- eigenstrain_nameMaterial property name for the eigenstrain tensor computed by this model. IMPORTANT: The name of this property must also be provided to the strain calculator.
C++ Type:std::string
Description:Material property name for the eigenstrain tensor computed by this model. IMPORTANT: The name of this property must also be provided to the strain calculator.
- stress_free_temperatureReference temperature at which there is no thermal expansion for thermal eigenstrain calculation
C++ Type:std::vector<VariableName>
Description:Reference temperature at which there is no thermal expansion for thermal eigenstrain calculation
- thermal_expansion_coeffThermal expansion coefficient
C++ Type:double
Description:Thermal expansion coefficient
ADComputeThermalExpansionEigenstrain
Computes eigenstrain due to thermal expansion with a constant coefficient
Description
This model computes the eigenstrain tensor resulting from isotropic thermal expansion where the constant thermal expansion is defined by a user-supplied scalar linear thermal-expansion coefficient, . The thermal expansion eigenstrain is then computed as
where is the current temperature, is the stress free temperature, and is the identity matrix. Jacobian contributions are computed using forward mode automatic differentiation.
Example Input File Syntax
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 200
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i)The eigenstrain_names
parameter value must also be set for the strain calculator, and an example parameter setting is shown below:
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[../]
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i)Input Parameters
- base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
C++ Type:std::string
Options:
Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Options:
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Options:
Description:The list of boundaries (ids or names) from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Options:
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Options:NONE, ELEMENT, SUBDOMAIN
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Options:
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Options:
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- temperatureCoupled temperature
C++ Type:std::vector<VariableName>
Options:
Description:Coupled temperature
- use_old_temperatureFalseFlag to optionally use the temperature value from the previous timestep.
Default:False
C++ Type:bool
Options:
Description:Flag to optionally use the temperature value from the previous timestep.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Options:
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Options:
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Options:
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Options:
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- (modules/combined/test/tests/gap_heat_transfer_jac/two_blocks.i)
- (modules/combined/test/tests/thermo_mech/ad-thermo_mech.i)
- (tutorials/darcy_thermo_mech/step10_multiapps/problems/step10.i)
- (tutorials/darcy_thermo_mech/step09_mechanics/problems/step9.i)
- (modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_incremental.i)
- (modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_finite.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_coeff.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_coeff_old.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i)
- (tutorials/darcy_thermo_mech/step11_action/problems/step11.i)
- (modules/combined/test/tests/elastic_thermal_patch/ad_elastic_thermal_weak_plane_stress_jacobian.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/AD_finite_strain_laromance.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/AD_finite_strain_power_law_creep.i)
- (modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_small.i)
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material; however, in this case the stress free temperature of the material
# has been set to 200K so that there is an initial delta temperature of 100K.
# An initial temperature of 300K is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. The final temperature is 675K
# The thermal strain increment should therefore be
# (675K - 300K) * 1.3e-5 1/K + 100K * 1.3e-5 1/K = 6.175e-3 m/m.
# This test uses a start up step to identify problems in the calculation of
# eigenstrains with a stress free temperature that is different from the initial
# value of the temperature in the problem
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
initial_condition = 300.0
[../]
[]
[AuxVariables]
[./eigenstrain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(5000.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Kernels]
[./temp]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./eigenstrain_yy]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_xx]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temperature_load
boundary = 'left right'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 200
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = -0.0125
n_startup_steps = 1
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./eigenstrain_xx]
type = ElementAverageValue
variable = eigenstrain_xx
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_yy]
type = ElementAverageValue
variable = eigenstrain_yy
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ElementAverageValue
variable = eigenstrain_zz
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ElementAverageValue
variable = total_strain_xx
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ElementAverageValue
variable = total_strain_yy
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ElementAverageValue
variable = total_strain_zz
execute_on = 'initial timestep_end'
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material; however, in this case the stress free temperature of the material
