- disp_xThe x displacement variable
C++ Type:std::vector<VariableName>
Controllable:No
Description:The x displacement variable
- disp_yThe y displacement variable
C++ Type:std::vector<VariableName>
Controllable:No
Description:The y displacement variable
- newmark_betaBeta parameter for the Newmark time integrator
C++ Type:double
Controllable:No
Description:Beta parameter for the Newmark time integrator
- newmark_gammaGamma parameter for the Newmark time integrator
C++ Type:double
Controllable:No
Description:Gamma parameter for the Newmark time integrator
- primary_boundaryThe name of the primary boundary sideset.
C++ Type:BoundaryName
Controllable:No
Description:The name of the primary boundary sideset.
- primary_subdomainThe name of the primary subdomain.
C++ Type:SubdomainName
Controllable:No
Description:The name of the primary subdomain.
- secondary_boundaryThe name of the secondary boundary sideset.
C++ Type:BoundaryName
Controllable:No
Description:The name of the secondary boundary sideset.
- secondary_subdomainThe name of the secondary subdomain.
C++ Type:SubdomainName
Controllable:No
Description:The name of the secondary subdomain.
ComputeDynamicWeightedGapLMMechanicalContact
Computes the normal contact mortar constraints for dynamic simulations
This object is virtually analogous to ComputeWeightedGapLMMechanicalContact
, but it is used for dynamic simulations.
When the mortar mechanical contact constraints are used in dynamic simulations, the normal contact constraints need to be stabilized by ensuring that the normal gap time derivative is included to guarantee a dynamic contact. This is means of guaranteeing the 'persistency' condition, i.e. not only do we enforce the constraints instantaneously, but also that it will remain in contact. This approximate contact constraint stabilization is performed in ComputeDynamicWeightedGapLMMechanicalContact
. Once nodal contact is established, the constraint enforcement is switched to the persistency equation:
where denotes the first time derivative, is the time step increment, refers to an arbitrary node.
The capture_tolerance
is an optional contact parameter used in dynamic contact constraints to determine when to impose the persistency condition for normal contact. For relevant, general equations, see (Tal and Hager, 2018).
Input Parameters
- c1e+06Parameter for balancing the size of the gap and contact pressure
Default:1e+06
C++ Type:double
Controllable:No
Description:Parameter for balancing the size of the gap and contact pressure
- capture_tolerance1e-05Parameter describing a gap threshold for the application of the persistency constraint in dynamic simulations.
Default:1e-05
C++ Type:double
Controllable:No
Description:Parameter describing a gap threshold for the application of the persistency constraint in dynamic simulations.
- compute_lm_residualsTrueWhether to compute Lagrange Multiplier residuals
Default:True
C++ Type:bool
Controllable:No
Description:Whether to compute Lagrange Multiplier residuals
- compute_primal_residualsTrueWhether to compute residuals for the primal variable.
Default:True
C++ Type:bool
Controllable:No
Description:Whether to compute residuals for the primal variable.
- correct_edge_droppingFalseWhether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.
- debug_meshFalseWhether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true
Default:False
C++ Type:bool
Controllable:No
Description:Whether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true
- disp_zThe z displacement variable
C++ Type:std::vector<VariableName>
Controllable:No
Description:The z displacement variable
- ghost_point_neighborsFalseWhether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.
Default:False
C++ Type:bool
Controllable:No
Description:Whether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.
- interpolate_normalsTrueWhether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp
Default:True
C++ Type:bool
Controllable:No
Description:Whether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp
- normalize_cFalseWhether to normalize c by weighting function norm. When unnormalized the value of c effectively depends on element size since in the constraint we compare nodal Lagrange Multiplier values to integrated gap values (LM nodal value is independent of element size, where integrated values are dependent on element size).
Default:False
C++ Type:bool
Controllable:No
Description:Whether to normalize c by weighting function norm. When unnormalized the value of c effectively depends on element size since in the constraint we compare nodal Lagrange Multiplier values to integrated gap values (LM nodal value is independent of element size, where integrated values are dependent on element size).
- periodicFalseWhether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing
Default:False
C++ Type:bool
Controllable:No
Description:Whether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- quadratureDEFAULTQuadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.
Default:DEFAULT
C++ Type:MooseEnum
Controllable:No
Description:Quadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.
- variableThe name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example
- wear_depthThe name of the mortar auxiliary variable that is used to modify the weighted gap definition
C++ Type:std::vector<VariableName>
Controllable:No
Description:The name of the mortar auxiliary variable that is used to modify the weighted gap definition
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:True
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
Input Files
Child Objects
References
- Yuval Tal and Bradford H Hager.
Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces.
Computational Mechanics, 61(6):699–716, 2018.[BibTeX]