- T_c0Critical temperature, K
Default:0
C++ Type:double
Description:Critical temperature, K
- allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API
Default:False
C++ Type:bool
Description:true to allow unimplemented property derivative terms to be set to zero for the AD API
- e_c0Internal energy at the critical point, J/kg
Default:0
C++ Type:double
Description:Internal energy at the critical point, J/kg
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
- fp_typesingle-phase-fpType of the fluid property object
Default:single-phase-fp
C++ Type:FPType
Description:Type of the fluid property object
- gamma1.4gamma value (cp/cv)
Default:1.4
C++ Type:double
Description:gamma value (cp/cv)
- k0.02568Thermal conductivity, W/(m-K)
Default:0.02568
C++ Type:double
Description:Thermal conductivity, W/(m-K)
- molar_mass0.029Constant molar mass of the fluid (kg/mol)
Default:0.029
C++ Type:double
Description:Constant molar mass of the fluid (kg/mol)
- mu1.823e-05Dynamic viscosity, Pa.s
Default:1.823e-05
C++ Type:double
Description:Dynamic viscosity, Pa.s
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- rho_c0Critical density, kg/m3
Default:0
C++ Type:double
Description:Critical density, kg/m3
IdealGasFluidProperties
Fluid properties for an ideal gas
A simple formulation that is suitable for ideal gases, where properties are derived from the ideal gas law
Temperature is calculated using the internal energy of an ideal gas
Input Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Options:
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Options:
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Options:
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Options:
Description:Forces the UserObject to be executed in PREIC during initial setup
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-primitive-pcnsfv-kt.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/porous-hllc.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/hllc.i)
- (modules/fluid_properties/test/tests/ideal_gas/test2.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/symmetry_test/2D_symmetry.i)
- (modules/navier_stokes/test/tests/ics/test.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/shock_tube_2D_cavity/hllc_sod_shocktube_2D.i)
- (modules/fluid_properties/test/tests/functions/saturation_temperature_function/saturation_temperature_function.i)
- (modules/fluid_properties/test/tests/fp_interrogator/2ph.p_T.i)
- (modules/porous_flow/test/tests/fluids/ideal_gas.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
- (modules/porous_flow/test/tests/newton_cooling/nc08.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-conserved-pcnsfv-kt.i)
- (modules/porous_flow/test/tests/jacobian/esbc02.i)
- (modules/fluid_properties/test/tests/ics/rho_vapor_mixture_from_pressure_temperature/test.i)
- (modules/porous_flow/test/tests/jacobian/esbc01.i)
- (modules/fluid_properties/test/tests/fp_interrogator/err.no_params.i)
- (modules/fluid_properties/test/tests/fp_interrogator/2ph.T.i)
- (modules/fluid_properties/test/tests/two_phase_fluid_properties_independent/test.i)
- (modules/fluid_properties/test/tests/fp_interrogator/2ph.p.i)
- (modules/fluid_properties/test/tests/fp_interrogator/2ph_ncg_p_T.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/stagnation_inlet/supersonic_nozzle_hllc.i)
- (modules/navier_stokes/test/tests/bump/bump.i)
- (modules/fluid_properties/test/tests/functions/saturation_pressure_function/saturation_pressure_function.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity-mixed.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/natural_convection/average-boussinesq.i)
- (modules/navier_stokes/test/tests/step/step.i)
- (modules/fluid_properties/test/tests/fp_interrogator/1ph.rho_p.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/straight-channel-hllc.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/free-flow-hllc.i)
- (modules/navier_stokes/test/tests/ics/pns_test.i)
- (modules/fluid_properties/test/tests/fp_interrogator/1ph.p_T.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/userobject/HLLC/hllc_uo_1D.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/regular-straight-channel.i)
- (modules/fluid_properties/test/tests/fp_interrogator/1ph.rho_e.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/benchmark_shock_tube_1D/hllc_sod_shocktube.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/scalar_advection/mass-frac-advection.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/pressure_outlet/subsonic_nozzle_fixed_inflow_hllc.i)
- (modules/fluid_properties/test/tests/ideal_gas/test.i)
- (modules/fluid_properties/fp_interrogator/fp_interrogator.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-mixed.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/implicit_bcs/hllc_sod_shocktube.i)
- (modules/fluid_properties/test/tests/fp_interrogator/vapor_mixture_rho_e.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/userobject/HLLC/hllc_uo_2D_tri.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-hllc.i)
- (modules/fluid_properties/test/tests/fp_interrogator/1ph.rho_rhou_rhoE.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/dc.i)
Child Objects
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-primitive-pcnsfv-kt.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_vel_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_vel_x
momentum_component = x
eqn = "momentum"
[]
[momentum_fn]
type = FVBodyForce
variable = sup_vel_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
superficial_vel_x = sup_vel_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.45300378856215*sin(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.13909435323832*cos(1.1*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '0.9*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 0.99*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 0.9*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.13909435323832*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '0.9*cos(1.1*x)/cos(x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '0.9*cos(1.1*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = '0.9'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
variable = sup_vel_x
function = exact_sup_vel_x
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/porous-hllc.i)
eps=0.9
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = 1.1
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Variables]
[rho]
type = MooseVariableFVReal
[]
[rho_ud]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[]
[ICs]
[rho]
type = FunctionIC
variable = rho
function = 'exact_rho'
[]
[rho_ud]
type = FunctionIC
variable = rho_ud
function = 'exact_rho_ud'
[]
[rho_et]
type = FunctionIC
variable = rho_et
function = 'exact_rho_et'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVMassHLLC
variable = rho
fp = fp
[]
[mass_fn]
type = FVBodyForce
variable = rho
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVMomentumHLLC
variable = rho_ud
momentum_component = x
fp = fp
[]
[momentum_fn]
type = FVBodyForce
variable = rho_ud
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVFluidEnergyHLLC
variable = rho_et
fp = fp
[]
[energy_fn]
type = FVBodyForce
variable = rho_et
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_in]
variable = rho
type = PCNSFVHLLCSpecifiedMassFluxAndTemperatureMassBC
boundary = left
temperature = 'exact_T'
superficial_rhou = 'exact_rho_ud'
[]
[momentum_in]
variable = rho_ud
type = PCNSFVHLLCSpecifiedMassFluxAndTemperatureMomentumBC
boundary = left
temperature = 'exact_T'
superficial_rhou = 'exact_rho_ud'
momentum_component = 'x'
[]
[energy_in]
variable = rho_et
type = PCNSFVHLLCSpecifiedMassFluxAndTemperatureFluidEnergyBC
boundary = left
temperature = 'exact_T'
superficial_rhou = 'exact_rho_ud'
[]
[mass_out]
variable = rho
type = PCNSFVHLLCSpecifiedPressureMassBC
boundary = right
pressure = 'exact_p'
[]
[momentum_out]
variable = rho_ud
type = PCNSFVHLLCSpecifiedPressureMomentumBC
boundary = right
pressure = 'exact_p'
momentum_component = 'x'
[]
[energy_out]
variable = rho_et
type = PCNSFVHLLCSpecifiedPressureFluidEnergyBC
boundary = right
pressure = 'exact_p'
[]
[]
[Materials]
[var_mat]
type = PorousConservedVarMaterial
rho = rho
superficial_rhou = rho_ud
rho_et = rho_et
porosity = porosity
[]
[porosity]
type = GenericConstantMaterial
prop_names = 'porosity'
prop_values = '${eps}'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.83667087618017*eps*sin(1.1*x)'
vars = 'eps'
vals = '${eps}'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.48788261470924*eps*cos(1.1*x)'
vars = 'eps'
vals = '${eps}'
[]
[forcing_rho_ud]
type = ParsedFunction
value = 'eps*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x)) + 3.48788261470924*eps*sin(x)*cos(1.1*x)^2/cos(x)^2 - 7.67334175236034*eps*sin(1.1*x)*cos(1.1*x)/cos(x)'
vars = 'eps'
vals = '${eps}'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '1.0*eps*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 1.1*eps*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 1.0*eps*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
vars = 'eps'
vals = '${eps}'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
vars = 'eps'
vals = '${eps}'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
vars = 'eps'
vals = '${eps}'
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = none
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho]
type = ElementL2Error
variable = rho
function = exact_rho
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_ud]
variable = rho_ud
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_et]
variable = rho_et
function = exact_rho_et
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/hllc.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 18
nx = 180
[]
[to_pt5]
input = cartesian
type = SubdomainBoundingBoxGenerator
bottom_left = '2 0 0'
top_right = '4 1 0'
block_id = 1
[]
[pt5]
input = to_pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '4 0 0'
top_right = '6 1 0'
block_id = 2
[]
[to_pt25]
input = pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '6 0 0'
top_right = '8 1 0'
block_id = 3
[]
[pt25]
input = to_pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '8 0 0'
top_right = '10 1 0'
block_id = 4
[]
[to_pt5_again]
input = pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '10 0 0'
top_right = '12 1 0'
block_id = 5
[]
[pt5_again]
input = to_pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '12 0 0'
top_right = '14 1 0'
block_id = 6
[]
[to_one]
input = pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '14 0 0'
top_right = '16 1 0'
block_id = 7
[]
[one]
input = to_one
type = SubdomainBoundingBoxGenerator
bottom_left = '16 0 0'
top_right = '18 1 0'
block_id = 8
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_x]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[worst_courant]
type = MooseVariableFVReal
[]
[porosity]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_x]
type = ADMaterialRealAux
variable = vel_x
property = vel_x
execute_on = 'timestep_end'
[]
[sup_mom_x]
type = ADMaterialRealAux
variable = sup_mom_x
property = superficial_rhou
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[worst_courant]
type = Courant
variable = worst_courant
u = sup_vel_x
execute_on = 'timestep_end'
[]
[porosity]
type = MaterialRealAux
variable = porosity
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVMassHLLC
variable = pressure
[]
[momentum_advection]
type = PCNSFVMomentumHLLC
variable = sup_vel_x
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[energy_advection]
type = PCNSFVFluidEnergyHLLC
variable = T_fluid
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = sup_vel_x
value = ${u_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '${u_in}'
[]
[eps]
type = ParsedFunction
value = 'if(x < 2, 1,
if(x < 4, 1 - .5 / 2 * (x - 2),
if(x < 6, .5,
if(x < 8, .5 - .25 / 2 * (x - 6),
if(x < 10, .25,
if(x < 12, .25 + .25 / 2 * (x - 10),
if(x < 14, .5,
if(x < 16, .5 + .5 / 2 * (x - 14),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Steady
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/fluid_properties/test/tests/ideal_gas/test2.i)
# Test IdealGasFluidPropertiesFluidProperties using pressure and temperature
# Use values for Oxygen at 1 MPa and 350 K from NIST chemistry webook
#
# Input values:
# Cv = 669.8e J/kg/K
# Cp = 938.75 J/kg/K
# M = 31.9988e-3 kg/mol
#
# Expected output:
# density = 10.99591793 kg/m^3
# internal energy = 234.43e3 J/kg
# enthalpy = 328.5625e3 J/kg
# speed of sound = 357.0151605 m/s
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[./dummy]
[../]
[]
[AuxVariables]
[./pressure]
family = MONOMIAL
