- T0Prescribed stagnation temperature [K]
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Prescribed stagnation temperature [K]
- inputName of the input
C++ Type:BoundaryName
Unit:(no unit assumed)
Controllable:No
Description:Name of the input
- p0Prescribed stagnation pressure [Pa]
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Prescribed stagnation pressure [Pa]
InletStagnationPressureTemperature1Phase
This is a single-phase 1-D flow boundary component in which the stagnation pressure and temperature are specified. This boundary is typically used when fluid is expected to flow from an infinitely large tank where the pressure and temperature are known.
Usage
This component must be connected to a FlowChannel1Phase. See how to connect a flow boundary component.
The user specifies the following parameters:
The formulation of this boundary condition assumes flow entering the flow channel at this boundary.
Reversible flow: If exit conditions are encountered, then the boundary condition is automatically changed to an outlet formulation. This behavior can be disabled by setting the "reversible" parameter to false
.
Input Parameters
- reversibleTrueTrue for reversible, false for pure inlet
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:True for reversible, false for pure inlet
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- (modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_end.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.p0T0_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_fp.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/err.missing_ics.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/real_component_parameter_value/non_existent_par_name.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
- (modules/thermal_hydraulics/test/tests/misc/adapt/multiple_blocks.i)
- (modules/thermal_hydraulics/test/tests/controls/pid_control/test.i)
- (modules/thermal_hydraulics/test/tests/controls/delay_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_steady_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_T0_3eqn.i)
- (modules/thermal_hydraulics/test/tests/controls/set_bool_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_with_junction.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/jac.test.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/err.missing_ics.i)
- (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/recuperated_brayton_cycle.i)
- (modules/thermal_hydraulics/test/tests/controls/set_real_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/controls/set_component_bool_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
- (modules/thermal_hydraulics/test/tests/controls/get_function_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/controls/dependency/test.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_p0_3eqn.i)
- (modules/thermal_hydraulics/test/tests/controls/set_component_real_value_control/test.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/phy.reversed_flow.i)
- (modules/thermal_hydraulics/test/tests/controls/copy_postprocessor_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_loop.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.not_a_hs.i)
- (modules/thermal_hydraulics/test/tests/closures/simple_1phase/err.missing_f_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/phy.reversed_flow.i)
- (modules/thermal_hydraulics/test/tests/components/outlet_1phase/clg.ctrl_p_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_no_junction.i)
- (modules/thermal_hydraulics/test/tests/controls/error_checking/non_existent_control_data.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_no_junction.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_with_junction.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.1phase.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_transient_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.overspecified.i)
Formulation
This boundary condition uses a ghost cell formulation, where the ghost cell solution is computed from the following quantities:
, the provided exterior stagnation pressure,
, the provided exterior stagnation temperature, and
, the interior velocity.
If the boundary is specified to be reversible ("reversible" set to true
) and the flow is exiting, the ghost cell is instead computed with the following quantities:
, the exterior pressure, assumed to be equal to the provided exterior stagnation pressure ,
, the interior density, and
, the interior velocity.
p0
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Prescribed stagnation pressure [Pa]
T0
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Prescribed stagnation temperature [K]
reversible
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:True for reversible, false for pure inlet
(modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
10 ${m_dot_sec_in}'
[]
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[none_closures]
type = Closures1PhaseNone
[]
[]
[Materials]
[Re_mat]
type = ADReynoldsNumberMaterial
Re = Re
rho = rho
vel = vel
D_h = D_h
mu = mu
block = hx/pri
[]
[f_mat]
type = ADParsedMaterial
property_name = f_D
constant_names = 'a b c'
constant_expressions = '1 0.1 -0.5'
material_property_names = 'Re'
expression = 'a + b * Re^c'
block = hx/pri
[]
[Pr_mat]
type = ADPrandtlNumberMaterial
Pr = Pr
cp = cp
mu = mu
k = k
block = hx/pri
[]
[Nu_mat]
type = ADParsedMaterial
property_name = 'Nu'
constant_names = 'a b c'
constant_expressions = '0.03 0.9 0.5'
material_property_names = 'Re Pr'
expression = 'a * Re ^b * Pr^c'
block = hx/pri
[]
[Hw_mat]
type = ADConvectiveHeatTransferCoefficientMaterial
D_h = D_h
k = k
Nu = Nu
Hw = Hw
block = hx/pri
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = ${A_core}
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 1 0'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionParallelChannels1Phase
position = '1 0 1.75'
connections = 'down_pipe_1:out hx/pri:in'
volume = 1e-5
use_scalar_variables = false
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
roughness = 1e-5
A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
D_h = ${hx_dia_inner}
closures = none_closures
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
P_hf = '${fparse pi * hx_dia_inner}'
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
solid_properties = 'steel'
solid_properties_T_ref = '300'
names = '0'
inner_radius = '${fparse hx_dia_inner / 2.}'
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = '${fparse 2 * pi * hx_radius_wall}'
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 0.25'
orientation = '0 0 1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
fp = water
initial_T = 300
[]
[]
[jct7]
type = JunctionParallelChannels1Phase
position = '1 0 0.5'
connections = 'hx/pri:out down_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct9]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:in'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:out'
p = 1e5
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0.0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[m_dot_sec]
type = ADFlowBoundaryFlux1Phase
boundary = inlet_sec
equation = mass
[]
[Hw_hx_pri]
type = ADElementAverageMaterialProperty
mat_prop = Hw
block = hx/pri
[]
[fD_hx_pri]
type = ADElementAverageMaterialProperty
mat_prop = f_D
block = hx/pri
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_end.i)
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1. 1e-4'
closures = simple_closures
[]
[FluidProperties]
[barotropic]
type = LinearFluidProperties
p_0 = 1.e5 # Pa
rho_0 = 1.e3 # kg/m^3
a2 = 1.e7 # m^2/s^2
beta = .46e-3 # K^{-1}
cv = 4.18e3 # J/kg-K, could be a global parameter?
