libMesh
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Types | Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Types | Private Attributes | List of all members
libMesh::EigenTimeSolver Class Reference

The name of this class is confusing...it's meant to refer to the base class (TimeSolver) while still telling one that it's for solving (generalized) EigenValue problems that arise from finite element discretizations. More...

#include <eigen_time_solver.h>

Inheritance diagram for libMesh::EigenTimeSolver:
[legend]

Public Types

typedef DifferentiableSystem sys_type
 The type of system. More...
 
typedef TimeSolver Parent
 The parent class. More...
 

Public Member Functions

 EigenTimeSolver (sys_type &s)
 Constructor. More...
 
virtual ~EigenTimeSolver ()
 Destructor. More...
 
virtual void init () override
 The initialization function. More...
 
virtual void reinit () override
 The reinitialization function. More...
 
virtual void solve () override
 Implements the assembly of both matrices A and B, and calls the EigenSolver to compute the eigenvalues. More...
 
virtual void advance_timestep () override
 It doesn't make sense to advance the timestep, so we shouldn't call this. More...
 
Real error_order () const
 error convergence order against deltat is not applicable to an eigenvalue problem. More...
 
virtual bool element_residual (bool get_jacobian, DiffContext &) override
 Forms either the spatial (Jacobian) or mass matrix part of the operator, depending on which is requested. More...
 
virtual bool side_residual (bool get_jacobian, DiffContext &) override
 Forms the jacobian of the boundary terms. More...
 
virtual bool nonlocal_residual (bool get_jacobian, DiffContext &) override
 Forms the jacobian of the nonlocal terms. More...
 
virtual Real du (const SystemNorm &) const override
 
virtual bool is_steady () const override
 This is effectively a steady-state solver. More...
 
virtual void init_adjoints ()
 Initialize any adjoint related data structures, based on the number of qois. More...
 
virtual void init_data ()
 The data initialization function. More...
 
virtual std::pair< unsigned int, Realadjoint_solve (const QoISet &qoi_indices)
 This method solves for the adjoint solution at the next adjoint timestep (or a steady state adjoint solve) More...
 
virtual void adjoint_advance_timestep ()
 This method advances the adjoint solution to the previous timestep, after an adjoint_solve() has been performed. More...
 
virtual void retrieve_timestep ()
 This method retrieves all the stored solutions at the current system.time. More...
 
virtual void integrate_qoi_timestep ()
 A method to integrate the system::QoI functionals. More...
 
virtual void integrate_adjoint_sensitivity (const QoISet &qois, const ParameterVector &parameter_vector, SensitivityData &sensitivities)
 A method to integrate the adjoint sensitivity w.r.t a given parameter vector. More...
 
virtual void integrate_adjoint_refinement_error_estimate (AdjointRefinementEstimator &adjoint_refinement_error_estimator, ErrorVector &QoI_elementwise_error)
 A method to compute the adjoint refinement error estimate at the current timestep. More...
 
virtual void before_timestep ()
 This method is for subclasses or users to override to do arbitrary processing between timesteps. More...
 
const sys_typesystem () const
 
sys_typesystem ()
 
virtual std::unique_ptr< DiffSolver > & diff_solver ()
 An implicit linear or nonlinear solver to use at each timestep. More...
 
virtual std::unique_ptr< LinearSolver< Number > > & linear_solver ()
 An implicit linear solver to use for adjoint and sensitivity problems. More...
 
void set_solution_history (const SolutionHistory &_solution_history)
 A setter function users will employ if they need to do something other than save no solution history. More...
 
SolutionHistoryget_solution_history ()
 A getter function that returns a reference to the solution history object owned by TimeSolver. More...
 
bool is_adjoint () const
 Accessor for querying whether we need to do a primal or adjoint solve. More...
 
void set_is_adjoint (bool _is_adjoint_value)
 Accessor for setting whether we need to do a primal or adjoint solve. More...
 
virtual Real last_completed_timestep_size ()
 Returns system.deltat if fixed timestep solver is used, the complete timestep size (sum of all substeps) if the adaptive time solver is used. More...
 

Static Public Member Functions

static std::string get_info ()
 Gets a string containing the reference information. More...
 
static void print_info (std::ostream &out_stream=libMesh::out)
 Prints the reference information, by default to libMesh::out. More...
 
static unsigned int n_objects ()
 Prints the number of outstanding (created, but not yet destroyed) objects. More...
 
static void enable_print_counter_info ()
 Methods to enable/disable the reference counter output from print_info() More...
 
static void disable_print_counter_info ()
 

Public Attributes

std::unique_ptr< EigenSolver< Number > > eigen_solver
 The EigenSolver object. More...
 
double tol
 The linear solver tolerance to be used when solving the eigenvalue problem. More...
 
unsigned int maxits
 The maximum number of iterations allowed to solve the problem. More...
 
unsigned int n_eigenpairs_to_compute
 The number of eigenvectors/values to be computed. More...
 
unsigned int n_basis_vectors_to_use
 The number of basis vectors to use in the computation. More...
 
unsigned int n_converged_eigenpairs
 After a solve, holds the number of eigenpairs successfully converged. More...
 
unsigned int n_iterations_reqd
 After a solve, holds the number of iterations required to converge the requested number of eigenpairs. More...
 
bool quiet
 Print extra debugging information if quiet == false. More...
 
unsigned int reduce_deltat_on_diffsolver_failure
 This value (which defaults to zero) is the number of times the TimeSolver is allowed to halve deltat and let the DiffSolver repeat the latest failed solve with a reduced timestep. More...
 

Protected Types

typedef bool(DifferentiablePhysics::* ResFuncType) (bool, DiffContext &)
 Definitions of argument types for use in refactoring subclasses. More...
 
typedef void(DiffContext::* ReinitFuncType) (Real)
 
typedef std::map< std::string, std::pair< unsigned int, unsigned int > > Counts
 Data structure to log the information. More...
 

Protected Member Functions

void increment_constructor_count (const std::string &name) noexcept
 Increments the construction counter. More...
 
void increment_destructor_count (const std::string &name) noexcept
 Increments the destruction counter. More...
 