order = CONSTANT
initial_condition = 1e6
[../]
[./temperature]
family = MONOMIAL
order = CONSTANT
initial_condition = 350
[../]
[./density]
family = MONOMIAL
order = CONSTANT
[../]
[./viscosity]
family = MONOMIAL
order = CONSTANT
[../]
[./cp]
family = MONOMIAL
order = CONSTANT
[../]
[./cv]
family = MONOMIAL
order = CONSTANT
[../]
[./internal_energy]
family = MONOMIAL
order = CONSTANT
[../]
[./enthalpy]
family = MONOMIAL
order = CONSTANT
[../]
[./entropy]
family = MONOMIAL
order = CONSTANT
[../]
[./thermal_cond]
family = MONOMIAL
order = CONSTANT
[../]
[./c]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./density]
type = MaterialRealAux
variable = density
property = density
[../]
[./viscosity]
type = MaterialRealAux
variable = viscosity
property = viscosity
[../]
[./cp]
type = MaterialRealAux
variable = cp
property = cp
[../]
[./cv]
type = MaterialRealAux
variable = cv
property = cv
[../]
[./e]
type = MaterialRealAux
variable = internal_energy
property = e
[../]
[./enthalpy]
type = MaterialRealAux
variable = enthalpy
property = h
[../]
[./entropy]
type = MaterialRealAux
variable = entropy
property = s
[../]
[./thermal_cond]
type = MaterialRealAux
variable = thermal_cond
property = k
[../]
[./c]
type = MaterialRealAux
variable = c
property = c
[../]
[]
[Modules]
[./FluidProperties]
[./idealgas]
type = IdealGasFluidProperties
gamma = 1.401537772469394
molar_mass = 0.0319988
[../]
[]
[]
[Materials]
[./fp_mat]
type = FluidPropertiesMaterialPT
pressure = pressure
temperature = temperature
fp = idealgas
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = dummy
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/symmetry_test/2D_symmetry.i)
rho_inside = 1
E_inside = 2.501505578
rho_outside = 0.125
E_outside = 1.999770935
radius = 0.1
angle = 45
[GlobalParams]
fp = fp
[]
[Debug]
show_material_props = true
[]
[Mesh]
[file]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.5
xmax = 0.5
nx = 10
ymin = -0.5
ymax = 0.5
ny = 10
[../]
[rotate]
type = TransformGenerator
vector_value = '${angle} 0 0'
transform = ROTATE
input = file
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
allow_imperfect_jacobians = true
[]
[]
[]
[Variables]
[rho]
family = MONOMIAL
order = CONSTANT
fv = true
[../]
[rho_u]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1e-15
outputs = none
[]
[rho_v]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1e-15
outputs = none
[]
[rho_E]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[ICs]
[rho_ic]
type = FunctionIC
variable = rho
function = 'if (abs(x) < ${radius} & abs(y) < ${radius}, ${rho_inside}, ${rho_outside})'
[]
[rho_E_ic]
type = FunctionIC
variable = rho_E
function = 'if (abs(x) < ${radius} & abs(y) < ${radius}, ${fparse E_inside * rho_inside}, ${fparse E_outside * rho_outside})'
[]
[]
[FVKernels]
# Mass conservation
[mass_time]
type = FVTimeKernel
variable = rho
[]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
fp = fp
[]
# Momentum x conservation
[momentum_x_time]
type = FVTimeKernel
variable = rho_u
[]
[momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
fp = fp
[]
# Momentum y conservation
[momentum_y_time]
type = FVTimeKernel
variable = rho_v
[]
[./momentum_y_advection]
type = CNSFVMomentumHLLC
variable = rho_v
momentum_component = y
[]
# Fluid energy conservation
[./fluid_energy_time]
type = FVTimeKernel
variable = rho_E
[]
[./fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_E
fp = fp
[]
[]
[FVBCs]
## outflow implicit conditions
[mass_outflow]
type = CNSFVHLLCMassImplicitBC
variable = rho
fp = fp
boundary = 'left right top bottom'
[]
[./momentum_x_outflow]
type = CNSFVHLLCMomentumImplicitBC
variable = rho_u
momentum_component = x
fp = fp
boundary = 'left right top bottom'
[]
[momentum_y_outflow]
type = CNSFVHLLCMomentumImplicitBC
variable = rho_v
momentum_component = y
fp = fp
boundary = 'left right top bottom'
[]
[fluid_energy_outflow]
type = CNSFVHLLCFluidEnergyImplicitBC
variable = rho_E
fp = fp
boundary = 'left right top bottom'
[]
[]
[AuxVariables]
[Ma]
family = MONOMIAL
order = CONSTANT
[]
[p]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[Ma_aux]
type = NSMachAux
variable = Ma
fluid_properties = fp
use_material_properties = true
[]
[p_aux]
type = ADMaterialRealAux
variable = p
property = pressure
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rhov = rho_v
rho_et = rho_E
[]
[sound_speed]
type = SoundspeedMat
fp = fp
[]
[]
[Postprocessors]
[cfl_dt]
type = ADCFLTimeStepSize
c_names = 'sound_speed'
vel_names = 'speed'
CFL = 0.5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[]
[Executioner]
type = Transient
end_time = 0.2
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
l_tol = 1e-8
[TimeStepper]
type = PostprocessorDT
postprocessor = cfl_dt
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/ics/test.i)
p_initial=1.01e5
T=273.15
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 1
ymax = 2
nx = 4
ny = 4
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
kernel_coverage_check = false
solve = false
skip_nl_system_check = true
[]
[AuxVariables]
[pressure]
type = MooseVariableFVReal
[]
[vel_x]
type = MooseVariableFVReal
[]
[vel_y]
type = MooseVariableFVReal
[]
[vel_z]
type = MooseVariableFVReal
[]
[temperature]
type = MooseVariableFVReal
[]
[ht]
type = MooseVariableFVReal
[]
[e]
type = MooseVariableFVReal
[]
[Mach]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[rhou]
type = MooseVariableFVReal
[]
[rhov]
type = MooseVariableFVReal
[]
[rhow]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[specific_volume]
type = MooseVariableFVReal
[]
[pressure_2]
[]
[vel_x_2]
[]
[vel_y_2]
[]
[vel_z_2]
[]
[temperature_2]
[]
[ht_2]
[]
[e_2]
[]
[Mach_2]
[]
[rho_2]
[]
[rhou_2]
[]
[rhov_2]
[]
[rhow_2]
[]
[rho_et_2]
[]
[specific_volume_2]
[]
[]
[GlobalParams]
fluid_properties = 'fp'
initial_pressure = ${p_initial}
initial_temperature = ${T}
initial_velocity = '1 0.2 18'
[]
[ICs]
[p]
type = NSInitialCondition
variable = 'pressure'
[]
[vel_x]
type = NSInitialCondition
variable = 'vel_x'
[]
[vel_y]
type = NSInitialCondition
variable = 'vel_y'
[]
[vel_z]
type = NSInitialCondition
variable = 'vel_z'
[]
[temperature]
type = NSInitialCondition
variable = 'temperature'
[]
[ht]
type = NSInitialCondition
variable = 'ht'
[]
[e]
type = NSInitialCondition
variable = 'e'
[]
[Mach]
type = NSInitialCondition
variable = 'Mach'
[]
[rho]
type = NSInitialCondition
fluid_properties = 'fp'
initial_pressure = ${p_initial}
initial_temperature = ${T}
initial_velocity = '1 0.2 18'
variable = 'rho'
[]
[rhou]
type = NSInitialCondition
variable = 'rhou'
[]
[rhov]
type = NSInitialCondition
variable = 'rhov'
[]
[rhow]
type = NSInitialCondition
variable = 'rhow'
[]
[rho_et]
type = NSInitialCondition
variable = 'rho_et'
[]
[specific_volume]
type = NSInitialCondition
variable = 'specific_volume'
[]
[p_2]
type = NSInitialCondition
variable = 'pressure_2'
variable_type = 'pressure'
[]
[vel_x_2]
type = NSInitialCondition
variable = 'vel_x_2'
variable_type = 'vel_x'
[]
[vel_y_2]
type = NSInitialCondition
variable = 'vel_y_2'
variable_type = 'vel_y'
[]
[vel_z_2]
type = NSInitialCondition
variable = 'vel_z_2'
variable_type = 'vel_z'
[]
[temperature_2]
type = NSInitialCondition
variable = 'temperature_2'
variable_type = 'temperature'
[]
[ht_2]
type = NSInitialCondition
variable = 'ht_2'
variable_type = 'ht'
[]
[e_2]
type = NSInitialCondition
variable = 'e_2'
variable_type = 'e'
[]
[Mach_2]
type = NSInitialCondition
variable = 'Mach_2'
variable_type = 'Mach'
[]
[rho_2]
type = NSInitialCondition
variable = 'rho_2'
variable_type = 'rho'
[]
[rhou_2]
type = NSInitialCondition
variable = 'rhou_2'
variable_type = 'rhou'
[]
[rhov_2]
type = NSInitialCondition
variable = 'rhov_2'
variable_type = 'rhov'
[]
[rhow_2]
type = NSInitialCondition
variable = 'rhow_2'
variable_type = 'rhow'
[]
[rho_et_2]
type = NSInitialCondition
variable = 'rho_et_2'
variable_type = 'rho_et'
[]
[specific_volume_2]
type = NSInitialCondition
variable = 'specific_volume_2'
variable_type = 'specific_volume'
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/shock_tube_2D_cavity/hllc_sod_shocktube_2D.i)
rho_left = 1
E_left = 2.501505578
u_left = 1e-15
rho_right = 0.125
E_right = 1.999770935
u_right = 1e-15
x_sep = 35
[GlobalParams]
fp = fp
[]
[Mesh]
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '40 20'
ix = '200 100'
dy = '1 20 2 20 1'
iy = '4 100 10 100 4'
subdomain_id = '0 0
0 1
1 1
0 1
0 0'
[../]
[./wall]
type = SideSetsBetweenSubdomainsGenerator
input = cartesian
primary_block = 1
paired_block = 0
new_boundary = 'wall'
[../]
[./delete]
type = BlockDeletionGenerator
input = wall
block = 0
[../]
[]
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
allow_imperfect_jacobians = true
[../]
[../]
[]
[Variables]
[./rho]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[./rho_u]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[./rho_v]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[./rho_E]
order = CONSTANT
family = MONOMIAL
fv = true
[../]
[]
[AuxVariables]
[./Ma]
order = CONSTANT
family = MONOMIAL
[../]
[./p]
order = CONSTANT
family = MONOMIAL
[../]
[./v_norm]
order = CONSTANT
family = MONOMIAL
[../]
[./temperature]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./Ma_aux]
type = NSMachAux
variable = Ma
fluid_properties = fp
use_material_properties = true
[../]
[./p_aux]
type = ADMaterialRealAux
variable = p
property = pressure
[../]
[./v_norm_aux]
type = ADMaterialRealAux
variable = v_norm
property = speed
[../]
[./temperature_aux]
type = ADMaterialRealAux
variable = temperature
property = T_fluid
[../]
[]
[FVKernels]
[./mass_time]
type = FVTimeKernel
variable = rho
[../]
[./mass_advection]
type = CNSFVMassHLLC
variable = rho
[../]
[./momentum_x_time]
type = FVTimeKernel
variable = rho_u
[../]
[./momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
[../]
[./momentum_y_time]
type = FVTimeKernel
variable = rho_v
[../]
[./momentum_y_advection]
type = CNSFVMomentumHLLC
variable = rho_v
momentum_component = y
[../]
[./fluid_energy_time]
type = FVTimeKernel
variable = rho_E
[../]
[./fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_E
[../]
[]
[FVBCs]
[./mom_x_pressure]
type = CNSFVMomImplicitPressureBC
variable = rho_u
momentum_component = x
boundary = 'left right wall'
[../]
[./mom_y_pressure]
type = CNSFVMomImplicitPressureBC
variable = rho_v
momentum_component = y
boundary = 'wall'
[../]
[]
[ICs]
[./rho_ic]
type = FunctionIC
variable = rho
function = 'if (x < ${x_sep}, ${rho_left}, ${rho_right})'
[../]
[./rho_u_ic]
type = FunctionIC
variable = rho_u
function = 'if (x < ${x_sep}, ${fparse rho_left * u_left}, ${fparse rho_right * u_right})'
[../]
[./rho_E_ic]
type = FunctionIC
variable = rho_E
function = 'if (x < ${x_sep}, ${fparse E_left * rho_left}, ${fparse E_right * rho_right})'
[../]
[]
[Materials]
[./var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rhov = rho_v
rho_et = rho_E
fp = fp
[../]
[./sound_speed]
type = SoundspeedMat
fp = fp
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[../]
[]
[Postprocessors]
[./cfl_dt]
type = ADCFLTimeStepSize
c_names = 'sound_speed'
vel_names = 'speed'
[../]
[]
[Executioner]
type = Transient
end_time = 100
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
l_tol = 1e-8
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl_dt
[../]
[]
[Outputs]
exodus = true
[]
(modules/fluid_properties/test/tests/functions/saturation_temperature_function/saturation_temperature_function.i)
# TestTwoPhaseFluidProperties has the following saturation temperature function:
# T_sat(p) = 2 p
# Thus for p = 5, T_sat should be 10.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Modules]
[./FluidProperties]
[./fp_liquid]
type = IdealGasFluidProperties
[../]
[./fp_vapor]
type = IdealGasFluidProperties
[../]
[./fp_2phase]
type = TestTwoPhaseFluidProperties
fp_liquid = fp_liquid
fp_vapor = fp_vapor
[../]
[]
[]
[Functions]
[./p]
type = ConstantFunction
value = 5
[../]
[./T_sat]
type = SaturationTemperatureFunction
p = p
fp_2phase = fp_2phase
[../]
[]
[Postprocessors]
[./T_sat_pp]
type = FunctionValuePostprocessor
function = T_sat
execute_on = 'INITIAL'
[../]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/fluid_properties/test/tests/fp_interrogator/2ph.p_T.i)
[FluidPropertiesInterrogator]
fp = fp
p = 1e5
T = 300
[]
[Modules]
[./FluidProperties]
[./fp_liquid]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02900055737704918
mu = 1.823e-05
k = 0.02568
[../]
[./fp_vapor]
type = IdealGasFluidProperties
gamma = 1.1
molar_mass = 0.027714866
mu = 1.7e-05
k = 0.05
[../]
[./fp]
type = TestTwoPhaseFluidProperties
fp_liquid = fp_liquid
fp_vapor = fp_vapor
[../]
[../]
[]
(modules/porous_flow/test/tests/fluids/ideal_gas.i)
