- hsHeat structure in which to apply heat source
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:Heat structure in which to apply heat source
- powerComponent that provides total power
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:Component that provides total power
- regionsHeat structure regions where heat generation is to be applied
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Heat structure regions where heat generation is to be applied
HeatSourceFromTotalPower
This component is a heat structure heat source from a total power , provided by a power component. A fraction of this total power may be specified, as well as a shape function if a non-uniform distribution is desired.
Usage
The user must supply the name of the heat structure via the parameter "hs" and then the applicable regions of the heat structure using the "regions" parameter. For a 2D heat structure, "regions" may include any set of the heat structure's names
parameter. For HeatStructureFromFile3D, "regions" may include any set of blocks existing in the mesh file.
The user is required to specify the name of a power component via the "power" parameter. This power can be scaled with the parameter "power_fraction". If a non-uniform power distribution is desired, the parameter "power_shape_function" may be used to specify a spatial shape function, which gets normalized internally.
Input Parameters
- power_fraction1Fraction of the total power that goes into the heat structure [-]
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Fraction of the total power that goes into the heat structure [-]
- power_shape_functionAxial power shape [-]
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Axial power shape [-]
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Formulation
The heat conduction equation is the following: where
is density,
is specific heat capacity,
is thermal conductivity,
is temperature, and
is a volumetric heat source.
Multiplying by a test function and integrating by parts over the domain gives where is the boundary of the domain .
The power density from this component is the following:
where denotes the discrete approximation to
where is the heat source domain. Note that the discrete integral of the power density over is exactly equal to .
Input Files
- (modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
- (modules/thermal_hydraulics/test/tests/components/heat_structure_cylindrical/part_base.i)
- (modules/thermal_hydraulics/test/tests/components/heat_structure_base/2nd_order.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.conservation.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.plate.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.cylinder_power_shape_fn.i)
- (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/recuperated_brayton_cycle.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/heat_structure_base/err.no_2nd_order_with_trap.i)
- (modules/thermal_hydraulics/test/tests/components/heat_structure_cylindrical/steady.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.conservation_from_file_3d.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/err.base.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
hs
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:Heat structure in which to apply heat source
regions
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Heat structure regions where heat generation is to be applied
regions
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Heat structure regions where heat generation is to be applied
regions
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Heat structure regions where heat generation is to be applied
power
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:Component that provides total power
power_fraction
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Fraction of the total power that goes into the heat structure [-]
power_shape_function
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Axial power shape [-]
(modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
tot_power = 2000 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = simple_closures
fp = he
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = '${A_core}'
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 0 1'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionOneToOne1Phase
connections = 'down_pipe_1:out cooling_pipe:in'
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = 1.5
n_elems = 25
A = ${A_pipe}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
P_hf = '${fparse pi * pipe_dia}'
[]
[jct7]
type = JunctionOneToOne1Phase
connections = 'cooling_pipe:out down_pipe_2:in'
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct10]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[pump_head]
type = RealComponentParameterValuePostprocessor
component = pump
parameter = head
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 0
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
10 ${m_dot_sec_in}'
[]
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[none_closures]
type = Closures1PhaseNone
[]
[]
[Materials]
[Re_mat]
type = ADReynoldsNumberMaterial
Re = Re
rho = rho
vel = vel
D_h = D_h
mu = mu
block = hx/pri
[]
[f_mat]
type = ADParsedMaterial
property_name = f_D
constant_names = 'a b c'
constant_expressions = '1 0.1 -0.5'
material_property_names = 'Re'
expression = 'a + b * Re^c'
block = hx/pri
[]
[Pr_mat]
type = ADPrandtlNumberMaterial
Pr = Pr
cp = cp
mu = mu
k = k
block = hx/pri
[]
[Nu_mat]
type = ADParsedMaterial
property_name = 'Nu'
constant_names = 'a b c'
constant_expressions = '0.03 0.9 0.5'
material_property_names = 'Re Pr'
expression = 'a * Re ^b * Pr^c'
block = hx/pri
[]
[Hw_mat]
type = ADConvectiveHeatTransferCoefficientMaterial
D_h = D_h
k = k
Nu = Nu
Hw = Hw
block = hx/pri
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = ${A_core}
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 1 0'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionParallelChannels1Phase
position = '1 0 1.75'
connections = 'down_pipe_1:out hx/pri:in'
volume = 1e-5
use_scalar_variables = false
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
roughness = 1e-5
A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
D_h = ${hx_dia_inner}
closures = none_closures
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
P_hf = '${fparse pi * hx_dia_inner}'
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
solid_properties = 'steel'
solid_properties_T_ref = '300'
names = '0'
inner_radius = '${fparse hx_dia_inner / 2.}'
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = '${fparse 2 * pi * hx_radius_wall}'
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 0.25'
orientation = '0 0 1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
fp = water
initial_T = 300
[]
[]
[jct7]
type = JunctionParallelChannels1Phase
position = '1 0 0.5'
connections = 'hx/pri:out down_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct9]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:in'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:out'
p = 1e5
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0.0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[m_dot_sec]
type = ADFlowBoundaryFlux1Phase
boundary = inlet_sec
equation = mass
[]
[Hw_hx_pri]
type = ADElementAverageMaterialProperty
mat_prop = Hw
block = hx/pri
[]
[fD_hx_pri]
type = ADElementAverageMaterialProperty
mat_prop = f_D
block = hx/pri
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_structure_cylindrical/part_base.i)
[Functions]
[power_profile_fn]
type = ParsedFunction
expression = '1.570796326794897 * sin(x / 3.6576 * pi)'
[]
[]
[Components]
[reactor]
type = TotalPower
power = 296153.84615384615385
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 1'
orientation = '1 0 0'
length = 3.6576
n_elems = 20
names = 'FUEL GAP CLAD'
widths = '0.0046955 0.0000955 0.000673'
n_part_elems = '3 1 1'
initial_T = 564.15
[]
[hg]
type = HeatSourceFromTotalPower
hs = hs
regions = 'FUEL'
power_fraction = 3.33672612e-1
power = reactor
power_shape_function = power_profile_fn
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = 600
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 2
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-4
l_max_its = 300
[]
[Outputs]
file_base = transient
exodus = true
[console]
type = Console
execute_scalars_on = none
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_structure_base/2nd_order.i)