e_0 = 1.254e6 # J/kg
T_0 = 300 # K
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = barotropic
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:asdf' # this is an error we are checking for
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 9.5e4
[]
[]
[Preconditioning]
[FDP_PJFNK]
type = FDP
full = true
petsc_options_iname = '-mat_fd_coloring_err'
petsc_options_value = '1.e-10'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.p0T0_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e6
initial_T = 453.1
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = eos
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e6
T0 = 453.1
reversible = false
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 0.5e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1.e-2
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
start_time = 0.0
end_time = 0.6
[]
[Outputs]
file_base = 'phy.p0T0_3eqn'
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_fp.i)
[GlobalParams]
closures = simple_closures
initial_p = 1e5
initial_T = 300
initial_vel = 0
[]
[FluidProperties]
[fp_2phase]
type = StiffenedGasTwoPhaseFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
fp = fp_2phase # this is wrong
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 9.5e4
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 1
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/err.missing_ics.i)
[GlobalParams]
gravity_vector = '0 0 0'
A = 1e-4
f = 0
fp = fp
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
volume = 0.1
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/postprocessors/real_component_parameter_value/non_existent_par_name.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[p_fn]
type = PiecewiseLinear
x = '0 1'
y = '1e5 1.001e5'
[]
[]
[ControlLogic]
[outlet_p_fn]
type = GetFunctionValueControl
function = p_fn
[]
[set_outlet_value]
type = SetComponentRealValueControl
component = outlet
parameter = p
value = outlet_p_fn:value
[]
[]
[Postprocessors]
[outlet_p]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = p
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
10 ${m_dot_sec_in}'
[]
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = ${A_core}
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 1 0'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionParallelChannels1Phase
position = '1 0 1.75'
connections = 'down_pipe_1:out hx/pri:in'
volume = 1e-5
use_scalar_variables = false
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
roughness = 1e-5
A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
D_h = ${hx_dia_inner}
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
P_hf = '${fparse pi * hx_dia_inner}'
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
solid_properties = 'steel'
solid_properties_T_ref = '300'
names = '0'
inner_radius = '${fparse hx_dia_inner / 2.}'
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = '${fparse 2 * pi * hx_radius_wall}'
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 0.25'
orientation = '0 0 1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
fp = water
initial_T = 300
[]
[]
[jct7]
type = JunctionParallelChannels1Phase
position = '1 0 0.5'
connections = 'hx/pri:out down_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct9]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:in'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:out'
p = 1e5
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0.0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[m_dot_sec]
type = ADFlowBoundaryFlux1Phase
boundary = inlet_sec
equation = mass
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 0
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/misc/adapt/multiple_blocks.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
[]
[pipe2]
type = FlowChannel1Phase
fp = eos
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
volume = 1e-5
position = '1 0 0'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
use_scalar_variables = false
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# (p0, T0) for p = 1e5, T = 300, vel = 1
p0 = 1.0049827846e+05
T0 = 300.0000099
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[prec]
type = SMP
full = true
petsc_options = '-pc_factor_shift_nonzero'
petsc_options_iname = '-mat_fd_coloring_err'
petsc_options_value = '1.e-10'
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-4
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 0
nl_abs_tol = 1e-5
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Adaptivity]
initial_adaptivity = 0
refine_fraction = 0.60
coarsen_fraction = 0.10
max_h_level = 3
[]
automatic_scaling = true
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/controls/pid_control/test.i)
# This test "measures" the liquid temperature at location (10, 0, 0) on a 15 meters
# long pipe and adjusts the inlet stagnation temperature using a PID controller with
# set point at 340 K. The pipe is filled with water at T = 350 K. The purpose is to
# make sure that the channel fills with colder liquid and levels at the set point
# value. In steady state there should be a flat temperature profile at ~340 K.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 105.e3
T0 = 300.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[ControlLogic]
[T_set_point]
type = GetFunctionValueControl
function = 340
[]
[pid_ctrl]
type = PIDControl
input = T_reading
set_point = T_set_point:value
K_i = 0.05
K_p = 0.2
K_d = 0.1
initial_value = 340
[]
[set_inlet_value]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = pid_ctrl:output
[]
[]
[Postprocessors]
[T_reading]
type = PointValue
point = '10 0 0'
variable = T
execute_on = timestep_begin
[]
[T_inlet]
type = PointValue
point = '0 0 0'
variable = T
execute_on = timestep_begin
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 300.0
[]
[Outputs]
[out]
type = CSV
execute_on = 'final'
[]
[console]
type = Console
max_rows = 1
[]
[]
(modules/thermal_hydraulics/test/tests/controls/delay_control/test.i)
[GlobalParams]
initial_p = 100.e3
initial_vel = 0
initial_T = 300.
closures = simple_closures
[]
[Functions]
[p0_fn]
type = PiecewiseLinear
x = '0 0.2 0.4 0.6 0.8'
y = '1e5 1.002e5 1.002e5 1.001e5 1.001e5'
[]
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 5
A = 0.01
D_h = 0.1
f = 0
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 300.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[ControlLogic]
[p0_fn_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = p0
function = p0_fn
[]
[delay_ctrl]
type = DelayControl
input = p0_inlet
tau = 0.3
initial_value = 1e5
[]
[]
[Postprocessors]
[p0_inlet_delayed]
type = RealControlDataValuePostprocessor
control_data_name = delay_ctrl:value
execute_on = 'initial timestep_end'
[]
[p0_inlet]
type = FunctionValuePostprocessor
function = p0_fn
execute_on = 'initial timestep_begin'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
start_time = 0.0
end_time = 1.0
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_steady_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 101325
initial_T = 300
initial_vel = 34.84507
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
f = 0.0
length = 1
n_elems = 10
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 102041.128
T0 = 300.615
reversible = false
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 101325
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-4
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_T0_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1.01e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '300 350'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = T0
function = inlet_T0_fn
[]
[]
[Postprocessors]
[inlet_T0]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T0
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/controls/set_bool_value_control/test.i)
# This is testing that the values set by SetBoolValueControl are used.
# The values of function T0_fn are compared to a threshold and the boolean
# result is stored into an aux field via `BooleanValueTestAux`.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[AuxVariables]
[aux]
[]
[]
[AuxKernels]
[aux_kernel]
type = BooleanValueTestAux
variable = aux
value = 1
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[threshold_ctrl]
type = UnitTripControl
condition = 'T > 347.5'
symbol_names = 'T'
symbol_values = 'T_inlet_fn:value'
[]
[set_bool_value]
type = SetBoolValueControl
parameter = AuxKernels/aux_kernel/value
value = 'threshold_ctrl:state'
[]
[]
[Postprocessors]
[aux]
type = ElementAverageValue
variable = aux
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_with_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
initial_T = T0
n_elems = 25
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
# NOTE: volume parameters are added via command-line arguments by tests file.
position = '1.02 0 0'
initial_T = T0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
initial_T = T0
n_elems = 24
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rho]
type = ElementAverageValue
variable = rhoV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ElementAverageValue
variable = rhouV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ElementAverageValue
variable = rhoEV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/jac.test.i)
# Pump data used in this test comes from the LOFT Systems Tests, described in NUREG/CR-0247
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 1
closures = simple_closures
fp = fp
f = 0
scaling_factor_1phase = '1e-2 1e-2 1e-5'
scaling_factor_rhoEV = 1e-5
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in]
type = InletStagnationPressureTemperature1Phase
input = fch1:in
p0 = 1.1e5
T0 = 300
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'fch1:out fch2:in'
position = '1 0 0'
volume = 0.3
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
use_scalar_variables = false
[]
[fch2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1.5
[]
[out]
type = Outlet1Phase
input = fch2:out
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
num_steps = 1
abort_on_solve_fail = true
dt = 0.1
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-9'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/err.missing_ics.i)
[GlobalParams]
gravity_vector = '0 0 0'
A = 1e-4
f = 0
fp = fp
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
volume = 0.1
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/recuperated_brayton_cycle.i)