# Example of using the IdealGasFluidProperties userobject to provide fluid
# properties for an ideal gas. Use values for hydrogen (H2) at 1 MPa and 50 C.
#
# Input values:
# M = 2.01588e-3 kg/mol
# gamma = 1.4
# viscosity = 9.4393e-6 Pa.s
#
# Expected output:
# density = 750.2854 kg/m^3
# internal energy = 3.33 MJ/kg
# enthalpy = 4.66 MJ/kg
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Variables]
[pp]
initial_condition = 1e6
[]
[]
[Kernels]
[dummy]
type = Diffusion
variable = pp
[]
[]
[AuxVariables]
[temp]
initial_condition = 50.0
[]
[]
[Modules]
[FluidProperties]
[idealgas]
type = IdealGasFluidProperties
molar_mass = 2.01588e-3
gamma = 1.4
mu = 9.4393e-6
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[idealgass]
type = PorousFlowSingleComponentFluid
temperature_unit = Celsius
fp = idealgas
phase = 0
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Postprocessors]
[pressure]
type = ElementIntegralVariablePostprocessor
variable = pp
[]
[temperature]
type = ElementIntegralVariablePostprocessor
variable = temp
[]
[density]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_density_qp0'
[]
[viscosity]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_viscosity_qp0'
[]
[internal_energy]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_internal_energy_qp0'
[]
[enthalpy]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_enthalpy_qp0'
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ideal_gas
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
p_initial=1.01e5
T=273.15
u_in=10
eps=1
superficial_vel_in=${fparse u_in * eps}
[GlobalParams]
fp = fp
limiter = 'vanLeer'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 10
nx = 100
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[superficial_vel_x]
type = MooseVariableFVReal
initial_condition = ${superficial_vel_in}
[]
[temperature]
type = MooseVariableFVReal
initial_condition = ${T}
[]
[]
[AuxVariables]
[rho]
type = MooseVariableFVReal
[]
[superficial_rhou]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[superficial_rhou]
type = ADMaterialRealAux
variable = superficial_rhou
property = superficial_rhou
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = superficial_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = superficial_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = temperature
[]
[energy_advection]
type = PCNSFVKT
variable = temperature
eqn = "energy"
[]
[heat]
type = FVBodyForce
variable = temperature
value = 1e6
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = superficial_vel_x
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = temperature
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = superficial_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = temperature
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = temperature
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = superficial_vel_x
value = ${superficial_vel_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[superficial_vel_in]
type = ParsedVectorFunction
value_x = '${superficial_vel_in}'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = temperature
superficial_vel_x = superficial_vel_x
fp = fp
porosity = porosity
[]
[zero]
type = GenericConstantMaterial
prop_names = 'porosity'
prop_values = '${eps}'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 10
[]
steady_state_detection = false
steady_state_tolerance = 1e-12
abort_on_solve_fail = false
end_time = 100
nl_abs_tol = 1e-8
dtmin = 5e-5
automatic_scaling = true
compute_scaling_once = false
verbose = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -snes_linesearch_minlambda'
petsc_options_value = 'lu mumps NONZERO 1e-3 '
[]
[Outputs]
[exo]
type = Exodus
execute_on = 'final'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
friction_coeff=10
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 18
ny = 90
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[sup_vel_y]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_y]
type = MooseVariableFVReal
[]
[sup_mom_y]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[eps]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[sup_mom_y]
type = ADMaterialRealAux
variable = sup_mom_y
property = superficial_rhov
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[eps]
type = MaterialRealAux
variable = eps
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[drag]
type = PNSFVMomentumFriction
variable = sup_vel_x
momentum_component = 'x'
Darcy_name = 'cl'
momentum_name = superficial_rhou
[]
[momentum_time_y]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhov_dt'
variable = sup_vel_y
[]
[momentum_advection_y]
type = PCNSFVKT
variable = sup_vel_y
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_vel_y
momentum_component = 'y'
epsilon_function = 'eps'
[]
[drag_y]
type = PNSFVMomentumFriction
variable = sup_vel_y
momentum_component = 'y'
Darcy_name = 'cl'
momentum_name = superficial_rhov
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_vel_y
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_vel_y
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
[wall_pressure_x]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right'
variable = sup_vel_x
[]
[wall_pressure_y]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right'
variable = sup_vel_y
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_bottom]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'bottom'
[]
[sup_vel_x_bottom_and_walls]
type = FVDirichletBC
variable = sup_vel_x
value = 0
boundary = 'bottom left right'
[]
[sup_vel_y_walls]
type = FVDirichletBC
variable = sup_vel_y
value = 0
boundary = 'left right'
[]
[sup_vel_y_bottom]
type = FVDirichletBC
variable = sup_vel_y
value = ${u_in}
boundary = 'bottom'
[]
[p_top]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'top'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '0'
value_y = '${u_in}'
[]
[eps]
type = ParsedFunction
value = 'if(y < 2.8, 1,
if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
if(y < 6.8, .5,
if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
if(y < 10.8, .25,
if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
if(y < 14.8, .5,
if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
superficial_vel_y = sup_vel_y
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[ad_generic]
type = ADGenericConstantVectorMaterial
prop_names = 'cl'
prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-7
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu mumps'
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/porous_flow/test/tests/newton_cooling/nc08.i)
# Newton cooling from a bar. 1-phase ideal fluid and heat, steady
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pressure temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Variables]
[pressure]
[]
[temp]
[]
[]
[ICs]
# have to start these reasonably close to their steady-state values
[pressure]
type = FunctionIC
variable = pressure
function = '200-0.5*x'
[]
[temperature]
type = FunctionIC
variable = temp
function = 180+0.1*x
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
gravity = '0 0 0'
variable = pressure
[]
[heat_advection]
type = PorousFlowHeatAdvection
gravity = '0 0 0'
variable = temp
[]
[]
[Modules]
[FluidProperties]
[idealgas]
type = IdealGasFluidProperties
molar_mass = 1.4
gamma = 1.2
mu = 1.2
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[dens0]
type = PorousFlowSingleComponentFluid
fp = idealgas
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 1.1 0 0 0 1.1'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey # irrelevant in this fully-saturated situation
n = 2
phase = 0
[]
[]
[BCs]
[leftp]
type = DirichletBC
variable = pressure
boundary = left
value = 200
[]
[leftt]
type = DirichletBC
variable = temp
boundary = left
value = 180
[]
[newtonp]
type = PorousFlowPiecewiseLinearSink
variable = pressure
boundary = right
pt_vals = '-200 0 200'
multipliers = '-200 0 200'
use_mobility = true
use_relperm = true
fluid_phase = 0
flux_function = 0.005 # 1/2/L
[]
[newtont]
type = PorousFlowPiecewiseLinearSink
variable = temp
boundary = right
pt_vals = '-200 0 200'
multipliers = '-200 0 200'
use_mobility = true
use_relperm = true
use_enthalpy = true
fluid_phase = 0
flux_function = 0.005 # 1/2/L
[]
[]
[VectorPostprocessors]
[porepressure]
type = LineValueSampler
variable = pressure
start_point = '0 0.5 0'
end_point = '100 0.5 0'
sort_by = x
num_points = 11
execute_on = timestep_end
[]
[temperature]
type = LineValueSampler
variable = temp
start_point = '0 0.5 0'
end_point = '100 0.5 0'
sort_by = x
num_points = 11
execute_on = timestep_end
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1E-10
nl_abs_tol = 1E-15
[]
[Outputs]
file_base = nc08
execute_on = timestep_end
exodus = true
[along_line]
type = CSV
execute_vector_postprocessors_on = timestep_end
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-conserved-pcnsfv-kt.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[rho]
type = MooseVariableFVReal
[]
[rho_ud]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = rho
function = 'exact_rho'
[]
[sup_vel_x]
type = FunctionIC
variable = rho_ud
function = 'exact_rho_ud'
[]
[T_fluid]
type = FunctionIC
variable = rho_et
function = 'exact_rho_et'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = rho
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = rho
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = rho_ud
momentum_component = x
eqn = "momentum"
[]
[momentum_fn]
type = FVBodyForce
variable = rho_ud
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = rho_et
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = rho_et
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = rho
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = rho_ud
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = rho_et
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = rho
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = rho_ud
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = rho_et
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[rho_right]
type = FVFunctionDirichletBC
variable = rho
function = exact_rho
boundary = 'right'
[]
[rho_ud_left]
type = FVFunctionDirichletBC
variable = rho_ud
function = exact_rho_ud
boundary = 'left'
[]
[rho_et_left]
type = FVFunctionDirichletBC
variable = rho_et
function = exact_rho_et
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousConservedVarMaterial
rho = rho
superficial_rhou = rho_ud
rho_et = rho_et
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.45300378856215*sin(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.13909435323832*cos(1.1*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '0.9*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 0.99*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 0.9*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.13909435323832*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '0.9*cos(1.1*x)/cos(x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '0.9*cos(1.1*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = '0.9'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options = '-snes_linesearch_monitor'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho]
type = ElementL2Error
variable = rho
function = exact_rho
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_ud]
variable = rho_ud
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_et]
variable = rho_et
function = exact_rho_et
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/porous_flow/test/tests/jacobian/esbc02.i)
# Tests the Jacobian of PorousFlowEnthalpySink when pressure
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
at_nodes = true
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0.1
[]
[]
[Variables]
[pp]
initial_condition = 1
[]
[temp]
initial_condition = 2
[]
[]
[AuxVariables]
[pressure]
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[heat_conduction]
type = TimeDerivative
variable = temp
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = IdealGasFluidProperties
[]
[]
[]
[Materials]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[]
[BCs]
[left]
type = PorousFlowEnthalpySink
variable = temp
boundary = left
porepressure_var = pressure
T_in = 300
fp = simple_fluid
flux_function = -23
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.1
num_steps = 1
nl_rel_tol = 1E-12
nl_abs_tol = 1E-12
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-1'
[]
(modules/fluid_properties/test/tests/ics/rho_vapor_mixture_from_pressure_temperature/test.i)
