- T_fluidThe fluid temperature
C++ Type:std::vector<VariableName>
Description:The fluid temperature
- fpfluid userobject
C++ Type:UserObjectName
Description:fluid userobject
- porositythe porosity
C++ Type:MaterialPropertyName
Description:the porosity
- pressureThe pressure
C++ Type:std::vector<VariableName>
Description:The pressure
- superficial_vel_xThe x-velocity times the porosity
C++ Type:std::vector<VariableName>
Description:The x-velocity times the porosity
PorousPrimitiveVarMaterial
Provides access to variables for a primitive variable set of pressure, temperature, and superficial velocity
Overview
This object uses the variable set
where is the porosity, , , and are the component velocities, is the pressure, and is the fluid temperature.PorousPrimitiveVarMaterial
takes these variables and computes all the necessary quantities for solving the compressible porous version of the Euler equations.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Options:
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Options:
Description:The list of boundaries (ids or names) from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Options:
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Options:NONE, ELEMENT, SUBDOMAIN
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Options:
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Options:
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- superficial_vel_yThe y-velocity times the porosity
C++ Type:std::vector<VariableName>
Options:
Description:The y-velocity times the porosity
- superficial_vel_zThe z-velocity times the porosity
C++ Type:std::vector<VariableName>
Options:
Description:The z-velocity times the porosity
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Options:
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Options:
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Options:
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Options:
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-primitive-pcnsfv-kt.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/hllc.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
- (modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/basic-primitive-pcnsfv-kt.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_vel_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_vel_x
momentum_component = x
eqn = "momentum"
[]
[momentum_fn]
type = FVBodyForce
variable = sup_vel_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
superficial_vel_x = sup_vel_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.45300378856215*sin(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.13909435323832*cos(1.1*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '-0.9*(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + 0.9*(10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) + 3.13909435323832*sin(x)*cos(1.1*x)^2/cos(x)^2 - 6.9060075771243*sin(1.1*x)*cos(1.1*x)/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.2*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '0.9*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(x)*cos(1.1*x)/cos(x)^2 - 0.99*(3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.2*x))*sin(1.1*x)/cos(x) + 0.9*(-(10.6975765229419*cos(1.2*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.2*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 12.8370918275302*sin(1.2*x)/cos(x))*cos(x) - 32.0927295688256*sin(1.2*x))*cos(1.1*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.2*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.13909435323832*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.2*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '0.9*cos(1.1*x)/cos(x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '0.9*cos(1.1*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = '0.9'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
variable = sup_vel_x
function = exact_sup_vel_x
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/hllc.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 18
nx = 180
[]
[to_pt5]
input = cartesian
type = SubdomainBoundingBoxGenerator
bottom_left = '2 0 0'
top_right = '4 1 0'
block_id = 1
[]
[pt5]
input = to_pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '4 0 0'
top_right = '6 1 0'
block_id = 2
[]
[to_pt25]
input = pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '6 0 0'