# This tests ensures that 2nd-order meshes can be used; it checks for the
# "Solve Converged" string at the end of a time step.
[GlobalParams]
2nd_order_mesh = true
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 3.65
cp = 288.734
rho = 1.0412e2
[]
[gap-mat]
type = ThermalFunctionSolidProperties
k = 1.084498
cp = 1.0
rho = 1.0
[]
[clad-mat]
type = ThermalFunctionSolidProperties
k = 16.48672
cp = 321.384
rho = 6.6e1
[]
[]
[Components]
[reactor]
type = TotalPower
power = 296153.84615384615385
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
names = 'FUEL GAP CLAD'
widths = '0.0046955 0.0000955 0.000673'
n_part_elems = '1 1 1'
solid_properties = 'fuel-mat gap-mat clad-mat'
solid_properties_T_ref = '300 300 300'
initial_T = 564.15
[]
[hg]
type = HeatSourceFromTotalPower
hs = hs
regions = 'FUEL'
power_fraction = 3.33672612e-1
power = reactor
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = 600
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-4
l_max_its = 300
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.conservation.i)
# Tests energy conservation for HeatGeneration component when a power component is used
n_units = 5
power = 1e5
power_fraction = 0.3
t = 1
energy_change = ${fparse power_fraction * power * t}
[GlobalParams]
scaling_factor_temperature = 1e-3
[]
[Functions]
[power_shape]
type = ConstantFunction
value = 0.4
[]
[]
[SolidProperties]
[main-material]
type = ThermalFunctionSolidProperties
k = 1e4
cp = 500.0
rho = 100.0
[]
[]
[Components]
[heat_structure]
type = HeatStructureCylindrical
num_rods = ${n_units}
position = '0 1 0'
orientation = '1 0 0'
length = 0.8
n_elems = 100
names = 'rgn1 rgn2 rgn3'
solid_properties = 'main-material main-material main-material'
solid_properties_T_ref = '300 300 300'
widths = '0.4 0.1 0.5'
n_part_elems = '2 2 2'
initial_T = 300
[]
[heat_generation]
type = HeatSourceFromTotalPower
hs = heat_structure
regions = 'rgn1 rgn2'
power = total_power
power_fraction = ${power_fraction}
[]
[total_power]
type = TotalPower
power = ${power}
[]
[]
[Postprocessors]
[E_tot]
type = ADHeatStructureEnergyRZ
block = 'heat_structure:rgn1 heat_structure:rgn2 heat_structure:rgn3'
n_units = ${n_units}
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
[E_tot_change_rel_err]
type = RelativeDifferencePostprocessor
value1 = E_tot_change
value2 = ${energy_change}
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
dt = ${t}
num_steps = 1
abort_on_solve_fail = true
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
show = 'E_tot_change_rel_err'
execute_on = 'final'
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
tot_power = 2000 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
closures = thm_closures
fp = he
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = '${A_core}'
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[outlet]
type = Outlet1Phase
input = 'core_chan:out'
p = ${press}
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
[]
end_time = 5000
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.plate.i)
[GlobalParams]
scaling_factor_temperature = 1e0
[]
[Functions]
[psf]
type = ParsedFunction
expression = 1
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 16
cp = 191.67
rho = 1.4583e4
[]
[gap-mat]
type = ThermalFunctionSolidProperties
k = 64
cp = 1272
rho = 865
[]
[clad-mat]
type = ThermalFunctionSolidProperties
k = 26
cp = 638
rho = 7.646e3
[]
[]
[Components]
[reactor]
type = TotalPower
power = 3.0e4
[]
[CH1:solid]
type = HeatStructurePlate
position = '0 -0.024 0'
orientation = '0 0 1'
length = 0.8
n_elems = 16
initial_T = 628.15
names = 'fuel gap clad'
widths = '0.003015 0.000465 0.00052'
depth = 1
n_part_elems = '20 2 2'
solid_properties = 'fuel-mat gap-mat clad-mat'
solid_properties_T_ref = '300 300 300'
[]
[CH1:hgen]
type = HeatSourceFromTotalPower
hs = CH1:solid
regions = 'fuel'
power = reactor
power_fraction = 1
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-3
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-7
nl_max_its = 40
l_tol = 1e-5
l_max_its = 50
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.cylinder_power_shape_fn.i)
[GlobalParams]
scaling_factor_temperature = 1e0
[]
[Functions]
[psf]
type = ParsedFunction
expression = 1
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 16
cp = 191.67
rho = 1.4583e4
[]
[gap-mat]
type = ThermalFunctionSolidProperties
k = 64
cp = 1272
rho = 865
[]
[clad-mat]
type = ThermalFunctionSolidProperties
k = 26
cp = 638
rho = 7.646e3
[]
[]
[Components]
[reactor]
type = TotalPower
power = 3.0e4
[]
[CH1:solid]
type = HeatStructureCylindrical
position = '0 -0.024 0'
orientation = '0 0 1'
length = 0.8
n_elems = 16
initial_T = 628.15
names = 'fuel gap clad'
widths = '0.003015 0.000465 0.00052'
n_part_elems = '20 2 2'
solid_properties = 'fuel-mat gap-mat clad-mat'
solid_properties_T_ref = '300 300 300'
[]
[CH1:hgen]
type = HeatSourceFromTotalPower
hs = CH1:solid
regions = 'fuel'
power = reactor
power_shape_function = psf
power_fraction = 1
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-3
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-7
nl_max_its = 40
l_tol = 1e-5
l_max_its = 50
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/recuperated_brayton_cycle.i)