# This input file models an open, recuperated Brayton cycle with a PID
# controlled start up using a coupled motor.
#
# Heat is supplied to the system by a volumetric heat source, and a second heat
# source is used to model a recuperator. The recuperator transfers heat from the
# turbine exhaust gas to the compressor outlet gas.
#
# Initially the fluid and heat structures are at rest at ambient conditions,
# and the shaft speed is zero.
# The transient is controlled as follows:
# * 0 - 2000 s: Motor increases shaft speed to approx. 85,000 RPM by PID control
# * 1000 - 8600 s: Power in main heat source increases from 0 - 104 kW
# * 2000 - 200000 s: Torque supplied by turbine increases to steady state level
# as working fluid temperature increases. Torque supplied by
# the motor is ramped down to 0 N-m transitioning shaft control
# to the turbine at its rated speed of 96,000 RPM.
I_motor = 1.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 3605
motor_ramp_down_duration = 1800
post_motor_time = 2160000
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
D6 = ${D1}
D7 = ${D1}
D8 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
A6 = ${fparse 0.25 * pi * D6^2}
A7 = ${fparse 0.25 * pi * D7^2}
A8 = ${fparse 0.25 * pi * D8^2}
recuperator_width = 0.15
L1 = 5.0
L2 = ${L1}
L3 = ${fparse 2 * L1}
L4 = ${fparse 2 * L1}
L5 = ${L1}
L6 = ${L1}
L7 = ${fparse L1 + recuperator_width}
L8 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${x3}
x5 = ${fparse x4 - L4}
x6 = ${x5}
x7 = ${fparse x6 + L6}
x8 = ${fparse x7 + L7}
y1 = 0
y2 = ${y1}
y3 = ${y2}
y4 = ${fparse y3 - L3}
y5 = ${y4}
y6 = ${fparse y5 + L5}
y7 = ${y6}
y8 = ${y7}
x1_out = ${fparse x1 + L1 - 0.001}
x2_in = ${fparse x2 + 0.001}
y5_in = ${fparse y5 + 0.001}
x6_out = ${fparse x6 + L6 - 0.001}
x7_in = ${fparse x7 + 0.001}
y8_in = ${fparse y8 + 0.001}
y8_out = ${fparse y8 + L8 - 0.001}
hot_leg_in = ${y8_in}
hot_leg_out = ${y8_out}
cold_leg_in = ${fparse y3 - 0.001}
cold_leg_out = ${fparse y3 - (L3/2) - 0.001}
n_elems1 = 5
n_elems2 = ${n_elems1}
n_elems3 = ${fparse 2 * n_elems1}
n_elems4 = ${fparse 2 * n_elems1}
n_elems5 = ${n_elems1}
n_elems6 = ${n_elems1}
n_elems7 = ${n_elems1}
n_elems8 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_ambient = 300
p_ambient = 1e5
hs_power = 105750
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = ${p_ambient}
initial_T = ${T_ambient}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = fp_air
closures = closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-5
scaling_factor_temperature = 1e-2
rdg_slope_reconstruction = none
[]
[FluidProperties]
[fp_air]
type = IdealGasFluidProperties
emit_on_nan = none
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
##########################
# Motor
##########################
# Functions for control logic that determines when to shut off the PID system
[is_tripped_fn]
type = ParsedFunction
symbol_names = 'motor_torque turbine_torque'
symbol_values = 'motor_torque turbine_torque'
expression = 'turbine_torque > motor_torque'
[]
[PID_tripped_constant_value]
type = ConstantFunction
value = 1
[]
[PID_tripped_status_fn]
type = ParsedFunction
symbol_values = 'PID_trip_status'
symbol_names = 'PID_trip_status'
expression = 'PID_trip_status'
[]
[time_fn]
type = ParsedFunction
expression = t
[]
# Shutdown function which ramps down the motor once told by the control logic
[motor_torque_fn_shutdown]
type = ParsedFunction
symbol_values = 'PID_trip_status time_trip'
symbol_names = 'PID_trip_status time_trip'
expression = 'if(PID_trip_status = 1, max(2.4 - (2.4 * ((t - time_trip) / 35000)),0.0), 1)'
[]
# Generates motor power curve
[motor_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'motor_torque shaft:omega'
[]
##########################
# Generator
##########################
# Generates generator torque curve
[generator_torque_fn]
type = ParsedFunction
expression = 'slope * t'
symbol_names = 'slope'
symbol_values = '${generator_torque_per_shaft_speed}'
[]
# Generates generator power curve
[generator_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'generator_torque shaft:omega'
[]
##########################
# Reactor
##########################
# Ramps up reactor power when activated by control logic
[power_fn]
type = PiecewiseLinear
x = '0 1000 8600'
y = '0 0 ${hs_power}'
[]
##########################
# Compressor
##########################
# compressor pressure ratios
[rp_comp1]
type = PiecewiseLinear
data_file = 'rp_comp1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp2]
type = PiecewiseLinear
data_file = 'rp_comp2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp3]
type = PiecewiseLinear
data_file = 'rp_comp3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp4]
type = PiecewiseLinear
data_file = 'rp_comp4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp5]
type = PiecewiseLinear
data_file = 'rp_comp5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# compressor efficiencies
[eff_comp1]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp2]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp3]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp4]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp5]
type = ConstantFunction
value = ${eff_comp}
[]
##########################
# Turbine
##########################
# turbine pressure ratios
[rp_turb0]
type = ConstantFunction
value = 1
[]
[rp_turb1]
type = PiecewiseLinear
data_file = 'rp_turb1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb2]
type = PiecewiseLinear
data_file = 'rp_turb2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb3]
type = PiecewiseLinear
data_file = 'rp_turb3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb4]
type = PiecewiseLinear
data_file = 'rp_turb4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb5]
type = PiecewiseLinear
data_file = 'rp_turb5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# turbine efficiency
[eff_turb1]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb2]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb3]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb4]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb5]
type = ConstantFunction
value = ${eff_turb}
[]
[]
[Components]
# system inlet pulling air from the open atmosphere
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = ${p_ambient}
T0 = ${T_ambient}
[]
# Inlet pipe
[pipe1]
type = FlowChannel1Phase
position = '${x1} ${y1} 0'
orientation = '1 0 0'
length = ${L1}
n_elems = ${n_elems1}
A = ${A1}
[]
# Compressor as defined in MAGNET PCU document (Guillen 2020)
[compressor]
type = ShaftConnectedCompressor1Phase
position = '${x2} ${y2} 0'
inlet = 'pipe1:out'
outlet = 'pipe2:in'
A_ref = ${A_ref_comp}
volume = ${V_comp}
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
# Determines which compression ratio curve and efficiency curve to use depending on ratio of speed/rated_speed
speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_comp}
inertia_coeff = '${I_comp} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
# Outlet pipe from the compressor
[pipe2]
type = FlowChannel1Phase
position = '${x2} ${y2} 0'
orientation = '1 0 0'
length = ${L2}
n_elems = ${n_elems2}
A = ${A2}
[]