# Tests the initial condition for mixture density from pressure and temperature.
# This test uses the general vapor mixture fluid properties with steam, air,
# and helium with mass fractions 0.5, 0.3, and 0.2, respectively. The individual
# specific volumes (in m^3/kg) at p = 100 kPa, T = 500 K are:
# steam: 2.298113001
# air: 1.43525
# helium: 10.3855
# For the general vapor mixture, the mixture specific volume is computed as
# v = \sum\limits_i x_i v_i ,
# where x_i is the mass fraction of component i, and v_i is the specific volume
# of component i. Therefore, the correct value for specific volume of the mixture is
# v = 3.65673150050 m^3/kg
# and thus density is
# rho = 0.27346825980066236 kg/m^3
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Modules]
[FluidProperties]
[fp_steam]
type = StiffenedGasFluidProperties
gamma = 1.43
cv = 1040.0
q = 2.03e6
p_inf = 0.0
q_prime = -2.3e4
k = 0.026
mu = 134.4e-7
M = 0.01801488
rho_c = 322.0
[]
[fp_air]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 28.965197004e-3
[]
[fp_helium]
type = IdealGasFluidProperties
gamma = 1.66
molar_mass = 4.002917432959e-3
[]
[fp_vapor_mixture]
type = IdealRealGasMixtureFluidProperties
fp_primary = fp_steam
fp_secondary = 'fp_air fp_helium'
[]
[]
[]
[AuxVariables]
[rho]
[]
[p]
[]
[T]
[]
[x_air]
[]
[x_helium]
[]
[]
[ICs]
[rho_ic]
type = RhoVaporMixtureFromPressureTemperatureIC
variable = rho
p = p
T = T
x_secondary_vapors = 'x_air x_helium'
fp_vapor_mixture = fp_vapor_mixture
[]
[p_ic]
type = ConstantIC
variable = p
value = 100e3
[]
[T_ic]
type = ConstantIC
variable = T
value = 500
[]
[x_air_ic]
type = ConstantIC
variable = x_air
value = 0.3
[]
[x_helium_ic]
type = ConstantIC
variable = x_helium
value = 0.2
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[rho_test]
type = ElementalVariableValue
elementid = 0
variable = rho
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Outputs]
csv = true
execute_on = 'INITIAL'
[]
[Problem]
solve = false
[]
(modules/porous_flow/test/tests/jacobian/esbc01.i)
# Tests the Jacobian of PorousFlowEnthalpySink when pore pressure is specified
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
at_nodes = true
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0.1
[]
[]
[Variables]
[pp]
initial_condition = 1
[]
[temp]
initial_condition = 2
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[heat_conduction]
type = TimeDerivative
variable = temp
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = IdealGasFluidProperties
[]
[]
[]
[Materials]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[]
[BCs]
[left]
type = PorousFlowEnthalpySink
variable = temp
boundary = left
fluid_phase = 0
T_in = 300
fp = simple_fluid
flux_function = -23
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.1
num_steps = 1
nl_rel_tol = 1E-12
nl_abs_tol = 1E-12
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-2'
[]
(modules/fluid_properties/test/tests/fp_interrogator/err.no_params.i)
[FluidPropertiesInterrogator]
fp = fp
[]
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02900055737704918
mu = 1.823e-05
k = 0.02568
[../]
[../]
[]
(modules/fluid_properties/test/tests/fp_interrogator/2ph.T.i)
[FluidPropertiesInterrogator]
fp = fp
T = 300
[]
[Modules]
[./FluidProperties]
[./fp_liquid]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02900055737704918
mu = 1.823e-05
k = 0.02568
[../]
[./fp_vapor]
type = IdealGasFluidProperties
gamma = 1.1
molar_mass = 0.027714866
mu = 1.7e-05
k = 0.05
[../]
[./fp]
type = TestTwoPhaseFluidProperties
fp_liquid = fp_liquid
fp_vapor = fp_vapor
[../]
[../]
[]
(modules/fluid_properties/test/tests/two_phase_fluid_properties_independent/test.i)
# Tests the TwoPhaseFluidPropertiesIndependent class, which takes the names
# of 2 single-phase fluid properties independently. This test uses a dummy
# aux to make sure that the single-phase fluid properties can be recovered
# from the 2-phase fluid properties. A modification to this test checks that
# an error results if one tries to call a 2-phase fluid properties interface
# using this class, which is designed to ensure that the 2 phases are independent.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
# Required for NodalVariableValue on distributed mesh
allow_renumbering = false
[]
[Problem]
solve = false
[]
[AuxVariables]
[./p]
initial_condition = 1e5
[../]
[./T]
initial_condition = 300
[../]
[./rho_avg]
[../]
[]
[Modules]
[./FluidProperties]
# rho1 = 1.149425287 kg/m^3
[./fp1]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02867055103448276
[../]
# rho2 = 0.6666666667 kg/m^3
[./fp2]
type = IdealGasFluidProperties
gamma = 1.2
molar_mass = 0.0166289196
[../]
[./fp_2phase]
type = TwoPhaseFluidPropertiesIndependent
fp_liquid = fp1
fp_vapor = fp2
[../]
[]
[]
[AuxKernels]
# correct value (0.5*(rho1 + rho2)) should be: 0.90804597685 kg/m^3
[./rho_avg_aux]
type = TwoPhaseAverageDensityAux
variable = rho_avg
p = p
T = T
fp_2phase = fp_2phase
execute_on = 'initial'
[../]
[]
[Postprocessors]
[./rho_avg_value]
type = NodalVariableValue
variable = rho_avg
nodeid = 0
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/fluid_properties/test/tests/fp_interrogator/2ph.p.i)
[FluidPropertiesInterrogator]
fp = fp
p = 1e5
[]
[Modules]
[./FluidProperties]
[./fp_liquid]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02900055737704918
mu = 1.823e-05
k = 0.02568
[../]
[./fp_vapor]
type = IdealGasFluidProperties
gamma = 1.1
molar_mass = 0.027714866
mu = 1.7e-05
k = 0.05
[../]
[./fp]
type = TestTwoPhaseFluidProperties
fp_liquid = fp_liquid
fp_vapor = fp_vapor
[../]
[../]
[]
(modules/fluid_properties/test/tests/fp_interrogator/2ph_ncg_p_T.i)
[FluidPropertiesInterrogator]
fp = fp_2phase_ncg
p = 1e5
T = 372.7559289
x_ncg = '0.1'
[]
[Modules]
[./FluidProperties]
[./fp_nitrogen]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02867055103448276
[../]
[./fp_2phase_ncg]
type = TestTwoPhaseNCGFluidProperties
fp_ncgs = 'fp_nitrogen'
[../]
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/stagnation_inlet/supersonic_nozzle_hllc.i)
stagnation_pressure = 1
stagnation_temperature = 1
[GlobalParams]
fp = fp
[]
[Debug]
show_material_props = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = supersonic_nozzle.e
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Variables]
[rho]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.0034
[]
[rho_u]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1e-4
outputs = none
[]
[rho_v]
family = MONOMIAL
order = CONSTANT
fv = true
outputs = none
[]
[rho_E]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 2.5
[]
[]
[FVKernels]
# Mass conservation
[mass_time]
type = FVTimeKernel
variable = rho
[]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
[]
# Momentum x conservation
[momentum_x_time]
type = FVTimeKernel
variable = rho_u
[]
[momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
[]
# Momentum y conservation
[momentum_y_time]
type = FVTimeKernel
variable = rho_v
[]
[momentum_y_advection]
type = CNSFVMomentumHLLC
variable = rho_v
momentum_component = y
[]
# Fluid energy conservation
[fluid_energy_time]
type = FVTimeKernel
variable = rho_E
[]
[fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_E
[]
[]
[FVBCs]
## inflow stagnation boundaries
[mass_stagnation_inflow]
type = CNSFVHLLCMassStagnationInletBC
variable = rho
stagnation_pressure = ${stagnation_pressure}
stagnation_temperature = ${stagnation_temperature}
boundary = left
[]
[momentum_x_stagnation_inflow]
type = CNSFVHLLCMomentumStagnationInletBC
variable = rho_u
momentum_component = x
stagnation_pressure = ${stagnation_pressure}
stagnation_temperature = ${stagnation_temperature}
boundary = left
[]
[momentum_y_stagnation_inflow]
type = CNSFVHLLCMomentumStagnationInletBC
variable = rho_v
momentum_component = y
stagnation_pressure = ${stagnation_pressure}
stagnation_temperature = ${stagnation_temperature}
boundary = left
[../]
[fluid_energy_stagnation_inflow]
type = CNSFVHLLCFluidEnergyStagnationInletBC
variable = rho_E
stagnation_pressure = ${stagnation_pressure}
stagnation_temperature = ${stagnation_temperature}
boundary = left
[]
## outflow implicit conditions
[mass_outflow]
type = CNSFVHLLCMassImplicitBC
variable = rho
boundary = right
[]
[momentum_x_outflow]
type = CNSFVHLLCMomentumImplicitBC
variable = rho_u
momentum_component = x
boundary = right
[]
[momentum_y_outflow]
type = CNSFVHLLCMomentumImplicitBC
variable = rho_v
momentum_component = y
boundary = right
[]
[fluid_energy_outflow]
type = CNSFVHLLCFluidEnergyImplicitBC
variable = rho_E
boundary = right
[]
# wall conditions
[momentum_x_pressure_wall]
type = CNSFVMomImplicitPressureBC
variable = rho_u
momentum_component = x
boundary = wall
[]
[momentum_y_pressure_wall]
type = CNSFVMomImplicitPressureBC
variable = rho_v
momentum_component = y
boundary = wall
[]
[]
[AuxVariables]
[Ma]
family = MONOMIAL
order = CONSTANT
[]
[Ma_layered]
family = MONOMIAL
order = CONSTANT
[]
[]
[UserObjects]
[layered_Ma_UO]
type = LayeredAverage
variable = Ma
num_layers = 100
direction = x
[]
[]
[AuxKernels]
[Ma_aux]
type = NSMachAux
variable = Ma
fluid_properties = fp
use_material_properties = true
[]
[Ma_layered_aux]
type = SpatialUserObjectAux
variable = Ma_layered
user_object = layered_Ma_UO
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rhov = rho_v
rho_et = rho_E
[]
[fluid_props]
type = GeneralFluidProps
porosity = 1
characteristic_length = 1
[]
[sound_speed]
type = SoundspeedMat
fp = fp
[]
[]
[Postprocessors]
[cfl_dt]
type = ADCFLTimeStepSize
c_names = 'sound_speed'
vel_names = 'speed'
CFL = 0.5
[]
[outflow_Ma]
type = SideAverageValue
variable = Ma
boundary = right
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[]
[Executioner]
type = Transient
end_time = 0.1
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
l_tol = 1e-8
[TimeStepper]
type = PostprocessorDT
postprocessor = cfl_dt
[]
[]
[VectorPostprocessors]
[Ma_layered]
type = LineValueSampler
variable = Ma_layered
start_point = '0 0 0'
end_point = '10 0 0'
num_points = 100
sort_by = x
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/bump/bump.i)
# Euler flow of an ideal gas over a Gaussian "bump".
#
# The inlet is a stagnation pressure and temperature BC which
# corresponds to subsonic (M=0.5) flow with a static pressure of 1 atm
# and static temperature of 300K. The outlet consists of a
# weakly-imposed static pressure BC of 1 atm. The top and bottom
# walls of the channel weakly impose the "no normal flow" BC. The
# problem is initialized with freestream flow throughout the domain.
# Although this initial condition is less physically realistic, it
# helps the problem reach steady state more quickly.
#
# There is a sequence of uniformly-refined, geometry-fitted meshes
# from Yidong Xia available for solving this classical subsonic test
# problem (see the Mesh block below). A coarse grid is used for the
# actual regression test, but changing one line in the Mesh block is
# sufficient to run this problem with different meshes. An
# entropy-based error estimate is also provided, and can be used to
# demonstrate convergence of the numerical solution (since the true
# solution should produce zero entropy). The error should converge at
# second-order in this norm.
[Mesh]
# Bi-Linear elements
# file = SmoothBump_quad_ref1_Q1.msh # 84 elems, 65 nodes
# file = SmoothBump_quad_ref2_Q1.msh # 192 elems, 225 nodes
# file = SmoothBump_quad_ref3_Q1.msh # 768 elems, 833 nodes
# file = SmoothBump_quad_ref4_Q1.msh # 3072 elems, 3201 nodes
# file = SmoothBump_quad_ref5_Q1.msh # 12288 elems, 12545 nodes
# Bi-Quadratic elements
# file = SmoothBump_quad_ref0_Q2.msh # 32 elems, 65 nodes
# file = SmoothBump_quad_ref1_Q2.msh # 84 elems, 225 nodes
file = SmoothBump_quad_ref2_Q2.msh # 260 elems, 833 nodes
# file = SmoothBump_quad_ref3_Q2.msh # 900 elems, 3201 nodes
# file = SmoothBump_quad_ref4_Q2.msh # 3332 elems, 12545 nodes
# file = SmoothBump_quad_ref5_Q2.msh # 12804 elems, 49665 nodes
[]
[Modules]
[FluidProperties]
[ideal_gas]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897024320557491
[]
[]
[CompressibleNavierStokes]
# steady-state or transient
equation_type = transient
# fluid
fluid_properties = ideal_gas
# boundary conditions
stagnation_boundary = 1
stagnation_pressure = 120192.995549849 # Pa, Mach=0.5 at 1 atm
stagnation_temperature = 315 # K, Mach=0.5 at 1 atm
stagnation_flow_direction = '1 0'
no_penetration_boundary = '3 4'
static_pressure_boundary = 2
static_pressure = 101325 # Pa
# variable types, scalings and initial conditions
family = LAGRANGE
order = FIRST
total_energy_density_scaling = 9.869232667160121e-6
initial_pressure = 101325.
initial_temperature = 300.
initial_velocity = '173.594354746921 0 0' # Mach 0.5: = 0.5*sqrt(gamma*R*T)
pressure_variable_name = "p"
[]
[]
[Materials]
[fluid]
type = Air
block = 0 # 'MeshInterior'
rho = rho
rhou = rhou
rhov = rhov
rho_et = rho_et
vel_x = vel_x
vel_y = vel_y
temperature = temperature
ht = ht
# This value is not used in the Euler equations, but it *is* used
# by the stabilization parameter computation, which it decreases
# the amount of artificial viscosity added, so it's best to use a
# realistic value.
dynamic_viscosity = 0.0
fluid_properties = ideal_gas
[]
[]
[Postprocessors]
[entropy_error]
type = NSEntropyError
execute_on = 'initial timestep_end'
