Postprocessors]
[inlet_p0]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = p0
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/clg.test.i)
[GlobalParams]
initial_p = 1e6
initial_T = 517
initial_vel = 1.0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
f = 0
fp = fp
closures = simple_closures
gravity_vector = '0 0 0'
automatic_scaling = true
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.43
cv = 1040.0
q = 2.03e6
p_inf = 0.0
q_prime = -2.3e4
k = 0.026
mu = 134.4e-7
M = 0.01801488
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[W_dot_fn]
type = PiecewiseLinear
xy_data = '
0 0
1 10'
[]
[]
[Components]
[inlet]
type = InletVelocityTemperature1Phase
input = 'pipe1:in'
vel = 1
T = 517
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[turbine]
type = SimpleTurbine1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1
A_ref = 1.0
K = 0
on = true
power = 0
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1. 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e6
[]
[]
[ControlLogic]
[W_dot_ctrl]
type = TimeFunctionComponentControl
component = turbine
parameter = power
function = W_dot_fn
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
dt = 0.1
num_steps = 10
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-3
nl_max_its = 5
l_tol = 1e-4
abort_on_solve_fail = true
[]
[Postprocessors]
[turbine_power]
type = ElementAverageValue
variable = W_dot
block = 'turbine'
[]
[]
[Outputs]
[csv]
type = CSV
show = 'turbine_power'
[]
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'up_pipe_1:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = '${A_core}'
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe:in'
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = JunctionOneToOne1Phase
connections = 'top_pipe:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'down_pipe_1:out cooling_pipe:in'
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = 1.5
n_elems = 25
A = ${A_pipe}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
P_hf = '${fparse pi * pipe_dia}'
[]
[jct6]
type = JunctionOneToOne1Phase
connections = 'cooling_pipe:out down_pipe_2:in'
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[outlet]
type = Outlet1Phase
input = 'down_pipe_2:out'
p = ${press}
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/controls/copy_postprocessor_value_control/test.i)
# This is testing that the values copied by CopyPostprocessorValueControl are used.
# A postprocessor T_pt samples value at point (0, 0, 0), those values are then
# read in by CopyPostprocessorValueControl and then we output this value. The values
# are lagged by one time step, because controls are executed at the beginning
# of the time step and postprocessors at the end of the time step. Note that
# CopyPostprocessorValueControl is added when a postprocessor is created. That's why
# you do not see the object in this input file.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 340.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Postprocessors]
[T_pt]
type = SideAverageValue
boundary = pipe1:in
variable = T
execute_on = 'initial timestep_end'
[]
[T_ctrl]
type = RealControlDataValuePostprocessor
control_data_name = T_pt
execute_on = timestep_end
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-5
num_steps = 3
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.not_a_hs.i)
[GlobalParams]
initial_p = 15.5e6
initial_vel = 2
initial_T = 560
scaling_factor_1phase = '1 1 1'
scaling_factor_temperature = '1'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.865
n_elems = 1
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = inlet # wrong
hs_side = outer
flow_channel = pipe
Hw = 5.33e4
P_hf = 0.029832559676
[]
[hx2]
type = HeatTransferFromHeatStructure1Phase
hs = asdf # wrong
hs_side = outer
flow_channel = pipe
Hw = 5.33e4
P_hf = 0.029832559676
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 15.5e6
T0 = 560
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 15e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 1
