https://mooseframework.inl.gov
IndependentGaussianMH.h
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://mooseframework.inl.gov
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 #pragma once
11 
12 #include "PMCMCBase.h"
13 
18 {
19 public:
21 
23 
24  virtual int decisionStep() const override { return 2; }
25 
26 protected:
27  virtual void proposeSamples(const unsigned int seed_value) override;
28 
29 private:
31  const std::vector<Real> & _seed_inputs;
32 
34  const std::vector<Real> & _std_prop;
35 };
IndependentGaussianMH(const InputParameters &parameters)
static InputParameters validParams()
virtual int decisionStep() const override
Return the step after which decision making can begin.
virtual void proposeSamples(const unsigned int seed_value) override
Fill in the _new_samples vector of vectors (happens within sampleSetUp)
const std::vector< Real > & _seed_inputs
Reporter value the seed input values for proposing the next set of samples.
const std::vector< Real > & _std_prop
Standard deviations for making the next proposal.
const InputParameters & parameters() const
A class for performing M-H MCMC sampling with independent Gaussian propoposals.
A base class used to perform Parallel Markov Chain Monte Carlo (MCMC) sampling.
Definition: PMCMCBase.h:19