block = 0
rho_infty = 1.1768292682926829
p_infty = 101325
rho = rho
pressure = p
fluid_properties = ideal_gas
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 5.e-5
dtmin = 1.e-5
start_time = 0.0
num_steps = 10
nl_rel_tol = 1e-9
nl_max_its = 5
l_tol = 1e-4
l_max_its = 100
# We use trapezoidal quadrature. This improves stability by
# mimicking the "group variable" discretization approach.
[Quadrature]
type = TRAP
order = FIRST
[]
[]
[Outputs]
interval = 1
exodus = true
[]
[AuxVariables]
[rhoe][]
[enthalpy][]
[]
[AuxKernels]
[rhoe]
variable = rhoe
type = ParsedAux
function = 'rho_et'
args = 'rho_et'
execute_on = 'initial timestep_end'
[]
[enthalpy]
variable = enthalpy
type = ParsedAux
function = 'ht'
args = 'ht'
execute_on = 'initial timestep_end'
[]
[]
(modules/fluid_properties/test/tests/functions/saturation_pressure_function/saturation_pressure_function.i)
# TestTwoPhaseFluidProperties has the following saturation pressure function:
# p_sat(p) = 3 T
# Thus for T = 5, p_sat should be 15.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Modules]
[./FluidProperties]
[./fp_liquid]
type = IdealGasFluidProperties
[../]
[./fp_vapor]
type = IdealGasFluidProperties
[../]
[./fp_2phase]
type = TestTwoPhaseFluidProperties
fp_liquid = fp_liquid
fp_vapor = fp_vapor
[../]
[]
[]
[Functions]
[./T]
type = ConstantFunction
value = 5
[../]
[./p_sat]
type = SaturationPressureFunction
T = T
fp_2phase = fp_2phase
[../]
[]
[Postprocessors]
[./p_sat_pp]
type = FunctionValuePostprocessor
function = p_sat
execute_on = 'INITIAL'
[../]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity-mixed.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
rho_in=1.30524
sup_mom_y_in=${fparse u_in * rho_in}
user_limiter='upwind'
friction_coeff=10
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 18
ny = 90
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_mom_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[sup_mom_y]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_y]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[eps]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[eps]
type = MaterialRealAux
variable = eps
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_mom_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_mom_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[drag]
type = PNSFVMomentumFriction
variable = sup_mom_x
momentum_component = 'x'
Darcy_name = 'cl'
momentum_name = superficial_rhou
[]
[momentum_time_y]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhov_dt'
variable = sup_mom_y
[]
[momentum_advection_y]
type = PCNSFVKT
variable = sup_mom_y
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_mom_y
momentum_component = 'y'
epsilon_function = 'eps'
[]
[drag_y]
type = PNSFVMomentumFriction
variable = sup_mom_y
momentum_component = 'y'
Darcy_name = 'cl'
momentum_name = superficial_rhov
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
velocity_function_includes_rho = true
[]
[rhou_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
velocity_function_includes_rho = true
[]
[rhov_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_y
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
velocity_function_includes_rho = true
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
velocity_function_includes_rho = true
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_y
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
[wall_pressure_x]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right'
variable = sup_mom_x
[]
[wall_pressure_y]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right'
variable = sup_mom_y
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_bottom]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'bottom'
[]
[sup_mom_x_bottom_and_walls]
type = FVDirichletBC
variable = sup_mom_x
value = 0
boundary = 'bottom left right'
[]
[sup_mom_y_walls]
type = FVDirichletBC
variable = sup_mom_y
value = 0
boundary = 'left right'
[]
[sup_mom_y_bottom]
type = FVDirichletBC
variable = sup_mom_y
value = ${sup_mom_y_in}
boundary = 'bottom'
[]
[p_top]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'top'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '0'
value_y = '${sup_mom_y_in}'
[]
[eps]
type = ParsedFunction
value = 'if(y < 2.8, 1,
if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
if(y < 6.8, .5,
if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
if(y < 10.8, .25,
if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
if(y < 14.8, .5,
if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_rhou = sup_mom_x
superficial_rhov = sup_mom_y
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[ad_generic]
type = ADGenericConstantVectorMaterial
prop_names = 'cl'
prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-7
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu mumps'
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/natural_convection/average-boussinesq.i)
hot_temp=400
cold_temp=273.15
p_initial=1.01e5
T_initial=${cold_temp}
k=25.68e-3
mu=18.23e-6
[GlobalParams]
fp = fp
gravity = '0.00 -9.81 0.00'
two_term_boundary_expansion = true
limiter = central_difference
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1e-2
ymin = 0
ymax = 1e-2
nx = 32
ny = 32
[]
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
scaling = 1e1
[]
[sup_rho_u]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e3
[]
[sup_rho_v]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e3
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T_initial}
scaling = 1e-1
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[vel_x]
type = MooseVariableFVReal
[]
[vel_y]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_x]
type = ADMaterialRealAux
variable = vel_x
property = vel_x
execute_on = 'timestep_end'
[]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
phi0 = ${p_initial}
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_rho_u
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_rho_u
momentum_component = 'x'
epsilon_function = '1'
[]
[x_viscous]
type = FVOrthogonalDiffusion
variable = sup_rho_u
coeff = ${mu}
diffusing_quantity = 'vel_x'
[]
[x_momentum_gravity_source]
type = PNSFVMomentumGravity
variable = sup_rho_u
momentum_component = 'x'
[]
[momentum_advection_y]
type = PCNSFVKT
variable = sup_rho_v
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_rho_v
momentum_component = 'y'
epsilon_function = '1'
[]
[y_viscous]
type = FVOrthogonalDiffusion
variable = sup_rho_v
coeff = ${mu}
diffusing_quantity = 'vel_y'
[]
[y_momentum_gravity_source]
type = PNSFVMomentumGravity
variable = sup_rho_v
momentum_component = 'y'
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[fluid_energy_conduction]
type = FVOrthogonalDiffusion
variable = T_fluid
coeff = ${k}
diffusing_quantity = 'T_fluid'
[]
[]
[FVBCs]
[pressure_x_walls]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right top bottom'
variable = sup_rho_u
[]
[pressure_y_walls]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right top bottom'
variable = sup_rho_v
[]
[shear_x_walls]
type = FVOrthogonalBoundaryDiffusion
function = 0
variable = sup_rho_u
diffusing_quantity = 'vel_x'
coeff = ${mu}
boundary = 'left right top bottom'
[]
[shear_y_walls]
type = FVOrthogonalBoundaryDiffusion
function = 0
variable = sup_rho_v
diffusing_quantity = 'vel_y'
coeff = ${mu}
boundary = 'left right top bottom'
[]
[hot_wall]
type = FVOrthogonalBoundaryDiffusion
function = ${hot_temp}
variable = T_fluid
diffusing_quantity = 'T_fluid'
coeff = ${k}
boundary = 'left'
[]
[cold_wall]
type = FVOrthogonalBoundaryDiffusion
function = ${cold_temp}
variable = T_fluid
diffusing_quantity = 'T_fluid'
coeff = ${k}
boundary = 'right'
[]
# Help gradient reconstruction
[T_fluid_hot]
type = FVDirichletBC
variable = T_fluid
value = ${hot_temp}
boundary = 'left'
[]
[T_fluid_cold]
type = FVDirichletBC
variable = T_fluid
value = ${cold_temp}
boundary = 'right'
[]
[sup_mom_x_walls]
type = FVDirichletBC
variable = sup_rho_u
value = 0
boundary = 'left right top bottom'
[]
[sup_mom_y_walls]
type = FVDirichletBC
variable = sup_rho_v
value = 0
boundary = 'left right top bottom'
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_rhou = sup_rho_u
superficial_rhov = sup_rho_v
fp = fp
porosity = porosity
[]
[porosity]
type = GenericConstantMaterial
prop_names = 'porosity'
prop_values = '1'
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Steady
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu strumpack'
[]
[Outputs]
exodus = true
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/step/step.i)
# Navier-Stokes (or Euler) flow of an ideal gas over a step.
#
# Note: this problem is not currently a regression test for the
# Navier-Stokes module since it is in some sense ill-posed. As
# discussed in [0], the sharp corner of the step (both forward and
# backward-facing) introduces a singularity in the first derivative of
# the velocity and pressure fields, and therefore produces large
# numerical errors in the neighborhood of these points. Physically,
# this numerical error can be interpreted as causing an artificial
# "boundary layer" to form just above the step, as well as a spurious
# production of entropy even though the flow remains subsonic.
# Nevertheless, the forward-facing step problem in particular remains
# a challenging and well-document test problem for flow solvers, and
# this input file is included to help facilitate its development and
# employment by users of the module.
#
# [0]: Woodward and Colella, "The numerical simulation of
# two-dimenstional fluid flow with strong shocks," Journal of
# Computational Physics 54(1), pp. 115-173, 1984
[Mesh]
type = FileMesh
file = step.e
dim = 2
# uniform_refine = 3
[]
[Modules]
[FluidProperties]
[ideal_gas]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[CompressibleNavierStokes]
# steady-state or transient
equation_type = transient
# fluid
fluid_properties = ideal_gas
# boundary conditions
stagnation_boundary = left
stagnation_pressure = 120192.995549849 # Pa, Mach=0.5 at 1 atm
stagnation_temperature = 315 # K, Mach=0.5 at 1 atm
stagnation_flow_direction = '1 0'
no_penetration_boundary = 'top bottom step_top step_left step_right'
static_pressure_boundary = 'right'
static_pressure = 101325 # Pa
# variable types, scalings and initial conditions
family = LAGRANGE
order = FIRST
total_energy_scaling = 9.869232667160121e-6
initial_pressure = 101325.
initial_temperature = 300.
initial_velocity = '173.594354746921 0 0' # Mach 0.5: = 0.5*sqrt(gamma*R*T)
[]
[]
[Materials]
[fluid]