# This input file models an open, recuperated Brayton cycle with a PID
# controlled start up using a coupled motor.
#
# Heat is supplied to the system by a volumetric heat source, and a second heat
# source is used to model a recuperator. The recuperator transfers heat from the
# turbine exhaust gas to the compressor outlet gas.
#
# Initially the fluid and heat structures are at rest at ambient conditions,
# and the shaft speed is zero.
# The transient is controlled as follows:
# * 0 - 2000 s: Motor increases shaft speed to approx. 85,000 RPM by PID control
# * 1000 - 8600 s: Power in main heat source increases from 0 - 104 kW
# * 2000 - 200000 s: Torque supplied by turbine increases to steady state level
# as working fluid temperature increases. Torque supplied by
# the motor is ramped down to 0 N-m transitioning shaft control
# to the turbine at its rated speed of 96,000 RPM.
I_motor = 1.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 3605
motor_ramp_down_duration = 1800
post_motor_time = 2160000
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
D6 = ${D1}
D7 = ${D1}
D8 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
A6 = ${fparse 0.25 * pi * D6^2}
A7 = ${fparse 0.25 * pi * D7^2}
A8 = ${fparse 0.25 * pi * D8^2}
recuperator_width = 0.15
L1 = 5.0
L2 = ${L1}
L3 = ${fparse 2 * L1}
L4 = ${fparse 2 * L1}
L5 = ${L1}
L6 = ${L1}
L7 = ${fparse L1 + recuperator_width}
L8 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${x3}
x5 = ${fparse x4 - L4}
x6 = ${x5}
x7 = ${fparse x6 + L6}
x8 = ${fparse x7 + L7}
y1 = 0
y2 = ${y1}
y3 = ${y2}
y4 = ${fparse y3 - L3}
y5 = ${y4}
y6 = ${fparse y5 + L5}
y7 = ${y6}
y8 = ${y7}
x1_out = ${fparse x1 + L1 - 0.001}
x2_in = ${fparse x2 + 0.001}
y5_in = ${fparse y5 + 0.001}
x6_out = ${fparse x6 + L6 - 0.001}
x7_in = ${fparse x7 + 0.001}
y8_in = ${fparse y8 + 0.001}
y8_out = ${fparse y8 + L8 - 0.001}
hot_leg_in = ${y8_in}
hot_leg_out = ${y8_out}
cold_leg_in = ${fparse y3 - 0.001}
cold_leg_out = ${fparse y3 - (L3/2) - 0.001}
n_elems1 = 5
n_elems2 = ${n_elems1}
n_elems3 = ${fparse 2 * n_elems1}
n_elems4 = ${fparse 2 * n_elems1}
n_elems5 = ${n_elems1}
n_elems6 = ${n_elems1}
n_elems7 = ${n_elems1}
n_elems8 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_ambient = 300
p_ambient = 1e5
hs_power = 105750
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = ${p_ambient}
initial_T = ${T_ambient}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = fp_air
closures = closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-5
scaling_factor_temperature = 1e-2
rdg_slope_reconstruction = none
[]
[FluidProperties]
[fp_air]
type = IdealGasFluidProperties
emit_on_nan = none
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
##########################
# Motor
##########################
# Functions for control logic that determines when to shut off the PID system
[is_tripped_fn]
type = ParsedFunction
symbol_names = 'motor_torque turbine_torque'
symbol_values = 'motor_torque turbine_torque'
expression = 'turbine_torque > motor_torque'
[]
[PID_tripped_constant_value]
type = ConstantFunction
value = 1
[]
[PID_tripped_status_fn]
type = ParsedFunction
symbol_values = 'PID_trip_status'
symbol_names = 'PID_trip_status'
expression = 'PID_trip_status'
[]
[time_fn]
type = ParsedFunction
expression = t
[]
# Shutdown function which ramps down the motor once told by the control logic
[motor_torque_fn_shutdown]
type = ParsedFunction
symbol_values = 'PID_trip_status time_trip'
symbol_names = 'PID_trip_status time_trip'
expression = 'if(PID_trip_status = 1, max(2.4 - (2.4 * ((t - time_trip) / 35000)),0.0), 1)'
[]
# Generates motor power curve
[motor_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'motor_torque shaft:omega'
[]
##########################
# Generator
##########################
# Generates generator torque curve
[generator_torque_fn]
type = ParsedFunction
expression = 'slope * t'
symbol_names = 'slope'
symbol_values = '${generator_torque_per_shaft_speed}'
[]
# Generates generator power curve
[generator_power_fn]
type = ParsedFunction
expression = 'torque * speed'
symbol_names = 'torque speed'
symbol_values = 'generator_torque shaft:omega'
[]
##########################
# Reactor
##########################
# Ramps up reactor power when activated by control logic
[power_fn]
type = PiecewiseLinear
x = '0 1000 8600'
y = '0 0 ${hs_power}'
[]
##########################
# Compressor
##########################
# compressor pressure ratios
[rp_comp1]
type = PiecewiseLinear
data_file = 'rp_comp1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp2]
type = PiecewiseLinear
data_file = 'rp_comp2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp3]
type = PiecewiseLinear
data_file = 'rp_comp3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp4]
type = PiecewiseLinear
data_file = 'rp_comp4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp5]
type = PiecewiseLinear
data_file = 'rp_comp5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# compressor efficiencies
[eff_comp1]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp2]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp3]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp4]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp5]
type = ConstantFunction
value = ${eff_comp}
[]
##########################
# Turbine
##########################
# turbine pressure ratios
[rp_turb0]
type = ConstantFunction
value = 1
[]
[rp_turb1]
type = PiecewiseLinear
data_file = 'rp_turb1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb2]
type = PiecewiseLinear
data_file = 'rp_turb2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb3]
type = PiecewiseLinear
data_file = 'rp_turb3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb4]
type = PiecewiseLinear