Protected Attributes

std::unique_ptr< DiffSolver_diff_solver
 An implicit linear or nonlinear solver to use at each timestep. More...
 
std::unique_ptr< LinearSolver< Number > > _linear_solver
 An implicit linear solver to use for adjoint problems. More...
 
sys_type_system
 A reference to the system we are solving. More...
 
std::unique_ptr< SolutionHistorysolution_history
 A std::unique_ptr to a SolutionHistory object. More...
 
Real last_deltat
 The deltat for the last completed timestep before the current one. More...
 

Static Protected Attributes

static Counts _counts
 Actually holds the data. More...
 
static Threads::atomic< unsigned int_n_objects
 The number of objects. More...
 
static Threads::spin_mutex _mutex
 Mutual exclusion object to enable thread-safe reference counting. More...
 
static bool _enable_print_counter = true
 Flag to control whether reference count information is printed when print_info is called. More...
 

Private Types

enum  NowAssembling { Matrix_A, Matrix_B, Invalid_Matrix }
 

Private Attributes

NowAssembling now_assembling
 Flag which controls the internals of element_residual() and side_residual(). More...
 

Detailed Description

The name of this class is confusing...it's meant to refer to the base class (TimeSolver) while still telling one that it's for solving (generalized) EigenValue problems that arise from finite element discretizations.

For a time-dependent problem du/dt=F(u), with a steady solution 0=F(u_0), we look at the time evolution of a small perturbation, p=u-u_0, for which the (linearized) governing equation is

dp/dt = F'(u_0)p

where F'(u_0) is the Jacobian. The generalized eigenvalue problem arises by considering perturbations of the general form p = exp(lambda*t)x, which leads to

Ax = lambda*Bx

where A is the (discretized by FEM) Jacobian matrix and B is the (discretized by FEM) mass matrix.

The EigenSystem class (by Steffen Petersen) is related but does not fall under the FEMSystem paradigm invented by Roy Stogner. The EigenSolver class (also by Steffen) is meant to provide a generic "linear solver" interface for EigenValue software. The only current concrete implementation is a SLEPc-based eigensolver class, which we make use of here as well.

Author
John W. Peterson
Date
2007

Definition at line 66 of file eigen_time_solver.h.

Member Typedef Documentation

◆ Counts

typedef std::map<std::string, std::pair<unsigned int, unsigned int> > libMesh::ReferenceCounter::Counts
protectedinherited

Data structure to log the information.

The log is identified by the class name.

Definition at line 119 of file reference_counter.h.

◆ Parent

The parent class.

Definition at line 77 of file eigen_time_solver.h.

◆ ReinitFuncType

typedef void(DiffContext::* libMesh::TimeSolver::ReinitFuncType) (Real)
protectedinherited

Definition at line 327 of file time_solver.h.

◆ ResFuncType

typedef bool(DifferentiablePhysics::* libMesh::TimeSolver::ResFuncType) (bool, DiffContext &)
protectedinherited

Definitions of argument types for use in refactoring subclasses.

Definition at line 325 of file time_solver.h.

◆ sys_type

The type of system.

Definition at line 72 of file eigen_time_solver.h.

Member Enumeration Documentation

◆ NowAssembling

Enumerator
Matrix_A 

The matrix associated with the spatial part of the operator.

Matrix_B 

The matrix associated with the time derivative (mass matrix).

Invalid_Matrix 

The enum is in an invalid state.

Definition at line 198 of file eigen_time_solver.h.

198  {
202  Matrix_A,
203 
207  Matrix_B,
208 
213  };
The enum is in an invalid state.
The matrix associated with the spatial part of the operator.
The matrix associated with the time derivative (mass matrix).

Constructor & Destructor Documentation

◆ EigenTimeSolver()

libMesh::EigenTimeSolver::EigenTimeSolver ( sys_type s)
explicit

Constructor.

Requires a reference to the system to be solved.

Definition at line 33 of file eigen_time_solver.C.

References eigen_solver, libMesh::GHEP, and libMesh::LARGEST_MAGNITUDE.

34  : Parent(s),
36  tol(pow(TOLERANCE, 5./3.)),
37  maxits(1000),
42 {
43  libmesh_experimental();
44  eigen_solver->set_eigenproblem_type(GHEP);//or GNHEP
45  eigen_solver->set_position_of_spectrum(LARGEST_MAGNITUDE);
46 }
static constexpr Real TOLERANCE
T pow(const T &x)
Definition: utility.h:328
TimeSolver Parent
The parent class.
unsigned int maxits
The maximum number of iterations allowed to solve the problem.
unsigned int n_iterations_reqd
After a solve, holds the number of iterations required to converge the requested number of eigenpairs...
static std::unique_ptr< EigenSolver< T > > build(const Parallel::Communicator &comm_in, const SolverPackage solver_package=SLEPC_SOLVERS)
Builds an EigenSolver using the linear solver package specified by solver_package.
Definition: eigen_solver.C:58
double tol
The linear solver tolerance to be used when solving the eigenvalue problem.
unsigned int n_basis_vectors_to_use
The number of basis vectors to use in the computation.
unsigned int n_converged_eigenpairs
After a solve, holds the number of eigenpairs successfully converged.
unsigned int n_eigenpairs_to_compute
The number of eigenvectors/values to be computed.
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver object.

◆ ~EigenTimeSolver()

libMesh::EigenTimeSolver::~EigenTimeSolver ( )
virtualdefault

Destructor.

Member Function Documentation

◆ adjoint_advance_timestep()

void libMesh::TimeSolver::adjoint_advance_timestep ( )
virtualinherited

This method advances the adjoint solution to the previous timestep, after an adjoint_solve() has been performed.

This will be done before every UnsteadySolver::adjoint_solve().

Reimplemented in libMesh::UnsteadySolver, libMesh::AdaptiveTimeSolver, and libMesh::NewmarkSolver.

Definition at line 165 of file time_solver.C.

166 {
167 }

◆ adjoint_solve()

std::pair< unsigned int, Real > libMesh::TimeSolver::adjoint_solve ( const QoISet qoi_indices)
virtualinherited

This method solves for the adjoint solution at the next adjoint timestep (or a steady state adjoint solve)

Reimplemented in libMesh::UnsteadySolver, libMesh::AdaptiveTimeSolver, and libMesh::TwostepTimeSolver.

Definition at line 133 of file time_solver.C.

References libMesh::TimeSolver::_system, libMesh::TimeSolver::diff_solver(), libMesh::libmesh_assert(), and libMesh::TimeSolver::system().