# has been set to 200K so that there is an initial delta temperature of 100K.
# An initial temperature of 300K is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. The final temperature is 675K
# The thermal strain increment should therefore be
# (675K - 300K) * 1.3e-5 1/K + 100K * 1.3e-5 1/K = 6.175e-3 m/m.
# This test uses a start up step to identify problems in the calculation of
# eigenstrains with a stress free temperature that is different from the initial
# value of the temperature in the problem
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
initial_condition = 300.0
[../]
[]
[AuxVariables]
[./eigenstrain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(5000.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Kernels]
[./temp]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./eigenstrain_yy]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_xx]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temperature_load
boundary = 'left right'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 200
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = -0.0125
n_startup_steps = 1
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./eigenstrain_xx]
type = ElementAverageValue
variable = eigenstrain_xx
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_yy]
type = ElementAverageValue
variable = eigenstrain_yy
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ElementAverageValue
variable = eigenstrain_zz
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ElementAverageValue
variable = total_strain_xx
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ElementAverageValue
variable = total_strain_yy
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ElementAverageValue
variable = total_strain_zz
execute_on = 'initial timestep_end'
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[]
(modules/combined/test/tests/gap_heat_transfer_jac/two_blocks.i)
# This problem consists of two beams with different prescribed temperatures on
# the top of the top beam and the bottom of the bottom beam. The top beam is
# fixed against vertical displacement on the top surface, and the bottom beam
# bends downward due to thermal expansion.
# This is a test of the effectiveness of the Jacobian terms coupling temperature
# and displacement for thermal contact. The Jacobian is not exactly correct,
# but is close enough that this challenging problem converges in a small number
# of nonlinear iterations using NEWTON.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[./msh]
type = FileMeshGenerator
file = two_blocks.e
[]
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = thermal_expansion
generate_output = 'stress_xx stress_yy stress_zz stress_yz stress_xz stress_xy'
use_automatic_differentiation = true
[../]
[]
[Contact]
[./mechanical]
primary = 4
secondary = 5
formulation = kinematic
tangential_tolerance = 1e-1
penalty = 1e10
[../]
[]
[ThermalContact]
[./thermal]
type = GapHeatTransfer
variable = temp
primary = 4
secondary = 5
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 1e4
quadrature = true
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 7
value = 0
[../]
[./top_temp]
type = DirichletBC
variable = temp
boundary = 7
value = 1000.0
[../]
[./bot_temp]
type = DirichletBC
variable = temp
boundary = 6
value = 500.0
[../]
[]
[Materials]
[./density]
type = Density
density = 100
[../]
[./temp]
type = ADHeatConductionMaterial
thermal_conductivity = 1e5
specific_heat = 620.0
[../]
[./Elasticity_tensor]
type = ADComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.3 0.5e8'
[../]
[./thermal_eigenstrain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-5
stress_free_temperature = 500
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
[Executioner]
automatic_scaling = true
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
solve_type = NEWTON
nl_max_its = 15
l_tol = 1e-10
l_max_its = 50
start_time = 0.0
dt = 0.2
dtmin = 0.2
num_steps = 1
line_search = none
[]
(modules/combined/test/tests/thermo_mech/ad-thermo_mech.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
temperature = temp
volumetric_locking_correction = true
[]
[Mesh]
file = cube.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
[../]
[]
[Kernels]
[./TensorMechanics]
use_automatic_differentiation = true
[../]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./bottom_temp]
type = DirichletBC
variable = temp
preset = false
boundary = 1
value = 10.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.0
poissons_ratio = 0.3
[../]
[./strain]
type = ADComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 0.0
thermal_expansion_coeff = 1e-5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./heat]
type = ADHeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
l_tol = 1e-3
l_max_its = 100
dt = 1.0
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(tutorials/darcy_thermo_mech/step10_multiapps/problems/step10.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 100
ymax = 0.304 # Length of test chamber
xmax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[k_eff]
initial_condition = 15.0 # water at 20C
[]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Modules/TensorMechanics/Master]
[all]
