https://mooseframework.inl.gov
ActiveLearningGaussianProcess.h
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://mooseframework.inl.gov
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 #pragma once
11 
13 #include "Standardizer.h"
14 #include <Eigen/Dense>
15 
16 #include "StochasticToolsApp.h"
18 
20 #include "SurrogateTrainer.h"
21 #include "MooseRandom.h"
22 
23 #include "Distribution.h"
24 
25 #include "CovarianceFunctionBase.h"
26 #include "CovarianceInterface.h"
27 
28 #include "GaussianProcess.h"
29 
31  public CovarianceInterface,
33 {
34 public:
37 
38  virtual void initialize() final {}
39  virtual void execute() final {}
40  virtual void reTrain(const std::vector<std::vector<Real>> & inputs,
41  const std::vector<Real> & outputs) const final;
42 
44  const StochasticTools::GaussianProcess & getGP() const { return _gp; }
45 
46 private:
48  const std::string _model_meta_data_name;
49 
52 
55 
58 
61 
64 };
StochasticTools::GaussianProcess & gp()
RealEigenMatrix & _training_params
Paramaters (x) used for training, along with statistics.
virtual void reTrain(const std::vector< std::vector< Real >> &inputs, const std::vector< Real > &outputs) const final
Structure containing the optimization options for hyperparameter-tuning.
ActiveLearningGaussianProcess(const InputParameters &parameters)
Eigen::Matrix< Real, Eigen::Dynamic, Eigen::Dynamic > RealEigenMatrix
bool _standardize_data
Switch for training data(y) standardization.
const StochasticTools::GaussianProcess & getGP() const
const std::string _model_meta_data_name
Name for the meta data associated with training.
Interface for objects that need to use samplers.
const InputParameters & parameters() const
StochasticTools::GaussianProcess & _gp
The GP handler.
const StochasticTools::GaussianProcess::GPOptimizerOptions _optimization_opts
Struct holding parameters necessary for parameter tuning.
This is the base trainer class whose main functionality is the API for declaring model data...
Utility class dedicated to hold structures and functions commont to Gaussian Processes.
bool _standardize_params
Switch for training param (x) standardization.