type = Air
block = 1
rho = rho
rhou = rhou
rhov = rhov
rhoE = rhoE
vel_x = vel_x
vel_y = vel_y
temperature = temperature
enthalpy = enthalpy
# This value is not used in the Euler equations, but it *is* used
# by the stabilization parameter computation, which it decreases
# the amount of artificial viscosity added, so it's best to use a
# realistic value.
dynamic_viscosity = 0.0
fluid_properties = ideal_gas
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 5.e-5
dtmin = 1.e-5
start_time = 0.0
num_steps = 10000
nl_rel_tol = 1e-5
nl_abs_tol = 1e-9
# nl_abs_step_tol = 1e-15
nl_max_its = 5
l_tol = 1e-4 # Relative linear tolerance for each Krylov solve
l_max_its = 100 # Number of linear iterations for each Krylov solve
# Specify the order as FIRST, otherwise you will get warnings in DEBUG mode...
[Quadrature]
type = TRAP
order = FIRST
[]
[]
[Outputs]
file_base = step_out
interval = 1
exodus = true
[]
(modules/fluid_properties/test/tests/fp_interrogator/1ph.rho_p.i)
[FluidPropertiesInterrogator]
fp = fp
rho = 1
p = 1e5
[]
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02900055737704918
mu = 1.823e-05
k = 0.02568
[../]
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/straight-channel-hllc.i)
[GlobalParams]
fp = fp
[]
[Mesh]
[./gen_mesh]
type = CartesianMeshGenerator
dim = 1
dx = '.1 .1 .1 .1 .1 .5 .1 .1 .1 .1 .1'
# dx = '.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1'
[../]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Variables]
[rho]
type = MooseVariableFVReal
initial_condition = 1.28969
scaling = 1e3
[]
[rho_u]
type = MooseVariableFVReal
initial_condition = 1.28969
[]
[rho_et]
type = MooseVariableFVReal
initial_condition = 2.525e5
scaling = 1e-2
[]
[]
[FVKernels]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
fp = fp
[]
[momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
fp = fp
[]
[drag]
type = FVReaction
variable = rho_u
rate = 1000
[]
[fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_et
fp = fp
[]
[]
[FVBCs]
[mass_in]
variable = rho
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMassBC
boundary = left
temperature = 273.15
rhou = 1.28969
[]
[momentum_in]
variable = rho_u
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMomentumBC
boundary = left
temperature = 273.15
rhou = 1.28969
momentum_component = 'x'
[]
[energy_in]
variable = rho_et
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureFluidEnergyBC
boundary = left
temperature = 273.15
rhou = 1.28969
[]
[mass_out]
variable = rho
type = CNSFVHLLCSpecifiedPressureMassBC
boundary = right
pressure = 1.01e5
[]
[momentum_out]
variable = rho_u
type = CNSFVHLLCSpecifiedPressureMomentumBC
boundary = right
pressure = 1.01e5
momentum_component = 'x'
[]
[energy_out]
variable = rho_et
type = CNSFVHLLCSpecifiedPressureFluidEnergyBC
boundary = right
pressure = 1.01e5
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rho_et = rho_et
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = none
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/free-flow-hllc.i)
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = 1.1
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Variables]
[rho]
type = MooseVariableFVReal
[]
[rho_u]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[]
[ICs]
[rho]
type = FunctionIC
variable = rho
function = 'exact_rho'
[]
[rho_u]
type = FunctionIC
variable = rho_u
function = 'exact_rho_u'
[]
[rho_et]
type = FunctionIC
variable = rho_et
function = 'exact_rho_et'
[]
[]
[FVKernels]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
[]
[mass_fn]
type = FVBodyForce
variable = rho
function = 'forcing_rho'
[]
[momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
[]
[momentum_fn]
type = FVBodyForce
variable = rho_u
function = 'forcing_rho_u'
[]
[fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_et
[]
[energy_fn]
type = FVBodyForce
variable = rho_et
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_in]
variable = rho
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMassBC
boundary = left
temperature = 'exact_T'
rhou = 'exact_rho_u'
[]
[momentum_in]
variable = rho_u
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMomentumBC
boundary = left
temperature = 'exact_T'
rhou = 'exact_rho_u'
momentum_component = 'x'
[]
[energy_in]
variable = rho_et
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureFluidEnergyBC
boundary = left
temperature = 'exact_T'
rhou = 'exact_rho_u'
[]
[mass_out]
variable = rho
type = CNSFVHLLCSpecifiedPressureMassBC
boundary = right
pressure = 'exact_p'
[]
[momentum_out]
variable = rho_u
type = CNSFVHLLCSpecifiedPressureMomentumBC
boundary = right
pressure = 'exact_p'
momentum_component = 'x'
[]
[energy_out]
variable = rho_et
type = CNSFVHLLCSpecifiedPressureFluidEnergyBC
boundary = right
pressure = 'exact_p'
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rho_et = rho_et
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.83667087618017*sin(1.1*x)'
[]
[exact_rho_u]
type = ParsedFunction
value = '3.48788261470924*cos(1.1*x)'
[]
[forcing_rho_u]
type = ParsedFunction
value = '-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.48788261470924*sin(x)*cos(1.1*x)^2/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '1.0*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = none
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho]
type = ElementL2Error
variable = rho
function = exact_rho
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_u]
variable = rho_u
function = exact_rho_u
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2rho_et]
variable = rho_et
function = exact_rho_et
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/ics/pns_test.i)
p_initial=1.01e5
T=273.15
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 1
ymax = 2
nx = 4
ny = 4
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
kernel_coverage_check = false
solve = false
skip_nl_system_check = true
[]
[AuxVariables]
[porosity]
initial_condition = 0.2
[]
[pressure]
type = MooseVariableFVReal
[]
[superficial_vel_x]
type = MooseVariableFVReal
[]
[superficial_vel_y]
type = MooseVariableFVReal
[]
[superficial_vel_z]
type = MooseVariableFVReal
[]
[temperature]
type = MooseVariableFVReal
[]
[vel_x]
type = MooseVariableFVReal
[]
[vel_y]
type = MooseVariableFVReal
[]
[vel_z]
type = MooseVariableFVReal
[]
[superficial_rho_ht]
type = MooseVariableFVReal
[]
[ht]
type = MooseVariableFVReal
[]
[e]
type = MooseVariableFVReal
[]
[Mach]
type = MooseVariableFVReal
[]
[superficial_rho]
type = MooseVariableFVReal
[]
[superficial_rhou]
type = MooseVariableFVReal
[]
[superficial_rhov]
type = MooseVariableFVReal
[]
[superficial_rhow]
type = MooseVariableFVReal
[]
[superficial_rho_et]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[rhou]
type = MooseVariableFVReal
[]
[rhov]
type = MooseVariableFVReal
[]
[rhow]
type = MooseVariableFVReal
[]
[rho_et]
type = MooseVariableFVReal
[]
[specific_volume]
type = MooseVariableFVReal
[]
[pressure_2]
[]
[superficial_vel_x_2]
[]
[superficial_vel_y_2]
[]
[superficial_vel_z_2]
[]
[vel_x_2]
[]
[vel_y_2]
[]
[vel_z_2]
[]
[temperature_2]
[]
[ht_2]
[]
[superficial_rho_ht_2]
[]
[e_2]
[]
[Mach_2]
[]
[superficial_rho_2]
[]
[superficial_rhou_2]
[]
[superficial_rhov_2]
[]
[superficial_rhow_2]
[]
[superficial_rho_et_2]
[]
[rho_2]
[]
[rhou_2]
[]
[rhov_2]
[]
[rhow_2]
[]
[rho_et_2]
[]
[specific_volume_2]
[]
[]
[GlobalParams]
fluid_properties = 'fp'
initial_pressure = ${p_initial}
initial_temperature = ${T}
initial_superficial_velocity = '1 0.2 18'
porosity = porosity
[]
[ICs]
[p]
type = PNSInitialCondition
variable = 'pressure'
[]
[vel_x]
type = PNSInitialCondition
variable = 'vel_x'
[]
[vel_y]
type = PNSInitialCondition
variable = 'vel_y'
[]
[vel_z]
type = PNSInitialCondition
variable = 'vel_z'
[]
[superficial_vel_x]
type = PNSInitialCondition
variable = 'superficial_vel_x'
[]
[superficial_vel_y]
type = PNSInitialCondition
variable = 'superficial_vel_y'
[]
[superficial_vel_z]
type = PNSInitialCondition
variable = 'superficial_vel_z'
[]
[temperature]
type = PNSInitialCondition
variable = 'temperature'
[]
[ht]
type = PNSInitialCondition
variable = 'ht'
[]
[superficial_rho_ht]
type = PNSInitialCondition
variable = 'superficial_rho_ht'
[]
[e]
type = PNSInitialCondition
variable = 'e'
[]
[Mach]
type = PNSInitialCondition
variable = 'Mach'
[]
[superficial_rho]
type = PNSInitialCondition
variable = 'superficial_rho'
[]
[superficial_rhou]
type = PNSInitialCondition
fluid_properties = 'fp'
initial_pressure = ${p_initial}
initial_temperature = ${T}
initial_superficial_velocity = '1 0.2 18'
porosity = porosity
variable = 'superficial_rhou'
[]
[superficial_rhov]
type = PNSInitialCondition
variable = 'superficial_rhov'
[]
[superficial_rhow]
type = PNSInitialCondition
variable = 'superficial_rhow'
[]
[rho]
type = PNSInitialCondition
variable = 'rho'
[]
[rhou]
type = PNSInitialCondition
variable = 'rhou'
[]
[rhov]
type = PNSInitialCondition
variable = 'rhov'
[]
[rhow]
type = PNSInitialCondition
variable = 'rhow'
[]
[rho_et]
type = PNSInitialCondition
variable = 'rho_et'
[]
[superficial_rho_et]
type = PNSInitialCondition
variable = 'superficial_rho_et'
[]
[specific_volume]
type = PNSInitialCondition
variable = 'specific_volume'
[]
[p_2]
type = PNSInitialCondition
variable = 'pressure_2'
variable_type = 'pressure'
[]
[superficial_vel_x_2]
type = PNSInitialCondition
variable = 'superficial_vel_x_2'
variable_type = 'superficial_vel_x'
[]
[superficial_vel_y_2]
type = PNSInitialCondition
variable = 'superficial_vel_y_2'
variable_type = 'superficial_vel_y'
[]
[superficial_vel_z_2]
type = PNSInitialCondition
variable = 'superficial_vel_z_2'
variable_type = 'superficial_vel_z'
[]
[vel_x_2]
type = PNSInitialCondition
variable = 'vel_x_2'
variable_type = 'vel_x'
[]
[vel_y_2]
type = PNSInitialCondition
variable = 'vel_y_2'
variable_type = 'vel_y'
[]
[vel_z_2]
type = PNSInitialCondition
variable = 'vel_z_2'
variable_type = 'vel_z'
[]
[temperature_2]
type = PNSInitialCondition
variable = 'temperature_2'
variable_type = 'temperature'
[]
[superficial_ht_2]
type = PNSInitialCondition
variable = 'superficial_rho_ht_2'
variable_type = 'superficial_rho_ht'
[]
[ht_2]
type = PNSInitialCondition
variable = 'ht_2'
variable_type = 'ht'
[]
[e_2]
type = PNSInitialCondition
variable = 'e_2'
variable_type = 'e'
[]
[Mach_2]
type = PNSInitialCondition
variable = 'Mach_2'
variable_type = 'Mach'
[]
[superficial_rho_2]
type = PNSInitialCondition
variable = 'superficial_rho_2'
variable_type = 'superficial_rho'
[]
[superficial_rhou_2]
type = PNSInitialCondition
variable = 'superficial_rhou_2'
variable_type = 'superficial_rhou'
[]
[superficial_rhov_2]
type = PNSInitialCondition
variable = 'superficial_rhov_2'
variable_type = 'superficial_rhov'
[]
[superficial_rhow_2]
type = PNSInitialCondition
variable = 'superficial_rhow_2'
variable_type = 'superficial_rhow'
[]
[superficial_rho_et_2]
type = PNSInitialCondition
variable = 'superficial_rho_et_2'
variable_type = 'superficial_rho_et'
[]
[rho_2]
type = PNSInitialCondition
variable = 'rho_2'
variable_type = 'rho'
[]
[rhou_2]
type = PNSInitialCondition
variable = 'rhou_2'
variable_type = 'rhou'
[]
[rhov_2]
type = PNSInitialCondition
variable = 'rhov_2'
variable_type = 'rhov'
[]
[rhow_2]
type = PNSInitialCondition
variable = 'rhow_2'
variable_type = 'rhow'
[]
[rho_et_2]
type = PNSInitialCondition
variable = 'rho_et_2'
variable_type = 'rho_et'
[]
[specific_volume_2]
type = PNSInitialCondition
variable = 'specific_volume_2'
variable_type = 'specific_volume'
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/fluid_properties/test/tests/fp_interrogator/1ph.p_T.i)
[FluidPropertiesInterrogator]
fp = fp
p = 1e5
T = 300
[]
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02900055737704918
mu = 1.823e-05
k = 0.02568
[../]
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/userobject/HLLC/hllc_uo_1D.i)
rho_left = 1.162633159
E_left = 2.1502913276e+05
u_left = 100
rho_right = 1.116127833
E_right = 1.7919094397e+05
u_right = 90
[Mesh]
allow_renumbering = false
[./cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 1
nx = 2
[../]
[]
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
allow_imperfect_jacobians = true
[../]
[../]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./rho]
order = CONSTANT
family = MONOMIAL
[../]
[./rho_u]
order = CONSTANT
family = MONOMIAL
[../]
[./rho_E]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./rho_ic]
type = FunctionIC
variable = rho
function = 'if (x < 0.5, ${rho_left}, ${rho_right})'
[../]
[./rho_u_ic]
type = FunctionIC
variable = rho_u
function = 'if (x < 0.5, ${fparse rho_left * u_left}, ${fparse rho_right * u_right})'
[../]
[./rho_E_ic]
type = FunctionIC
variable = rho_E
function = 'if (x < 0.5, ${fparse E_left * rho_left}, ${fparse E_right * rho_right})'
[../]
[]
[Materials]
[./var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rho_et = rho_E
fp = fp
[../]
[]
[UserObjects]
[./hllc]
type = HLLCUserObject
fp = fp
[../]
[]
[VectorPostprocessors]
[./wave_speeds]
type = WaveSpeedVPP
hllc_uo = hllc
elem_id = 0
side_id = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 18
nx = 180
[]
[to_pt5]
input = cartesian
type = SubdomainBoundingBoxGenerator
bottom_left = '2 0 0'
top_right = '4 1 0'
block_id = 1
[]
[pt5]
input = to_pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '4 0 0'
top_right = '6 1 0'
block_id = 2
[]
[to_pt25]
input = pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '6 0 0'
top_right = '8 1 0'
block_id = 3
[]
[pt25]
input = to_pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '8 0 0'
top_right = '10 1 0'
block_id = 4
[]
[to_pt5_again]
input = pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '10 0 0'
top_right = '12 1 0'
block_id = 5
[]
[pt5_again]
input = to_pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '12 0 0'
top_right = '14 1 0'
block_id = 6
[]
[to_one]
input = pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '14 0 0'
top_right = '16 1 0'
block_id = 7
[]
[one]
input = to_one
type = SubdomainBoundingBoxGenerator
bottom_left = '16 0 0'
top_right = '18 1 0'
block_id = 8
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_x]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[worst_courant]
type = MooseVariableFVReal
[]
[porosity]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_x]
type = ADMaterialRealAux
variable = vel_x
property = vel_x
execute_on = 'timestep_end'
[]
[sup_mom_x]
type = ADMaterialRealAux
variable = sup_mom_x
property = superficial_rhou
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[worst_courant]
type = Courant
variable = worst_courant
u = sup_vel_x
execute_on = 'timestep_end'
[]
[porosity]
type = MaterialRealAux
variable = porosity
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = sup_vel_x