top_right = '8 1 0'
block_id = 3
[]
[pt25]
input = to_pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '8 0 0'
top_right = '10 1 0'
block_id = 4
[]
[to_pt5_again]
input = pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '10 0 0'
top_right = '12 1 0'
block_id = 5
[]
[pt5_again]
input = to_pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '12 0 0'
top_right = '14 1 0'
block_id = 6
[]
[to_one]
input = pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '14 0 0'
top_right = '16 1 0'
block_id = 7
[]
[one]
input = to_one
type = SubdomainBoundingBoxGenerator
bottom_left = '16 0 0'
top_right = '18 1 0'
block_id = 8
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_x]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[worst_courant]
type = MooseVariableFVReal
[]
[porosity]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_x]
type = ADMaterialRealAux
variable = vel_x
property = vel_x
execute_on = 'timestep_end'
[]
[sup_mom_x]
type = ADMaterialRealAux
variable = sup_mom_x
property = superficial_rhou
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[worst_courant]
type = Courant
variable = worst_courant
u = sup_vel_x
execute_on = 'timestep_end'
[]
[porosity]
type = MaterialRealAux
variable = porosity
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVMassHLLC
variable = pressure
[]
[momentum_advection]
type = PCNSFVMomentumHLLC
variable = sup_vel_x
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[energy_advection]
type = PCNSFVFluidEnergyHLLC
variable = T_fluid
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = sup_vel_x
value = ${u_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '${u_in}'
[]
[eps]
type = ParsedFunction
value = 'if(x < 2, 1,
if(x < 4, 1 - .5 / 2 * (x - 2),
if(x < 6, .5,
if(x < 8, .5 - .25 / 2 * (x - 6),
if(x < 10, .25,
if(x < 12, .25 + .25 / 2 * (x - 10),
if(x < 14, .5,
if(x < 16, .5 + .5 / 2 * (x - 14),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Steady
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/implicit-euler-basic-kt-primitive.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 18
nx = 180
[]
[to_pt5]
input = cartesian
type = SubdomainBoundingBoxGenerator
bottom_left = '2 0 0'
top_right = '4 1 0'
block_id = 1
[]
[pt5]
input = to_pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '4 0 0'
top_right = '6 1 0'
block_id = 2
[]
[to_pt25]
input = pt5
type = SubdomainBoundingBoxGenerator
bottom_left = '6 0 0'
top_right = '8 1 0'
block_id = 3
[]
[pt25]
input = to_pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '8 0 0'
top_right = '10 1 0'
block_id = 4
[]
[to_pt5_again]
input = pt25
type = SubdomainBoundingBoxGenerator
bottom_left = '10 0 0'
top_right = '12 1 0'
block_id = 5
[]
[pt5_again]
input = to_pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '12 0 0'
top_right = '14 1 0'
block_id = 6
[]
[to_one]
input = pt5_again
type = SubdomainBoundingBoxGenerator
bottom_left = '14 0 0'
top_right = '16 1 0'
block_id = 7
[]
[one]
input = to_one
type = SubdomainBoundingBoxGenerator
bottom_left = '16 0 0'
top_right = '18 1 0'
block_id = 8
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_x]
type = MooseVariableFVReal
[]
[sup_mom_x]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[worst_courant]
type = MooseVariableFVReal
[]
[porosity]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_x]
type = ADMaterialRealAux
variable = vel_x
property = vel_x
execute_on = 'timestep_end'
[]
[sup_mom_x]
type = ADMaterialRealAux
variable = sup_mom_x
property = superficial_rhou
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[worst_courant]
type = Courant
variable = worst_courant
u = sup_vel_x
execute_on = 'timestep_end'
[]
[porosity]
type = MaterialRealAux
variable = porosity
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = sup_vel_x
value = ${u_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '${u_in}'
[]
[eps]
type = ParsedFunction
value = 'if(x < 2, 1,
if(x < 4, 1 - .5 / 2 * (x - 2),
if(x < 6, .5,
if(x < 8, .5 - .25 / 2 * (x - 6),
if(x < 10, .25,
if(x < 12, .25 + .25 / 2 * (x - 10),
if(x < 14, .5,
if(x < 16, .5 + .5 / 2 * (x - 14),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-8
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/mms/1d-with-bcs/varying-eps-basic-kt-primitive.i)
[GlobalParams]
fp = fp
