- muThe viscosity
C++ Type:MaterialPropertyName
Description:The viscosity
- porosityPorosity auxiliary variable
C++ Type:std::vector<VariableName>
Description:Porosity auxiliary variable
- pressureThe pressure variable.
C++ Type:std::vector<VariableName>
Description:The pressure variable.
- rhoThe value for the density
C++ Type:double
Description:The value for the density
- uThe velocity in the x direction.
C++ Type:std::vector<VariableName>
Description:The velocity in the x direction.
- variableThe name of the finite volume variable this kernel applies to
C++ Type:NonlinearVariableName
Description:The name of the finite volume variable this kernel applies to
- veladvection velocity
C++ Type:MaterialPropertyName
Description:advection velocity
PINSFVMassAdvection
This object computes the residual and Jacobian contribution of the incompressible version of the mass continuity equation, e.g. . We apply the divergence theorem and compute the advective flux of mass across cell/element faces.
When using the Rhie-Chow interpolation to compute the mass flow across faces, this kernel reverts by default to average interpolation near porosity changes. This behavior may be disabled with the smooth_porosity
boolean.
Input Parameters
- advected_interp_methodupwindThe interpolation to use for the advected quantity. Options are 'upwind' and 'average', with the default being 'upwind'.
Default:upwind
C++ Type:MooseEnum
Options:average, upwind
Description:The interpolation to use for the advected quantity. Options are 'upwind' and 'average', with the default being 'upwind'.
- advected_quantityAn optional parameter for specifying an advected quantity from a material property. If this is not specified, then the advected quantity will simply be the variable that this object is acting on
C++ Type:MaterialPropertyName
Options:
Description:An optional parameter for specifying an advected quantity from a material property. If this is not specified, then the advected quantity will simply be the variable that this object is acting on
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Options:
Description:The list of blocks (ids or names) that this object will be applied
- boundaries_to_forceThe set of boundaries to force execution of this FVFluxKernel on.
C++ Type:std::vector<BoundaryName>
Options:
Description:The set of boundaries to force execution of this FVFluxKernel on.
- boundaries_to_not_forceThe set of boundaries to not force execution of this FVFluxKernel on.
C++ Type:std::vector<BoundaryName>
Options:
Description:The set of boundaries to not force execution of this FVFluxKernel on.
- force_boundary_executionFalseWhether to force execution of this object on the boundary.
Default:False
C++ Type:bool
Options:
Description:Whether to force execution of this object on the boundary.
- ghost_layers2The number of layers of elements to ghost.
Default:2
C++ Type:unsigned short
Options:
Description:The number of layers of elements to ghost.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Options:
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- smooth_porosityFalseWhether the porosity field is smooth or has discontinuities
Default:False
C++ Type:bool
Options:
Description:Whether the porosity field is smooth or has discontinuities
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Options:
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
- vThe velocity in the y direction.
C++ Type:std::vector<VariableName>
Options:
Description:The velocity in the y direction.
- velocity_interp_methodrcThe interpolation to use for the velocity. Options are 'average' and 'rc' which stands for Rhie-Chow. The default is Rhie-Chow.
Default:rc
C++ Type:MooseEnum
Options:average, rc
Description:The interpolation to use for the velocity. Options are 'average' and 'rc' which stands for Rhie-Chow. The default is Rhie-Chow.
- wThe velocity in the z direction.
C++ Type:std::vector<VariableName>
Options:
Description:The velocity in the z direction.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Options:
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Options:
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Options:
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Options:
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/2d-rc-epsjump.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/1d-rc-epsjump.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/2d-rc-continuous.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-boussinesq.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/1d-rc-continuous.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/2d-rc.i)
- (modules/navier_stokes/test/tests/postprocessors/conservation_PINSFV.i)
- (modules/navier_stokes/test/tests/finite_volume/pins/mms/1d-rc.i)
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated.i)
mu=1
rho=1
k=1e-3
cp=1
u_inlet=1
T_inlet=200
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 100
ny = 20
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Variables]
inactive = 'temp_solid'
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[temp_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
[]
[]
[AuxVariables]
[temp_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'solid_energy_diffusion solid_energy_convection'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_quantity = 'rhov'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = temperature
vel = 'velocity'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
k = ${k}
variable = temperature
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = temperature
is_solid = false
temp_fluid = temperature
temp_solid = temp_solid
h_solid_fluid = 'h_cv'
[]
[solid_energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = temp_solid
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = temp_solid
is_solid = true
temp_fluid = temperature
temp_solid = temp_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
inactive = 'heated-side'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = temperature
value = ${fparse u_inlet * rho * cp * T_inlet}
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = u
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = v
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'temp_solid'
value = 150
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = 'x'
porosity = porosity
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = 'y'
porosity = porosity
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[Materials]
[constants]
type = ADGenericConstantMaterial
prop_names = 'cp h_cv'
prop_values = '${cp} 1'
[]
[ins_fv]
type = INSFVMaterial
u = 'u'
v = 'v'
pressure = 'pressure'
rho = ${rho}
temperature = 'temperature'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = u
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = temperature
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = temp_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Variables]
inactive = 'lambda'
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'mean-pressure'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_quantity = 'rhov'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[mean-pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
phi0 = 0.01
[]
[]
[FVBCs]
# Select desired boundary conditions
active = 'inlet-u inlet-v outlet-p free-slip-u free-slip-v'
# Possible inlet boundary conditions
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[inlet-p]
type = INSFVOutletPressureBC
boundary = 'left'
variable = pressure
function = 1
[]
# Possible wall boundary conditions
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = u
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = v
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = 'x'
porosity = porosity
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = 'y'
porosity = porosity
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
# Possible outlet boundary conditions
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[outlet-p-novalue]
type = INSFVMassAdvectionOutflowBC
boundary = 'right'
variable = pressure
u = u
v = v
rho = ${rho}
[]
[outlet-u]
type = PINSFVMomentumAdvectionOutflowBC
boundary = 'right'
variable = u
vel = velocity
u = u
v = v
porosity = porosity
[]
[outlet-v]
type = PINSFVMomentumAdvectionOutflowBC
boundary = 'right'
variable = v
vel = velocity
u = u
v = v
porosity = porosity
[]
[]
[Materials]
[ins_fv]
type = INSFVMaterial
u = 'u'
v = 'v'
pressure = 'pressure'
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
[inlet-p]
type = SideIntegralVariablePostprocessor
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/2d-rc-epsjump.i)
mu=1.1
rho=1.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
dy = '0.5'
ix = '30 30'
iy = '20'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[ICs]
inactive = 'porosity_continuous'
[porosity_1]
type = ConstantIC
variable = porosity
block = 1
value = 1
[]
[porosity_2]
type = ConstantIC
variable = porosity
block = 2
value = 0.5
[]
[porosity_continuous]
type = FunctionIC
variable = porosity
block = '1 2'
function = smooth_jump
[]
[]
[Functions]
[smooth_jump]
type = ParsedFunction
value = '1 - 0.5 * 1 / (1 + exp(-30*(x-1)))'
[]
[]
[FVKernels]
inactive = 'u_advection_porosity_gradient v_advection_porosity_gradient'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
momentum_component = 'x'
vel = 'velocity'
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_advection_porosity_gradient]
type = PINSFVMomentumAdvectionPorosityGradient
variable = u
u = u
v = v
rho = ${rho}
porosity = porosity
momentum_component = 'x'
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_quantity = 'rhov'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
momentum_component = 'y'
vel = 'velocity'
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
pressure = pressure
porosity = porosity
momentum_component = 'y'
[]
[v_advection_porosity_gradient]
type = PINSFVMomentumAdvectionPorosityGradient
variable = v
u = u
v = v
rho = ${rho}
porosity = porosity
momentum_component = 'y'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[walls-u]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = u
[]
[walls-v]
type = INSFVNaturalFreeSlipBC
boundary = 'top bottom'
variable = v
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.4
[]
[]
[Materials]
[ins_fv]
type = INSFVMaterial
u = 'u'
v = 'v'
pressure = 'pressure'
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/porosity_jump/1d-rc-epsjump.i)
mu=1.1
rho=1.1
advected_interp_method='upwind'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '30 30'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[ICs]
inactive = 'porosity_continuous'
[porosity_1]
type = ConstantIC
variable = porosity
block = 1
value = 1
[]
[porosity_2]
type = ConstantIC
variable = porosity
block = 2
value = 0.5
[]
[porosity_continuous]
type = FunctionIC
variable = porosity
block = '1 2'
function = smooth_jump
[]
[]
[Functions]
[smooth_jump]
type = ParsedFunction
value = '1 - 0.5 * 1 / (1 + exp(-30*(x-1)))'
[]
[]
[FVKernels]
inactive = 'u_advection_porosity_gradient'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_advection_porosity_gradient]
type = PINSFVMomentumAdvectionPorosityGradient
variable = u
u = u
rho = ${rho}
porosity = porosity
momentum_component = 'x'
smooth_porosity = true
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 1
[]
[]
[Materials]
[ins_fv]
type = INSFVMaterial
u = 'u'
pressure = 'pressure'
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/2d-rc-continuous.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 8
ny = 8
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[ICs]
[porosity_continuous]
type = FunctionIC
variable = porosity
function = smooth_jump
[]
[]
[GlobalParams]
porosity = porosity
[]
[FVKernels]
inactive = 'u_pressure_porosity u_pressure_porosity_gradient
v_pressure_porosity v_pressure_porosity_gradient'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
smooth_porosity = true
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
smooth_porosity = true
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
smooth_porosity = false
vel = 'velocity'
momentum_component = 'x'
[]
# Option 1: eps * pressure gradient
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
# Option 2: gradient (eps * pressure) - P * gradient(eps)
[u_pressure_porosity]
type = PINSFVMomentumPressureFlux
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_pressure_porosity_gradient]
type = PINSFVMomentumPressurePorosityGradient
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_forcing]
type = FVBodyForce
variable = u
function = forcing_u
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_quantity = 'rhov'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
smooth_porosity = true
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
smooth_porosity = false
vel = 'velocity'
momentum_component = 'y'
[]
# Option 1: eps * pressure gradient
[v_pressure]
type = PINSFVMomentumPressure
variable = v
pressure = pressure
porosity = porosity
momentum_component = 'y'
[]
# Option 2: gradient (eps * pressure) - P * gradient(eps)
[v_pressure_porosity]
type = PINSFVMomentumPressureFlux
variable = v
pressure = pressure
porosity = porosity
momentum_component = 'y'
[]
[v_pressure_porosity_gradient]
type = PINSFVMomentumPressurePorosityGradient
variable = v
pressure = pressure
porosity = porosity
momentum_component = 'y'
[]
[v_forcing]
type = FVBodyForce
variable = v
function = forcing_v
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Materials]
[ins_fv]
type = INSFVMaterial
u = 'u'
v = 'v'
pressure = 'pressure'
rho = ${rho}
[]
[]
[Functions]
[smooth_jump]
type = ParsedFunction
value = '1 - 0.5 * 1 / (1 + exp(-30*(x-1))) - 0.01 * y'
[]
# Output from compute-functions-2d.py
[exact_u]
type = ParsedFunction
value = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
value = '(1/2)*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) - 0.005*pi*mu*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2 + 7.5*pi*mu*exp(30 - 30*x)*sin((1/2)*x*pi)*sin((1/2)*y*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + (1/2)*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) - pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 0.01*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2 + 15.0*rho*exp(30 - 30*x)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi)^2/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) - 1/4*pi*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_v]
type = ParsedFunction
value = '(5/16)*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 0.005*pi*mu*sin((1/4)*x*pi)*sin((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2 - 3.75*pi*mu*exp(30 - 30*x)*cos((1/4)*x*pi)*cos((1/2)*y*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) - pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) - 1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + (1/4)*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1)) + 0.01*rho*sin((1/4)*x*pi)^2*cos((1/2)*y*pi)^2/(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2 + 15.0*rho*exp(30 - 30*x)*sin((1/4)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)/((exp(30 - 30*x) + 1)^2*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))^2) + (3/2)*pi*(-0.01*y + 1 - 0.5/(exp(30 - 30*x) + 1))*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-boussinesq.i)
mu=1
rho=1
k=1e-3
cp=1
v_inlet=1
T_inlet=200
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 10
nx = 20
ny = 100
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${v_inlet}
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[temp_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.4
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[u_gravity]
type = PINSFVMomentumGravity
variable = u
rho = ${rho}
gravity = '0 -9.81 0'
momentum_component = 'x'
porosity = porosity
[]
[u_boussinesq]
type = PINSFVMomentumBoussinesq
variable = u
temperature = 'temperature'
rho = ${rho}
ref_temperature = 150
gravity = '0 -9.81 0'
momentum_component = 'x'
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_quantity = 'rhov'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_gravity]
type = PINSFVMomentumGravity
variable = v
rho = ${rho}
gravity = '-0 -9.81 0'
momentum_component = 'y'
porosity = porosity
[]
[v_boussinesq]
type = PINSFVMomentumBoussinesq
variable = v
temperature = 'temperature'
rho = ${rho}
ref_temperature = 150
gravity = '0 -9.81 0'
momentum_component = 'y'
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = temperature
vel = 'velocity'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[energy_diffusion]
type = PINSFVEnergyDiffusion
k = ${k}
variable = temperature
porosity = porosity
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = temperature
is_solid = false
temp_fluid = temperature
temp_solid = temp_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = ${v_inlet}
[]
[inlet-T]
type = FVNeumannBC
variable = temperature
value = ${fparse v_inlet * rho * cp * T_inlet}
boundary = 'bottom'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = 'x'
porosity = porosity
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = 'y'
porosity = porosity
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[]
[Materials]
[constants]
type = ADGenericConstantMaterial
prop_names = 'cp h_cv alpha'
prop_values = '${cp} 1e-3 8e-4'
[]
[ins_fv]
type = INSFVMaterial
u = 'u'
v = 'v'
pressure = 'pressure'
rho = ${rho}
temperature = 'temperature'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'top'
[]
[outlet-v]
type = SideAverageValue
variable = v
boundary = 'top'
[]
[outlet-temp]
type = SideAverageValue
variable = temperature
boundary = 'top'
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/porosity_change/1d-rc-continuous.i)
mu=1.5
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '15 15'
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[ICs]
[porosity_continuous]
type = FunctionIC
variable = porosity
function = smooth_jump
[]
[]
[Functions]
[smooth_jump]
type = ParsedFunction
value = '1 - 0.5 * 1 / (1 + exp(-30*(x-1)))'
[]
# Generated by compute-functions-1d.py
[exact_u]
type = ParsedFunction
value = 'cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
value = '-mu*(-1/4*pi^2*cos((1/2)*x*pi)/(1 - 0.5/(exp(30 - 30*x) + 1)) - 15.0*pi*exp(30 - 30*x)*sin((1/2)*x*pi)/((1 - 0.5/(exp(30 - 30*x) + 1))^2*(exp(30 - 30*x) + 1)^2) - 450.0*exp(30 - 30*x)*cos((1/2)*x*pi)/((1 - 0.5/(exp(30 - 30*x) + 1))^2*(exp(30 - 30*x) + 1)^2) + 900.0*exp(60 - 60*x)*cos((1/2)*x*pi)/((1 - 0.5/(exp(30 - 30*x) + 1))^2*(exp(30 - 30*x) + 1)^3) + 450.0*exp(60 - 60*x)*cos((1/2)*x*pi)/((1 - 0.5/(exp(30 - 30*x) + 1))^3*(exp(30 - 30*x) + 1)^4)) - pi*rho*sin((1/2)*x*pi)*cos((1/2)*x*pi)/(1 - 0.5/(exp(30 - 30*x) + 1)) + 15.0*rho*exp(30 - 30*x)*cos((1/2)*x*pi)^2/((1 - 0.5/(exp(30 - 30*x) + 1))^2*(exp(30 - 30*x) + 1)^2) + (1 - 0.5/(exp(30 - 30*x) + 1))*cos(x)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin(x)'
[]
[forcing_p]
type = ParsedFunction
value = '-1/2*pi*rho*sin((1/2)*x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[FVKernels]
inactive = 'u_pressure_porosity u_pressure_porosity_gradient'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
mu = ${mu}
rho = ${rho}
porosity = porosity
smooth_porosity = true
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
mu = ${mu}
rho = ${rho}
porosity = porosity
smooth_porosity = true
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
vel = 'velocity'
momentum_component = 'x'
smooth_porosity = true
[]
# Option 1: eps * pressure gradient
[u_pressure]
type = PINSFVMomentumPressure
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
# Option 2: gradient (eps * pressure) - P * gradient(eps)
[u_pressure_porosity]
type = PINSFVMomentumPressureFlux
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_pressure_porosity_gradient]
type = PINSFVMomentumPressurePorosityGradient
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_forcing]
type = FVBodyForce
variable = u
function = forcing_u
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Materials]
[ins_fv]
type = INSFVMaterial
u = 'u'
pressure = 'pressure'
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
# ksp_gmres_restart bumped to 200 for linear convergence
nl_max_its = 100
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/heated/2d-rc-heated-effective.i)
mu=1
rho=1
k=1e-3
cp=1
u_inlet=1
T_inlet=200
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 1
nx = 100
ny = 20
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Variables]
inactive = 'temp_solid'
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = ${u_inlet}
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[temp_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
[]
[]
[AuxVariables]
[temp_solid]
family = 'MONOMIAL'
order = 'CONSTANT'
fv = true
initial_condition = 100
[]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'solid_energy_diffusion solid_energy_convection'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_quantity = 'rhov'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[energy_advection]
type = PINSFVEnergyAdvection
variable = temperature
vel = 'velocity'
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[energy_diffusion]
type = PINSFVEnergyEffectiveDiffusion
kappa = 'kappa'
variable = temperature
[]
[energy_convection]
type = PINSFVEnergyAmbientConvection
variable = temperature
is_solid = false
temp_fluid = temperature
temp_solid = temp_solid
h_solid_fluid = 'h_cv'
[]
[solid_energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = temp_solid
[]
[solid_energy_convection]
type = PINSFVEnergyAmbientConvection
variable = temp_solid
is_solid = true
temp_fluid = temperature
temp_solid = temp_solid
h_solid_fluid = 'h_cv'
[]
[]
[FVBCs]
inactive = 'heated-side'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = ${u_inlet}
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[inlet-T]
type = FVNeumannBC
variable = temperature
value = ${fparse u_inlet * rho * cp * T_inlet}
boundary = 'left'
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = u
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = v
function = 0
[]
[heated-side]
type = FVDirichletBC
boundary = 'top'
variable = 'temp_solid'
value = 150
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = 'x'
porosity = porosity
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = 'y'
porosity = porosity
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0.1
[]
[]
[Materials]
[constants]
type = ADGenericConstantMaterial
prop_names = 'cp h_cv'
prop_values = '${cp} 1'
[]
[kappa]
type = ADGenericConstantVectorMaterial
prop_names = 'kappa'
prop_values = '1e-3 1e-2 1e-1'
[]
[ins_fv]
type = INSFVMaterial
u = 'u'
v = 'v'
pressure = 'pressure'
rho = ${rho}
temperature = 'temperature'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
# Some basic Postprocessors to examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideAverageValue
variable = u
boundary = 'right'
[]
[outlet-temp]
type = SideAverageValue
variable = temperature
boundary = 'right'
[]
[solid-temp]
type = ElementAverageValue
variable = temp_solid
[]
[]
[Outputs]
exodus = true
csv = false
[]
(modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)
mu=1.1
rho=1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = 1
nx = 40
ny = 20
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Variables]
inactive = 'lambda'
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
inactive = 'mean-pressure'
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[u_friction]
type = PNSFVMomentumFriction
variable = u
momentum_component = 'x'
porosity = porosity
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_quantity = 'rhov'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[v_friction]
type = PNSFVMomentumFriction
variable = v
momentum_component = 'y'
porosity = porosity
Darcy_name = 'Darcy_coefficient'
Forchheimer_name = 'Forchheimer_coefficient'
rho = ${rho}
[]
[mean-pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
phi0 = 0.01
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 0
[]
[no-slip-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = u
function = 0
[]
[no-slip-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = v
function = 0
[]
[symmetry-u]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = 'x'
porosity = porosity
[]
[symmetry-v]
type = PINSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = 'y'
porosity = porosity
[]
[symmetry-p]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet-p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[]
[Materials]
[ins_fv]
type = INSFVMaterial
u = 'u'
v = 'v'
pressure = 'pressure'
rho = ${rho}
[]
[darcy]
type = ADGenericConstantVectorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-14
[]
# Some basic Postprocessors to visually examine the solution
[Postprocessors]
[inlet-p]
type = SideAverageValue
variable = pressure
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/2d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = -1
ymax = 1
nx = 8
ny = 8
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.8
[]
[]
[GlobalParams]
porosity = porosity
two_term_boundary_expansion = true
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_forcing]
type = FVBodyForce
variable = u
function = forcing_u
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_quantity = 'rhov'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
mu = ${mu}
porosity = porosity
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_forcing]
type = FVBodyForce
variable = v
function = forcing_v
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = 'exact_v'
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = u
function = 'exact_u'
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = v
function = 'exact_v'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Materials]
[ins_fv]
type = INSFVMaterial
u = 'u'
v = 'v'
pressure = 'pressure'
rho = ${rho}
[]
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'sin((1/2)*y*pi)*cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
value = '0.625*pi^2*mu*sin((1/2)*y*pi)*cos((1/2)*x*pi) - 0.625*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) + 0.625*pi*rho*sin((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi)^2 - 1.25*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)^2*cos((1/2)*x*pi) - 0.2*pi*sin((1/4)*x*pi)*sin((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_v]
type = ParsedFunction
value = 'sin((1/4)*x*pi)*cos((1/2)*y*pi)'
[]
[forcing_v]
type = ParsedFunction
value = '0.390625*pi^2*mu*sin((1/4)*x*pi)*cos((1/2)*y*pi) - 1.25*pi*rho*sin((1/4)*x*pi)^2*sin((1/2)*y*pi)*cos((1/2)*y*pi) - 0.625*pi*rho*sin((1/4)*x*pi)*sin((1/2)*x*pi)*sin((1/2)*y*pi)*cos((1/2)*y*pi) + 0.3125*pi*rho*sin((1/2)*y*pi)*cos((1/4)*x*pi)*cos((1/2)*x*pi)*cos((1/2)*y*pi) + 1.2*pi*cos((1/4)*x*pi)*cos((3/2)*y*pi)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin((3/2)*y*pi)*cos((1/4)*x*pi)'
[]
[forcing_p]
type = ParsedFunction
value = '-1/2*pi*rho*sin((1/4)*x*pi)*sin((1/2)*y*pi) - 1/2*pi*rho*sin((1/2)*x*pi)*sin((1/2)*y*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2v]
type = ElementL2Error
variable = v