value = ${u_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '${u_in}'
[]
[eps]
type = ParsedFunction
value = 'if(x < 2, 1,
if(x < 4, 1 - .5 / 2 * (x - 2),
if(x < 6, .5,
if(x < 8, .5 - .25 / 2 * (x - 6),
if(x < 10, .25,
if(x < 12, .25 + .25 / 2 * (x - 10),
if(x < 14, .5,
if(x < 16, .5 + .5 / 2 * (x - 14),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-8
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/regular-straight-channel.i)
[GlobalParams]
fp = fp
[]
[Mesh]
[./gen_mesh]
type = GeneratedMeshGenerator
dim = 1
xmax = 1.5
nx = 15
[../]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Variables]
[rho]
type = MooseVariableFVReal
initial_condition = 1.28969
scaling = 1e3
[]
[rho_u]
type = MooseVariableFVReal
initial_condition = 1.28969
[]
[rho_et]
type = MooseVariableFVReal
initial_condition = 2.525e5
scaling = 1e-2
[]
[]
[FVKernels]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
fp = fp
[]
[momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
fp = fp
[]
[drag]
type = FVReaction
variable = rho_u
rate = 1000
[]
[fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_et
fp = fp
[]
[]
[FVBCs]
[mass_in]
variable = rho
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMassBC
boundary = left
temperature = 273.15
rhou = 1.28969
[]
[momentum_in]
variable = rho_u
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMomentumBC
boundary = left
temperature = 273.15
rhou = 1.28969
momentum_component = 'x'
[]
[energy_in]
variable = rho_et
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureFluidEnergyBC
boundary = left
temperature = 273.15
rhou = 1.28969
[]
[mass_out]
variable = rho
type = CNSFVHLLCSpecifiedPressureMassBC
boundary = right
pressure = 1.01e5
[]
[momentum_out]
variable = rho_u
type = CNSFVHLLCSpecifiedPressureMomentumBC
boundary = right
pressure = 1.01e5
momentum_component = 'x'
[]
[energy_out]
variable = rho_et
type = CNSFVHLLCSpecifiedPressureFluidEnergyBC
boundary = right
pressure = 1.01e5
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rho_et = rho_et
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = none
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/fluid_properties/test/tests/fp_interrogator/1ph.rho_e.i)
[FluidPropertiesInterrogator]
fp = fp
rho = 1
e = 2.1502500000e+05
[]
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02900055737704918
mu = 1.823e-05
k = 0.02568
[../]
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/benchmark_shock_tube_1D/hllc_sod_shocktube.i)
rho_left = 1
E_left = 2.501505578
u_left = 1e-15
rho_right = 0.125
E_right = 1.999770935
u_right = 1e-15
middle = 50
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = ${fparse 2 * middle}
nx = 1000
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Variables]
[rho]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[rho_u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[rho_E]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxVariables]
[rho_a]
order = CONSTANT
family = MONOMIAL
[]
[]
[FVKernels]
[mass_time]
type = FVTimeKernel
variable = rho
[]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
[]
[momentum_time]
type = FVTimeKernel
variable = rho_u
[]
[momentum_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
[]
[fluid_energy_time]
type = FVTimeKernel
variable = rho_E
[../]
[fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_E
[]
[]
[FVBCs]
[mass_implicit]
type = CNSFVHLLCMassImplicitBC
variable = rho
fp = fp
boundary = 'left right'
[]
[mom_implicit]
type = CNSFVHLLCMomentumImplicitBC
variable = rho_u
momentum_component = x
fp = fp
boundary = 'left right'
[]
[fluid_energy_implicit]
type = CNSFVHLLCFluidEnergyImplicitBC
variable = rho_E
fp = fp
boundary = 'left right'
[]
[]
[ICs]
[rho_ic]
type = FunctionIC
variable = rho
function = 'if (x < ${middle}, ${rho_left}, ${rho_right})'
[]
[rho_u_ic]
type = FunctionIC
variable = rho_u
function = 'if (x < ${middle}, ${fparse rho_left * u_left}, ${fparse rho_right * u_right})'
[]
[rho_E_ic]
type = FunctionIC
variable = rho_E
function = 'if (x < ${middle}, ${fparse E_left * rho_left}, ${fparse E_right * rho_right})'
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rho_et = rho_E
fp = fp
[]
[]
[Preconditioning]
active = ''
[./smp]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[../]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
l_tol = 1e-8
start_time = 0.0
dt = 1e-2
end_time = 20
abort_on_solve_fail = true
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/scalar_advection/mass-frac-advection.i)
rho_initial=1.29
p_initial=1.01e5
T=273.15
gamma=1.4
e_initial=${fparse p_initial / (gamma - 1) / rho_initial}
et_initial=${e_initial}
rho_et_initial=${fparse rho_initial * et_initial}
v_in=1
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 2
ymin = 0
ymax = 10
ny = 20
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Variables]
[rho]
type = MooseVariableFVReal
initial_condition = ${rho_initial}
[]
[rho_u]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[rho_v]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[rho_et]
type = MooseVariableFVReal
initial_condition = ${rho_et_initial}
scaling = 1e-5
[]
[mass_frac]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[]
[AuxVariables]
[U_x]
type = MooseVariableFVReal
[]
[U_y]
type = MooseVariableFVReal
[]
[pressure]
type = MooseVariableFVReal
[]
[temperature]
type = MooseVariableFVReal
[]
[courant]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[U_x]
type = ADMaterialRealAux
variable = U_x
property = vel_x
execute_on = 'timestep_end'
[]
[U_y]
type = ADMaterialRealAux
variable = U_y
property = vel_y
execute_on = 'timestep_end'
[]
[pressure]
type = ADMaterialRealAux
variable = pressure
property = pressure
execute_on = 'timestep_end'
[]
[temperature]
type = ADMaterialRealAux
variable = temperature
property = T_fluid
execute_on = 'timestep_end'
[]
[courant]
type = Courant
variable = courant
u = U_x
v = U_y
[]
[]
[FVKernels]
[mass_time]
type = FVPorosityTimeDerivative
variable = rho
[]
[mass_advection]
type = PCNSFVKT
variable = rho
eqn = "mass"
[]
[momentum_time_x]
type = FVTimeKernel
variable = rho_u
[]
[momentum_advection_and_pressure_x]
type = PCNSFVKT
variable = rho_u
eqn = "momentum"
momentum_component = 'x'
[]
[momentum_time_y]
type = FVTimeKernel
variable = rho_v
[]
[momentum_advection_and_pressure_y]
type = PCNSFVKT
variable = rho_v
eqn = "momentum"
momentum_component = 'y'
[]
[energy_time]
type = FVPorosityTimeDerivative
variable = rho_et
[]
[energy_advection]
type = PCNSFVKT
variable = rho_et
eqn = "energy"
[]
[mass_frac_time]
type = PCNSFVDensityTimeDerivative
variable = mass_frac
rho = rho
[]
[mass_frac_advection]
type = PCNSFVKT
variable = mass_frac
eqn = "scalar"
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '0'
value_y = '${v_in}'
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = rho
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rho_u_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = rho_u
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_v_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = rho_v
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = rho_et
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[mass_frac_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = mass_frac
superficial_velocity = 'ud_in'
T_fluid = ${T}
scalar = 1
eqn = 'scalar'
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = rho
pressure = ${p_initial}
eqn = 'mass'
[]
[rho_u_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = rho_u
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_v_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = rho_v
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = rho_et
pressure = ${p_initial}
eqn = 'energy'
[]
[mass_frac_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = mass_frac
pressure = ${p_initial}
eqn = 'scalar'
[]
[momentum_x_walls]
type = PCNSFVImplicitMomentumPressureBC
variable = rho_u
boundary = 'left right'
momentum_component = 'x'
[]
[momentum_y_walls]
type = PCNSFVImplicitMomentumPressureBC
variable = rho_v
boundary = 'left right'
momentum_component = 'y'
[]
[]
[Materials]
[var_mat]
type = PorousConservedVarMaterial
rho = rho
rho_et = rho_et
superficial_rhou = rho_u
superficial_rhov = rho_v
fp = fp
porosity = porosity
[]
[porosity]
type = GenericConstantMaterial
prop_names = 'porosity'
prop_values = '1'
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ActuallyExplicitEuler
[]
steady_state_detection = true
steady_state_tolerance = 1e-12
abort_on_solve_fail = true
dt = 5e-4
num_steps = 25
[]
[Outputs]
[out]
type = Exodus
execute_on = 'initial timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/pressure_outlet/subsonic_nozzle_fixed_inflow_hllc.i)
inlet_vel = 120
rho_in = 0.8719748696
H_in = 4.0138771448e+05
gamma = 1.4
R = 8.3145
molar_mass = 29e-3
R_specific = ${fparse R / molar_mass}
cp = ${fparse gamma * R_specific / (gamma - 1)}
cv = ${fparse cp / gamma}
T_in = ${fparse H_in / gamma / cv}
mass_flux = ${fparse inlet_vel * rho_in}
outlet_pressure = 0.9e5
[GlobalParams]
fp = fp
[]
[Debug]
show_material_props = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = subsonic_nozzle.e
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Variables]
[rho]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.8719748696
[]
[rho_u]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1e-4
[]
[rho_v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[rho_E]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 2.5e5
[]
[]
[FVKernels]
# Mass conservation
[mass_time]
type = FVTimeKernel
variable = rho
[]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
[]
# Momentum x conservation
[momentum_x_time]
type = FVTimeKernel
variable = rho_u
[]
[momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
[]
# Momentum y conservation
[momentum_y_time]
type = FVTimeKernel
variable = rho_v
[]
[momentum_y_advection]
type = CNSFVMomentumHLLC
variable = rho_v
momentum_component = y
[]
# Fluid energy conservation
[fluid_energy_time]
type = FVTimeKernel
variable = rho_E
[]
[fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_E
[]
[]
[FVBCs]
## inflow boundaries
[mass_inflow]
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMassBC
variable = rho
boundary = left
rhou = ${mass_flux}
rhov = 0
temperature = ${T_in}
[]
[momentum_x_inflow]
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMomentumBC
variable = rho_u
boundary = left
rhou = ${mass_flux}
rhov = 0
temperature = ${T_in}
momentum_component = x
[]
[momentum_y_inflow]
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureMomentumBC
variable = rho_v
boundary = left
rhou = ${mass_flux}
rhov = 0
temperature = ${T_in}
momentum_component = y
[]
[fluid_energy_inflow]
type = CNSFVHLLCSpecifiedMassFluxAndTemperatureFluidEnergyBC
variable = rho_E
boundary = left
rhou = ${mass_flux}
rhov = 0
temperature = ${T_in}
[]
## outflow conditions
[mass_outflow]
type = CNSFVHLLCSpecifiedPressureMassBC
variable = rho
boundary = right
pressure = ${outlet_pressure}
[]
[momentum_x_outflow]
type = CNSFVHLLCSpecifiedPressureMomentumBC
variable = rho_u
boundary = right
momentum_component = x
pressure = ${outlet_pressure}
[]
[momentum_y_outflow]
type = CNSFVHLLCSpecifiedPressureMomentumBC
variable = rho_v
boundary = right
momentum_component = y
pressure = ${outlet_pressure}
[]
[fluid_energy_outflow]
type = CNSFVHLLCSpecifiedPressureFluidEnergyBC
variable = rho_E
boundary = right
pressure = ${outlet_pressure}
[]
# wall conditions
[momentum_x_pressure_wall]
type = CNSFVMomImplicitPressureBC
variable = rho_u
momentum_component = x
boundary = wall
[]
[momentum_y_pressure_wall]
type = CNSFVMomImplicitPressureBC
variable = rho_v
momentum_component = y
boundary = wall
[]
[]
[AuxVariables]
[Ma]
family = MONOMIAL
order = CONSTANT
[]
[p]
family = MONOMIAL
order = CONSTANT
[]
[Ma_layered]
family = MONOMIAL
order = CONSTANT
[]
[]
[UserObjects]
[layered_Ma_UO]
type = LayeredAverage
variable = Ma
num_layers = 10
direction = x
[]
[]
[AuxKernels]
[Ma_aux]
type = NSMachAux
variable = Ma
fluid_properties = fp
use_material_properties = true
[]
[p_aux]
type = ADMaterialRealAux
variable = p
property = pressure
[]
[Ma_layered_aux]
type = SpatialUserObjectAux
variable = Ma_layered
user_object = layered_Ma_UO
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rhov = rho_v
rho_et = rho_E
[]
[sound_speed]
type = SoundspeedMat
[]
[]
[Postprocessors]
[outflow_Ma]
type = SideAverageValue
variable = Ma
boundary = right
[]
[outflow_pressure]
type = SideAverageValue
variable = p
boundary = right
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[]
[Executioner]
type = Transient
end_time = 10
solve_type = NEWTON
nl_abs_tol = 1e-7
[TimeIntegrator]
type = ImplicitEuler
[]
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-3
optimal_iterations = 6
growth_factor = 1.5
[]
[]
[VectorPostprocessors]
[Ma_layered]
type = LineValueSampler
variable = Ma_layered
start_point = '0 0 0'
end_point = '3 0 0'
num_points = 100
sort_by = x
[]
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/fluid_properties/test/tests/ideal_gas/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
[]
[Functions]
[./f_fn]
type = ParsedFunction
value = -4
[../]
[./bc_fn]
type = ParsedFunction
value = 'x*x+y*y'
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./e]
initial_condition = 6232.5
[../]
[./v]
initial_condition = 0.02493
[../]
[./p]
family = MONOMIAL
order = CONSTANT
[../]
[./T]
family = MONOMIAL
order = CONSTANT
[../]
[./cp]
family = MONOMIAL
order = CONSTANT
[../]
[./cv]
family = MONOMIAL
order = CONSTANT
[../]
[./c]
family = MONOMIAL
order = CONSTANT
[../]
[./mu]
family = MONOMIAL
order = CONSTANT
[../]
[./k]
family = MONOMIAL
order = CONSTANT
[../]
[./g]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./p]
type = MaterialRealAux
variable = p
property = pressure
[../]
[./T]
type = MaterialRealAux
variable = T
property = temperature
[../]
[./cp]
type = MaterialRealAux
variable = cp
property = cp
[../]
[./cv]
type = MaterialRealAux
variable = cv
property = cv
[../]
[./c]
type = MaterialRealAux
variable = c
property = c
[../]
[./mu]
type = MaterialRealAux
variable = mu
property = mu
[../]
[./k]
type = MaterialRealAux
variable = k
property = k
[../]
[./g]
type = MaterialRealAux
variable = g
property = g
[../]
[]
[Modules]
[./FluidProperties]
[./ideal_gas]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 1.000536678700361
[../]
[]
[]
[Materials]
[./fp_mat]
type = FluidPropertiesMaterial
e = e
v = v
fp = ideal_gas
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = f_fn
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = 'left right top bottom'
function = bc_fn
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/fluid_properties/fp_interrogator/fp_interrogator.i)