# This block adds all of the proper Kernels, strain calculators, and Variables
# for TensorMechanics in the correct coordinate system (autodetected)
add_variables = true
strain = FINITE
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
generate_output = 'vonmises_stress elastic_strain_xx elastic_strain_yy strain_xx strain_yy'
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = bottom
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = top
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = bottom
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = top
[]
[hold_inlet]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[]
[hold_center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[]
[hold_outside]
type = DirichletBC
variable = disp_r
boundary = right
value = 0
[]
[]
[Materials]
viscosity_file = data/water_viscosity.csv
density_file = data/water_density.csv
specific_heat_file = data/water_specific_heat.csv
thermal_expansion_file = data/water_thermal_expansion.csv
[column]
type = PackedColumn
temperature = temperature
radius = 1
thermal_conductivity = k_eff # Use the AuxVariable instead of calculating
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_specific_heat_file = ${specific_heat_file}
fluid_thermal_expansion_file = ${thermal_expansion_file}
[]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 200e9 # (Pa) from wikipedia
poissons_ratio = .3 # from wikipedia
[]
[elastic_stress]
type = ADComputeFiniteStrainElasticStress
[]
[thermal_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1e-6
eigenstrain_name = eigenstrain
temperature = temperature
[]
[]
[Postprocessors]
[average_temperature]
type = ElementAverageValue
variable = temperature
[]
[]
[Executioner]
type = Transient
start_time = -1
end_time = 200
steady_state_tolerance = 1e-7
steady_state_detection = true
dt = 0.25
solve_type = PJFNK
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 500'
line_search = none
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[MultiApps]
[micro]
type = TransientMultiApp
app_type = DarcyThermoMechApp
positions = '0.01285 0.0 0
0.01285 0.0608 0
0.01285 0.1216 0
0.01285 0.1824 0
0.01285 0.2432 0
0.01285 0.304 0'
input_files = step10_micro.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[keff_from_sub]
type = MultiAppPostprocessorInterpolationTransfer
direction = from_multiapp
multi_app = micro
variable = k_eff
power = 1
postprocessor = k_eff
execute_on = 'timestep_end'
[]
[temperature_to_sub]
type = MultiAppVariableValueSamplePostprocessorTransfer
direction = to_multiapp
multi_app = micro
source_variable = temperature
postprocessor = temperature_in
execute_on = 'timestep_end'
[]
[]
[Controls]
[multiapp]
type = TimePeriod
disable_objects = 'MultiApps::micro Transfers::keff_from_sub Transfers::temperature_to_sub'
start_time = '0'
execute_on = 'initial'
[]
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(tutorials/darcy_thermo_mech/step09_mechanics/problems/step9.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
ny = 200
nx = 10
ymax = 0.304 # Length of test chamber
xmax = 0.0257 # Test chamber radius
[]
[bottom]
type = SubdomainBoundingBoxGenerator
input = generate
location = inside
bottom_left = '0 0 0'
top_right = '0.01285 0.304 0'
block_id = 1
[]
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Modules/TensorMechanics/Master]
[all]
# This block adds all of the proper Kernels, strain calculators, and Variables
# for TensorMechanics in the correct coordinate system (autodetected)
add_variables = true
strain = FINITE
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
generate_output = 'vonmises_stress elastic_strain_xx elastic_strain_yy strain_xx strain_yy'
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = bottom
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = top
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = bottom
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = top
[]
[hold_inlet]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[]
[hold_center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[]
[hold_outside]
type = DirichletBC
variable = disp_r
boundary = right
value = 0
[]
[]
[Materials]
viscosity_file = data/water_viscosity.csv
density_file = data/water_density.csv
thermal_conductivity_file = data/water_thermal_conductivity.csv
specific_heat_file = data/water_specific_heat.csv
thermal_expansion_file = data/water_thermal_expansion.csv
[column_top]
type = PackedColumn
block = 0
temperature = temperature
radius = 1.15
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_thermal_conductivity_file = ${thermal_conductivity_file}
fluid_specific_heat_file = ${specific_heat_file}
fluid_thermal_expansion_file = ${thermal_expansion_file}
[]
[column_bottom]
type = PackedColumn
block = 1
temperature = temperature
radius = 1
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_thermal_conductivity_file = ${thermal_conductivity_file}
fluid_specific_heat_file = ${specific_heat_file}
fluid_thermal_expansion_file = ${thermal_expansion_file}
[]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 200e9 # (Pa) from wikipedia
poissons_ratio = .3 # from wikipedia
[]
[elastic_stress]
type = ADComputeFiniteStrainElasticStress
[]
[thermal_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 300
