19 "Calculate a small strain elastic stress that is equivalent to the hyperelastic St. " 20 "Venant-Kirchhoff model if integrated using the Truesdell rate.");
22 params.
addParam<MaterialPropertyName>(
23 "elasticity_tensor",
"elasticity_tensor",
"The name of the elasticity tensor.");
32 getParam<MaterialPropertyName>(_base_name +
"elasticity_tensor"))),
33 _def_grad(getMaterialProperty<
RankTwoTensor>(_base_name +
"deformation_gradient"))
40 usingTensorIndices(i,
j,
k, l);
56 const Real J =
F.det();
RankFourTensorTempl< T > singleProductJ(const RankTwoTensorTempl< T > &) const
FEProblemBase & _fe_problem
RankFourTensorTempl< T > singleProductL(const RankTwoTensorTempl< T > &) const
const MaterialProperty< RankTwoTensor > & _inv_def_grad
Inverse deformation gradient.
static InputParameters validParams()
const MaterialProperty< RankTwoTensor > & _strain_increment
Provided for material models that use the strain increment.
ComputeHypoelasticStVenantKirchhoffStress(const InputParameters ¶meters)
const bool _large_kinematics
If true use large deformations.
static const std::string F
registerMooseObject("SolidMechanicsApp", ComputeHypoelasticStVenantKirchhoffStress)
static InputParameters validParams()
const MaterialProperty< RankTwoTensor > & _vorticity_increment
Provided for material models that use the vorticity increment.
Provide the Cauchy stress via an objective integration of a small stress.
virtual void computeQpSmallStress()
Implement the elastic small stress update.
const MaterialProperty< RankFourTensor > & _elasticity_tensor
The elasticity tensor.
const MaterialProperty< RankTwoTensor > & _small_stress_old
We need the old value to get the increment.
const MaterialProperty< RankTwoTensor > & _inv_df
Inverse incremental deformation gradient.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
MaterialProperty< RankFourTensor > & _small_jacobian
The updated small algorithmic tangent.
MaterialProperty< RankTwoTensor > & _small_stress
The updated small stress.
static const std::complex< double > j(0, 1)
Complex number "j" (also known as "i")
RankFourTensorTempl< T > singleProductK(const RankTwoTensorTempl< T > &) const
const bool & currentlyComputingJacobian() const
RankFourTensorTempl< T > transposeKl() const
static const std::string k
static const std::string C
const MaterialProperty< RankTwoTensor > & _def_grad
The deformation gradient.