data_file = 'rp_turb4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb5]
type = PiecewiseLinear
data_file = 'rp_turb5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# turbine efficiency
[eff_turb1]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb2]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb3]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb4]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb5]
type = ConstantFunction
value = ${eff_turb}
[]
[]
[Components]
# system inlet pulling air from the open atmosphere
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = ${p_ambient}
T0 = ${T_ambient}
[]
# Inlet pipe
[pipe1]
type = FlowChannel1Phase
position = '${x1} ${y1} 0'
orientation = '1 0 0'
length = ${L1}
n_elems = ${n_elems1}
A = ${A1}
[]
# Compressor as defined in MAGNET PCU document (Guillen 2020)
[compressor]
type = ShaftConnectedCompressor1Phase
position = '${x2} ${y2} 0'
inlet = 'pipe1:out'
outlet = 'pipe2:in'
A_ref = ${A_ref_comp}
volume = ${V_comp}
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
# Determines which compression ratio curve and efficiency curve to use depending on ratio of speed/rated_speed
speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_comp}
inertia_coeff = '${I_comp} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
# Outlet pipe from the compressor
[pipe2]
type = FlowChannel1Phase
position = '${x2} ${y2} 0'
orientation = '1 0 0'
length = ${L2}
n_elems = ${n_elems2}
A = ${A2}
[]
# 90 degree connection between pipe 2 and 3
[junction2_cold_leg]
type = VolumeJunction1Phase
connections = 'pipe2:out cold_leg:in'
position = '${x3} ${y3} 0'
volume = ${fparse A2*0.1}
use_scalar_variables = false
[]
# Cold leg of the recuperator
[cold_leg]
type = FlowChannel1Phase
position = '${x3} ${y3} 0'
orientation = '0 -1 0'
length = ${fparse L3/2}
n_elems = ${fparse n_elems3/2}
A = ${A3}
[]
# Recuperator which transfers heat from exhaust gas to reactor inlet gas to improve thermal efficency
[recuperator]
type = HeatStructureCylindrical
orientation = '0 -1 0'
position = '${x3} ${y3} 0'
length = ${fparse L3/2}
widths = ${recuperator_width}
n_elems = ${fparse n_elems3/2}
n_part_elems = 2
names = recuperator
solid_properties = steel
solid_properties_T_ref = '300'
inner_radius = ${D1}
[]
# heat transfer from recuperator to cold leg
[heat_transfer_cold_leg]
type = HeatTransferFromHeatStructure1Phase
flow_channel = cold_leg
hs = recuperator
hs_side = OUTER
Hw = 10000
[]
# heat transfer from hot leg to recuperator
[heat_transfer_hot_leg]
type = HeatTransferFromHeatStructure1Phase
flow_channel = hot_leg
hs = recuperator
hs_side = INNER
Hw = 10000
[]
[junction_cold_leg_3]
type = JunctionOneToOne1Phase
connections = 'cold_leg:out pipe3:in'
[]
[pipe3]
type = FlowChannel1Phase
position = '${x3} ${fparse y3 - (L3/2)} 0'
orientation = '0 -1 0'
length = ${fparse L3/2}
n_elems = ${fparse n_elems3/2}
A = ${A3}
[]
# 90 degree connection between pipe 3 and 4
[junction3_4]
type = VolumeJunction1Phase
connections = 'pipe3:out pipe4:in'
position = '${x4} ${y4} 0'
volume = ${fparse A3*0.1}
use_scalar_variables = false
[]
# Pipe through the "reactor core"
[pipe4]
type = FlowChannel1Phase
position = '${x4} ${y4} 0'
orientation = '-1 0 0'
length = ${L4}
n_elems = ${n_elems4}
A = ${A4}
[]
# "Reactor Core" and it's associated heat transfer to pipe 4
[reactor]
type = HeatStructureCylindrical
orientation = '-1 0 0'
position = '${x4} ${y4} 0'
length = ${L4}
widths = 0.15
n_elems = ${n_elems4}
n_part_elems = 2
names = core
solid_properties = steel
solid_properties_T_ref = '300'
[]
[total_power]
type = TotalPower
power = 0
[]
[heat_generation]
type = HeatSourceFromTotalPower
power = total_power
hs = reactor
regions = core
[]
[heat_transfer]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe4
hs = reactor
hs_side = OUTER
Hw = 10000
[]
# 90 degree connection between pipe 4 and 5
[junction4_5]
type = VolumeJunction1Phase
connections = 'pipe4:out pipe5:in'
position = '${x5} ${y5} 0'
volume = ${fparse A4*0.1}
use_scalar_variables = false
[]
# Pipe carrying hot gas back to the PCU
[pipe5]
type = FlowChannel1Phase
position = '${x5} ${y5} 0'
orientation = '0 1 0'
length = ${L5}
n_elems = ${n_elems5}
A = ${A5}
[]
# 90 degree connection between pipe 5 and 6
[junction5_6]
type = VolumeJunction1Phase
connections = 'pipe5:out pipe6:in'
position = '${x6} ${y6} 0'
volume = ${fparse A5*0.1}
use_scalar_variables = false
[]
# Inlet pipe to the turbine
[pipe6]
type = FlowChannel1Phase
position = '${x6} ${y6} 0'
orientation = '1 0 0'
length = ${L6}
n_elems = ${n_elems6}
A = ${A6}
[]
# Turbine as defined in MAGNET PCU document (Guillen 2020) and (Wright 2006)
[turbine]
type = ShaftConnectedCompressor1Phase
position = '${x7} ${y7} 0'
inlet = 'pipe6:out'
outlet = 'pipe7:in'
A_ref = ${A_ref_turb}
volume = ${V_turb}
# A turbine is treated as an "inverse" compressor, this value determines if component is to be treated as turbine or compressor
# If treat_as_turbine is omitted, code automatically assumes it is a compressor
treat_as_turbine = true
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
# Determines which compression ratio curve and efficiency curve to use depending on ratio of speed/rated_speed
speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_turb}
inertia_coeff = '${I_turb} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
use_scalar_variables = false
[]
# Outlet pipe from turbine
[pipe7]
type = FlowChannel1Phase
position = '${x7} ${y7} 0'
orientation = '1 0 0'
length = ${L7}
n_elems = ${n_elems7}
A = ${A7}
[]
# 90 degree connection between pipe 7 and 8
[junction7_hot_leg]
type = VolumeJunction1Phase
connections = 'pipe7:out hot_leg:in'
position = '${x8} ${y8} 0'
volume = ${fparse A7*0.1}
use_scalar_variables = false
[]
# Hot leg of the recuperator
[hot_leg]