eigenstrain_name = eigenstrain
temperature = temperature
thermal_expansion_coeff = 1e-5 # TM modules doesn't support material property, but it will
[]
[]
[Postprocessors]
[average_temperature]
type = ElementAverageValue
variable = temperature
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Executioner]
type = Transient
start_time = -1
end_time = 200
steady_state_tolerance = 1e-7
steady_state_detection = true
dt = 0.25
solve_type = PJFNK
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
#petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
#petsc_options_value = 'hypre boomeramg 500'
line_search = none
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_incremental.i)
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = ADMaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
incremental = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeStrainIncrementBasedStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = 'weak_plane_stress_incremental_out'
exodus = true
[]
(modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_finite.i)
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = ADMaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = FINITE
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = 'weak_plane_stress_finite_out'
exodus = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_coeff.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
# This test is also designed to be used to identify problems with restart files
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Kernels]
[./tempfuncaux]
type = Diffusion
variable = temp
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temperature_load
boundary = 'left right'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
[../]
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_coeff_old.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
# This test is also designed to be used to identify problems with restart files
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Kernels]
[./tempfuncaux]
type = Diffusion
variable = temp
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temperature_load
boundary = 'left right'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
use_old_temperature = true
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
[../]
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material; however, in this case the stress free temperature of the material
# has been set to 200K so that there is an initial delta temperature of 100K.
# An initial temperature of 300K is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. The final temperature is 675K
# The thermal strain increment should therefore be
# (675K - 300K) * 1.3e-5 1/K + 100K * 1.3e-5 1/K = 6.175e-3 m/m.
# This test uses a start up step to identify problems in the calculation of
# eigenstrains with a stress free temperature that is different from the initial
# value of the temperature in the problem
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
initial_condition = 300.0
[../]
[]
[AuxVariables]
[./eigenstrain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(5000.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Kernels]
[./temp]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./eigenstrain_yy]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_xx]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temperature_load
boundary = 'left right'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 200
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = -0.0125
n_startup_steps = 1
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./eigenstrain_xx]
type = ElementAverageValue
variable = eigenstrain_xx
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_yy]
type = ElementAverageValue
variable = eigenstrain_yy
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ElementAverageValue
variable = eigenstrain_zz
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ElementAverageValue
variable = total_strain_xx
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ElementAverageValue
variable = total_strain_yy
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ElementAverageValue
variable = total_strain_zz
execute_on = 'initial timestep_end'
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[]
(tutorials/darcy_thermo_mech/step11_action/problems/step11.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 2
ny = 200
nx = 10
ymax = 0.304 # Length of test chamber
xmax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[DarcyThermoMech]
[]
[Modules/TensorMechanics/Master]
[all]
# This block adds all of the proper Kernels, strain calculators, and Variables
# for TensorMechanics in the correct coordinate system (autodetected)
add_variables = true
strain = FINITE
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
generate_output = 'vonmises_stress elastic_strain_xx elastic_strain_yy strain_xx strain_yy'
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = bottom
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = top
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = bottom
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = top
[]
[hold_inlet]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[]
[hold_center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[]