134 {
135  libmesh_assert(this->diff_solver().get());
136  libmesh_assert_equal_to (&(this->diff_solver()->system()), &(this->system()));
137 
138  return this->_system.ImplicitSystem::adjoint_solve(qoi_indices);
139 }
virtual std::unique_ptr< DiffSolver > & diff_solver()
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:220
const sys_type & system() const
Definition: time_solver.h:210
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
libmesh_assert(ctx)

◆ advance_timestep()

virtual void libMesh::EigenTimeSolver::advance_timestep ( )
inlineoverridevirtual

It doesn't make sense to advance the timestep, so we shouldn't call this.

Reimplemented from libMesh::TimeSolver.

Definition at line 112 of file eigen_time_solver.h.

112 {}

◆ before_timestep()

virtual void libMesh::TimeSolver::before_timestep ( )
inlinevirtualinherited

This method is for subclasses or users to override to do arbitrary processing between timesteps.

Definition at line 205 of file time_solver.h.

205 {}

◆ diff_solver()

virtual std::unique_ptr<DiffSolver>& libMesh::TimeSolver::diff_solver ( )
inlinevirtualinherited

An implicit linear or nonlinear solver to use at each timestep.

Reimplemented in libMesh::AdaptiveTimeSolver.

Definition at line 220 of file time_solver.h.

References libMesh::TimeSolver::_diff_solver.

Referenced by libMesh::TimeSolver::adjoint_solve(), adjust_linear_solvers(), libMesh::TimeSolver::init(), libMesh::TimeSolver::init_data(), libMesh::TimeSolver::reinit(), and libMesh::TimeSolver::solve().

220 { return _diff_solver; }
std::unique_ptr< DiffSolver > _diff_solver
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:302

◆ disable_print_counter_info()

void libMesh::ReferenceCounter::disable_print_counter_info ( )
staticinherited

Definition at line 100 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

101 {
102  _enable_print_counter = false;
103  return;
104 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ du()

virtual Real libMesh::EigenTimeSolver::du ( const SystemNorm ) const
inlineoverridevirtual
Returns
0, but derived classes should override this function to compute the size of the difference between successive solution iterates ||u^{n+1} - u^{n}|| in some norm.

Implements libMesh::TimeSolver.

Definition at line 144 of file eigen_time_solver.h.

144 { return 0.; }

◆ element_residual()

bool libMesh::EigenTimeSolver::element_residual ( bool  get_jacobian,
DiffContext context 
)
overridevirtual

Forms either the spatial (Jacobian) or mass matrix part of the operator, depending on which is requested.

Implements libMesh::TimeSolver.

Definition at line 123 of file eigen_time_solver.C.

References libMesh::TimeSolver::_system, libMesh::DiffContext::elem_solution_derivative, libMesh::DiffContext::elem_solution_rate_derivative, libMesh::DifferentiablePhysics::element_constraint(), libMesh::DifferentiablePhysics::element_time_derivative(), libMesh::DiffContext::get_elem_jacobian(), libMesh::DifferentiableSystem::get_physics(), libMesh::libmesh_assert(), libMesh::DifferentiablePhysics::mass_residual(), Matrix_A, Matrix_B, and now_assembling.

125 {
126  // The EigenTimeSolver always computes jacobians!
127  libmesh_assert (request_jacobian);
128 
129  context.elem_solution_rate_derivative = 1;
130  context.elem_solution_derivative = 1;
131 
132  // Assemble the operator for the spatial part.
133  if (now_assembling == Matrix_A)
134  {
135  bool jacobian_computed =
136  _system.get_physics()->element_time_derivative(request_jacobian, context);
137 
138  // The user shouldn't compute a jacobian unless requested
139  libmesh_assert(request_jacobian || !jacobian_computed);
140 
141  bool jacobian_computed2 =
142  _system.get_physics()->element_constraint(jacobian_computed, context);
143 
144  // The user shouldn't compute a jacobian unless requested
145  libmesh_assert (jacobian_computed || !jacobian_computed2);
146 
147  return jacobian_computed && jacobian_computed2;
148 
149  }
150 
151  // Assemble the mass matrix operator
152  else if (now_assembling == Matrix_B)
153  {
154  bool mass_jacobian_computed =
155  _system.get_physics()->mass_residual(request_jacobian, context);
156 
157  // Scale Jacobian by -1 to get positive matrix from new negative
158  // mass_residual convention
159  context.get_elem_jacobian() *= -1.0;
160 
161  return mass_jacobian_computed;
162  }
163 
164  else
165  libmesh_error_msg("Unrecognized value now_assembling = " << now_assembling);
166 }
virtual bool element_time_derivative(bool request_jacobian, DiffContext &)
Adds the time derivative contribution on elem to elem_residual.
Definition: diff_physics.h:125
virtual bool mass_residual(bool request_jacobian, DiffContext &)
Subtracts a mass vector contribution on elem from elem_residual.
Definition: diff_physics.h:302
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
libmesh_assert(ctx)
const DifferentiablePhysics * get_physics() const
Definition: diff_system.h:181
NowAssembling now_assembling
Flag which controls the internals of element_residual() and side_residual().
virtual bool element_constraint(bool request_jacobian, DiffContext &)
Adds the constraint contribution on elem to elem_residual.
Definition: diff_physics.h:144
The matrix associated with the spatial part of the operator.
The matrix associated with the time derivative (mass matrix).

◆ enable_print_counter_info()

void libMesh::ReferenceCounter::enable_print_counter_info ( )
staticinherited

Methods to enable/disable the reference counter output from print_info()

Definition at line 94 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

95 {
96  _enable_print_counter = true;
97  return;
98 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ error_order()

Real libMesh::EigenTimeSolver::error_order ( ) const
inline

error convergence order against deltat is not applicable to an eigenvalue problem.

Definition at line 118 of file eigen_time_solver.h.

118 { return 0.; }

◆ get_info()

std::string libMesh::ReferenceCounter::get_info ( )
staticinherited

Gets a string containing the reference information.

Definition at line 47 of file reference_counter.C.

References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().

Referenced by libMesh::ReferenceCounter::print_info().