# 90 degree connection between pipe 2 and 3
[junction2_cold_leg]
type = VolumeJunction1Phase
connections = 'pipe2:out cold_leg:in'
position = '${x3} ${y3} 0'
volume = ${fparse A2*0.1}
use_scalar_variables = false
[]
# Cold leg of the recuperator
[cold_leg]
type = FlowChannel1Phase
position = '${x3} ${y3} 0'
orientation = '0 -1 0'
length = ${fparse L3/2}
n_elems = ${fparse n_elems3/2}
A = ${A3}
[]
# Recuperator which transfers heat from exhaust gas to reactor inlet gas to improve thermal efficency
[recuperator]
type = HeatStructureCylindrical
orientation = '0 -1 0'
position = '${x3} ${y3} 0'
length = ${fparse L3/2}
widths = ${recuperator_width}
n_elems = ${fparse n_elems3/2}
n_part_elems = 2
names = recuperator
solid_properties = steel
solid_properties_T_ref = '300'
inner_radius = ${D1}
[]
# heat transfer from recuperator to cold leg
[heat_transfer_cold_leg]
type = HeatTransferFromHeatStructure1Phase
flow_channel = cold_leg
hs = recuperator
hs_side = OUTER
Hw = 10000
[]
# heat transfer from hot leg to recuperator
[heat_transfer_hot_leg]
type = HeatTransferFromHeatStructure1Phase
flow_channel = hot_leg
hs = recuperator
hs_side = INNER
Hw = 10000
[]
[junction_cold_leg_3]
type = JunctionOneToOne1Phase
connections = 'cold_leg:out pipe3:in'
[]
[pipe3]
type = FlowChannel1Phase
position = '${x3} ${fparse y3 - (L3/2)} 0'
orientation = '0 -1 0'
length = ${fparse L3/2}
n_elems = ${fparse n_elems3/2}
A = ${A3}
[]
# 90 degree connection between pipe 3 and 4
[junction3_4]
type = VolumeJunction1Phase
connections = 'pipe3:out pipe4:in'
position = '${x4} ${y4} 0'
volume = ${fparse A3*0.1}
use_scalar_variables = false
[]
# Pipe through the "reactor core"
[pipe4]
type = FlowChannel1Phase
position = '${x4} ${y4} 0'
orientation = '-1 0 0'
length = ${L4}
n_elems = ${n_elems4}
A = ${A4}
[]
# "Reactor Core" and it's associated heat transfer to pipe 4
[reactor]
type = HeatStructureCylindrical
orientation = '-1 0 0'
position = '${x4} ${y4} 0'
length = ${L4}
widths = 0.15
n_elems = ${n_elems4}
n_part_elems = 2
names = core
solid_properties = steel
solid_properties_T_ref = '300'
[]
[total_power]
type = TotalPower
power = 0
[]
[heat_generation]
type = HeatSourceFromTotalPower
power = total_power
hs = reactor
regions = core
[]
[heat_transfer]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe4
hs = reactor
hs_side = OUTER
Hw = 10000
[]
# 90 degree connection between pipe 4 and 5
[junction4_5]
type = VolumeJunction1Phase
connections = 'pipe4:out pipe5:in'
position = '${x5} ${y5} 0'
volume = ${fparse A4*0.1}
use_scalar_variables = false
[]
# Pipe carrying hot gas back to the PCU
[pipe5]
type = FlowChannel1Phase
position = '${x5} ${y5} 0'
orientation = '0 1 0'
length = ${L5}
n_elems = ${n_elems5}
A = ${A5}
[]
# 90 degree connection between pipe 5 and 6
[junction5_6]
type = VolumeJunction1Phase
connections = 'pipe5:out pipe6:in'
position = '${x6} ${y6} 0'
volume = ${fparse A5*0.1}
use_scalar_variables = false
[]
# Inlet pipe to the turbine
[pipe6]
type = FlowChannel1Phase
position = '${x6} ${y6} 0'
orientation = '1 0 0'
length = ${L6}
n_elems = ${n_elems6}
A = ${A6}
[]
# Turbine as defined in MAGNET PCU document (Guillen 2020) and (Wright 2006)
[turbine]
type = ShaftConnectedCompressor1Phase
position = '${x7} ${y7} 0'
inlet = 'pipe6:out'
outlet = 'pipe7:in'
A_ref = ${A_ref_turb}
volume = ${V_turb}
# A turbine is treated as an "inverse" compressor, this value determines if component is to be treated as turbine or compressor
# If treat_as_turbine is omitted, code automatically assumes it is a compressor
treat_as_turbine = true
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
# Determines which compression ratio curve and efficiency curve to use depending on ratio of speed/rated_speed
speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_turb}
inertia_coeff = '${I_turb} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
# Outlet pipe from turbine
[pipe7]
type = FlowChannel1Phase
position = '${x7} ${y7} 0'
orientation = '1 0 0'
length = ${L7}
n_elems = ${n_elems7}
A = ${A7}
[]
# 90 degree connection between pipe 7 and 8
[junction7_hot_leg]
type = VolumeJunction1Phase
connections = 'pipe7:out hot_leg:in'
position = '${x8} ${y8} 0'
volume = ${fparse A7*0.1}
use_scalar_variables = false
[]
# Hot leg of the recuperator
[hot_leg]
type = FlowChannel1Phase
position = '${x8} ${y8} 0'
orientation = '0 1 0'
length = ${L8}
n_elems = ${n_elems8}
A = ${A8}
[]
# System outlet dumping exhaust gas to the atmosphere
[outlet]
type = Outlet1Phase
input = 'hot_leg:out'
p = ${p_ambient}
[]
# Roatating shaft connecting motor, compressor, turbine, and generator
[shaft]
type = Shaft
connected_components = 'motor compressor turbine generator'
initial_speed = ${speed_initial}
[]
# 3-Phase electircal motor used for system start-up, controlled by PID
[motor]
type = ShaftConnectedMotor
inertia = ${I_motor}
torque = 0 # controlled
[]
# Electric generator supplying power to the grid
[generator]
type = ShaftConnectedMotor
inertia = ${I_generator}
torque = generator_torque_fn
[]
[]
# Control logics which govern startup of the motor, startup of the "reactor core", and shutdown of the motor
[ControlLogic]
# Sets desired shaft speed to be reached by motor NOTE: SHOULD BE SET LOWER THAN RATED TURBINE RPM
[set_point]
type = GetFunctionValueControl
function = ${fparse speed_rated_rpm - 9000}
[]
# PID with gains determined by iterative process NOTE: Gain values are system specific
[initial_motor_PID]
type = PIDControl
set_point = set_point:value
input = shaft_RPM
initial_value = 0
K_p = 0.0011
K_i = 0.00000004
K_d = 0
[]
# Determines when the PID system should be running and when it should begin the shutdown cycle. If needed: PID output, else: shutdown function
[logic]
type = ParsedFunctionControl
function = 'if(motor+0.5 > turb, PID, shutdown_fn)'
symbol_names = 'motor turb PID shutdown_fn'
symbol_values = 'motor_torque turbine_torque initial_motor_PID:output motor_torque_fn_shutdown'
[]
# Takes the output generated in [logic] and applies it to the motor torque
[motor_PID]
type = SetComponentRealValueControl
component = motor
parameter = torque
value = logic:value
[]
# Determines when to turn on heat source
[power_logic]
type = ParsedFunctionControl
function = 'power_fn'
symbol_names = 'power_fn'
symbol_values = 'power_fn'
[]
# Applies heat source to the total_power block
[power_applied]
type = SetComponentRealValueControl
component = total_power
parameter = power
value = power_logic:value
[]
[]
[Controls]
# Enables set_PID_tripped
[PID_trip_status]
type = ConditionalFunctionEnableControl
conditional_function = is_tripped_fn
enable_objects = 'AuxScalarKernels::PID_trip_status_aux'
execute_on = 'TIMESTEP_END'
[]
# Enables set_time_PID
[time_PID]
type = ConditionalFunctionEnableControl
conditional_function = PID_tripped_status_fn
disable_objects = 'AuxScalarKernels::time_trip_aux'
execute_on = 'TIMESTEP_END'
[]
[]
[AuxVariables]
# Creates a variable that will later be set to the time when tau_turbine > tau_motor
[time_trip]
order = FIRST
family = SCALAR
[]
# Creates variable which indicates if tau_turbine > tau_motor....... If tau_motor > tau_turbine, 0, else 1
[PID_trip_status]
order = FIRST