l_tol = 1e-3
l_max_its = 30
start_time = 0.0
num_steps = 20
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when a
# heat structure is used. Conservation is checked by comparing the integral of
# the heat flux against the difference of the boundary fluxes.
[GlobalParams]
initial_p = 7.0e6
initial_vel = 0
initial_T = 513
gravity_vector = '0.0 0.0 0.0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 3.7
cp = 3.e2
rho = 10.42e3
[]
[gap-mat]
type = ThermalFunctionSolidProperties
k = 0.7
cp = 5e3
rho = 1.0
[]
[clad-mat]
type = ThermalFunctionSolidProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Components]
[reactor]
type = TotalPower
power = 1e3
[]
[core:pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.0
fp = eos
[]
[core:solid]
type = HeatStructureCylindrical
position = '0 -0.0071501 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
names = 'FUEL GAP CLAD'
widths = '6.057900E-03 1.524000E-04 9.398000E-04'
n_part_elems = '5 1 2'
solid_properties = 'fuel-mat gap-mat clad-mat'
solid_properties_T_ref = '300 300 300'
initial_T = 513
[]
[core:hgen]
type = HeatSourceFromTotalPower
hs = core:solid
regions = 'FUEL'
power = reactor
power_fraction = 1
[]
[core:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core:pipe
hs = core:solid
hs_side = outer
Hw = 1.0e4
P_hf = 4.4925e-2
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'core:pipe:in'
rho = 817.382210128610836
vel = 2.4
[]
[outlet]
type = Outlet1Phase
input = 'core:pipe:out'
p = 7e6
[]
[]
[Postprocessors]
[E_in]
type = ADFlowBoundaryFlux1Phase
boundary = inlet
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out]
type = ADFlowBoundaryFlux1Phase
boundary = outlet
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe]
type = ADHeatRateConvection1Phase
block = core:pipe
T_wall = T_wall
T = T
Hw = Hw
P_hf = P_hf
execute_on = 'initial timestep_end'
[]
[E_diff]
type = DifferencePostprocessor
value1 = E_in
value2 = E_out
execute_on = 'initial timestep_end'
[]
[E_conservation]
type = SumPostprocessor
values = 'E_diff hf_pipe'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
dt = 5
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 50
l_tol = 1e-3
l_max_its = 60
start_time = 0
end_time = 260
[]
[Outputs]
[out]
type = CSV
execute_on = final
show = 'E_conservation'
[]
[console]
type = Console
show = 'E_conservation'
[]
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.shower.i)
# This problem models a "shower": water from two pipes, one hot and one cold,
# mixes together to produce a temperature between the two.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 1e5
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
# global parameters for pipes
fp = eos
orientation = '1 0 0'
length = 1
n_elems = 20
f = 0
scaling_factor_1phase = '1 1 1e-6'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_hot]
type = InletDensityVelocity1Phase
input = 'pipe_hot:in'
# rho @ (p = 1e5, T = 310 K)
rho = 1315.9279785683
vel = 1
[]
[inlet_cold]
type = InletDensityVelocity1Phase
input = 'pipe_cold:in'
# rho @ (p = 1e5, T = 280 K)
rho = 1456.9202619863
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe_warm:out'
p = 1e5
[]
[pipe_hot]
type = FlowChannel1Phase
position = '0 1 0'
A = 1
[]
[pipe_cold]
type = FlowChannel1Phase
position = '0 0 0'
A = 1
[]
[pipe_warm]
type = FlowChannel1Phase
position = '1 0.5 0'
A = 2
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe_cold:out pipe_hot:out pipe_warm:in'
position = '1 0.5 0'
volume = 1e-8
use_scalar_variables = false
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-5
nl_max_its = 10
l_tol = 1e-2
l_max_its = 10
start_time = 0
end_time = 5
dt = 0.05
# abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the energy flux on
# the warm side of the junction is equal to the sum of the energy
# fluxes of the hot and cold inlets to the junction.
[energy_flux_hot]
type = EnergyFluxIntegral
boundary = pipe_hot:out
arhouA = rhouA
H = H
[]
[energy_flux_cold]
type = EnergyFluxIntegral
boundary = pipe_cold:out
arhouA = rhouA
H = H
[]
[energy_flux_warm]
type = EnergyFluxIntegral
boundary = pipe_warm:in
arhouA = rhouA
H = H
[]
[energy_flux_inlet_sum]
type = SumPostprocessor
values = 'energy_flux_hot energy_flux_cold'
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = energy_flux_warm
value2 = energy_flux_inlet_sum
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
sync_only = true
sync_times = '3 4 5'
[]
[console]
type = Console
max_rows = 1
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/test.i)
# Test that the initial conditions read from the exodus file are correct
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
closures = simple_closures
initial_from_file = 'steady_state_out.e'
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'initial'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/controls/error_checking/non_existent_control_data.i)
# This test makes sure that we error out when a control object requests a data
# that were not declared
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 105.e3
T0 = 300.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[ControlLogic]
[set_inlet_value]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = wrong # this does not exist
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.5
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_no_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
#
# This input file has no junction and is used for comparison to the results with
# a junction.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 2
initial_T = T0
n_elems = 50
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rhoA]
type = PointValue
variable = rhoA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhouA]
type = PointValue
variable = rhouA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhoEA]
type = PointValue
variable = rhoEA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rho]
type = ScalePostprocessor
value = junction_rhoA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ScalePostprocessor
value = junction_rhouA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ScalePostprocessor
value = junction_rhoEA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
show = 'junction_rho junction_rhou junction_rhoE'
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.overspecified.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_vel = 0
initial_p = 1e5
initial_T = 300
closures = simple_closures
[]
[FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = water
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
[]
[inlet1]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 10
T0 = 10
[]
[inlet2]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 11
T0 = 10
[]
[outlet1]
type = Outlet1Phase
input = 'pipe:out'
p = 10
[]
[outlet2]
type = Outlet1Phase
input = 'pipe:out'
p = 11
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]