type = FlowChannel1Phase
position = '${x8} ${y8} 0'
orientation = '0 1 0'
length = ${L8}
n_elems = ${n_elems8}
A = ${A8}
[]
# System outlet dumping exhaust gas to the atmosphere
[outlet]
type = Outlet1Phase
input = 'hot_leg:out'
p = ${p_ambient}
[]
# Roatating shaft connecting motor, compressor, turbine, and generator
[shaft]
type = Shaft
connected_components = 'motor compressor turbine generator'
initial_speed = ${speed_initial}
[]
# 3-Phase electircal motor used for system start-up, controlled by PID
[motor]
type = ShaftConnectedMotor
inertia = ${I_motor}
torque = 0 # controlled
[]
# Electric generator supplying power to the grid
[generator]
type = ShaftConnectedMotor
inertia = ${I_generator}
torque = generator_torque_fn
[]
[]
# Control logics which govern startup of the motor, startup of the "reactor core", and shutdown of the motor
[ControlLogic]
# Sets desired shaft speed to be reached by motor NOTE: SHOULD BE SET LOWER THAN RATED TURBINE RPM
[set_point]
type = GetFunctionValueControl
function = ${fparse speed_rated_rpm - 9000}
[]
# PID with gains determined by iterative process NOTE: Gain values are system specific
[initial_motor_PID]
type = PIDControl
set_point = set_point:value
input = shaft_RPM
initial_value = 0
K_p = 0.0011
K_i = 0.00000004
K_d = 0
[]
# Determines when the PID system should be running and when it should begin the shutdown cycle. If needed: PID output, else: shutdown function
[logic]
type = ParsedFunctionControl
function = 'if(motor+0.5 > turb, PID, shutdown_fn)'
symbol_names = 'motor turb PID shutdown_fn'
symbol_values = 'motor_torque turbine_torque initial_motor_PID:output motor_torque_fn_shutdown'
[]
# Takes the output generated in [logic] and applies it to the motor torque
[motor_PID]
type = SetComponentRealValueControl
component = motor
parameter = torque
value = logic:value
[]
# Determines when to turn on heat source
[power_logic]
type = ParsedFunctionControl
function = 'power_fn'
symbol_names = 'power_fn'
symbol_values = 'power_fn'
[]
# Applies heat source to the total_power block
[power_applied]
type = SetComponentRealValueControl
component = total_power
parameter = power
value = power_logic:value
[]
[]
[Controls]
# Enables set_PID_tripped
[PID_trip_status]
type = ConditionalFunctionEnableControl
conditional_function = is_tripped_fn
enable_objects = 'AuxScalarKernels::PID_trip_status_aux'
execute_on = 'TIMESTEP_END'
[]
# Enables set_time_PID
[time_PID]
type = ConditionalFunctionEnableControl
conditional_function = PID_tripped_status_fn
disable_objects = 'AuxScalarKernels::time_trip_aux'
execute_on = 'TIMESTEP_END'
[]
[]
[AuxVariables]
# Creates a variable that will later be set to the time when tau_turbine > tau_motor
[time_trip]
order = FIRST
family = SCALAR
[]
# Creates variable which indicates if tau_turbine > tau_motor....... If tau_motor > tau_turbine, 0, else 1
[PID_trip_status]
order = FIRST
family = SCALAR
initial_condition = 0
[]
[]
[AuxScalarKernels]
# Creates variable from time_fn which indicates when tau_turbine > tau_motor
[time_trip_aux]
type = FunctionScalarAux
function = time_fn
variable = time_trip
execute_on = 'TIMESTEP_END'
[]
# Overwrites variable PID_trip_status to the value from PID_tripped_constant_value (changes 0 to 1)
[PID_trip_status_aux]
type = FunctionScalarAux
function = PID_tripped_constant_value
variable = PID_trip_status
execute_on = 'TIMESTEP_END'
enable = false
[]
[]
[Postprocessors]
# Indicates when tau_turbine > tau_motor
[trip_time]
type = ScalarVariable
variable = time_trip
execute_on = 'TIMESTEP_END'
[]
##########################
# Motor
##########################
[motor_torque]
type = RealComponentParameterValuePostprocessor
component = motor
parameter = torque
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_power]
type = FunctionValuePostprocessor
function = motor_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# generator
##########################
[generator_torque]
type = ShaftConnectedComponentPostprocessor
quantity = torque
shaft_connected_component_uo = generator:shaftconnected_uo
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_power]
type = FunctionValuePostprocessor
function = generator_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# Shaft
##########################
# Speed in rad/s
[shaft_speed]
type = ScalarVariable
variable = 'shaft:omega'
execute_on = 'INITIAL TIMESTEP_END'
[]
# speed in RPM
[shaft_RPM]
type = ParsedPostprocessor
pp_names = 'shaft_speed'
expression = '(shaft_speed * 60) /( 2 * ${fparse pi})'
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# Compressor
##########################
[comp_dissipation_torque]
type = ElementAverageValue
variable = dissipation_torque
block = 'compressor'
execute_on = 'INITIAL TIMESTEP_END'
[]
[comp_isentropic_torque]
type = ElementAverageValue
variable = isentropic_torque
block = 'compressor'
execute_on = 'INITIAL TIMESTEP_END'
[]
[comp_friction_torque]
type = ElementAverageValue
variable = friction_torque
block = 'compressor'
execute_on = 'INITIAL TIMESTEP_END'
[]
[compressor_torque]
type = ParsedPostprocessor
pp_names = 'comp_dissipation_torque comp_isentropic_torque comp_friction_torque'
expression = 'comp_dissipation_torque + comp_isentropic_torque + comp_friction_torque'
[]
[p_in_comp]
type = PointValue
variable = p
point = '${x1_out} ${y1} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_comp]
type = PointValue
variable = p
point = '${x2_in} ${y2} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_comp]
type = ParsedPostprocessor
pp_names = 'p_in_comp p_out_comp'
expression = 'p_out_comp / p_in_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_in_comp]
type = PointValue
variable = T
point = '${x1_out} ${y1} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_out_comp]
type = PointValue