48 {
49 #if defined(LIBMESH_ENABLE_REFERENCE_COUNTING) && defined(DEBUG)
50 
51  std::ostringstream oss;
52 
53  oss << '\n'
54  << " ---------------------------------------------------------------------------- \n"
55  << "| Reference count information |\n"
56  << " ---------------------------------------------------------------------------- \n";
57 
58  for (const auto & [name, cd] : _counts)
59  oss << "| " << name << " reference count information:\n"
60  << "| Creations: " << cd.first << '\n'
61  << "| Destructions: " << cd.second << '\n';
62 
63  oss << " ---------------------------------------------------------------------------- \n";
64 
65  return oss.str();
66 
67 #else
68 
69  return "";
70 
71 #endif
72 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
static Counts _counts
Actually holds the data.

◆ get_solution_history()

SolutionHistory & libMesh::TimeSolver::get_solution_history ( )
inherited

A getter function that returns a reference to the solution history object owned by TimeSolver.

Definition at line 124 of file time_solver.C.

References libMesh::TimeSolver::solution_history.

Referenced by libMesh::AdaptiveTimeSolver::init().

125 {
126  return *solution_history;
127 }
std::unique_ptr< SolutionHistory > solution_history
A std::unique_ptr to a SolutionHistory object.
Definition: time_solver.h:319

◆ increment_constructor_count()

void libMesh::ReferenceCounter::increment_constructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the construction counter.

Should be called in the constructor of any derived class that will be reference counted.

Definition at line 183 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().

184 {
185  libmesh_try
186  {
187  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
188  std::pair<unsigned int, unsigned int> & p = _counts[name];
189  p.first++;
190  }
191  libmesh_catch (...)
192  {
193  auto stream = libMesh::err.get();
194  stream->exceptions(stream->goodbit); // stream must not throw
195  libMesh::err << "Encountered unrecoverable error while calling "
196  << "ReferenceCounter::increment_constructor_count() "
197  << "for a(n) " << name << " object." << std::endl;
198  std::terminate();
199  }
200 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ increment_destructor_count()

void libMesh::ReferenceCounter::increment_destructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the destruction counter.

Should be called in the destructor of any derived class that will be reference counted.

Definition at line 207 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().

208 {
209  libmesh_try
210  {
211  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
212  std::pair<unsigned int, unsigned int> & p = _counts[name];
213  p.second++;
214  }
215  libmesh_catch (...)
216  {
217  auto stream = libMesh::err.get();
218  stream->exceptions(stream->goodbit); // stream must not throw
219  libMesh::err << "Encountered unrecoverable error while calling "
220  << "ReferenceCounter::increment_destructor_count() "
221  << "for a(n) " << name << " object." << std::endl;
222  std::terminate();
223  }
224 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ init()

void libMesh::EigenTimeSolver::init ( )
overridevirtual

The initialization function.

This method is used to initialize internal data structures before a simulation begins.

Reimplemented from libMesh::TimeSolver.

Definition at line 55 of file eigen_time_solver.C.

References libMesh::TimeSolver::_system, libMesh::System::add_matrix(), and libMesh::System::have_matrix().

56 {
57  // Add matrix "B" to _system if not already there.
58  // The user may have already added a matrix "B" before
59  // calling the System initialization. This would be
60  // necessary if e.g. the System originally started life
61  // with a different type of TimeSolver and only later
62  // had its TimeSolver changed to an EigenTimeSolver.
63  if (!_system.have_matrix("B"))
64  _system.add_matrix("B");
65 }
bool have_matrix(std::string_view mat_name) const
Definition: system.h:1891
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
SparseMatrix< Number > & add_matrix(std::string_view mat_name, ParallelType type=PARALLEL, MatrixBuildType mat_build_type=MatrixBuildType::AUTOMATIC)
Adds the additional matrix mat_name to this system.
Definition: system.C:1010

◆ init_adjoints()

void libMesh::TimeSolver::init_adjoints ( )
virtualinherited

Initialize any adjoint related data structures, based on the number of qois.

Reimplemented in libMesh::UnsteadySolver.

Definition at line 83 of file time_solver.C.

References libMesh::TimeSolver::_system, libMesh::System::add_vector(), libMesh::GHOSTED, libMesh::make_range(), and libMesh::System::n_qois().

Referenced by libMesh::UnsteadySolver::init_adjoints().

84 {
85  libmesh_assert_msg(_system.n_qois() != 0, "System qois have to be initialized before initializing adjoints.");
86 
87  // Add adjoint vectors
88  for(auto i : make_range(_system.n_qois()))
89  {
90  std::string adjoint_solution_name = "adjoint_solution";
91  adjoint_solution_name+= std::to_string(i);
92  _system.add_vector(adjoint_solution_name, false, GHOSTED);
93  }
94 
95 }
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2621
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:768
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:140

◆ init_data()

void libMesh::TimeSolver::init_data ( )
virtualinherited

The data initialization function.

This method is used to initialize internal data structures after the underlying System has been initialized

Reimplemented in libMesh::UnsteadySolver, and libMesh::SecondOrderUnsteadySolver.

Definition at line 97 of file time_solver.C.

References libMesh::TimeSolver::_system, libMesh::TimeSolver::diff_solver(), libMesh::TimeSolver::linear_solver(), libMesh::System::name(), and libMesh::on_command_line().

Referenced by libMesh::UnsteadySolver::init_data().

98 {
99  this->diff_solver()->init();
100 
101  if (libMesh::on_command_line("--solver-system-names"))
102  this->linear_solver()->init((_system.name()+"_").c_str());
103  else
104  this->linear_solver()->init();
105 
106  this->linear_solver()->init_names(_system);
107 }
virtual std::unique_ptr< DiffSolver > & diff_solver()
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:220
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
virtual std::unique_ptr< LinearSolver< Number > > & linear_solver()
An implicit linear solver to use for adjoint and sensitivity problems.
Definition: time_solver.h:225
bool on_command_line(std::string arg)
Definition: libmesh.C:987
const std::string & name() const
Definition: system.h:2342

◆ integrate_adjoint_refinement_error_estimate()

void libMesh::TimeSolver::integrate_adjoint_refinement_error_estimate ( AdjointRefinementEstimator adjoint_refinement_error_estimator,
ErrorVector QoI_elementwise_error 
)
virtualinherited

A method to compute the adjoint refinement error estimate at the current timestep.

int_{tstep_start}^{tstep_end} R(u^h,z) dt The user provides an initialized ARefEE object. Fills in an ErrorVector that contains the weighted sum of errors from all the QoIs and can be used to guide AMR. CURRENTLY ONLY SUPPORTED for Backward Euler.