family = SCALAR
initial_condition = 0
[]
[]
[AuxScalarKernels]
# Creates variable from time_fn which indicates when tau_turbine > tau_motor
[time_trip_aux]
type = FunctionScalarAux
function = time_fn
variable = time_trip
execute_on = 'TIMESTEP_END'
[]
# Overwrites variable PID_trip_status to the value from PID_tripped_constant_value (changes 0 to 1)
[PID_trip_status_aux]
type = FunctionScalarAux
function = PID_tripped_constant_value
variable = PID_trip_status
execute_on = 'TIMESTEP_END'
enable = false
[]
[]
[Postprocessors]
# Indicates when tau_turbine > tau_motor
[trip_time]
type = ScalarVariable
variable = time_trip
execute_on = 'TIMESTEP_END'
[]
##########################
# Motor
##########################
[motor_torque]
type = RealComponentParameterValuePostprocessor
component = motor
parameter = torque
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_power]
type = FunctionValuePostprocessor
function = motor_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# generator
##########################
[generator_torque]
type = ShaftConnectedComponentPostprocessor
quantity = torque
shaft_connected_component_uo = generator:shaftconnected_uo
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_power]
type = FunctionValuePostprocessor
function = generator_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# Shaft
##########################
# Speed in rad/s
[shaft_speed]
type = ScalarVariable
variable = 'shaft:omega'
execute_on = 'INITIAL TIMESTEP_END'
[]
# speed in RPM
[shaft_RPM]
type = ParsedPostprocessor
pp_names = 'shaft_speed'
expression = '(shaft_speed * 60) /( 2 * ${fparse pi})'
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# Compressor
##########################
[comp_dissipation_torque]
type = ElementAverageValue
variable = dissipation_torque
block = 'compressor'
execute_on = 'INITIAL TIMESTEP_END'
[]
[comp_isentropic_torque]
type = ElementAverageValue
variable = isentropic_torque
block = 'compressor'
execute_on = 'INITIAL TIMESTEP_END'
[]
[comp_friction_torque]
type = ElementAverageValue
variable = friction_torque
block = 'compressor'
execute_on = 'INITIAL TIMESTEP_END'
[]
[compressor_torque]
type = ParsedPostprocessor
pp_names = 'comp_dissipation_torque comp_isentropic_torque comp_friction_torque'
expression = 'comp_dissipation_torque + comp_isentropic_torque + comp_friction_torque'
[]
[p_in_comp]
type = PointValue
variable = p
point = '${x1_out} ${y1} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_comp]
type = PointValue
variable = p
point = '${x2_in} ${y2} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_comp]
type = ParsedPostprocessor
pp_names = 'p_in_comp p_out_comp'
expression = 'p_out_comp / p_in_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_in_comp]
type = PointValue
variable = T
point = '${x1_out} ${y1} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_out_comp]
type = PointValue
variable = T
point = '${x2_in} ${y2} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_ratio_comp]
type = ParsedPostprocessor
pp_names = 'T_in_comp T_out_comp'
expression = '(T_out_comp - T_in_comp) / T_out_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_comp]
type = ADFlowJunctionFlux1Phase
boundary = pipe1:out
connection_index = 0
equation = mass
junction = compressor
[]
##########################
# turbine
##########################
[turb_dissipation_torque]
type = ElementAverageValue
variable = dissipation_torque
block = 'turbine'
execute_on = 'INITIAL TIMESTEP_END'
[]
[turb_isentropic_torque]
type = ElementAverageValue
variable = isentropic_torque
block = 'turbine'
execute_on = 'INITIAL TIMESTEP_END'
[]
[turb_friction_torque]
type = ElementAverageValue
variable = friction_torque
block = 'turbine'
execute_on = 'INITIAL TIMESTEP_END'
[]
[turbine_torque]
type = ParsedPostprocessor
pp_names = 'turb_dissipation_torque turb_isentropic_torque turb_friction_torque'
expression = 'turb_dissipation_torque + turb_isentropic_torque + turb_friction_torque'
[]
[p_in_turb]
type = PointValue
variable = p
point = '${x6_out} ${y6} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_turb]
type = PointValue
variable = p
point = '${x7_in} ${y7} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_turb]
type = ParsedPostprocessor
pp_names = 'p_in_turb p_out_turb'
expression = 'p_in_turb / p_out_turb'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_in_turb]
type = PointValue
variable = T
point = '${x6_out} ${y6} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_out_turb]
type = PointValue
variable = T
point = '${x7_in} ${y7} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_turb]
type = ADFlowJunctionFlux1Phase
boundary = pipe6:out
connection_index = 0
equation = mass
junction = turbine
[]
##########################
# Recuperator
##########################
[cold_leg_in]
type = PointValue
variable = T
point = '${x3} ${cold_leg_in} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[cold_leg_out]
type = PointValue
variable = T
point = '${x3} ${cold_leg_out} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[hot_leg_in]
type = PointValue
variable = T
point = '${x8} ${hot_leg_in} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[hot_leg_out]
type = PointValue
variable = T
point = '${x8} ${hot_leg_out} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# Reactor
##########################
[reactor_inlet]
type = PointValue
variable = T
point = '${x4} ${y4} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[reactor_outlet]
type = PointValue
variable = T
point = '${x5} ${y5_in} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = ${t3}
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.1
cutback_factor = 0.9
[]
dtmin = 1e-5
dtmax = 1000
steady_state_detection = true
steady_state_start_time = 200000
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[e]
type = Exodus
file_base = 'recuperated_brayton_cycle_out'
[]
[csv]
type = CSV
file_base = 'recuperated_brayton_cycle'
execute_vector_postprocessors_on = 'INITIAL'
[]
[console]
type = Console
show = 'shaft_speed p_ratio_comp p_ratio_turb pressure_ratio pressure_ratio'
[]
[]
(modules/thermal_hydraulics/test/tests/controls/set_real_value_control/test.i)
# This is testing that the values set by SetRealValueControl are used.
# The values of function T0_fn are set into an aux-field `aux`. Then,
# we compute the average value of this field in a postprocessor. It
# should be equal to the value of T0_fn.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[AuxVariables]
[aux]
[]
[]
[AuxKernels]
[aux_kernel]
type = ConstantAux
variable = aux
value = 350
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[set_inlet_value]
type = SetRealValueControl
parameter = AuxKernels/aux_kernel/value
value = T_inlet_fn:value
[]
[]
[Postprocessors]
[aux]
type = ElementAverageValue
variable = aux
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/controls/set_component_bool_value_control/test.i)
# This is testing that the values set by SetComponentBoolValueControl are used.
# The `trip_ctrl` component produces a boolean value that is set in the
# `turbine` component to switch it on/off.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'fch1:in'
p0 = 100.e3
T0 = 350.