[hold_outside]
type = DirichletBC
variable = disp_r
boundary = right
value = 0
[]
[]
[Materials]
viscosity_file = data/water_viscosity.csv
density_file = data/water_density.csv
thermal_conductivity_file = data/water_thermal_conductivity.csv
specific_heat_file = data/water_specific_heat.csv
thermal_expansion_file = data/water_thermal_expansion.csv
[column]
type = PackedColumn
block = 0
temperature = temperature
radius = 1.15
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_thermal_conductivity_file = ${thermal_conductivity_file}
fluid_specific_heat_file = ${specific_heat_file}
fluid_thermal_expansion_file = ${thermal_expansion_file}
[]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 200e9 # (Pa) from wikipedia
poissons_ratio = .3 # from wikipedia
[]
[elastic_stress]
type = ADComputeFiniteStrainElasticStress
[]
[thermal_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 300
eigenstrain_name = eigenstrain
temperature = temperature
thermal_expansion_coeff = 1e-5
[]
[]
[Postprocessors]
[average_temperature]
type = ElementAverageValue
variable = temperature
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Executioner]
type = Transient
start_time = -1
end_time = 200
steady_state_tolerance = 1e-7
steady_state_detection = true
dt = 0.25
solve_type = PJFNK
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 500'
line_search = none
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(modules/combined/test/tests/elastic_thermal_patch/ad_elastic_thermal_weak_plane_stress_jacobian.i)
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
eigenstrain_names = thermal_eigenstrain
use_automatic_differentiation = true
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
use_displaced_mesh = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.0
youngs_modulus = 1
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-5
stress_free_temperature = 0
eigenstrain_name = thermal_eigenstrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./conductivity]
type = HeatConductionMaterial
thermal_conductivity = 1
use_displaced_mesh = false
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type -snes_type'
petsc_options_value = 'bcgs bjacobi test'
end_time = 1.0
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/AD_finite_strain_laromance.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 1
xmax = 2
nx = 50
ny = 50
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
eigenstrain_names = 'thermal'
use_automatic_differentiation = true
[]
[]
[AuxVariables]
[temp]
initial_condition = 1000.0
[]
[]
[AuxKernels]
[cooling]
type = FunctionAux
variable = temp
function = '1000-10*t*x'
[]
[]
[BCs]
# [top_pull]
# type = ADFunctionNeumannBC
# variable = disp_z
# boundary = top
# function = '1e7*t'
# use_displaced_mesh = true
# []
[bottom_fix]
type = ADDirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[left_fix]
type = ADDirichletBC
variable = disp_r
boundary = left
value = 0.0
[]
[]
[Materials]
[eigenstrain]
type = ADComputeThermalExpansionEigenstrain
eigenstrain_name = 'thermal'
stress_free_temperature = 1000
thermal_expansion_coeff = 1e-6 #1e-4
temperature = temp
[]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 3.30e11
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[../]
[./rom_stress_prediction]
type = ADSS316HLAROMANCEStressUpdateTest
temperature = temp
initial_cell_dislocation_density = 6.0e12
initial_wall_dislocation_density = 4.4e11
outputs = all
[../]
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
end_time = 10
dt = 1
automatic_scaling = true
[]
[Outputs]
# print_linear_converged_reason = false
# print_nonlinear_converged_reason = false
# print_linear_residuals = false
perf_graph = true
exodus = true
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/AD_finite_strain_power_law_creep.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 1
xmax = 2
nx = 50
ny = 50
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
eigenstrain_names = 'thermal'
use_automatic_differentiation = true
[]
[]
[AuxVariables]
[temp]
initial_condition = 1000.0
[]
[]
[AuxKernels]
[cooling]
type = FunctionAux
variable = temp
function = '1000-10*t*x'
[]
[]
[BCs]
[top_pull]
type = ADFunctionNeumannBC
variable = disp_z
boundary = top
function = '1e7*t'
use_displaced_mesh = true
[]
[bottom_fix]
type = ADDirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[left_fix]
type = ADDirichletBC
variable = disp_r
boundary = left
value = 0.0
[]
[]
[Materials]
[eigenstrain]
type = ADComputeThermalExpansionEigenstrain
eigenstrain_name = 'thermal'
stress_free_temperature = 1000
thermal_expansion_coeff = 1e-4
temperature = temp
[]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[]
[stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'creep'
[]
[creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
end_time = 10
dt = 1
automatic_scaling = true
[]
[Outputs]
print_linear_converged_reason = false
print_nonlinear_converged_reason = false
print_linear_residuals = false
perf_graph = true
exodus = true
[]
(modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_small.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = ADMaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = 'weak_plane_stress_small_out'
exodus = true
[]