limiter = 'central_difference'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = .1
xmax = .6
nx = 2
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
[]
[sup_vel_x]
type = MooseVariableFVReal
[]
[T_fluid]
type = MooseVariableFVReal
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 'exact_p'
[]
[sup_vel_x]
type = FunctionIC
variable = sup_vel_x
function = 'exact_sup_vel_x'
[]
[T_fluid]
type = FunctionIC
variable = T_fluid
function = 'exact_T'
[]
[]
[FVKernels]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[mass_fn]
type = FVBodyForce
variable = pressure
function = 'forcing_rho'
[]
[momentum_x_advection]
type = PCNSFVKT
variable = sup_vel_x
momentum_component = x
eqn = "momentum"
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[momentum_fn]
type = FVBodyForce
variable = sup_vel_x
function = 'forcing_rho_ud'
[]
[fluid_energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[energy_fn]
type = FVBodyForce
variable = T_fluid
function = 'forcing_rho_et'
[]
[]
[FVBCs]
[mass_left]
variable = pressure
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'mass'
[]
[momentum_left]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'momentum'
momentum_component = 'x'
[]
[energy_left]
variable = T_fluid
type = PCNSFVStrongBC
boundary = left
T_fluid = 'exact_T'
superficial_velocity = 'exact_superficial_velocity'
eqn = 'energy'
[]
[mass_right]
variable = pressure
type = PCNSFVStrongBC
boundary = right
eqn = 'mass'
pressure = 'exact_p'
[]
[momentum_right]
variable = sup_vel_x
type = PCNSFVStrongBC
boundary = right
eqn = 'momentum'
momentum_component = 'x'
pressure = 'exact_p'
[]
[energy_right]
variable = T_fluid
type = PCNSFVStrongBC
boundary = right
eqn = 'energy'
pressure = 'exact_p'
[]
# help gradient reconstruction
[pressure_right]
type = FVFunctionDirichletBC
variable = pressure
function = exact_p
boundary = 'right'
[]
[sup_vel_x_left]
type = FVFunctionDirichletBC
variable = sup_vel_x
function = exact_sup_vel_x
boundary = 'left'
[]
[T_fluid_left]
type = FVFunctionDirichletBC
variable = T_fluid
function = exact_T
boundary = 'left'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
superficial_vel_x = sup_vel_x
T_fluid = T_fluid
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[]
[Functions]
[exact_rho]
type = ParsedFunction
value = '3.48788261470924*cos(x)'
[]
[forcing_rho]
type = ParsedFunction
value = '-3.83667087618017*sin(1.1*x)*cos(1.3*x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)'
[]
[exact_rho_ud]
type = ParsedFunction
value = '3.48788261470924*cos(1.1*x)*cos(1.3*x)'
[]
[forcing_rho_ud]
type = ParsedFunction
value = '(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x))*cos(1.3*x) + 3.48788261470924*sin(x)*cos(1.1*x)^2*cos(1.3*x)/cos(x)^2 - 7.67334175236034*sin(1.1*x)*cos(1.1*x)*cos(1.3*x)/cos(x) - 4.53424739912202*sin(1.3*x)*cos(1.1*x)^2/cos(x)'
[]
[exact_rho_et]
type = ParsedFunction
value = '26.7439413073546*cos(1.5*x)'
[]
[forcing_rho_et]
type = ParsedFunction
value = '1.0*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(x)*cos(1.1*x)*cos(1.3*x)/cos(x)^2 - 1.1*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.1*x)*cos(1.3*x)/cos(x) - 1.3*(3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x) + 26.7439413073546*cos(1.5*x))*sin(1.3*x)*cos(1.1*x)/cos(x) + 1.0*(-(10.6975765229419*cos(1.5*x)/cos(x) - 0.697576522941849*cos(1.1*x)^2/cos(x)^2)*sin(x) + (10.6975765229419*sin(x)*cos(1.5*x)/cos(x)^2 - 1.3951530458837*sin(x)*cos(1.1*x)^2/cos(x)^3 + 1.53466835047207*sin(1.1*x)*cos(1.1*x)/cos(x)^2 - 16.0463647844128*sin(1.5*x)/cos(x))*cos(x) - 40.1159119610319*sin(1.5*x))*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[exact_T]
type = ParsedFunction
value = '0.0106975765229418*cos(1.5*x)/cos(x) - 0.000697576522941848*cos(1.1*x)^2/cos(x)^2'
[]
[exact_eps_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)*cos(1.3*x)'
[]
[exact_p]
type = ParsedFunction
value = '3.48788261470924*(3.06706896551724*cos(1.5*x)/cos(x) - 0.2*cos(1.1*x)^2/cos(x)^2)*cos(x)'
[]
[exact_sup_vel_x]
type = ParsedFunction
value = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[eps]
type = ParsedFunction
value = 'cos(1.3*x)'
[]
[exact_superficial_velocity]
type = ParsedVectorFunction
value_x = '1.0*cos(1.1*x)*cos(1.3*x)/cos(x)'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 1
dtmin = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 50
line_search = bt