# The parameters in this block are used to specify the thermodynamic state
# at which to query the fluid properties package
[FluidPropertiesInterrogator]
fp = fp
p = 1e5
T = 300
vel = 10
[]
# The fluid properties (equation of state) to query is defined here
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
[../]
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-mixed.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_mom_x]
type = FunctionIC
variable = sup_mom_x
function = 'exact_rho_ud'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_mom_x
momentum_component = x
eqn = "momentum"
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[momentum_fn]
type = FVBodyForce
variable = sup_mom_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_mom_x_left]
type = FVFunctionDirichletBC
variable = sup_mom_x
function = exact_rho_ud
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
superficial_rhou = sup_mom_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.83667087618017*sin(1.1*x)*cos(1.3*x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.48788261470924*cos(1.1*x)*cos(1.3*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x))*cos(1.3*x) + 3.48788261470924*sin(x)*cos(1.1*x)^2*cos(1.3*x)/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)*cos(1.3*x)/cos(x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)^2/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.5*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '1.0*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(x)*cos(1.1*x)*cos(1.3*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.1*x)*cos(1.3*x)/cos(x) - 1.3*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.3*x)*cos(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x) - 40.1159119610319*sin(1.5*x))*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.5*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)*cos(1.3*x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = 'cos(1.3*x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_mom_x]
variable = sup_mom_x
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/implicit_bcs/hllc_sod_shocktube.i)
rho_left = 1
E_left = 2.501505578
u_left = 1e-15
rho_right = 0.125
E_right = 1.999770935
u_right = 1e-15
middle = 0.5
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${fparse 2 * middle}
nx = 5
ymin = 0
ymax = 1
ny = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
allow_imperfect_jacobians = true
[]
[]
[]
[Variables]
[rho]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[rho_u]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[rho_v]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 1e-10
[]
[rho_E]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass_time]
type = FVTimeKernel
variable = rho
[]
[mass_advection]
type = CNSFVMassHLLC
variable = rho
[]
[momentum_x_time]
type = FVTimeKernel
variable = rho_u
[]
[momentum_x_advection]
type = CNSFVMomentumHLLC
variable = rho_u
momentum_component = x
[]
[momentum_y_time]
type = FVTimeKernel
variable = rho_v
[]
[momentum_y_advection]
type = CNSFVMomentumHLLC
variable = rho_v
momentum_component = y
[]
[fluid_energy_time]
type = FVTimeKernel
variable = rho_E
[]
[fluid_energy_advection]
type = CNSFVFluidEnergyHLLC
variable = rho_E
[]
[]
[FVBCs]
[mass_implicit]
type = CNSFVHLLCMassImplicitBC
variable = rho
fp = fp
boundary = 'left right'
[]
[mom_x_implicit]
type = CNSFVHLLCMomentumImplicitBC
variable = rho_u
momentum_component = x
fp = fp
boundary = 'left right'
[]
[wall]
type = CNSFVMomImplicitPressureBC
variable = rho_v
momentum_component = y
boundary = 'top bottom'
[]
[fluid_energy_implicit]
type = CNSFVHLLCFluidEnergyImplicitBC
variable = rho_E
fp = fp
boundary = 'left right'
[]
[]
[ICs]
[rho_ic]
type = FunctionIC
variable = rho
function = 'if (x < ${middle}, ${rho_left}, ${rho_right})'
[]
[rho_u_ic]
type = FunctionIC
variable = rho_u
function = 'if (x < ${middle}, ${fparse rho_left * u_left}, ${fparse rho_right * u_right})'
[]
[rho_E_ic]
type = FunctionIC
variable = rho_E
function = 'if (x < ${middle}, ${fparse E_left * rho_left}, ${fparse E_right * rho_right})'
[]
[]
[Materials]
[var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = rho_u
rhov = rho_v
rho_et = rho_E
fp = fp
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
l_tol = 1e-8
# run to t = 0.15
start_time = 0.0
dt = 1e-1
end_time = 10
abort_on_solve_fail = true
[]
[Outputs]
exodus = true
[]
(modules/fluid_properties/test/tests/fp_interrogator/vapor_mixture_rho_e.i)
[FluidPropertiesInterrogator]
fp = fp_vapor_mix
rho = 1.1870052372064208
e = 2477165.9033225174
x_ncg = '0.1'
[]
[Modules]
[./FluidProperties]
[./fp_nitrogen]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02867055103448276
[../]
[./fp_primary]
type = IdealGasFluidProperties
gamma = 1.3
molar_mass = 0.027714866
T_c = 126.19
rho_c = 313.189812
[../]
[./fp_vapor_mix]
type = IdealRealGasMixtureFluidProperties
fp_primary = fp_primary
fp_secondary = 'fp_nitrogen'
[../]
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/userobject/HLLC/hllc_uo_2D_tri.i)
rho_left = 1.162633159
E_left = 2.1502913276e+05
v_left = 40
rho_right = 1.116127833
E_right = 1.7919094397e+05
v_right = 50
[Mesh]
[./cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 2
nx = 1
ny = 1
elem_type = 'TRI3'
[../]
[]
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
allow_imperfect_jacobians = true
[../]
[../]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./rho]
order = CONSTANT
family = MONOMIAL
[../]
[./rho_v]
order = CONSTANT
family = MONOMIAL
[../]
[./rho_E]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./rho_ic]
type = FunctionIC
variable = rho
function = 'if (y / (2 * x) < 0.5, ${rho_left}, ${rho_right})'
[../]
[./rho_v_ic]
type = FunctionIC
variable = rho_v
function = 'if (y / (2 * x) < 0.5, ${fparse rho_left * v_left}, ${fparse rho_right * v_right})'
[../]
[./rho_E_ic]
type = FunctionIC
variable = rho_E
function = 'if (y / (2 * x) < 0.5, ${fparse E_left * rho_left}, ${fparse E_right * rho_right})'
[../]
[]
[Materials]
[./var_mat]
type = ConservedVarValuesMaterial
rho = rho
rhou = 0
rhov = rho_v
rho_et = rho_E
fp = fp
[../]
[]
[UserObjects]
[./hllc]
type = HLLCUserObject
fp = fp
[../]
[]
[VectorPostprocessors]
[./wave_speeds]
type = WaveSpeedVPP
hllc_uo = hllc
elem_id = 0
side_id = 2
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-primitive.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_vel_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_vel_x
momentum_component = x
eqn = "momentum"
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[momentum_fn]
type = FVBodyForce
variable = sup_vel_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
superficial_vel_x = sup_vel_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.83667087618017*sin(1.1*x)*cos(1.3*x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.48788261470924*cos(1.1*x)*cos(1.3*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x))*cos(1.3*x) + 3.48788261470924*sin(x)*cos(1.1*x)^2*cos(1.3*x)/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)*cos(1.3*x)/cos(x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)^2/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.5*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '1.0*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(x)*cos(1.1*x)*cos(1.3*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.1*x)*cos(1.3*x)/cos(x) - 1.3*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.3*x)*cos(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x) - 40.1159119610319*sin(1.5*x))*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.5*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)*cos(1.3*x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = 'cos(1.3*x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
variable = sup_vel_x
function = exact_sup_vel_x
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-hllc.i)
[GlobalParams]
fp = fp
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_mom_x]
type = FunctionIC
variable = sup_mom_x
function = 'exact_rho_ud'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVMassHLLC
variable = pressure
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVMomentumHLLC
variable = sup_mom_x
momentum_component = x
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[momentum_fn]
type = FVBodyForce
variable = sup_mom_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVFluidEnergyHLLC
variable = T_fluid
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_mom_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
superficial_rhou = sup_mom_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.83667087618017*sin(1.1*x)*cos(1.3*x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.48788261470924*cos(1.1*x)*cos(1.3*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x))*cos(1.3*x) + 3.48788261470924*sin(x)*cos(1.1*x)^2*cos(1.3*x)/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)*cos(1.3*x)/cos(x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)^2/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.5*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '1.0*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(x)*cos(1.1*x)*cos(1.3*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.1*x)*cos(1.3*x)/cos(x) - 1.3*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.3*x)*cos(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x) - 40.1159119610319*sin(1.5*x))*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.5*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)*cos(1.3*x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = 'cos(1.3*x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_mom_x]
variable = sup_mom_x
function = exact_rho_ud
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/fluid_properties/test/tests/fp_interrogator/1ph.rho_rhou_rhoE.i)
[FluidPropertiesInterrogator]
fp = fp
rho = 0.5
rhou = 0.5
rhoE = 2.75
[]
[Modules]
[./FluidProperties]
[./fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.640243719999999
[../]
[../]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/dc.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
rho_in=1.30524
sup_mom_y_in=${fparse u_in * rho_in}
user_limiter='min_mod'
friction_coeff=10
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 18
ny = 90
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_mom_x]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[sup_mom_y]
type = MooseVariableFVReal
initial_condition = 1e-15
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
[]
[]
[AuxVariables]
[vel_y]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[eps]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[eps]
type = MaterialRealAux
variable = eps
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKTDC
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_mom_x
[]
[momentum_advection]
type = PCNSFVKTDC
variable = sup_mom_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_mom_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[drag]
type = PNSFVMomentumFriction
variable = sup_mom_x
momentum_component = 'x'
Darcy_name = 'cl'
momentum_name = superficial_rhou
[]
[momentum_time_y]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhov_dt'
variable = sup_mom_y
[]
[momentum_advection_y]
type = PCNSFVKTDC
variable = sup_mom_y
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_mom_y
momentum_component = 'y'
epsilon_function = 'eps'
[]
[drag_y]
type = PNSFVMomentumFriction
variable = sup_mom_y
momentum_component = 'y'
Darcy_name = 'cl'
momentum_name = superficial_rhov
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKTDC
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
velocity_function_includes_rho = true
[]
[rhou_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
velocity_function_includes_rho = true
[]
[rhov_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_mom_y
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
velocity_function_includes_rho = true
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
velocity_function_includes_rho = true
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_mom_y
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
[wall_pressure_x]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right'
variable = sup_mom_x
[]
[wall_pressure_y]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right'
variable = sup_mom_y
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_bottom]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'bottom'
[]
[sup_mom_x_bottom_and_walls]
type = FVDirichletBC
variable = sup_mom_x
value = 0
boundary = 'bottom left right'
[]
[sup_mom_y_walls]
type = FVDirichletBC
variable = sup_mom_y
value = 0
boundary = 'left right'
[]
[sup_mom_y_bottom]
type = FVDirichletBC
variable = sup_mom_y
value = ${sup_mom_y_in}
boundary = 'bottom'
[]
[p_top]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'top'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '0'
value_y = '${sup_mom_y_in}'
[]
[eps]
type = ParsedFunction
value = 'if(y < 2.8, 1,
if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
if(y < 6.8, .5,
if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
if(y < 10.8, .25,
if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
if(y < 14.8, .5,
if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousMixedVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_rhou = sup_mom_x
superficial_rhov = sup_mom_y
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[ad_generic]
type = ADGenericConstantVectorMaterial
prop_names = 'cl'
prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10
nl_abs_tol = 1e-8
automatic_scaling = true
compute_scaling_once = false
resid_vs_jac_scaling_param = 0.5
verbose = true
steady_state_detection = true
steady_state_tolerance = 1e-8
normalize_solution_diff_norm_by_dt = false
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
[out]
type = Exodus
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = ''
[num_nl]
type = NumNonlinearIterations
[]
[total_nl]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[]
(modules/navier_stokes/test/include/userobjects/TestConservedVarFluidProperties.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "IdealGasFluidProperties.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Woverloaded-virtual"
class TestConservedVarFluidProperties : public IdealGasFluidProperties
{
public:
static InputParameters validParams();
TestConservedVarFluidProperties(const InputParameters & parameters);
ADReal p_from_v_e(const ADReal & v, const ADReal & /*e*/) const override;
ADReal T_from_v_e(const ADReal & /*v*/, const ADReal & /*e*/) const override;
};
#pragma GCC diagnostic pop