[]
[fch1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[turbine]
type = SimpleTurbine1Phase
position = '1 0 0'
connections = 'fch1:out fch2:in'
volume = 1
on = false
power = 1
use_scalar_variables = false
[]
[fch2]
type = FlowChannel1Phase
fp = fp
position = '1 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[outlet]
type = Outlet1Phase
input = 'fch2:out'
p = 100.0e3
[]
[]
[Functions]
[trip_fn]
type = PiecewiseLinear
xy_data = '
0 1
1 2'
[]
[]
[ControlLogic]
[trip_ctrl]
type = UnitTripControl
condition = 'val > 1.5'
symbol_names = 'val'
symbol_values = 'trip_fn'
[]
[set_comp_value]
type = SetComponentBoolValueControl
component = turbine
parameter = on
value = trip_ctrl:state
[]
[]
[Postprocessors]
[on_ctrl]
type = BoolComponentParameterValuePostprocessor
component = turbine
parameter = on
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = NEWTON
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-5
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
[]
[Outputs]
[out]
type = CSV
show = 'on_ctrl'
[]
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
# This input file is used to demonstrate a simple open-air Brayton cycle using
# a compressor, turbine, shaft, motor, and generator.
# The flow length is divided into 5 segments as illustrated below, where
# - "(I)" denotes the inlet
# - "(C)" denotes the compressor
# - "(T)" denotes the turbine
# - "(O)" denotes the outlet
# - "*" denotes a fictitious junction
#
# Heated section
# (I)-----(C)-----*--------------*-----(T)-----(O)
# 1 2 3 4 5
#
# Initially the fluid is at rest at ambient conditions, the shaft speed is zero,
# and no heat transfer occurs with the system.
# The transient is controlled as follows:
# * 0 - 100 s: motor ramps up torque linearly from zero
# * 100 - 200 s: motor ramps down torque linearly to zero, HTC ramps up linearly from zero.
# * 200 - 300 s: (no changes; should approach steady condition)
I_motor = 1.0
motor_torque_max = 400.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 100.0
motor_ramp_down_duration = 100.0
post_motor_time = 100.0
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
L1 = 10.0
L2 = ${L1}
L3 = ${L1}
L4 = ${L1}
L5 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${fparse x3 + L3}
x5 = ${fparse x4 + L4}
x2_minus = ${fparse x2 - 0.001}
x2_plus = ${fparse x2 + 0.001}
x5_minus = ${fparse x5 - 0.001}
x5_plus = ${fparse x5 + 0.001}
n_elems1 = 10
n_elems2 = ${n_elems1}
n_elems3 = ${n_elems1}
n_elems4 = ${n_elems1}
n_elems5 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_hot = 1000
T_ambient = 300
p_ambient = 1e5
[GlobalParams]
orientation = '1 0 0'
gravity_vector = '0 0 0'
initial_p = ${p_ambient}
initial_T = ${T_ambient}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = fp_air
closures = closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
rdg_slope_reconstruction = none
[]
[Functions]
[motor_torque_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 ${motor_torque_max} 0'
[]
[motor_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'motor_torque shaft:omega'
[]
[generator_torque_fn]
type = ParsedFunction
expression = 'slope * t'
symbol_names = 'slope'
symbol_values = '${generator_torque_per_shaft_speed}'
[]
[generator_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'generator_torque shaft:omega'
[]
[htc_wall_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 0 1e3'
[]
[]
[FluidProperties]
[fp_air]
type = IdealGasFluidProperties
emit_on_nan = none
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[shaft]
type = Shaft
connected_components = 'motor compressor turbine generator'
initial_speed = ${speed_initial}
[]
[motor]
type = ShaftConnectedMotor
inertia = ${I_motor}
torque = 0 # controlled
[]
[generator]
type = ShaftConnectedMotor
inertia = ${I_generator}
torque = generator_torque_fn
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = ${p_ambient}
T0 = ${T_ambient}
[]
[pipe1]
type = FlowChannel1Phase
position = '${x1} 0 0'
length = ${L1}
n_elems = ${n_elems1}
A = ${A1}
[]
[compressor]
type = ShaftConnectedCompressor1Phase
position = '${x2} 0 0'
inlet = 'pipe1:out'
outlet = 'pipe2:in'
A_ref = ${A_ref_comp}
volume = ${V_comp}
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_comp}
inertia_coeff = '${I_comp} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '${x2} 0 0'
length = ${L2}
n_elems = ${n_elems2}
A = ${A2}
[]
[junction2_3]
type = JunctionOneToOne1Phase
connections = 'pipe2:out pipe3:in'
[]
[pipe3]
type = FlowChannel1Phase
position = '${x3} 0 0'
length = ${L3}
n_elems = ${n_elems3}
A = ${A3}
[]
[junction3_4]
type = JunctionOneToOne1Phase
connections = 'pipe3:out pipe4:in'
[]
[pipe4]
type = FlowChannel1Phase
position = '${x4} 0 0'
length = ${L4}
n_elems = ${n_elems4}
A = ${A4}
[]
[turbine]
type = ShaftConnectedCompressor1Phase
position = '${x5} 0 0'
inlet = 'pipe4:out'
outlet = 'pipe5:in'
A_ref = ${A_ref_turb}
volume = ${V_turb}
treat_as_turbine = true
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_turb}
inertia_coeff = '${I_turb} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
[pipe5]
type = FlowChannel1Phase
position = '${x5} 0 0'
length = ${L5}
n_elems = ${n_elems5}
A = ${A5}
[]
[outlet]
type = Outlet1Phase
input = 'pipe5:out'
p = ${p_ambient}
[]
[heating]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe3
T_wall = ${T_hot}
Hw = htc_wall_fn
[]
[]
[ControlLogic]
[motor_ctrl]
type = TimeFunctionComponentControl
component = motor
parameter = torque
function = motor_torque_fn
[]
[]
[Postprocessors]
[heating_rate]
type = ADHeatRateConvection1Phase
block = 'pipe3'
T = T
T_wall = T_wall
Hw = Hw
P_hf = P_hf
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_torque]
type = RealComponentParameterValuePostprocessor
component = motor
parameter = torque
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_power]
type = FunctionValuePostprocessor
function = motor_power_fn
execute_on = 'INITIAL TIMESTEP_END'
indirect_dependencies = 'motor_torque shaft:omega'
[]
[generator_torque]
type = ShaftConnectedComponentPostprocessor
quantity = torque
shaft_connected_component_uo = generator:shaftconnected_uo
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_power]
type = FunctionValuePostprocessor
function = generator_power_fn
execute_on = 'INITIAL TIMESTEP_END'
indirect_dependencies = 'generator_torque shaft:omega'
[]
[shaft_speed]
type = ScalarVariable
variable = 'shaft:omega'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_comp]
type = PointValue
variable = p
point = '${x2_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_comp]
type = PointValue
variable = p
point = '${x2_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_comp]
type = ParsedPostprocessor
pp_names = 'p_in_comp p_out_comp'
expression = 'p_out_comp / p_in_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_turb]
type = PointValue
variable = p
point = '${x5_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_turb]
type = PointValue
variable = p
point = '${x5_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_turb]