variable = T
point = '${x2_in} ${y2} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_ratio_comp]
type = ParsedPostprocessor
pp_names = 'T_in_comp T_out_comp'
expression = '(T_out_comp - T_in_comp) / T_out_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_comp]
type = ADFlowJunctionFlux1Phase
boundary = pipe1:out
connection_index = 0
equation = mass
junction = compressor
[]
##########################
# turbine
##########################
[turb_dissipation_torque]
type = ElementAverageValue
variable = dissipation_torque
block = 'turbine'
execute_on = 'INITIAL TIMESTEP_END'
[]
[turb_isentropic_torque]
type = ElementAverageValue
variable = isentropic_torque
block = 'turbine'
execute_on = 'INITIAL TIMESTEP_END'
[]
[turb_friction_torque]
type = ElementAverageValue
variable = friction_torque
block = 'turbine'
execute_on = 'INITIAL TIMESTEP_END'
[]
[turbine_torque]
type = ParsedPostprocessor
pp_names = 'turb_dissipation_torque turb_isentropic_torque turb_friction_torque'
expression = 'turb_dissipation_torque + turb_isentropic_torque + turb_friction_torque'
[]
[p_in_turb]
type = PointValue
variable = p
point = '${x6_out} ${y6} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_turb]
type = PointValue
variable = p
point = '${x7_in} ${y7} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_turb]
type = ParsedPostprocessor
pp_names = 'p_in_turb p_out_turb'
expression = 'p_in_turb / p_out_turb'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_in_turb]
type = PointValue
variable = T
point = '${x6_out} ${y6} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_out_turb]
type = PointValue
variable = T
point = '${x7_in} ${y7} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_turb]
type = ADFlowJunctionFlux1Phase
boundary = pipe6:out
connection_index = 0
equation = mass
junction = turbine
[]
##########################
# Recuperator
##########################
[cold_leg_in]
type = PointValue
variable = T
point = '${x3} ${cold_leg_in} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[cold_leg_out]
type = PointValue
variable = T
point = '${x3} ${cold_leg_out} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[hot_leg_in]
type = PointValue
variable = T
point = '${x8} ${hot_leg_in} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[hot_leg_out]
type = PointValue
variable = T
point = '${x8} ${hot_leg_out} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
##########################
# Reactor
##########################
[reactor_inlet]
type = PointValue
variable = T
point = '${x4} ${y4} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[reactor_outlet]
type = PointValue
variable = T
point = '${x5} ${y5_in} 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = ${t3}
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.1
cutback_factor = 0.9
[]
dtmin = 1e-5
dtmax = 1000
steady_state_detection = true
steady_state_start_time = 200000
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[e]
type = Exodus
file_base = 'recuperated_brayton_cycle_out'
[]
[csv]
type = CSV
file_base = 'recuperated_brayton_cycle'
execute_vector_postprocessors_on = 'INITIAL'
[]
[console]
type = Console
show = 'shaft_speed p_ratio_comp p_ratio_turb pressure_ratio pressure_ratio'
[]
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
10 ${m_dot_sec_in}'
[]
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = ${A_core}
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe_1:in'
[]
[top_pipe_1]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[top_pipe_2]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '1 0 0'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = VolumeJunction1Phase
position = '0.5 0 2'
volume = 1e-5
connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
use_scalar_variables = false
[]
[press_pipe]
type = FlowChannel1Phase
position = '0.5 0 2'
orientation = '0 1 0'
length = 0.2
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pressurizer]
type = InletStagnationPressureTemperature1Phase
p0 = ${press}
T0 = ${T_in}
input = press_pipe:out
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'top_pipe_2:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct6]
type = JunctionParallelChannels1Phase
position = '1 0 1.75'
connections = 'down_pipe_1:out hx/pri:in'
volume = 1e-5
use_scalar_variables = false
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
roughness = 1e-5
A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
D_h = ${hx_dia_inner}
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
P_hf = '${fparse pi * hx_dia_inner}'
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 1.75'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
solid_properties = 'steel'
solid_properties_T_ref = '300'
names = '0'
inner_radius = '${fparse hx_dia_inner / 2.}'
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = '${fparse 2 * pi * hx_radius_wall}'
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 0.25'
orientation = '0 0 1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
fp = water
initial_T = 300
[]
[]
[jct7]
type = JunctionParallelChannels1Phase
position = '1 0 0.5'
connections = 'hx/pri:out down_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct8]
type = JunctionOneToOne1Phase
connections = 'down_pipe_2:out bottom_1:in'
[]
[bottom_1]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_1:out bottom_2:in'
volume = 1e-4
A_ref = ${A_pipe}
head = 0
use_scalar_variables = false
[]
[bottom_2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct9]
type = JunctionOneToOne1Phase
connections = 'bottom_2:out up_pipe_1:in'
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:in'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:out'
p = 1e5
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0.0
set_point = set_point:value
input = m_dot_pump
K_p = 1.