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2pressure]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2sup_vel_x]
variable = sup_vel_x
function = exact_sup_vel_x
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2T_fluid]
variable = T_fluid
function = exact_T
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/cns/heated-channel/transient-porous-kt-primitive.i)
p_initial=1.01e5
T=273.15
u_in=10
eps=1
superficial_vel_in=${fparse u_in * eps}
[GlobalParams]
fp = fp
limiter = 'vanLeer'
two_term_boundary_expansion = true
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 10
nx = 100
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[superficial_vel_x]
type = MooseVariableFVReal
initial_condition = ${superficial_vel_in}
[]
[temperature]
type = MooseVariableFVReal
initial_condition = ${T}
[]
[]
[AuxVariables]
[rho]
type = MooseVariableFVReal
[]
[superficial_rhou]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[superficial_rhou]
type = ADMaterialRealAux
variable = superficial_rhou
property = superficial_rhou
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = superficial_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = superficial_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = temperature
[]
[energy_advection]
type = PCNSFVKT
variable = temperature
eqn = "energy"
[]
[heat]
type = FVBodyForce
variable = temperature
value = 1e6
[]
[]
[FVBCs]
[rho_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = pressure
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = superficial_vel_x
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_left]
type = PCNSFVStrongBC
boundary = 'left'
variable = temperature
superficial_velocity = 'superficial_vel_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = superficial_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rho_et_right]
type = PCNSFVStrongBC
boundary = 'right'
variable = temperature
pressure = ${p_initial}
eqn = 'energy'
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_left]
type = FVDirichletBC
variable = temperature
value = ${T}
boundary = 'left'
[]
[sup_vel_left]
type = FVDirichletBC
variable = superficial_vel_x
value = ${superficial_vel_in}
boundary = 'left'
[]
[p_right]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'right'
[]
[]
[Functions]
[superficial_vel_in]
type = ParsedVectorFunction
value_x = '${superficial_vel_in}'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = temperature
superficial_vel_x = superficial_vel_x
fp = fp
porosity = porosity
[]
[zero]
type = GenericConstantMaterial
prop_names = 'porosity'
prop_values = '${eps}'
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 10
[]
steady_state_detection = false
steady_state_tolerance = 1e-12
abort_on_solve_fail = false
end_time = 100
nl_abs_tol = 1e-8
dtmin = 5e-5
automatic_scaling = true
compute_scaling_once = false
verbose = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -snes_linesearch_minlambda'
petsc_options_value = 'lu mumps NONZERO 1e-3 '
[]
[Outputs]
[exo]
type = Exodus
execute_on = 'final'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/navier_stokes/test/tests/finite_volume/cns/straight_channel_porosity_step/rotated-2d-bkt-function-porosity.i)
p_initial=1.01e5
T=273.15
# u refers to the superficial velocity
u_in=1
user_limiter='upwind'
friction_coeff=10
[GlobalParams]
fp = fp
two_term_boundary_expansion = true
limiter = ${user_limiter}
[]
[Mesh]
[cartesian]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 18
ny = 90
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[pressure]
type = MooseVariableFVReal
initial_condition = ${p_initial}
[]
[sup_vel_x]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[sup_vel_y]
type = MooseVariableFVReal
initial_condition = 1e-15
scaling = 1e-2
[]
[T_fluid]
type = MooseVariableFVReal
initial_condition = ${T}
scaling = 1e-5
[]
[]
[AuxVariables]
[vel_y]
type = MooseVariableFVReal
[]
[sup_mom_y]
type = MooseVariableFVReal
[]
[rho]
type = MooseVariableFVReal
[]
[eps]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[vel_y]
type = ADMaterialRealAux
variable = vel_y
property = vel_y
execute_on = 'timestep_end'
[]
[sup_mom_y]
type = ADMaterialRealAux
variable = sup_mom_y
property = superficial_rhov
execute_on = 'timestep_end'
[]
[rho]
type = ADMaterialRealAux
variable = rho
property = rho
execute_on = 'timestep_end'
[]
[eps]
type = MaterialRealAux