Reimplemented in libMesh::UnsteadySolver, libMesh::SteadySolver, libMesh::EulerSolver, libMesh::FirstOrderUnsteadySolver, libMesh::TwostepTimeSolver, libMesh::AdaptiveTimeSolver, and libMesh::Euler2Solver.

Definition at line 153 of file time_solver.C.

155 {
156  libmesh_not_implemented();
157 }

◆ integrate_adjoint_sensitivity()

void libMesh::TimeSolver::integrate_adjoint_sensitivity ( const QoISet qois,
const ParameterVector parameter_vector,
SensitivityData sensitivities 
)
virtualinherited

A method to integrate the adjoint sensitivity w.r.t a given parameter vector.

int_{tstep_start}^{tstep_end} dQ/dp dt = int_{tstep_start}^{tstep_end} ( / p) - ( R (u,z) / p ) dt

Reimplemented in libMesh::UnsteadySolver, libMesh::SteadySolver, libMesh::AdaptiveTimeSolver, and libMesh::TwostepTimeSolver.

Definition at line 146 of file time_solver.C.

147 {
148  libmesh_not_implemented();
149 }

◆ integrate_qoi_timestep()

void libMesh::TimeSolver::integrate_qoi_timestep ( )
virtualinherited

A method to integrate the system::QoI functionals.

Reimplemented in libMesh::UnsteadySolver, libMesh::SteadySolver, libMesh::EulerSolver, libMesh::FirstOrderUnsteadySolver, libMesh::AdaptiveTimeSolver, libMesh::TwostepTimeSolver, and libMesh::Euler2Solver.

Definition at line 141 of file time_solver.C.

142 {
143  libmesh_not_implemented();
144 }

◆ is_adjoint()

bool libMesh::TimeSolver::is_adjoint ( ) const
inlineinherited

Accessor for querying whether we need to do a primal or adjoint solve.

Definition at line 277 of file time_solver.h.

References libMesh::TimeSolver::_is_adjoint.

Referenced by libMesh::FEMSystem::build_context().

278  { return _is_adjoint; }
bool _is_adjoint
This boolean tells the TimeSolver whether we are solving a primal or adjoint problem.
Definition: time_solver.h:340

◆ is_steady()

virtual bool libMesh::EigenTimeSolver::is_steady ( ) const
inlineoverridevirtual

This is effectively a steady-state solver.

Implements libMesh::TimeSolver.

Definition at line 149 of file eigen_time_solver.h.

149 { return true; }

◆ last_completed_timestep_size()

Real libMesh::TimeSolver::last_completed_timestep_size ( )
virtualinherited

Returns system.deltat if fixed timestep solver is used, the complete timestep size (sum of all substeps) if the adaptive time solver is used.

Returns the change in system.time, deltat, for the last timestep which was successfully completed. This only returns the outermost step size in the case of nested time solvers. If no time step has yet been successfully completed, then returns system.deltat.

Reimplemented in libMesh::AdaptiveTimeSolver.

Definition at line 160 of file time_solver.C.

References libMesh::TimeSolver::last_deltat.

161 {
162  return last_deltat;
163 }
Real last_deltat
The deltat for the last completed timestep before the current one.
Definition: time_solver.h:332

◆ linear_solver()

virtual std::unique_ptr<LinearSolver<Number> >& libMesh::TimeSolver::linear_solver ( )
inlinevirtualinherited

An implicit linear solver to use for adjoint and sensitivity problems.

Reimplemented in libMesh::AdaptiveTimeSolver.

Definition at line 225 of file time_solver.h.

References libMesh::TimeSolver::_linear_solver.

Referenced by libMesh::TimeSolver::init(), libMesh::TimeSolver::init_data(), and libMesh::TimeSolver::reinit().

225 { return _linear_solver; }
std::unique_ptr< LinearSolver< Number > > _linear_solver
An implicit linear solver to use for adjoint problems.
Definition: time_solver.h:307

◆ n_objects()

static unsigned int libMesh::ReferenceCounter::n_objects ( )
inlinestaticinherited

Prints the number of outstanding (created, but not yet destroyed) objects.

Definition at line 85 of file reference_counter.h.

References libMesh::ReferenceCounter::_n_objects.

Referenced by libMesh::LibMeshInit::~LibMeshInit().

86  { return _n_objects; }
static Threads::atomic< unsigned int > _n_objects
The number of objects.

◆ nonlocal_residual()

bool libMesh::EigenTimeSolver::nonlocal_residual ( bool  get_jacobian,
DiffContext context 
)
overridevirtual

Forms the jacobian of the nonlocal terms.

Implements libMesh::TimeSolver.

Definition at line 217 of file eigen_time_solver.C.

References libMesh::TimeSolver::_system, libMesh::DiffContext::get_elem_jacobian(), libMesh::DifferentiableSystem::get_physics(), libMesh::libmesh_assert(), Matrix_A, Matrix_B, libMesh::DifferentiablePhysics::nonlocal_constraint(), libMesh::DifferentiablePhysics::nonlocal_mass_residual(), libMesh::DifferentiablePhysics::nonlocal_time_derivative(), and now_assembling.

219 {
220  // The EigenTimeSolver always requests jacobians?
221  //libmesh_assert (request_jacobian);
222 
223  // Assemble the operator for the spatial part.
224  if (now_assembling == Matrix_A)
225  {
226  bool jacobian_computed =
227  _system.get_physics()->nonlocal_time_derivative(request_jacobian, context);
228 
229  // The user shouldn't compute a jacobian unless requested
230  libmesh_assert (request_jacobian || !jacobian_computed);
231 
232  bool jacobian_computed2 =
233  _system.get_physics()->nonlocal_constraint(jacobian_computed, context);
234 
235  // The user shouldn't compute a jacobian unless requested
236  libmesh_assert (jacobian_computed || !jacobian_computed2);
237 
238  return jacobian_computed && jacobian_computed2;
239 
240  }
241 
242  // There is now a "side" equivalent for the mass matrix
243  else if (now_assembling == Matrix_B)
244  {
245  bool mass_jacobian_computed =
246  _system.get_physics()->nonlocal_mass_residual(request_jacobian, context);
247 
248  // Scale Jacobian by -1 to get positive matrix from new negative
249  // mass_residual convention
250  context.get_elem_jacobian() *= -1.0;
251 
252  return mass_jacobian_computed;
253  }
254 
255  else
256  libmesh_error_msg("Unrecognized value now_assembling = " << now_assembling);
257 }
virtual bool nonlocal_time_derivative(bool request_jacobian, DiffContext &)
Adds any nonlocal time derivative contributions (e.g.
Definition: diff_physics.h:214
virtual bool nonlocal_constraint(bool request_jacobian, DiffContext &)
Adds any nonlocal constraint contributions (e.g.
Definition: diff_physics.h:233
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
libmesh_assert(ctx)
const DifferentiablePhysics * get_physics() const
Definition: diff_system.h:181
NowAssembling now_assembling
Flag which controls the internals of element_residual() and side_residual().
The matrix associated with the spatial part of the operator.
The matrix associated with the time derivative (mass matrix).
virtual bool nonlocal_mass_residual(bool request_jacobian, DiffContext &c)
Subtracts any nonlocal mass vector contributions (e.g.
Definition: diff_physics.C:57