type = ParsedPostprocessor
pp_names = 'p_in_turb p_out_turb'
expression = 'p_in_turb / p_out_turb'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_comp]
type = ADFlowJunctionFlux1Phase
boundary = pipe1:out
connection_index = 0
equation = mass
junction = compressor
[]
[mfr_turb]
type = ADFlowJunctionFlux1Phase
boundary = pipe4:out
connection_index = 0
equation = mass
junction = turbine
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = ${t3}
dt = 0.1
abort_on_solve_fail = true
solve_type = NEWTON
nl_rel_tol = 1e-50
nl_abs_tol = 1e-11
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
[Outputs]
[csv]
type = CSV
file_base = 'open_brayton_cycle'
execute_vector_postprocessors_on = 'INITIAL'
[]
[console]
type = Console
show = 'shaft_speed p_ratio_comp p_ratio_turb compressor:pressure_ratio turbine:pressure_ratio'
[]
[]
[Functions]
# compressor pressure ratio
[rp_comp1]
type = PiecewiseLinear
data_file = 'rp_comp1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp2]
type = PiecewiseLinear
data_file = 'rp_comp2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp3]
type = PiecewiseLinear
data_file = 'rp_comp3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp4]
type = PiecewiseLinear
data_file = 'rp_comp4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp5]
type = PiecewiseLinear
data_file = 'rp_comp5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# compressor efficiency
[eff_comp1]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp2]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp3]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp4]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp5]
type = ConstantFunction
value = ${eff_comp}
[]
# turbine pressure ratio
[rp_turb0]
type = ConstantFunction
value = 1
[]
[rp_turb1]
type = PiecewiseLinear
data_file = 'rp_turb1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb2]
type = PiecewiseLinear
data_file = 'rp_turb2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb3]
type = PiecewiseLinear
data_file = 'rp_turb3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb4]
type = PiecewiseLinear
data_file = 'rp_turb4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb5]
type = PiecewiseLinear
data_file = 'rp_turb5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# turbine efficiency
[eff_turb1]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb2]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb3]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb4]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb5]
type = ConstantFunction
value = ${eff_turb}
[]
[]
(modules/thermal_hydraulics/test/tests/controls/get_function_value_control/test.i)
# This is testing that the values obtained by GetFunctionValueControl are used.
# Function T0_fn prescribes values for T_inlet_fn control. We output the function
# values via a postprocessor `T_fn` and the control data values via another
# postprocessor `T_ctrl`. Those two values have to be equal.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[]
[Postprocessors]
[T_fn]
type = FunctionValuePostprocessor
function = T0_fn
[]
[T_ctrl]
type = RealControlDataValuePostprocessor
control_data_name = T_inlet_fn:value
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/controls/dependency/test.i)
# This is testing that controls are executed in the correct order
#
# If controls are executed in the right order, then T_inlet_ctrl
# reads the value of temperature (T = 345 K) from a function. Then
# this value is set into the BC and then is it sampled by a
# postprocessor whose value is then written into a CSV file.
#
# If controls were executed in the wrong order, we would sample the
# stagnation temperature function at time t = 0, which would give
# T = 360 K back, and we would see this value in the CSV file instead.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 355.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Functions]
# Stagnation temperature in time
[T0_fn]
type = PiecewiseLinear
x = '0 1e-5'
y = '360 345'
[]
[]
[ControlLogic]
[set_inlet_value_ctrl]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = T_inlet_ctrl:value
[]
[T_inlet_ctrl]
type = GetFunctionValueControl
function = T0_fn
[]
[]
[Postprocessors]
[T_ctrl]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T0
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-5
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_p0_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_p0_fn]
type = PiecewiseLinear
x = '0 1'
y = '1e5 1.001e5'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = p0
function = inlet_p0_fn
[]
[]
[Postprocessors]
[inlet_p0]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = p0
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/controls/set_component_real_value_control/test.i)
# This is testing that the values set by SetComponentRealValueControl are used.
# Function T0_fn prescribes values for T0 at inlet. We output the function
# values via a postprocessor `T_fn` and the inlet values via another
# postprocessor `T_ctrl`. Those two values have to be equal.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[set_inlet_value]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = T_inlet_fn:value
[]
[]
[Postprocessors]
[T_fn]
type = FunctionValuePostprocessor
function = T0_fn
[]
[T_ctrl]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T0
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
tot_power = 2000 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = simple_closures
fp = he
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = '${A_core}'
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 0 1'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionOneToOne1Phase
connections = 'down_pipe_1:out cooling_pipe:in'
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = 1.5
n_elems = 25
A = ${A_pipe}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
P_hf = '${fparse pi * pipe_dia}'
[]
[jct7]
type = JunctionOneToOne1Phase
connections = 'cooling_pipe:out down_pipe_2:in'
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct10]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[pump_head]
type = RealComponentParameterValuePostprocessor
component = pump
parameter = head
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 0
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/phy.reversed_flow.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.1
length = 1
n_elems = 20
[]
[in]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = -0.18
T = 444.447
[]
[out]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:out'
p0 = 7e6
T0 = 444.447
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
num_steps = 30
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
abort_on_solve_fail = true
[]
[Outputs]
[exodus]
type = Exodus
file_base = phy.reversed_flow
show = 'rhouA T p'
[]
[]
(modules/thermal_hydraulics/test/tests/controls/copy_postprocessor_value_control/test.i)