variable = eps
property = porosity
execute_on = 'timestep_end'
[]
[]
[FVKernels]
[mass_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_dt'
variable = pressure
[]
[mass_advection]
type = PCNSFVKT
variable = pressure
eqn = "mass"
[]
[momentum_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhou_dt'
variable = sup_vel_x
[]
[momentum_advection]
type = PCNSFVKT
variable = sup_vel_x
eqn = "momentum"
momentum_component = 'x'
[]
[eps_grad]
type = PNSFVPGradEpsilon
variable = sup_vel_x
momentum_component = 'x'
epsilon_function = 'eps'
[]
[drag]
type = PNSFVMomentumFriction
variable = sup_vel_x
momentum_component = 'x'
Darcy_name = 'cl'
momentum_name = superficial_rhou
[]
[momentum_time_y]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rhov_dt'
variable = sup_vel_y
[]
[momentum_advection_y]
type = PCNSFVKT
variable = sup_vel_y
eqn = "momentum"
momentum_component = 'y'
[]
[eps_grad_y]
type = PNSFVPGradEpsilon
variable = sup_vel_y
momentum_component = 'y'
epsilon_function = 'eps'
[]
[drag_y]
type = PNSFVMomentumFriction
variable = sup_vel_y
momentum_component = 'y'
Darcy_name = 'cl'
momentum_name = superficial_rhov
[]
[energy_time]
type = FVMatPropTimeKernel
mat_prop_time_derivative = 'dsuperficial_rho_et_dt'
variable = T_fluid
[]
[energy_advection]
type = PCNSFVKT
variable = T_fluid
eqn = "energy"
[]
[]
[FVBCs]
[rho_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = pressure
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'mass'
[]
[rhou_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_vel_x
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = sup_vel_y
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_bottom]
type = PCNSFVStrongBC
boundary = 'bottom'
variable = T_fluid
superficial_velocity = 'ud_in'
T_fluid = ${T}
eqn = 'energy'
[]
[rho_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = pressure
pressure = ${p_initial}
eqn = 'mass'
[]
[rhou_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_vel_x
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'x'
[]
[rhov_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = sup_vel_y
pressure = ${p_initial}
eqn = 'momentum'
momentum_component = 'y'
[]
[rho_et_top]
type = PCNSFVStrongBC
boundary = 'top'
variable = T_fluid
pressure = ${p_initial}
eqn = 'energy'
[]
[wall_pressure_x]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'x'
boundary = 'left right'
variable = sup_vel_x
[]
[wall_pressure_y]
type = PCNSFVImplicitMomentumPressureBC
momentum_component = 'y'
boundary = 'left right'
variable = sup_vel_y
[]
# Use these to help create more accurate cell centered gradients for cells adjacent to boundaries
[T_bottom]
type = FVDirichletBC
variable = T_fluid
value = ${T}
boundary = 'bottom'
[]
[sup_vel_x_bottom_and_walls]
type = FVDirichletBC
variable = sup_vel_x
value = 0
boundary = 'bottom left right'
[]
[sup_vel_y_walls]
type = FVDirichletBC
variable = sup_vel_y
value = 0
boundary = 'left right'
[]
[sup_vel_y_bottom]
type = FVDirichletBC
variable = sup_vel_y
value = ${u_in}
boundary = 'bottom'
[]
[p_top]
type = FVDirichletBC
variable = pressure
value = ${p_initial}
boundary = 'top'
[]
[]
[Functions]
[ud_in]
type = ParsedVectorFunction
value_x = '0'
value_y = '${u_in}'
[]
[eps]
type = ParsedFunction
value = 'if(y < 2.8, 1,
if(y < 3.2, 1 - .5 / .4 * (y - 2.8),
if(y < 6.8, .5,
if(y < 7.2, .5 - .25 / .4 * (y - 6.8),
if(y < 10.8, .25,
if(y < 11.2, .25 + .25 / .4 * (y - 10.8),
if(y < 14.8, .5,
if(y < 15.2, .5 + .5 / .4 * (y - 14.8),
1))))))))'
[]
[]
[Materials]
[var_mat]
type = PorousPrimitiveVarMaterial
pressure = pressure
T_fluid = T_fluid
superficial_vel_x = sup_vel_x
superficial_vel_y = sup_vel_y
fp = fp
porosity = porosity
[]
[porosity]
type = GenericFunctionMaterial
prop_names = 'porosity'
prop_values = 'eps'
[]
[ad_generic]
type = ADGenericConstantVectorMaterial
prop_names = 'cl'
prop_values = '${friction_coeff} ${friction_coeff} ${friction_coeff}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
line_search = 'bt'
type = Transient
nl_max_its = 20
[TimeStepper]
type = IterationAdaptiveDT
dt = 5e-5
optimal_iterations = 6
growth_factor = 1.2
[]
num_steps = 10000
end_time = 500
nl_abs_tol = 1e-7
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu mumps'
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
checkpoint = true
[]
[Debug]
show_var_residual_norms = true
[]