K_i = 4.
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct7
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[m_dot_sec]
type = ADFlowBoundaryFlux1Phase
boundary = inlet_sec
equation = mass
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
dtmax = 5
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 0
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when a
# heat structure is used. Conservation is checked by comparing the integral of
# the heat flux against the difference of the boundary fluxes.
[GlobalParams]
initial_p = 7.0e6
initial_vel = 0
initial_T = 513
gravity_vector = '0.0 0.0 0.0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 3.7
cp = 3.e2
rho = 10.42e3
[]
[gap-mat]
type = ThermalFunctionSolidProperties
k = 0.7
cp = 5e3
rho = 1.0
[]
[clad-mat]
type = ThermalFunctionSolidProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Components]
[reactor]
type = TotalPower
power = 1e3
[]
[core:pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.0
fp = eos
[]
[core:solid]
type = HeatStructureCylindrical
position = '0 -0.0071501 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
names = 'FUEL GAP CLAD'
widths = '6.057900E-03 1.524000E-04 9.398000E-04'
n_part_elems = '5 1 2'
solid_properties = 'fuel-mat gap-mat clad-mat'
solid_properties_T_ref = '300 300 300'
initial_T = 513
[]
[core:hgen]
type = HeatSourceFromTotalPower
hs = core:solid
regions = 'FUEL'
power = reactor
power_fraction = 1
[]
[core:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core:pipe
hs = core:solid
hs_side = outer
Hw = 1.0e4
P_hf = 4.4925e-2
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'core:pipe:in'
rho = 817.382210128610836
vel = 2.4
[]
[outlet]
type = Outlet1Phase
input = 'core:pipe:out'
p = 7e6
[]
[]
[Postprocessors]
[E_in]
type = ADFlowBoundaryFlux1Phase
boundary = inlet
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out]
type = ADFlowBoundaryFlux1Phase
boundary = outlet
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe]
type = ADHeatRateConvection1Phase
block = core:pipe
T_wall = T_wall
T = T
Hw = Hw
P_hf = P_hf
execute_on = 'initial timestep_end'
[]
[E_diff]
type = DifferencePostprocessor
value1 = E_in
value2 = E_out
execute_on = 'initial timestep_end'
[]
[E_conservation]
type = SumPostprocessor
values = 'E_diff hf_pipe'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
dt = 5
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 50
l_tol = 1e-3
l_max_its = 60
start_time = 0
end_time = 260
[]
[Outputs]
[out]
type = CSV
execute_on = final
show = 'E_conservation'
[]
[console]
type = Console
show = 'E_conservation'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_structure_base/err.no_2nd_order_with_trap.i)
[GlobalParams]
initial_p = 15.17e6
initial_vel = 1.
initial_T = 564.15
2nd_order_mesh = true
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 3.65
cp = 288.734
rho = 1.0412e2
[]
[gap-mat]
type = ThermalFunctionSolidProperties
k = 1.084498
cp = 1.0
rho = 1.0
[]
[clad-mat]
type = ThermalFunctionSolidProperties
k = 16.48672
cp = 321.384
rho = 6.6e1
[]
[]
[Components]
[reactor]
type = TotalPower
power = 296153.84615384615385
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
names = 'FUEL GAP CLAD'
widths = '0.0046955 0.0000955 0.000673'
n_part_elems = '1 1 1'
solid_properties = 'fuel-mat gap-mat clad-mat'
solid_properties_T_ref = '300 300 300'
initial_T = 564.15
[]
[hg]
type = HeatSourceFromTotalPower
hs = hs
regions = 'FUEL'
power_fraction = 3.33672612e-1
power = reactor
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = 600
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
dtmin = 1e-1
solve_type = 'PJFNK'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-4
l_max_its = 300
start_time = 0.0
end_time = 2.0
[Quadrature]
type = TRAP
order = FIRST
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_structure_cylindrical/steady.i)
# Tests that cylindrical heat structure geometry can be used with a steady executioner.
[Functions]
[power_profile_fn]
type = ParsedFunction
expression = '1.570796326794897 * sin(x / 3.6576 * pi)'
[]
[]
[SolidProperties]
[fuel_sp]
type = ThermalFunctionSolidProperties
rho = 1.0412e2
cp = 288.734
k = 3.65
[]
[gap_sp]
type = ThermalFunctionSolidProperties
rho = 1.0
cp = 1.0
k = 1.084498
[]
[clad_sp]
type = ThermalFunctionSolidProperties
rho = 6.6e1
cp = 321.384
k = 16.48672
[]
[]
[Components]
[reactor]
type = TotalPower
power = 296153.84615384615385
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 1'
orientation = '1 0 0'
length = 3.6576
n_elems = 20
names = 'FUEL GAP CLAD'
widths = '0.0046955 0.0000955 0.000673'
n_part_elems = '3 1 1'
solid_properties = 'fuel_sp gap_sp clad_sp'
solid_properties_T_ref = '300 300 300'
initial_T = 564.15
[]
[hg]
type = HeatSourceFromTotalPower
hs = hs
regions = 'FUEL'
power_fraction = 3.33672612e-1
power = reactor
power_shape_function = power_profile_fn
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = 600
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-4
l_max_its = 300
[]
[Outputs]
[out]
type = Exodus
[]
[console]
type = Console
execute_scalars_on = none
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.conservation_from_file_3d.i)
# Tests energy conservation for HeatStructureFromFile3D in combination with HeatSourceFromTotalPower
power = 1e5
power_fraction = 0.3
t = 1
energy_change = ${fparse power_fraction * power * t}
[Functions]
[power_shape]
type = ConstantFunction
value = 0.4
[]
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
block = 'heat_structure:rgn1 heat_structure:rgn2'
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '100 500 1e4'
[]
[]
[Components]
[heat_structure]
type = HeatStructureFromFile3D
file = box.e
position = '0 0 0'
initial_T = 300
[]
[heat_generation]
type = HeatSourceFromTotalPower
hs = heat_structure
regions = 'rgn1'
power = total_power
power_fraction = ${power_fraction}
[]
[total_power]
type = TotalPower
power = ${power}
[]
[]
[Postprocessors]
[E_tot]
type = ADHeatStructureEnergy3D
block = 'heat_structure:rgn1 heat_structure:rgn2'
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
[E_tot_change_rel_err]
type = RelativeDifferencePostprocessor
value1 = E_tot_change
value2 = ${energy_change}
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
dt = ${t}
num_steps = 1
abort_on_solve_fail = true
[]
[Outputs]
csv = true
show = 'E_tot_change_rel_err'
execute_on = 'final'
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/err.base.i)
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[]
[Components]
[reactor]
type = TotalPower
power = 10
[]
[hs]
type = HeatStructureCylindrical
position = '0 -0.024748 0'
orientation = '0 0 1'
length = 3.865
n_elems = 1
names = 'fuel'
widths = '0.004096'
n_part_elems = '1'
solid_properties = 'fuel-mat'
solid_properties_T_ref = '300'
initial_T = 559.15
[]
[hgen]
type = HeatSourceFromTotalPower
power_fraction = 1
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0.0001
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
scaling_factor_1phase = '1 1e-2 1e-4'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1e-2
scaling_factor_rhovV = 1e-2
scaling_factor_rhowV = 1e-2
scaling_factor_rhoEV = 1e-4
closures = thm_closures
fp = he
[]
[FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[thm_closures]
type = Closures1PhaseTHM
[]
[]
[SolidProperties]
[steel]
type = ThermalFunctionSolidProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'up_pipe_1:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[up_pipe_1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 0.5
n_elems = 15
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 0.5'
connections = 'up_pipe_1:out core_chan:in'
volume = 1e-5
use_scalar_variables = false
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
roughness = .0001
A = '${A_core}'
D_h = ${Dh_core}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0.5'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
solid_properties = 'steel'
solid_properties_T_ref = '300'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = '${fparse pi * core_dia}'
[]
[jct2]
type = JunctionParallelChannels1Phase
position = '0 0 1.5'
connections = 'core_chan:out up_pipe_2:in'
volume = 1e-5
use_scalar_variables = false
[]
[up_pipe_2]
type = FlowChannel1Phase
position = '0 0 1.5'
orientation = '0 0 1'
length = 0.5
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct3]
type = JunctionOneToOne1Phase
connections = 'up_pipe_2:out top_pipe:in'
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[jct4]
type = JunctionOneToOne1Phase
connections = 'top_pipe:out down_pipe_1:in'
[]
[down_pipe_1]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 0.25
A = ${A_pipe}
n_elems = 5
[]
[jct5]
type = JunctionOneToOne1Phase
connections = 'down_pipe_1:out cooling_pipe:in'
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 1.75'
orientation = '0 0 -1'
length = 1.5
n_elems = 25
A = ${A_pipe}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
P_hf = '${fparse pi * pipe_dia}'
[]
[jct6]
type = JunctionOneToOne1Phase
connections = 'cooling_pipe:out down_pipe_2:in'
[]
[down_pipe_2]
type = FlowChannel1Phase
position = '1 0 0.25'
orientation = '0 0 -1'
length = 0.25
n_elems = 10
A = ${A_pipe}
D_h = ${pipe_dia}
[]
[outlet]
type = Outlet1Phase
input = 'down_pipe_2:out'
p = ${press}
[]
[]
[Postprocessors]
[power_to_coolant]
type = ADHeatRateConvection1Phase
block = core_chan
P_hf = '${fparse pi *core_dia}'
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[core_p_in]
type = SideAverageValue
boundary = core_chan:in
variable = p
[]
[core_p_out]
type = SideAverageValue
boundary = core_chan:out
variable = p
[]
[core_delta_p]
type = ParsedPostprocessor
pp_names = 'core_p_in core_p_out'
expression = 'core_p_in - core_p_out'
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
[]
end_time = 500
line_search = basic
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 25
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]