# This is testing that the values copied by CopyPostprocessorValueControl are used.
# A postprocessor T_pt samples value at point (0, 0, 0), those values are then
# read in by CopyPostprocessorValueControl and then we output this value. The values
# are lagged by one time step, because controls are executed at the beginning
# of the time step and postprocessors at the end of the time step. Note that
# CopyPostprocessorValueControl is added when a postprocessor is created. That's why
# you do not see the object in this input file.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 340.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Postprocessors]
[T_pt]
type = SideAverageValue
boundary = pipe1:in
variable = T
execute_on = 'initial timestep_end'
[]
[T_ctrl]
type = RealControlDataValuePostprocessor
control_data_name = T_pt
execute_on = timestep_end
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-5
num_steps = 3
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_loop.i)
[GlobalParams]
initial_T = 300
initial_p = 1e5
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_1phase = '1 1 1'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1a]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 0.5
n_elems = 2
[]
[pipe1b]
type = FlowChannel1Phase
fp = fp
position = '0.5 0 0'
orientation = '1 0 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 0.5
n_elems = 2
[]
[pipe2]
type = FlowChannel1Phase
fp = fp
position = '1 0 0'
orientation = '0 1 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 1
n_elems = 3
[]
[pipe3]
type = FlowChannel1Phase
fp = fp
position = '1 1 0'
orientation = '-1 0 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 1
n_elems = 3
[]
[pipe4]
type = FlowChannel1Phase
fp = fp
position = '0 1 0'
orientation = '0 -1 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 1
n_elems = 3
[]
[pipe5]
type = FlowChannel1Phase
fp = fp
position = '1 1 0'
orientation = '0 1 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 0.5
n_elems = 3
[]
[pump]
type = Pump1Phase
connections = 'pipe1a:out pipe1b:in'
head = 1.0
position = '0.5 0 0'
volume = 0.785398163e-3
A_ref = 0.785398163e-4
use_scalar_variables = false
[]
[junction1]
type = VolumeJunction1Phase
connections = 'pipe1b:out pipe2:in'
volume = 0.785398163e-3
position = '1 0 0'
use_scalar_variables = false
[]
[junction2]
type = VolumeJunction1Phase
connections = 'pipe2:out pipe3:in pipe5:in'
volume = 0.785398163e-3
position = '1 1 0'
use_scalar_variables = false
[]
[junction3]
type = VolumeJunction1Phase
connections = 'pipe3:out pipe4:in'
volume = 0.785398163e-3
position = '0 1 0'
use_scalar_variables = false
[]
[junction4]
type = VolumeJunction1Phase
connections = 'pipe4:out pipe1a:in'
volume = 0.785398163e-3
position = '0 0 0'
use_scalar_variables = false
[]
[outlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe5:out'
p0 = 1.e5
T0 = 300
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
num_steps = 10
dt = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = gauss
order = second
[]
[]
[Outputs]
[out]
type = Exodus
show = 'rhouA p'
execute_on = 'initial final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.not_a_hs.i)
[GlobalParams]
initial_p = 15.5e6
initial_vel = 2
initial_T = 560
scaling_factor_1phase = '1 1 1'
scaling_factor_temperature = '1'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.865
n_elems = 1
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = inlet # wrong
hs_side = outer
flow_channel = pipe
Hw = 5.33e4
P_hf = 0.029832559676
[]
[hx2]
type = HeatTransferFromHeatStructure1Phase
hs = asdf # wrong
hs_side = outer
flow_channel = pipe
Hw = 5.33e4
P_hf = 0.029832559676
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 15.5e6
T0 = 560
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 15e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 1
l_tol = 1e-3
l_max_its = 30
start_time = 0.0
num_steps = 20
[]
(modules/thermal_hydraulics/test/tests/closures/simple_1phase/err.missing_f_1phase.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_vel = 0
initial_p = 1e5
initial_T = 300
closures = simple_closures
[]
[FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = water
position = '0 0 0'
orientation = '1 0 0'
A = 1.
length = 1
n_elems = 10
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 10
T0 = 10
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 10
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/phy.reversed_flow.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
f = 0.0
length = 1
n_elems = 100
[]
[in]
type = InletVelocityTemperature1Phase
input = 'pipe:in'
vel = -1.0
T = 444.447
[]
[out]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:out'
p0 = 7e6
T0 = 444.447
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
end_time = 5
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
abort_on_solve_fail = true
[]
[Outputs]
[exodus]
type = Exodus
file_base = phy.reversed_flow
show = 'vel T p'
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/outlet_1phase/clg.ctrl_p_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[outlet_p_fn]
type = PiecewiseLinear
x = '0 1'
y = '1e5 1.001e5'
[]
[]
[ControlLogic]
[set_outlet_value]
type = TimeFunctionComponentControl
component = outlet
parameter = p
function = outlet_p_fn
[]
[]
[Postprocessors]
[outlet_p]
type = RealComponentParameterValuePostprocessor
component = outlet
parameter = p
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_no_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
#
# This input file has no junction and is used for comparison to the results with
# a junction.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 2
initial_T = T0
n_elems = 50
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rhoA]
type = PointValue
variable = rhoA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhouA]
type = PointValue
variable = rhouA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhoEA]
type = PointValue
variable = rhoEA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rho]
type = ScalePostprocessor
value = junction_rhoA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ScalePostprocessor
value = junction_rhouA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ScalePostprocessor
value = junction_rhoEA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
show = 'junction_rho junction_rhou junction_rhoE'
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/controls/error_checking/non_existent_control_data.i)
# This test makes sure that we error out when a control object requests a data
# that were not declared
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 105.e3
T0 = 300.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[ControlLogic]
[set_inlet_value]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = wrong # this does not exist
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.5
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_no_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
#
# This input file has no junction and is used for comparison to the results with
# a junction.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 2
initial_T = T0
n_elems = 50
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rhoA]
type = PointValue
variable = rhoA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhouA]
type = PointValue
variable = rhouA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhoEA]
type = PointValue
variable = rhoEA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rho]
type = ScalePostprocessor
value = junction_rhoA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ScalePostprocessor
value = junction_rhouA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ScalePostprocessor
value = junction_rhoEA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
show = 'junction_rho junction_rhou junction_rhoE'
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_with_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
initial_T = T0
n_elems = 25
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
volume = 1.0
initial_T = T0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
use_scalar_variables = false
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
initial_T = T0
n_elems = 24
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rho]
type = ElementAverageValue
variable = rhoV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ElementAverageValue
variable = rhouV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ElementAverageValue
variable = rhoEV
block = 'junction'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.1phase.i)
[GlobalParams]
initial_p = 1e5
initial_vel = 0
initial_T = 300
closures = simple_closures
[]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0.1 0'
orientation = '0 0 1'
length = 4
n_elems = 2
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = 4
n_elems = 2
names = 'fuel'
widths = '0.1'
n_part_elems = '1'
solid_properties = 'fuel-mat'
solid_properties_T_ref = '300'
initial_T = 300
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe
P_hf = 0.029832559676
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1.e-5
solve_type = 'NEWTON'
num_steps = 1
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_transient_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 101325
initial_T = 300
initial_vel = 0
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
f = 0.0
length = 1
n_elems = 10
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 102041.128
T0 = 300.615
reversible = false
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 101325
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-4
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-7
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.overspecified.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_vel = 0
initial_p = 1e5
initial_T = 300
closures = simple_closures
[]
[FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = water
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
[]
[inlet1]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 10
T0 = 10
[]
[inlet2]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 11
T0 = 10
[]
[outlet1]
type = Outlet1Phase
input = 'pipe:out'
p = 10
[]
[outlet2]
type = Outlet1Phase
input = 'pipe:out'
p = 11
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
reversible
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:True for reversible, false for pure inlet