◆ print_info()

void libMesh::ReferenceCounter::print_info ( std::ostream &  out_stream = libMesh::out)
staticinherited

Prints the reference information, by default to libMesh::out.

Definition at line 81 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().

Referenced by libMesh::LibMeshInit::~LibMeshInit().

82 {
84  out_stream << ReferenceCounter::get_info();
85 }
static std::string get_info()
Gets a string containing the reference information.
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ reinit()

void libMesh::EigenTimeSolver::reinit ( )
overridevirtual

The reinitialization function.

This method is used after changes in the mesh

Reimplemented from libMesh::TimeSolver.

Definition at line 50 of file eigen_time_solver.C.

51 {
52  // empty...
53 }

◆ retrieve_timestep()

void libMesh::TimeSolver::retrieve_timestep ( )
virtualinherited

This method retrieves all the stored solutions at the current system.time.

Reimplemented in libMesh::UnsteadySolver, libMesh::SecondOrderUnsteadySolver, and libMesh::AdaptiveTimeSolver.

Definition at line 169 of file time_solver.C.

170 {
171 }

◆ set_is_adjoint()

void libMesh::TimeSolver::set_is_adjoint ( bool  _is_adjoint_value)
inlineinherited

Accessor for setting whether we need to do a primal or adjoint solve.

Definition at line 284 of file time_solver.h.

References libMesh::TimeSolver::_is_adjoint.

Referenced by libMesh::DifferentiableSystem::adjoint_solve(), libMesh::FEMSystem::postprocess(), and libMesh::DifferentiableSystem::solve().

285  { _is_adjoint = _is_adjoint_value; }
bool _is_adjoint
This boolean tells the TimeSolver whether we are solving a primal or adjoint problem.
Definition: time_solver.h:340

◆ set_solution_history()

void libMesh::TimeSolver::set_solution_history ( const SolutionHistory _solution_history)
inherited

A setter function users will employ if they need to do something other than save no solution history.

Definition at line 119 of file time_solver.C.

References libMesh::SolutionHistory::clone(), and libMesh::TimeSolver::solution_history.

Referenced by libMesh::AdaptiveTimeSolver::init().

120 {
121  solution_history = _solution_history.clone();
122 }
std::unique_ptr< SolutionHistory > solution_history
A std::unique_ptr to a SolutionHistory object.
Definition: time_solver.h:319

◆ side_residual()

bool libMesh::EigenTimeSolver::side_residual ( bool  get_jacobian,
DiffContext context 
)
overridevirtual

Forms the jacobian of the boundary terms.

Implements libMesh::TimeSolver.

Definition at line 170 of file eigen_time_solver.C.

References libMesh::TimeSolver::_system, libMesh::DiffContext::elem_solution_derivative, libMesh::DiffContext::elem_solution_rate_derivative, libMesh::DiffContext::get_elem_jacobian(), libMesh::DifferentiableSystem::get_physics(), libMesh::libmesh_assert(), Matrix_A, Matrix_B, now_assembling, libMesh::DifferentiablePhysics::side_constraint(), libMesh::DifferentiablePhysics::side_mass_residual(), and libMesh::DifferentiablePhysics::side_time_derivative().

172 {
173  // The EigenTimeSolver always requests jacobians?
174  //libmesh_assert (request_jacobian);
175 
176  context.elem_solution_rate_derivative = 1;
177  context.elem_solution_derivative = 1;
178 
179  // Assemble the operator for the spatial part.
180  if (now_assembling == Matrix_A)
181  {
182  bool jacobian_computed =
183  _system.get_physics()->side_time_derivative(request_jacobian, context);
184 
185  // The user shouldn't compute a jacobian unless requested
186  libmesh_assert (request_jacobian || !jacobian_computed);
187 
188  bool jacobian_computed2 =
189  _system.get_physics()->side_constraint(jacobian_computed, context);
190 
191  // The user shouldn't compute a jacobian unless requested
192  libmesh_assert (jacobian_computed || !jacobian_computed2);
193 
194  return jacobian_computed && jacobian_computed2;
195 
196  }
197 
198  // There is now a "side" equivalent for the mass matrix
199  else if (now_assembling == Matrix_B)
200  {
201  bool mass_jacobian_computed =
202  _system.get_physics()->side_mass_residual(request_jacobian, context);
203 
204  // Scale Jacobian by -1 to get positive matrix from new negative
205  // mass_residual convention
206  context.get_elem_jacobian() *= -1.0;
207 
208  return mass_jacobian_computed;
209  }
210 
211  else
212  libmesh_error_msg("Unrecognized value now_assembling = " << now_assembling);
213 }
virtual bool side_constraint(bool request_jacobian, DiffContext &)
Adds the constraint contribution on side of elem to elem_residual.
Definition: diff_physics.h:195
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
libmesh_assert(ctx)
const DifferentiablePhysics * get_physics() const
Definition: diff_system.h:181
NowAssembling now_assembling
Flag which controls the internals of element_residual() and side_residual().
virtual bool side_mass_residual(bool request_jacobian, DiffContext &)
Subtracts a mass vector contribution on side of elem from elem_residual.
Definition: diff_physics.h:320
virtual bool side_time_derivative(bool request_jacobian, DiffContext &)
Adds the time derivative contribution on side of elem to elem_residual.
Definition: diff_physics.h:174
The matrix associated with the spatial part of the operator.
The matrix associated with the time derivative (mass matrix).

◆ solve()

void libMesh::EigenTimeSolver::solve ( )
overridevirtual

Implements the assembly of both matrices A and B, and calls the EigenSolver to compute the eigenvalues.

Reimplemented from libMesh::TimeSolver.

Definition at line 67 of file eigen_time_solver.C.

References libMesh::TimeSolver::_system, libMesh::DifferentiableSystem::assembly(), eigen_solver, libMesh::System::get_matrix(), libMesh::ImplicitSystem::get_system_matrix(), libMesh::ImplicitSystem::matrix, Matrix_A, Matrix_B, maxits, n_basis_vectors_to_use, n_converged_eigenpairs, n_eigenpairs_to_compute, n_iterations_reqd, now_assembling, libMesh::out, libMesh::TimeSolver::quiet, and tol.

68 {
69  // The standard implementation is basically to call:
70  // _diff_solver->solve();
71  // which internally assembles (when necessary) matrices and vectors
72  // and calls linear solver software while also doing Newton steps (see newton_solver.C)
73  //
74  // The element_residual and side_residual functions below control
75  // what happens in the interior of the element assembly loops.
76  // We have a system reference, so it's possible to call _system.assembly()
77  // ourselves if we want to...
78  //
79  // Interestingly, for the EigenSolver we don't need residuals...just Jacobians.
80  // The Jacobian should therefore always be requested, and always return
81  // jacobian_computed as being true.
82 
83  // The basic plan of attack is:
84  // .) Construct the Jacobian using _system.assembly(true,true) as we
85  // would for a steady system. Use a flag in this class to
86  // control behavior in element_residual and side_residual
87  // .) Swap _system.matrix to matrix "B" (be sure to add this extra matrix during init)
88  // .) Call _system.assembly(true,true) again, using the flag in element_residual
89  // and side_residual to only get the mass matrix terms.
90  // .) Send A and B to Steffen's EigenSolver interface.
91 
92  // Assemble the spatial part (matrix A) of the operator
93  if (!this->quiet)
94  libMesh::out << "Assembling matrix A." << std::endl;
96  this->now_assembling = Matrix_A;
97  _system.assembly(true, true);
98  //_system.matrix->print_matlab("matrix_A.m");
99 
100  // Point the system's matrix at B, call assembly again.
101  if (!this->quiet)
102  libMesh::out << "Assembling matrix B." << std::endl;
103  _system.matrix = &( _system.get_matrix ("B") );
104  this->now_assembling = Matrix_B;
105  _system.assembly(true, true);
106  //_system.matrix->print_matlab("matrix_B.m");
107 
108  // Send matrices A, B to Steffen's SlepcEigenSolver interface
109  //libmesh_here();
110  if (!this->quiet)
111  libMesh::out << "Calling the EigenSolver." << std::endl;
112  std::tie(this->n_converged_eigenpairs, this->n_iterations_reqd) =
113  eigen_solver->solve_generalized (_system.get_system_matrix(),
114  _system.get_matrix ("B"),
117  tol,
118  maxits);
119 }
bool quiet
Print extra debugging information if quiet == false.
Definition: time_solver.h:230
virtual void assembly(bool get_residual, bool get_jacobian, bool apply_heterogeneous_constraints=false, bool apply_no_constraints=false) override=0
Assembles a residual in rhs and/or a jacobian in matrix, as requested.
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
unsigned int maxits
The maximum number of iterations allowed to solve the problem.
unsigned int n_iterations_reqd
After a solve, holds the number of iterations required to converge the requested number of eigenpairs...
NowAssembling now_assembling
Flag which controls the internals of element_residual() and side_residual().
double tol
The linear solver tolerance to be used when solving the eigenvalue problem.
OStreamProxy out
SparseMatrix< Number > * matrix
The system matrix.
unsigned int n_basis_vectors_to_use
The number of basis vectors to use in the computation.
unsigned int n_converged_eigenpairs
After a solve, holds the number of eigenpairs successfully converged.
const SparseMatrix< Number > & get_matrix(std::string_view mat_name) const
Definition: system.C:1124
unsigned int n_eigenpairs_to_compute
The number of eigenvectors/values to be computed.
The matrix associated with the spatial part of the operator.
const SparseMatrix< Number > & get_system_matrix() const
The matrix associated with the time derivative (mass matrix).
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver object.

◆ system() [1/2]

const sys_type& libMesh::TimeSolver::system ( ) const
inlineinherited
Returns
A constant reference to the system we are solving.

Definition at line 210 of file time_solver.h.

References libMesh::TimeSolver::_system.

Referenced by libMesh::TimeSolver::adjoint_solve(), libMesh::TimeSolver::reinit(), and libMesh::TimeSolver::solve().

210 { return _system; }
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312

◆ system() [2/2]

sys_type& libMesh::TimeSolver::system ( )
inlineinherited
Returns
A writable reference to the system we are solving.

Definition at line 215 of file time_solver.h.

References libMesh::TimeSolver::_system.

215 { return _system; }
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312

Member Data Documentation

◆ _counts

ReferenceCounter::Counts libMesh::ReferenceCounter::_counts
staticprotectedinherited

Actually holds the data.

Definition at line 124 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::get_info().

◆ _diff_solver

std::unique_ptr<DiffSolver> libMesh::TimeSolver::_diff_solver
protectedinherited

An implicit linear or nonlinear solver to use at each timestep.

Definition at line 302 of file time_solver.h.

Referenced by libMesh::NewmarkSolver::compute_initial_accel(), libMesh::TimeSolver::diff_solver(), and libMesh::UnsteadySolver::solve().

◆ _enable_print_counter

bool libMesh::ReferenceCounter::_enable_print_counter = true
staticprotectedinherited

Flag to control whether reference count information is printed when print_info is called.

Definition at line 143 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().

◆ _linear_solver

std::unique_ptr<LinearSolver<Number> > libMesh::TimeSolver::_linear_solver
protectedinherited

An implicit linear solver to use for adjoint problems.

Definition at line 307 of file time_solver.h.

Referenced by libMesh::TimeSolver::linear_solver(), and libMesh::TimeSolver::reinit().

◆ _mutex

Threads::spin_mutex libMesh::ReferenceCounter::_mutex
staticprotectedinherited

Mutual exclusion object to enable thread-safe reference counting.

Definition at line 137 of file reference_counter.h.

◆ _n_objects

Threads::atomic< unsigned int > libMesh::ReferenceCounter::_n_objects
staticprotectedinherited

The number of objects.

Print the reference count information when the number returns to 0.

Definition at line 132 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().

◆ _system

sys_type& libMesh::TimeSolver::_system
protectedinherited

A reference to the system we are solving.

Definition at line 312 of file time_solver.h.

Referenced by libMesh::EulerSolver::_general_residual(), libMesh::Euler2Solver::_general_residual(), libMesh::SteadySolver::_general_residual(), libMesh::NewmarkSolver::_general_residual(), libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::UnsteadySolver::adjoint_solve(), libMesh::TimeSolver::adjoint_solve(), libMesh::NewmarkSolver::advance_timestep(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::NewmarkSolver::compute_initial_accel(), libMesh::FirstOrderUnsteadySolver::compute_second_order_eqns(), libMesh::UnsteadySolver::du(), libMesh::EulerSolver::element_residual(), libMesh::Euler2Solver::element_residual(), element_residual(), libMesh::SecondOrderUnsteadySolver::init(), libMesh::UnsteadySolver::init(), libMesh::TimeSolver::init(), init(), libMesh::UnsteadySolver::init_adjoints(), libMesh::TimeSolver::init_adjoints(), libMesh::SecondOrderUnsteadySolver::init_data(), libMesh::UnsteadySolver::init_data(), libMesh::TimeSolver::init_data(), libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::TwostepTimeSolver::integrate_adjoint_refinement_error_estimate(), libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate(), libMesh::TwostepTimeSolver::integrate_adjoint_sensitivity(), libMesh::SteadySolver::integrate_adjoint_sensitivity(), libMesh::UnsteadySolver::integrate_adjoint_sensitivity(), libMesh::Euler2Solver::integrate_qoi_timestep(), libMesh::TwostepTimeSolver::integrate_qoi_timestep(), libMesh::EulerSolver::integrate_qoi_timestep(), libMesh::SteadySolver::integrate_qoi_timestep(), libMesh::EulerSolver::nonlocal_residual(), libMesh::Euler2Solver::nonlocal_residual(), nonlocal_residual(), libMesh::UnsteadySolver::old_nonlinear_solution(), libMesh::SecondOrderUnsteadySolver::old_solution_accel(), libMesh::SecondOrderUnsteadySolver::old_solution_rate(), libMesh::NewmarkSolver::project_initial_accel(), libMesh::SecondOrderUnsteadySolver::project_initial_rate(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::TimeSolver::reinit(), libMesh::UnsteadySolver::retrieve_timestep(), side_residual(), libMesh::TwostepTimeSolver::solve(), libMesh::UnsteadySolver::solve(), solve(), libMesh::TimeSolver::system(), and libMesh::UnsteadySolver::update().

◆ eigen_solver

std::unique_ptr<EigenSolver<Number> > libMesh::EigenTimeSolver::eigen_solver

The EigenSolver object.

This is what actually makes the calls to SLEPc.

Definition at line 155 of file eigen_time_solver.h.

Referenced by EigenTimeSolver(), and solve().

◆ last_deltat

Real libMesh::TimeSolver::last_deltat
protectedinherited

◆ maxits

unsigned int libMesh::EigenTimeSolver::maxits

The maximum number of iterations allowed to solve the problem.

Definition at line 166 of file eigen_time_solver.h.

Referenced by solve().

◆ n_basis_vectors_to_use

unsigned int libMesh::EigenTimeSolver::n_basis_vectors_to_use

The number of basis vectors to use in the computation.

According to ex16, the number of basis vectors must be >= the number of eigenpairs requested, and ncv >= 2*nev is recommended. Increasing this number, even by a little bit, can greatly reduce the number of (EigenSolver) iterations required to compute the desired number of eigenpairs, but the cost per iteration goes up drastically as well.

Definition at line 182 of file eigen_time_solver.h.

Referenced by solve().

◆ n_converged_eigenpairs

unsigned int libMesh::EigenTimeSolver::n_converged_eigenpairs

After a solve, holds the number of eigenpairs successfully converged.

Definition at line 188 of file eigen_time_solver.h.

Referenced by solve().

◆ n_eigenpairs_to_compute

unsigned int libMesh::EigenTimeSolver::n_eigenpairs_to_compute

The number of eigenvectors/values to be computed.

Definition at line 171 of file eigen_time_solver.h.

Referenced by solve().

◆ n_iterations_reqd

unsigned int libMesh::EigenTimeSolver::n_iterations_reqd

After a solve, holds the number of iterations required to converge the requested number of eigenpairs.

Definition at line 194 of file eigen_time_solver.h.

Referenced by solve().

◆ now_assembling

NowAssembling libMesh::EigenTimeSolver::now_assembling
private

Flag which controls the internals of element_residual() and side_residual().

Definition at line 218 of file eigen_time_solver.h.

Referenced by element_residual(), nonlocal_residual(), side_residual(), and solve().

◆ quiet

bool libMesh::TimeSolver::quiet
inherited

Print extra debugging information if quiet == false.

Definition at line 230 of file time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve(), libMesh::UnsteadySolver::solve(), and solve().

◆ reduce_deltat_on_diffsolver_failure

unsigned int libMesh::TimeSolver::reduce_deltat_on_diffsolver_failure
inherited

This value (which defaults to zero) is the number of times the TimeSolver is allowed to halve deltat and let the DiffSolver repeat the latest failed solve with a reduced timestep.

Note
This has no effect for SteadySolvers.
You must set at least one of the DiffSolver flags "continue_after_max_iterations" or "continue_after_backtrack_failure" to allow the TimeSolver to retry the solve.

Definition at line 259 of file time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve(), and libMesh::UnsteadySolver::solve().

◆ solution_history

std::unique_ptr<SolutionHistory> libMesh::TimeSolver::solution_history
protectedinherited

◆ tol

double libMesh::EigenTimeSolver::tol

The linear solver tolerance to be used when solving the eigenvalue problem.

FIXME: need more info...

Definition at line 161 of file eigen_time_solver.h.

Referenced by solve().


The documentation for this class was generated from the following files: