FVAdvection

Residual contribution from advection operator for finite volume method.

The FVAdvection kernel implements an advection term given for the domain () defined as

where is the advected quantity, the variable for this kernel, is the constant advecting velocity, the velocity parameter of this kernel, and the are the contribution to the residual of other kernels.

This volumetric term is transformed using the divergence theorem into a surface integral, computed as a sum over each face of the advective flux. This is preferred over computing a volumetric gradient as conservative advection is naturally achieved.

The advected quantity is evaluated on the face using an advected_interp(olation)_method. Two methods are available:

  • average for a geometrically weighted average between the element and neighbor values

  • upwind for a first order upwind scheme, which uses the value from the centroid of the element situated upwind of the face, using velocity as the wind

commentnote

This kernel leverages the automatic differentiation system, so the Jacobian is computed at the same time as the residual and need not be defined separately.

Boundary conditions for pure advection

Advection problems, with a constant advecting velocity, should have two types of boundary conditions: inflow and outflow. The inflow boundary conditions may be specified as a constant boundary value with a FVDirichletBC (with caveats, see documentation) or as a constant flux with FVAdvectionFunctionBC.

[FVBCs]
  [advection]
    type = FVAdvectionFunctionBC
    boundary = 'left right'
    exact_solution = 'exact'
    variable = v
    velocity = '${a} 0 0'
  []
[]
(test/tests/fvkernels/mms/advection.i)

The outflow boundary conditions may be specified with a FVConstantScalarOutflowBC.

[FVBCs]
  [fv_outflow]
    type = FVConstantScalarOutflowBC
    velocity = '1 0.5 0'
    variable = v
    boundary = 'right top'
  []
[]
(test/tests/fvkernels/fv_constant_scalar_advection/2D_constant_scalar_advection.i)

If no boundary conditions are specified, then there is a zero advective flux through the boundary, also known a no-penetration boundary condition.

commentnote

The FVAdvection kernel may be executed on boundaries using the force_boundary_execution and boundaries_to_force parameters, however this is somewhat situational / not for mainstream use.

Example input syntax

In this example, a simple time-dependent advection problem is solved, with a constant advecting velocity of 1 0.5 0.

[FVKernels]
  [advection]
    type = FVAdvection
    variable = v
    velocity = '1 0.5 0'
  []
  [time]
    type = FVTimeKernel
    variable = v
  []
[]
(test/tests/fvkernels/fv_constant_scalar_advection/2D_constant_scalar_advection.i)

Input Parameters

  • variableThe name of the finite volume variable this kernel applies to

    C++ Type:NonlinearVariableName

    Controllable:No

    Description:The name of the finite volume variable this kernel applies to

  • velocityConstant advection velocity

    C++ Type:libMesh::VectorValue<double>

    Controllable:No

    Description:Constant advection velocity

Required Parameters

  • advected_interp_methodupwindThe interpolation to use for the advected quantity. Options are 'upwind', 'average' and 'skewness-corrected', with the default being 'upwind'.

    Default:upwind

    C++ Type:MooseEnum

    Options:average, upwind, skewness-corrected

    Controllable:No

    Description:The interpolation to use for the advected quantity. Options are 'upwind', 'average' and 'skewness-corrected', with the default being 'upwind'.

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaries_to_forceThe set of boundaries to force execution of this FVFluxKernel on.

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The set of boundaries to force execution of this FVFluxKernel on.

  • boundaries_to_not_forceThe set of boundaries to not force execution of this FVFluxKernel on.

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The set of boundaries to not force execution of this FVFluxKernel on.

  • force_boundary_executionFalseWhether to force execution of this object on the boundary.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether to force execution of this object on the boundary.

  • ghost_layers1The number of layers of elements to ghost.

    Default:1

    C++ Type:unsigned short

    Controllable:No

    Description:The number of layers of elements to ghost.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters

Input Files