- variableThe name of the finite volume variable this kernel applies to
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the finite volume variable this kernel applies to
- veladvection velocity
C++ Type:MooseFunctorName
Controllable:No
Description:advection velocity
FVMatAdvection
Computes the residual of advective term using finite volume method.
The FVMatAdvection
kernel is similar to the FVAdvection kernel except that:
the velocity is a material property instead of a constant vector, so it may vary throughout the domain
an advected quantity
In order to solve for the velocity, one needs to add a VariableMaterial
, such as the INSFVMaterial
to store a copy of the velocity variable as a material property.
As we are expanding the functor material & variable capability, having the velocity as a material property will no longer be required.
Example input syntax
In this example, the kernels are set up for a steady state advection problem of both momentum and mass. For the former the advected_quantity
is set to the momentum. This case uses a constant unit density. Please refer to the Navier Stokes module for more advanced fluid flow capabilities.
[FVKernels]
# del * rho * velocity * velocity
[adv_rho_u]
type = FVMatAdvection
variable = fv_vel
vel = 'fv_velocity'
advected_quantity = 'rho_u'
[]
# del * rho * velocity
[adv_rho]
type = FVMatAdvection
variable = fv_rho
vel = 'fv_velocity'
[]
[]
(test/tests/fvkernels/fv_euler/fv_euler.i)Input Parameters
- advected_interp_methodupwindThe interpolation to use for the advected quantity. Options are 'upwind', 'average', and 'skewness-corrected' with the default being 'upwind'.
Default:upwind
C++ Type:MooseEnum
Controllable:No
Description:The interpolation to use for the advected quantity. Options are 'upwind', 'average', and 'skewness-corrected' with the default being 'upwind'.
- advected_quantityAn optional parameter for specifying an advected quantity from a material property. If this is not specified, then the advected quantity will simply be the variable that this object is acting on
C++ Type:MooseFunctorName
Controllable:No
Description:An optional parameter for specifying an advected quantity from a material property. If this is not specified, then the advected quantity will simply be the variable that this object is acting on
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaries_to_forceThe set of boundaries to force execution of this FVFluxKernel on.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of boundaries to force execution of this FVFluxKernel on.
- boundaries_to_not_forceThe set of boundaries to not force execution of this FVFluxKernel on.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of boundaries to not force execution of this FVFluxKernel on.
- force_boundary_executionFalseWhether to force execution of this object on the boundary.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to force execution of this object on the boundary.
- ghost_layers1The number of layers of elements to ghost.
Default:1
C++ Type:unsigned short
Controllable:No
Description:The number of layers of elements to ghost.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill