Journal Articles using BISON
Papers by the BISON Team
- P. Van Uffelen, J. Hales, W. Li, G. Rossiter, and R. Williamson.
A review of fuel performance modelling.
Journal of Nuclear Materials, 516:373 – 412, 2019.
URL: http://www.sciencedirect.com/science/article/pii/S0022311518310298, doi:https://doi.org/10.1016/j.jnucmat.2018.12.037.[BibTeX]
- T. Barani, D. Pizzocri, G. Pastore, L. Luzzi, and J.D. Hales.
Isotropic softening model for fuel cracking in BISON.
Nuclear Engineering and Design, 342:257 – 263, 2019.
URL: http://www.sciencedirect.com/science/article/pii/S0029549318310173, doi:https://doi.org/10.1016/j.nucengdes.2018.12.005.[BibTeX]
- Yifeng Che, Giovanni Pastore, Jason Hales, and Koroush Shirvan.
Modeling of Cr2O3-doped UO2 as a near-term accident tolerant fuel for LWRs using the BISON code.
Nuclear Engineering and Design, 337:271 – 278, 2018.
URL: http://www.sciencedirect.com/science/article/pii/S002954931830102X, doi:https://doi.org/10.1016/j.nucengdes.2018.07.015.[BibTeX]
- Malik Wagih, Benjamin Spencer, Jason Hales, and Koroush Shirvan.
Fuel performance of chromium-coated zirconium alloy and silicon carbide accident tolerant fuel claddings.
Annals of Nuclear Energy, 120:304 – 318, 2018.
URL: https://www.sciencedirect.com/science/article/pii/S0306454918303037, doi:https://doi.org/10.1016/j.anucene.2018.06.001.[BibTeX]
- Stephen Novascone, Pavel Medvedev, John W. Peterson, Yongfeng Zhang, and Jason Hales.
Modeling porosity migration in LWR and fast reactor MOX fuel using the finite element method.
Journal of Nuclear Materials, 508:226 – 236, 2018.
URL: http://www.sciencedirect.com/science/article/pii/S0022311518302861, doi:https://doi.org/10.1016/j.jnucmat.2018.05.041.[BibTeX]
- D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S.A. Pitts, A. Alfonsi, and J.D. Hales.
A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools.
Journal of Nuclear Materials, 2018.
URL: http://www.sciencedirect.com/science/article/pii/S0022311517315039, doi:https://doi.org/10.1016/j.jnucmat.2018.02.024.[BibTeX]
- K. A. Gamble, T. Barani, D. Pizzocri, J. D. Hales, K. A. Terrani, and G. Pastore.
An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions.
Journal of Nuclear Materials, 491:55–66, 2017.
URL: http://www.sciencedirect.com/science/article/pii/S0022311516312740, doi:https://doi.org/10.1016/j.jnucmat.2017.04.039.[BibTeX]
- B. W. Spencer, R. L. Williamson, D. S. Stafford, S. R. Novascone, J. D. Hales, and G. Pastore.
3D modeling of missing pellet surface defects in BWR fuel.
Nuclear Engineering and Design, 307:155–171, 2016.
URL: http://www.sciencedirect.com/science/article/pii/S0029549316302187, doi:http://dx.doi.org/10.1016/j.nucengdes.2016.07.008.[BibTeX]
- R. L. Williamson, K. A. Gamble, D. M. Perez, S. R. Novascone, G. Pastore, R. J. Gardner, J. D. Hales, W. Liu, and A. Mai.
Validating the BISON fuel performance code to integral LWR experiments.
Nuclear Engineering and Design, 301:232–244, 2016.
URL: http://www.sciencedirect.com/science/article/pii/S0029549316000789, doi:http://dx.doi.org/10.1016/j.nucengdes.2016.02.020.[BibTeX]
- S. R. Novascone, B. W. Spencer, J. D. Hales, and R. L. Williamson.
Evaluation of coupling approaches for thermomechanical simulations.
Nuclear Engineering and Design, 295:910–921, 2015.
URL: http://www.sciencedirect.com/science/article/pii/S0029549315002757, doi:http://dx.doi.org/10.1016/j.nucengdes.2015.07.005.[BibTeX]
- Xu Wu, Tomasz Kozlowski, and Jason D. Hales.
Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions.
Annals of Nuclear Energy, 85:763–775, November 2015.
URL: http://www.sciencedirect.com/science/article/pii/S0306454915003461, doi:http://dx.doi.org/10.1016/j.anucene.2015.06.032.[BibTeX]
- D. S. Stafford.
Multidimensional simulations of hydrides during fuel rod lifecycle.
Journal of Nuclear Materials, 466(0):362–372, 2015.
URL: http://www.sciencedirect.com/science/article/pii/S0022311515300623, doi:http://dx.doi.org/10.1016/j.jnucmat.2015.06.037.[BibTeX]
- J. D. Hales, M. R. Tonks, K. Chockalingam, D. M. Perez, S. R. Novascone, B. W. Spencer, and R. L. Williamson.
Asymptotic expansion homogenization for multiscale nuclear fuel analysis.
Computational Materials Science, 99:290–297, March 2015.
URL: http://dx.doi.org/10.1016/j.commatsci.2014.12.039, doi:10.1016/j.commatsci.2014.12.039.[BibTeX]
- J. D. Hales, M. R. Tonks, F. N. Gleicher, B. W. Spencer, S. R. Novascone, R. L. Williamson, G. Pastore, and D. M. Perez.
Advanced multiphysics coupling for LWR fuel performance analysis.
Annals of Nuclear Energy, 84:98–110, October 2014.
URL: http://dx.doi.org/10.1016/j.anucene.2014.11.003, doi:10.1016/j.anucene.2014.11.003.[BibTeX]
- Giovanni Pastore, L. P. Swiler, J. D. Hales, S. R. Novascone, D. M. Perez, B. W. Spencer, L. Luzzi, P. Van Uffelen, and R. L. Williamson.
Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling.
Journal of Nuclear Materials, 456:398–408, 2015.
URL: http://www.sciencedirect.com/science/article/pii/S0022311514006771, doi:http://dx.doi.org/10.1016/j.jnucmat.2014.09.077.[BibTeX]
- Hai Huang, Benjamin Spencer, and Jason Hales.
Discrete element method for simulation of early-life thermal fracturing behavior in ceramic nuclear fuel pellets.
Nuclear Engineering and Design, 278:515 – 528, 2014.
URL: http://www.sciencedirect.com/science/article/pii/S0029549314004440, doi:http://dx.doi.org/10.1016/j.nucengdes.2014.05.049.[BibTeX]
- Olivier Courty, Arthur T. Motta, and Jason D. Hales.
Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding.
Journal of Nuclear Materials, 452:311–320, 2014.
URL: http://dx.doi.org/10.1016/j.jnucmat.2014.05.013, doi:10.1016/j.jnucmat.2014.05.013.[BibTeX]
- J. D. Hales, S. R. Novascone, B. W. Spencer, R. L. Williamson, G. Pastore, and D. M. Perez.
Verification of the BISON fuel performance code.
Annals of Nuclear Energy, 71:81–90, September 2014.
URL: http://dx.doi.org/10.1016/j.anucene.2014.03.027, doi:10.1016/j.anucene.2014.03.027.[BibTeX]
- M. C. Teague, M. R. Tonks, S. R. Novascone, and S. R. Hayes.
Microstructural modeling of thermal conductivity of high burnup mixed oxide fuel.
Journal of Nuclear Materials, 444:161–169, 2014.
URL: http://dx.doi.org/10.1016/j.jnucmat.2013.09.035, doi:10.1016/j.jnucmat.2013.09.035.[BibTeX]
- J. D. Hales, R. L. Williamson, S. R. Novascone, D. M. Perez, B. W. Spencer, and G. Pastore.
Multidimensional multiphysics simulation of TRISO particle fuel.
Journal of Nuclear Materials, 443:531–543, November 2013.
URL: http://dx.doi.org/10.1016/j.jnucmat.2013.07.070, doi:10.1016/j.jnucmat.2013.07.070.[BibTeX]
- M. R. Tonks, P. C. Millett, P. Nerikar, S. Du, D. Andersson, C. R. Stanek, D. Gaston, D. Andrs, and R. Williamson.
Multiscale development of a fission gas thermal conductivity model: coupling atomic, meso and continuum level simulations.
Journal of Nuclear Materials, 440:193–200, 2013.
URL: http://dx.doi.org/10.1016/j.jnucmat.2013.05.008, doi:10.1016/j.jnucmat.2013.05.008.[BibTeX]
- R. L. Williamson, J. D. Hales, S. R. Novascone, M. R. Tonks, D. R. Gaston, C. J. Permann, D. Andrs, and R. C. Martineau.
Multidimensional multiphysics simulation of nuclear fuel behavior.
Journal of Nuclear Materials, 423:149–163, 2012.
URL: http://dx.doi.org/10.1016/j.jnucmat.2012.01.012, doi:10.1016/j.jnucmat.2012.01.012.[BibTeX]
- J. D. Hales, S. R. Novascone, R. L. Williamson, D. R. Gaston, and M. R. Tonks.
Solving nonlinear solid mechanics problems with the Jacobian-free Newton Krylov method.
Computer Modeling in Engineering and Sciences, 84(2):123–154, 2012.
URL: http://dx.doi.org/10.3970/cmes.2012.084.123, doi:10.3970/cmes.2012.084.123.[BibTeX]
- K. Chockalingam, M. R. Tonks, J. D. Hales, D. R. Gaston, P. C. Millett, and L. Zhang.
Crystal plasticity with Jacobian-free Newton–Krylov.
Computational Mechanics, 51:1–11, 2013.
URL: http://dx.doi.org/10.1007/s00466-012-0741-7, doi:10.1007/s00466-012-0741-7.[BibTeX]
- D. Gaston, L. Guo, G. Hansen, H. Huang, R. Johnson, H.K. Park, R. Podgorney, M. Tonks, and R. Williamson.
Parallel algorithms and software for nuclear, energy, and environmental applications part i: multiphysics algorithms.
Communications in Computational Physics, 12(INL/JOU-10-20006):807–833, 2012.[BibTeX]
- D. Gaston, L. Guo, G. Hansen, H. Huang, R. Johnson, D. Knoll, C. Newman, H.K. Park, R. Podgorney, M. Tonks, and R. Williamson.
Parallel algorithms and software for nuclear, energy, and environmental applications. part ii: multiphysics software.
Communications in Computational Physics, 12(INL/JOU-10-25162):834–865, 2012.[BibTeX]
- R. L. Williamson.
Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior.
Journal of Nuclear Materials, 415:74, 2011.
doi:10.1016/j.jnucmat.2011.05.044.[BibTeX]
- C. Newman, G. Hansen, and D. Gaston.
Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in $\mathrm UO_2$ nuclear fuel rods.
Journal of Nuclear Materials, 392:6–15, 2009.[BibTeX]
- Michael Tonks, Derek Gaston, Cody Permann, Paul Millett, Glen Hansen, and Dieter Wolf.
A coupling methodology for mesoscale-informed nuclear fuel performance codes.
Nuclear Engineering and Design, 240(10):2877–2883, 2010.[BibTeX]