function = exact_v
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
type = ElementL2Error
variable = pressure
function = exact_p
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/postprocessors/conservation_PINSFV.i)
mu=1.1
rho=1
advected_interp_method='average'
velocity_interp_method='average'
[Mesh]
inactive = 'mesh internal_boundary_bot internal_boundary_top'
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '1'
dy = '1 1 1'
ix = '5'
iy = '5 5 5'
subdomain_id = '1
2
3'
[]
[internal_boundary_bot]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = 'internal_bot'
primary_block = 1
paired_block = 2
[]
[internal_boundary_top]
type = SideSetsBetweenSubdomainsGenerator
input = internal_boundary_bot
new_boundary = 'internal_top'
primary_block = 2
paired_block = 3
[]
[diverging_mesh]
type = FileMeshGenerator
file = 'expansion_quad.e'
[]
[]
[Problem]
kernel_coverage_check = false
fv_bcs_integrity_check = true
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 0
[]
[v]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[temperature]
type = INSFVEnergyVariable
[]
[]
[AuxVariables]
[advected_density]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = ${rho}
[]
[porosity]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 0.5
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
force_boundary_execution = true
porosity = porosity
mu = ${mu}
[]
[u_pressure]
type = PINSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
porosity = porosity
[]
[v_advection]
type = PINSFVMomentumAdvection
variable = v
advected_quantity = 'rhov'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[v_viscosity]
type = PINSFVMomentumDiffusion
variable = v
force_boundary_execution = true
porosity = porosity
mu = ${mu}
[]
[v_pressure]
type = PINSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
porosity = porosity
[]
[temp_advection]
type = PINSFVEnergyAdvection
vel = 'velocity'
variable = temperature
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
v = v
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[temp_source]
type = FVBodyForce
variable = temperature
function = 10
block = 1
[]
[]
[FVBCs]
inactive = 'noslip-u noslip-v'
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = u
function = 0
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'bottom'
variable = v
function = 1
[]
[noslip-u]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = u
function = 0
[]
[noslip-v]
type = INSFVNoSlipWallBC
boundary = 'right'
variable = v
function = 0
[]
[free-slip-u]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = u
[]
[free-slip-v]
type = INSFVNaturalFreeSlipBC
boundary = 'right'
variable = v
[]
[axis-u]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
porosity = porosity
[]
[axis-v]
type = PINSFVSymmetryVelocityBC
boundary = 'left'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
porosity = porosity
[]
[axis-p]
type = INSFVSymmetryPressureBC
boundary = 'left'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'top'
variable = pressure
function = 0
[]
[inlet_temp]
type = FVNeumannBC
boundary = 'bottom'
variable = temperature
value = 300
[]
[]
[Materials]
[ins_fv]
type = INSFVMaterial
u = 'u'
v = 'v'
pressure = 'pressure'
temperature = 'temperature'
rho = ${rho}
[]
[advected_material_property]
type = ADGenericConstantMaterial
prop_names = 'advected_rho cp'
prop_values ='${rho} 1'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Postprocessors]
[inlet_mass_variable]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_variable = advected_density
fv = true
advected_interp_method = ${advected_interp_method}
[]
[inlet_mass_constant]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_variable = ${rho}
fv = true
advected_interp_method = ${advected_interp_method}
[]
[inlet_mass_matprop]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_mat_prop = 'advected_rho'
fv = true
[]
[mid1_mass]
type = InternalVolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
fv = true
advected_interp_method = ${advected_interp_method}
[]
[mid2_mass]
type = InternalVolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
fv = true
advected_interp_method = ${advected_interp_method}
[]
[outlet_mass]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
fv = true
advected_interp_method = ${advected_interp_method}
[]
[inlet_momentum_x]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_variable = u
fv = true
advected_interp_method = ${advected_interp_method}
[]
[mid1_momentum_x]
type = InternalVolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_variable = u
fv = true
advected_interp_method = ${advected_interp_method}
[]
[mid2_momentum_x]
type = InternalVolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_variable = u
fv = true
advected_interp_method = ${advected_interp_method}
[]
[outlet_momentum_x]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_variable = u
fv = true
advected_interp_method = ${advected_interp_method}
[]
[inlet_momentum_y]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_variable = v
fv = true
advected_interp_method = ${advected_interp_method}
[]
[mid1_momentum_y]
type = InternalVolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_variable = v
fv = true
advected_interp_method = ${advected_interp_method}
[]
[mid2_momentum_y]
type = InternalVolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_variable = v
fv = true
advected_interp_method = ${advected_interp_method}
[]
[outlet_momentum_y]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_variable = v
fv = true
advected_interp_method = ${advected_interp_method}
[]
[inlet_advected_energy]
type = VolumetricFlowRate
boundary = bottom
vel_x = u
vel_y = v
advected_mat_prop = 'rho_cp_temp'
fv = true
[]
[mid1_advected_energy]
type = InternalVolumetricFlowRate
boundary = internal_bot
vel_x = u
vel_y = v
advected_mat_prop = 'rho_cp_temp'
fv = true
[]
[mid2_advected_energy]
type = InternalVolumetricFlowRate
boundary = internal_top
vel_x = u
vel_y = v
advected_mat_prop = 'rho_cp_temp'
fv = true
[]
[outlet_advected_energy]
type = VolumetricFlowRate
boundary = top
vel_x = u
vel_y = v
advected_mat_prop = 'rho_cp_temp'
fv = true
[]
[]
[Outputs]
exodus = false
csv = true
inactive = 'console_mass console_momentum_x console_momentum_y console_energy'
[console_mass]
type = Console
start_step = 1
show = 'inlet_mass_variable inlet_mass_constant inlet_mass_matprop mid1_mass mid2_mass outlet_mass'
[]
[console_momentum_x]
type = Console
start_step = 1
show = 'inlet_momentum_x mid1_momentum_x mid2_momentum_x outlet_momentum_x'
[]
[console_momentum_y]
type = Console
start_step = 1
show = 'inlet_momentum_y mid1_momentum_y mid2_momentum_y outlet_momentum_y'
[]
[console_energy]
type = Console
start_step = 1
show = 'inlet_advected_energy mid1_advected_energy mid2_advected_energy outlet_advected_energy'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/pins/mms/1d-rc.i)
mu=1.1
rho=1.1
advected_interp_method='average'
velocity_interp_method='rc'
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 1
dx = '1 1'
ix = '5 5'
subdomain_id = '1 2'
[]
[]
[GlobalParams]
two_term_boundary_expansion = true
[]
[Variables]
[u]
type = PINSFVSuperficialVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[porosity]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 0.8
[]
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Functions]
[exact_u]
type = ParsedFunction
value = 'cos((1/2)*x*pi)'
[]
[forcing_u]
type = ParsedFunction
value = '0.3125*pi^2*mu*cos((1/2)*x*pi) - 1.25*pi*rho*sin((1/2)*x*pi)*cos((1/2)*x*pi) + 0.8*cos(x)'
vars = 'mu rho'
vals = '${mu} ${rho}'
[]
[exact_p]
type = ParsedFunction
value = 'sin(x)'
[]
[forcing_p]
type = ParsedFunction
value = '-1/2*pi*rho*sin((1/2)*x*pi)'
vars = 'rho'
vals = '${rho}'
[]
[]
[FVKernels]
[mass]
type = PINSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
vel = 'velocity'
pressure = pressure
u = u
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[mass_forcing]
type = FVBodyForce
variable = pressure
function = forcing_p
[]
[u_advection]
type = PINSFVMomentumAdvection
variable = u
advected_quantity = 'rhou'
vel = 'velocity'
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
pressure = pressure
u = u
mu = ${mu}
rho = ${rho}
porosity = porosity
[]
[u_viscosity]
type = PINSFVMomentumDiffusion
variable = u
mu = ${mu}
porosity = porosity
[]
[u_pressure]
type = PINSFVMomentumPressureFlux
variable = u
pressure = pressure
porosity = porosity
momentum_component = 'x'
[]
[u_forcing]
type = FVBodyForce
variable = u
function = forcing_u
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = 'exact_u'
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 'exact_p'
[]
[]
[Materials]
[ins_fv]
type = INSFVMaterial
u = 'u'
pressure = 'pressure'
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
[]
[Postprocessors]
[inlet_p]
type = SideAverageValue
variable = 'pressure'
boundary = 'left'
[]
[outlet-u]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 'right'
[]
[h]
type = AverageElementSize
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2u]
type = ElementL2Error
variable = u
function = exact_u
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[L2p]
variable = pressure
function = exact_p
type = ElementL2Error
outputs = 'console csv'
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
[]