14 #include <Eigen/Dense> 40 virtual void reTrain(
const std::vector<std::vector<Real>> & inputs,
41 const std::vector<Real> & outputs)
const final;
StochasticTools::GaussianProcess & gp()
RealEigenMatrix & _training_params
Paramaters (x) used for training, along with statistics.
virtual void reTrain(const std::vector< std::vector< Real >> &inputs, const std::vector< Real > &outputs) const final
virtual void initialize() final
ActiveLearningGaussianProcess(const InputParameters ¶meters)
Eigen::Matrix< Real, Eigen::Dynamic, Eigen::Dynamic > RealEigenMatrix
bool _standardize_data
Switch for training data(y) standardization.
const StochasticTools::GaussianProcess & getGP() const
virtual void execute() final
const std::string _model_meta_data_name
Name for the meta data associated with training.
Interface for objects that need to use samplers.
const InputParameters & parameters() const
StochasticTools::GaussianProcess & _gp
The GP handler.
const StochasticTools::GaussianProcess::GPOptimizerOptions _optimization_opts
Struct holding parameters necessary for parameter tuning.
This is the base trainer class whose main functionality is the API for declaring model data...
static InputParameters validParams()
bool _standardize_params
Switch for training param (x) standardization.